DIPLOMARBEIT

Kardiovaskuläre und spasmytische Aktivität von zwei neuen Wirkstoffen (SWS 25a und WHG 58T) auf isolierte Organe von Cavia porcellus

angestrebter akademischer Grad
Magister der Pharmazie (Mag.pharm.)

Verfasser: Hintersteininger Michael
Matrikel-Nummer: 0405761
Studienrichtung: Pharmazie
Betreuerin / Betreuer: Ao. Univ. Prof. Dr. Christian Studenik

Wien, im Februar 2010
„DIE ANGST ZU VERSAGEN IST DER ERSTE SCHRITT
AM WEG DES SCHEITERNs“
Diese Diplomarbeit ist meiner Familie gewidmet. Ihre stets selbstlose moralische und finanzielle Unterstützung während meines gesamten Studiums waren die Grundpfeiler für meinen Studienerfolg- und Abschluss. Dafür danke ich aus ganzem Herzen!

Mein spezieller Dank gilt auch all jenen Menschen die ich während meiner Zeit an der Universität kennen gelernt habe und die mich durch die Höhen und Tiefen des Studiums begleitet haben. Viele davon darf ich heute nicht nur als Kollegen sondern als Freunde bezeichnen.

In dieser Hinsicht sei besonders Ao. Univ. Prof. Dr. Christian Studenik genannt, bei dem ich jahrelang als Tutor in der Lehre mitwirken durfte und der auch mein Betreuer bei dieser Diplomarbeit war. Seine stets professionelle und doch menschliche Betreuung waren eine große Unterstützung während der Diplomarbeit sowie des Studiums.

Abschließend danke ich der Arbeitsgruppe des Departments für Medizinische Chemie und Pharmazeutische Chemie, stellvertretend sei Ao. Univ. Prof. Dr. Thomas Erker genannt, für die Bereitstellung der Testsubstanzen samt fachlicher Betreuung.
1. EINLEITUNG .. 1

2. ZIELSETZUNG ... 6

3. MATERIAL UND METHODIK .. 7

3.1 Testsubstanzen ... 7
 3.1.1 SWS 25a ... 7
 3.1.2 WHG 58T ... 7
 3.1.3 Lösungsmittel .. 8

3.2 Versuchstiere ... 9

3.3 Physiologische Elektrolytlösung ... 10

3.4 Verwendete Organe ... 11
 3.4.1 Die Präparation .. 11
 3.4.1.1 Verwendete Materialien ... 11
 3.4.1.2 Rechter Vorhof ... 12
 3.4.1.3 Die Lungenarterie ... 13
 3.4.1.4 Papillarmuskel (Musculus papillaris) ... 13
 3.4.1.5 Dünndarm (Terminales ileum) ... 15
 3.4.1.6 Aorta (Aorta descendens) .. 15

3.5 Verwendete Apparaturen .. 17
 3.5.1 Apparat 1 .. 17
 3.5.2 Apparat 2 .. 19
 3.5.3 Der Kraftwandler ... 21
 3.5.4 Versorgung mit Carbogen ... 22

3.6 Durchführung der Versuche ... 22
 3.6.1 Wirkung der Substanzen auf die isolierten Meerschweinchenorgane 23
 3.6.1.1 Atrium Dexter (Rechter Vorhof) ... 23
 3.6.1.2 Musculus papillaris (Papillarmuskel) ... 24
 3.6.1.3 Terminales ileum (Dünndarm) ... 25
 3.6.1.4 Aorta descendens ... 26
 3.6.1.5 Arteria pulmonalis (Lungenarterie) ... 26
 3.6.2 Untersuchung des Wirkmechanismus von SWS 25a an der Aorta 26
 3.6.2.1 Untersuchungen mit Glibenclamid und Nitro-L-Arginin 26
 3.6.2.2 Untersuchungen mit Phenytoin .. 27

3.7 Verwendete Substanzen zur Untersuchung der Wirkmechanismen 28
 3.7.1 Glibenclamid .. 28
 3.7.2 Nitro-L-Arginin ... 29
 3.7.3 Phenytoin ... 29

3.8 Auswertung der Daten und Statistik .. 30
 3.8.1 Atrium dexter .. 30
 3.8.2 Musculus papillaris ... 30
 3.8.3 Aorta, Arteria pulmonalis, terminales ileum ... 31
 3.8.4. Dimethylsulfoxid ... 31
 3.8.5 Statistik ... 32

4. ERGEBNISSE ... 33

4.1 Ergebnisse der Testsubstanz SWS 25a ... 33
 4.1.1. Atrium cordis dexter ... 33
 4.1.2 Musculus papillaris ... 36
 4.1.3 Aorta descendens ... 39
4.1.4 Arteria pulmonalis .. 42
4.1.5 Terminales ileum .. 45

4.2 Ergebnisse der Testsubstanz WHG 58 T ... 48
 4.2.1 Atrium cordis dexter ... 48
 4.2.2 Musculus papillaris ... 51
 4.2.3 Aorta descendens ... 54
 4.2.4 Arteria pulmonalis .. 57
 4.2.5 Terminales ileum ... 60

4.3 Versuche zur Analyse des Wirkungsmechanismus von SWS 25 auf die Aorta 63
 4.3.1 Effekt von SWS 25a in Kombination mit Nitro-L-Arginin auf die Aorta 63
 4.3.2 Effekt von SWS 25a in Kombination mit Glibenclamid auf die Aorta 66
 4.3.3 Effekt von SWS 25a in Kombination mit Phenylephrin auf die Aorta 71

5. DISKUSSION .. 75

6. ZUSAMMENFASSUNG ... 82

7. LITERATURVERZEICHNIS ... 84

8. LEBENSLAUF .. 87
1. EINLEITUNG

Schwefelwasserstoff, Summenformel H₂S, folgliches Molekulargewicht 34,08 g/mol, ist seit Jahrzehnten als giftiges Gas gut bekannt (Winder und Winder 1933, Smith und Gosselin 1979). Er riecht intensiv nach faulen Eiern, die Geruchsschwelle liegt bei 0,025/ml/m³, und entsteht bei der Einwirkung von Säuren auf Schwermetallsulfide sowie bei reduktiver Zersetzung von Eiweiß (Forth et al. 2009).

Herstellung im Labormaßstab:

Aus Eisen(II)-sulfid und Salzsäure entsteht Eisen(II)-chlorid und Schwefelwasserstoff

FeS + 2 HCl → FeCl₂ + H₂S

Die Therapie der akuten Vergiftung ist symptomatisch, wesentlich ist die gezielte Beatmung. Versuchsweise kann 4-DMAP (Diethylaminophenol) ohne nachfolgende Gabe von Natriumthiosulfat eingesetzt werden (Oberdisse et al. 2002).

 Weniger bekannt ist die Tatsache das Schwefelwasserstoff ebenso ein biologisches Gas ist, das im Körper endogen beim Cystein-Metabolismus entsteht und in einer

Diese Eigenschaft stellt eine Analogie zu anderen endogenen Transmittern wie Stickstoffmonoxid (NO) und Kohlenstoffmonoxid (CO) dar (Wang et al. 1997a,b). Deshalb kam man zur Überzeugung, dass H$_2$S neben seiner Toxizität auch eine physiologische Rolle in der kardiovaskulären Regulation spielen könnte. In der Folge beschäftigten sich viele Studien damit.

Das ein Zusammenspiel von NO und H$_2$S existiert, wurde in einer Studie an pulmonalen Rattenaorten bestätigt (Wang et al. 2008).

Man fand weiters heraus, dass die relaxierende Wirkung von Schwefelwasserstoff auf isolierte Aortenringe von Ratten der Aktivierung von K$_{ATP}$-abhängigen Kanälen zugrunde liegt (Zhao et al. 2001).

Auch ein Zusammenhang zwischen H$_2$S und dem intrazellulären pH, der ebenfalls an der vaskulären Regulation beteiligt ist, wurde gezeigt (Lee et al. 2007)
Diese unterschiedlichen Studien weisen darauf hin, dass die K_{ATP} Kanäle nicht alleine für die physiologische Wirkung von Schwefelwasserstoff verantwortlich sind.

Eine besonders interessante Studie beschäftigte sich mit H_2S zur Behandlung einer künstlich biochemisch hervorgerufenen pulmonal arteriellen Hypertonie. Hier zeigte sich, dass die erzeugten negativen Effekte durch Verabreichung von NaHS teilweise wieder aufgehoben werden konnten (Huang et al. 2008).

Dies könnte ein interessanter Therapieansatz zur Behandlung der Orphan Disease pulmonal-arterielle Hypertonie, kurz PAH, sein.

Die Pharmakotherapie der pulmonalen Hypertonie basiert auf dem Versuch, durch vasodilatierende Substanzen das Restlumen der pulmonalen Gefäße zu erhöhen. Therapeutisch eingesetzt werden:

- Iloprost (Prostacyclinderivat)
- Endothelinantagonisten wie Bosentan
- PDE5-Hemmer wie Sildenafil
Hinsichtlich der Therapie mit PDE5-Hemmern wurden interessante Versuche mit einem H$_2$S spendenden Sildenafil-Derviat (ACS6) durchgeführt. Es zeigte sich, dass es cAMP Spiegeln erniedrigen konnte und die PDE5 Aktivität herabsetzte. Allerdings wurde nur hinsichtlich der Behandlung des Acute Respiratory Distress Syndrome, kurz ARDS, geprüft (Muzaffar et al. 2008).

Aufgrund seines Wirkmechanismus wären auf Schwefelwasserstofffreisetzung basierende Wirkstoffe natürlich auch hervorragend zur Behandlung der Volkskrankheit der essentiellen Hypertonie geeignet.

Die WHO/ISH-Leitlinie definiert den normalen Blutdruck als 130/85 mm Hg, die Hypertonie beginnt bei Werten >140/90 mm Hg. Dazwischen liegt ein Bereich der als normal hoch bezeichnet wird. Bei etwa 95 % der betroffenen liegt eine primäre oder essentielle Hypertonie vor, d.h. die pathophysiologische Ursache bleibt unklar. Etwa 5 % der Hypertoniepatienten haben eine sekundäre Hypertonie z.B renaler oder endokriner Genese, bei der die primäre Ursache zu behandeln ist (Forth et al. 2009).

Für die pharmakologische Monotherapie werden heute fünf Substanzklassen empfohlen:

1. Diuretika
2. β-Rezeptoren-Antagonisten
3. ACE-Inhibitoren
4. AT$_1$-Rezeptor Antagonisten
5. Kalziumkanalblocker

Nicht pharmakologische Maßnahmen wären:

- Gewichtsreduktion
- Einschränkung des Alkoholkonsums
- Kochsalzrestriktion
- Reduktion des Fettanteils der Nahrung
- Rauchen aufgeben
• Stressbewältigung

Auf der Basis der aktuellen Studienlage ist der Beginn der Hypertoniebehandlung mit einer niedrig dosierten Kombinationstherapie aus Diuretikum und β-Blocker oder Diuretikum und ACE-Hemmer hinsichtlich Wirksamkeit und Nebenwirkungen als gleichwertig der Monotherapie anzusehen. Wenn das Therapieziel mit der normalen therapeutischen Dosierung einer Monosubstanz nicht erreicht wird, sollte man sich frühzeitig zur Gabe von Zweier- oder auch Dreierkombinationen entschließen, da so die Erfolgsrate erhöht wird und die Dosen (und damit der unerwünschten Wirkungen) der individuellen Kombinationspartner klein gehalten werden können (Forth et al. 2009).
2. ZIELSETZUNG

Aufgabenstellung dieser Diplomarbeit war es die Wirkung zweier neu synthetisierter, Schwefelwasserstoff freisetzenden Verbindungen, SWS 25a und WHG 58T, an isolierten Meerschweinchenorganen zu testen. Es wurde die Veränderung von Inotropie und Chronotropie am Herzen, sowie die Wirkung auf die glatte Muskulatur untersucht.

Dazu wurden Präparate von Vorhöfen, Papillarmuskeln, Aorten, Lungenarterien und Dünndarmteilstücken hergestellt.

Um auswertbare und reproduzierbare Ergebnisse zu erhalten musste zu Beginn die richtige Präpariertechnik und die richtige Einstellung der Messgeräte erlernt werden.

Konnte eine signifikante Wirkung festgestellt werden, dies war bei Erreichen einer EC_{50} von unter 30 µmol/l der Fall, wurden zusätzlich Versuche durchgeführt um die zugrunde liegenden Wirkmechanismen festzustellen.
3. MATERIAL UND METHODIK

3.1 Testsubstanzen

Die beiden zu prüfenden Substanzen wurden an der Fakultät für Lebenswissenschaften, am Department für Medizinische/Pharmazeutische Chemie von der Arbeitsgruppe rund um Ao. Univ. Prof. Dr. Thomas Erker neu synthetisiert und zur Verfügung gestellt.

3.1.1 SWS 25a

Abbildung 1: Chemische Struktur von SWS 25a

\[
\begin{array}{c}
\text{NO}_2 \\
\text{S} \\
\text{NO}_2 \\
\end{array}
\]

MG = 288 g/mol

Nomenklatur: 3,3’-Thiobis-(2-nitro)-thiophen

3.1.2 WHG 58T

Abbildung 2: Chemische Struktur von WHG 58T

\[
\begin{array}{c}
\text{F} \\
\text{F} \\
\text{S} \\
\text{NH} \\
\text{S} \\
\text{S} \\
\end{array}
\]

MG = 384,47 g/mol

Nomenklatur: N,N’-(1,4-Phenylen)bis(4-fluorbenzothioamid)
3.1.3 Lösungsmittel

Um der Versuchsanordnung zu entsprechen musste die jeweilige Substanz in Lösung gebracht werden. Als Lösungsmittel diente Dimethylsulfoxid (DMSO), welches aufgrund seiner aprotischen, dipolaren Eigenschaften einerseits lipophile Substanzen, welche im Experiment vorlagen, gut löst aber auch andererseits mit Wasser mischbar ist. Vorgegeben, aufgrund der vorhandenen Organbäder mit 8 ml und 25 ml Fassungsvermögen, wurde die Einwaage immer so gewählt, dass man in jedem Gefäß nach vollständiger, kumulativer Zugabe eine Konzentration von 100µmol/l im Gefäß erreichte.

Folgende Tabelle zeigt die berechneten und verwendeten Stammlösungen:

Tabelle 1: Stammlösungen

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Molare Masse</th>
<th>Volumen Organbad (ml)</th>
<th>Einwaage Substanz (100µmol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS 25a</td>
<td>288 g/mol</td>
<td>8</td>
<td>0,23 mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>0,72 mg</td>
</tr>
<tr>
<td>WHG 58T</td>
<td>384,47 g/mol</td>
<td>8</td>
<td>0,31 mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>0,96 mg</td>
</tr>
</tbody>
</table>

Die Wirkung auf die zu testenden Organe sollte bei Konzentrationen von, 1, 3, 10, 30 und 100 µmol/l gemessen werden. Der zweite untersuchte Wirkstoff, WHG 58 T musste aufgrund der schlechten Löslichkeit in 200 µl gelöst werden. Die Messkonzentrationen betrugen für diesen Fall dann trotzdem 1, 3, 10, 30, 100 µmol/l. Dazu wurde, nachdem das jeweilige Organ eine beständige Vergleichsphase erkennen lies, in 45-minütigen Abständen, 1, 2, 7, 20, 70 µl, bzw. 2, 4, 14, 40, 140, der Stammlösung mit einer Finnmikropipette zugefügt.

Tabelle 2: Darstellung des Pipettierschemas

<table>
<thead>
<tr>
<th>Zugegebene Menge</th>
<th>Endkonzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 µl (SWS 25a)</td>
<td>200 µl (WHG 58T)</td>
</tr>
<tr>
<td>100 µmol/l</td>
<td>100 µmol/l</td>
</tr>
<tr>
<td>1 µl</td>
<td>2 µl</td>
</tr>
<tr>
<td>2 µl</td>
<td>4 µl</td>
</tr>
<tr>
<td>7 µl</td>
<td>14 µl</td>
</tr>
<tr>
<td>20 µl</td>
<td>40 µl</td>
</tr>
<tr>
<td>70 µl</td>
<td>140 µl</td>
</tr>
<tr>
<td>1 µmol/l</td>
<td>3 µmol/l</td>
</tr>
<tr>
<td>3 µmol/l</td>
<td>10 µmol/l</td>
</tr>
<tr>
<td>30 µmol/l</td>
<td>100 µmol/l</td>
</tr>
</tbody>
</table>

3.2 Versuchstiere

Die in der vorliegenden Diplomarbeit beschriebene Versuche wurden an den inneren Organen von Meerschweinchen durchgeführt. Diese wurden gewählt da die Charakteristik der Ionenkanäle dieser Säugetiere, berücksichtigend dass man in der Tierauswahl im Hinblick auf die die Größe der Versuchsapparaturen beschränkt ist, dem Menschen am Nächsten kommt.

Bezogen wurden die Nagetiere vom Institut für Toxikologie und Labortierzucht in Dobrá Voda, Universität Bratislava (Slowakische Republik). Die verwendeten Stämme lauteten „DH“ (Inzucht) und „TRIK“ (Auszucht), das Geschlecht war ausschließlich weiblich, das Alter lag zwischen vier und acht Wochen, das Gewicht bewegte sich zwischen 300 g und 600 g.

Die Meerschweinchen wurden am Beginn jedes Versuchstages durch einen präzisen Schlag auf das Genick getötet. Diese Methode hat sich als Schnellste, Schmerz- und Stressärmste bewährt.

3.3 Physiologische Elektrolytlösung

Die oben erwähnte Nährstofflösung, gebräuchlich Tyrode, nach dem Pharmakologen Maurice Vejux Tyrode, bezeichnet, diente zusammen mit einem in diese eingeleiteten Gasgemisch, bestehend aus 95 % O₂ und 5 % CO₂, genannt Oxymix bzw. Carbogen, zur optimalen Versorgung der Organe während der Präparation und den anschließenden Versuchen.

Tabelle 3: Zusammensetzung der Tyrode

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Molare Masse</th>
<th>Stocklösung</th>
<th>ml/Stocklösung/l Tyrode</th>
<th>mmol/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>58,442 g/mol</td>
<td>1000,25 g/5l</td>
<td>33,60</td>
<td>115,01</td>
</tr>
<tr>
<td>KCl</td>
<td>74,55 g/mol</td>
<td>50,33 g/5l</td>
<td>35,00</td>
<td>4,73</td>
</tr>
<tr>
<td>NaHCO₃</td>
<td>84,01 g/mol</td>
<td>125,00 g/5l</td>
<td>83,70</td>
<td>24,91</td>
</tr>
<tr>
<td>MgSO₄</td>
<td>120,37 g/mol</td>
<td>147,02 g/5l</td>
<td>1,18</td>
<td>0,29</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>136,09 g/mol</td>
<td>62,00 g/250 ml</td>
<td>1,18</td>
<td>2,15</td>
</tr>
<tr>
<td>CaCl₂</td>
<td>110,98 g/mol</td>
<td>34 g/250 ml</td>
<td>3,20</td>
<td>3,92</td>
</tr>
<tr>
<td>Glucose</td>
<td>180,16 g/mol</td>
<td>Reinsubstanz</td>
<td>1,98</td>
<td>-</td>
</tr>
</tbody>
</table>

Umgerechnet für 2 Liter ergibt sich folgende Zusammensetzung:

Tabelle 4: Herstellungsanleitung für 2 Liter

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Menge (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>67,2</td>
</tr>
<tr>
<td>KCl</td>
<td>70</td>
</tr>
<tr>
<td>NaHCO₃</td>
<td>167,4</td>
</tr>
<tr>
<td>MgSO₄</td>
<td>2,36</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>2,36</td>
</tr>
<tr>
<td>CaCl₂</td>
<td>6,4</td>
</tr>
<tr>
<td>Glucose</td>
<td>3,96 g</td>
</tr>
</tbody>
</table>
Die Lösung wurde am Beginn jedes Versuchstages frisch bereitet, indem die in Tabelle 4 angeführten Stammlösungen an NaCl, KCl, KH₂PO₄, MgSO₄ und NaHCO₃ in einem 2 Liter fassenden Messkolben mit 1,5 Liter Aqua dest. vermischt wurden. Danach wurde die Glucose hinzugefügt und nach dem diese vollständig gelöst war mindestens 20 Minuten mit Carbogen begast um eine möglichst vollständige Gassättigung zu erreichen. Nach dieser Zeit wurde die notwendige Menge an CaCl₂ hinzugefügt, wobei danach zu trachten war keine schwerlöslichen Calciumsalze zu bilden, die eine Trübung der Lösung zufolge hätten. Um dies zu gewährleisten musste das CaCl₂ vorsichtig und tropfenweise eingebracht werden. Zum Abschluss der Zubereitung wurde der Messkolben bis zur Eichmarke mit Aqua dest. aufgefüllt.

3.4 Verwendete Organe

Um die Wirkungen der Substanzen zu testen wurde das Herz, der Dünndarm und die Aorta isoliert und weiter bearbeitet. Die Reihenfolge der Entnahme wurde bereits in Kapitel 3.2 beschrieben.

3.4.1 Die Präparation

3.4.1.1 Verwendete Materialien

3.4.1.2 Rechter Vorhof

3.4.1.3 Die Lungenarterie

3.4.1.4 Papillarmuskel (Musculus papillaris)

3.4.1.5 Dünndarm (Terminales Ileum)

3.4.1.6 Aorta (Aorta descendens)

Das gewonnene Teilstück wurde analog zu den anderen Präparaten in der vorher beschriebenen Petrischale am Korkboden befestigt. Nun entfernte man vorsichtig das anhaftende Gewebe und schnitt die Aorta in möglichst viele, gleichmäßige 2 mm lange Stücke. Schadhafte oder unregelmäßige Teile mussten entsorgt werden, da sie die folgenden Messungen verfälscht hätten.

Abbildung 5: Schematische Darstellung der Aorta (Netter FH 2003)
3.5 Verwendete Apparaturen

Um größtmögliche Reproduzierbarkeit zu gewährleisten mussten alle Versuchs- bedingungen wie Sauerstoffversorgung (Oxymix), Temperatur, Zusammensetzung der Tyrode und pH-Wert immer so konstant wie möglich gehalten werden.

3.5.1 Apparatur 1

3.5.2 Apparatur 2

Für die Versuche an der Aorta, der Arteria pulmonalis, dem terminalen Ileum und dem rechten Atrium wurde die in nachstehender Skizze beschriebene Apparatur verwendet.

Mittels Feintrieb wurde eine Vorspannung angelegt, anschließend eine Kontraktion erzwungen und diese bzw. deren Veränderungen in Stromsignale umgewandelt und aufgezeichnet.
Abbildung 8: Skizze Apparatur 2
3.5.3 Der Kraftwandler

Der Kraftwandler stellt einen essentiellen Bestandteil der Apparaturen dar. Mithilfe dieses Gerätes werden mechanische Veränderungen über eine sogenannte „Wheat-stonsche Brücke“ in Elektrische überführt, was eine Messung erst möglich macht. Das Prinzip beruht auf einer Messung der Änderung in einem Dehnungsstreifen, der bedingt durch die Kontraktionsänderungen, über einen Widerstandswandler, einen konstanten Stromfluss verändert. So kann die Kontraktionsveränderung über einen Verstärker (4-Channel Transducer Amplifier, Firma WPI) zu einem Flachbettschreiber (Flatbed Recorder Modell BD 112, Firma Kipp & Zonen) geleitet werden, welcher die Impulse auf Millimeterpapier überträgt.

Abbildung 9: Skizze des Kraftwandlers

Abbildung 10: Originalabbildung der Versuchsanordnung
3.5.4 Versorgung mit Carbogen

Um eine ausreichende Versorgung mit Sauerstoff, eine ständig gleichmäßig Verteilung bzw. Vermischung der Wirkstoffe, sowie den pH-Wert konstant zu halten war eine ständige Versorgung mit dem schon mehrmals erwähnten Carbogengas notwendig. Gewährleistet wurde dies durch ein Schlauchsystem, das mit jedem Organbad verbunden war. Direkt vor dem Einlass in die Bäder befanden sich dabei Glasfritten, die eine feine Zerstäubung und so zusammen mit an den Anfängen der Schläuche befindlichen Schraubklemmen eine optimale Dosierung der Luft ermöglichten.

Abbildung 11: Originalabbildung der Gaszufuhr

3.6 Durchführung der Versuche

Dieses Kapitel beschreibt die Versuchsabläufe dieser Diplomarbeit. Vor Beginn musste jedenfalls sichergestellt werden, dass die Gefäße frei von Verunreinigungen waren. Dazu spülte man die Organbäder und dazugehörigen Halterungen mehrmals mit Aqua dest. durch, entfernte mögliche Substanzrückstände mit einer Bürste und

3.6.1 Wirkung der Substanzen auf die isolierten Meerschweinchenorgane

3.6.1.1 Atrium Dexter (Rechter Vorhof)

Die Isolierung und Vorbereitung des Vorhofes wurde schon in Kapitel 3.4.1.2 beschrieben. Mithilfe der beiden angebunden Häkchen wurde das Organ vorsichtig in die Apparatur 2 eingespannt. Dabei war die Länge der Silberdrähte nötigenfalls so zu verändern, dass das Präparat locker in der Halterung hing. Ein Überdehnen war strikt zu vermeiden um den Sinusknoten und so die Spontanaktivität nicht zu beeinflussen, welche für den korrekten Versuchsablauf unerlässlich war. Nun konnte man die nötigen Geräte einschalten und die erforderlichen Einstellungen vornehmen. Im ersten Schritt musste der Flachbettschreiber auf 5 mV und auf Speed 5 mm/sec eingestellt werden und mithilfe eines Drehrades auf den Nullpunkt am Millimeterpapier justiert werden.

Das Zugeben der Substanzen mittels Pipette musste sehr gewissenhaft erfolgen, das Berühren der Silberdrähte und des Kraftwandlers war zu vermeiden, da sonst Fehlströme entstanden wären welche die Aufzeichnung verfälscht hätten.

3.6.1.2 Musculus papillaris (Papillarmuskel)

mm/sec durchgeführt, wodurch eine breitere, besser vermessbare Zeichnung entstand.

3.6.1.3 Terminales Ileum (Dünndarm)

3.6.1.4 Aorta descendens

3.6.1.5 Arteria pulmonalis (Lungenarterie)

Der Ablauf kam dem der Aorta grundsätzlich gleich, einziger Unterschied lag in der Vorspannung die immer konstant bei 5 mV, also 9,81 mN, belassen wurde. Ansonsten wurde in gleicher Art und Weise die Abnahme der maximalen Kontraktion durch die Testsubstanzen gemessen.

3.6.2 Untersuchung des Wirkmechanismus von SWS 25a an der Aorta

3.6.2.1 Untersuchungen mit Glibenclamid und Nitro-L-Arginin

Es wurden auf dieselbe Art und Weise präparierte Aortenstücke und dieselbe Apparatur 2 wie schon in bei den vorangegangen Versuchen verwendet. Auch der Versuchsablauf war bis zur Plateauphase der Kontraktion gleich. Nach erreichen der

Nachdem die jeweiligen Substanzen 45 Minuten Einwirkzeit bekommen hatten, wurde die der EC₅₀ entsprechende Menge an SWS 25a zugesetzt und wieder 45 Minuten gewartet. Danach war das Ende der Versuche erreicht. Die Auswertung wird im folgenden Kapitel 4 näher erörtert.

3.6.2.2 Untersuchungen mit Phenylephrin

Um diesen Ablauf zeitlich immer genau einzuhalten, verwendete man für jegliche Zeitmessung in diesem Versuch eine Stoppuhr. Um Reproduzierbarkeit zu
gewährleisten musste weiters immer gleich schnell und an derselben Stelle in der Nähe der Aorta eingespritzt werden.

3.7 Verwendete Substanzen zur Untersuchung der Wirkmechanismen

3.7.1 Glibenclamid

Abbildung 12: Strukturformel

\[
\text{Glibenclamid gehört zur Gruppe der Sulfonylharnstoffderivate und wird aufgrund seiner Wirkweise als orales Antidiabetikum eingesetzt. Es bindet in den B-Zellen des Pankreas an Membranen und schließt dadurch } K_{\text{ATP}}^- \text{-Kanäle. Die resultierende Membrandepolarisation öffnet spannungsabhängige } Ca^{2+} \text{-Kanäle. } Ca^{2+} \text{ strömt in die B-Zelle und startet die Insulinsekretion (Forth et al. 2009). Unerwünschte Nebenwirkungen sind vor allem gastrointestinale Beschwerden und allergische Reaktionen. Im Gegensatz zu allen physiologischen Stimulatoren der Insulinsekretion können Sulfonylharnstoffe und ihre Analoga sowohl bei Stoffwechselgesunden als auch Typ-2 Diabetikern schwere Hypoglykämien auslösen (Forth et al. 2009).}
\]
3.7.2 Nitro-L-Arginin

Abbildung 13: Strukturformel

MG = 219,20 g/mol

Nitro-L-Arginin ist ein Nitroderivat der Aminosäure Arginin. Es ist ein Inhibitor der Stickstoffmonoxid Oxidase und daher ein Vaso- und Koronarkonstriktor (Bansinath et al. 1993).

NO wurde früher als „Endothelium-derived relaxing factor“ bezeichnet, erst vor einigen Jahren stellte man fest, dass es sich dabei um dieselben Verbindungen handelt.

Aus dem Endothel freigesetztes NO aktiviert die Guanylylcyclase (GC-S), diese bildet aus GTP cGMP. Über eine weitere Kaskade setzt dieser second messenger Ca$^{2+}$ aus dem endoplasmatischen Reticulum frei, was zur Relaxation der glatten Muskulatur führt (Forth et al. 2009).

3.7.3 Phenylephrin

Abbildung 14: Strukturformel

MG = 167,21 g/mol

Systemisch wird nur noch Midodrin (Gutron®) eingesetzt. Es dient der Behandlung neurogener hypotoner Blutdruckstörungen (Mutschler et al. 2008). Die Wirkung ist am ehesten mit der von Noradrenalin vergleichbar.

3.8 Auswertung der Daten und Statistik

3.8.1 Atrium dexter

3.8.2 Musculus papillaris

In den Experimenten zu diesem Herzmuskel versuchte man die Änderung der Kontraktionskraft in mN zu ermitteln. Um die Ergebnisse rationaler darzustellen rechnete man diese aber in Prozent um.

Die erhaltenen Amplituden wurden vermessen und die erhaltenen, gemittelten Werte in Zentimeter notiert. Die Papillarmuskeln wurden beinahe ausschließlich bei 2 mV und 5 mV vermessen. Dies musste man berücksichtigen, die erhaltenen Werte mit 0,4 (2 mV) und 0,98 (5 mV) multiplizieren und so standardisieren. Der vor
Substanzzugabe ermittelte, konstante Wert wurde mit 0 % angenommen, so konnte man in weiterer Folge die Abnahme in Prozent errechnen.

3.8.3 Aorta, Arteria pulmonalis, terminales ileum

Ziel der Testungen war die dilatierende bzw. spasmolytische Wirkung der Substanzen auf diese Organe festzustellen, nach dem diese mithilfe von Kaliumchlorid maximal kontrahiert worden waren. Vor und nach jeder Substanzzugabe, welche in 45 Minuten Abständen erfolgte, musste in der Kurve markiert werden. So konnte eine mögliche Veränderung von Konzentration zu Konzentration nachvollzogen und berechnet werden. Hierzu nahm man den Wert vom Nullpunkt bis zur Plateauphase als Referenz an und maß dann am Ende jeder Einwirkzeit der verschiedenen Konzentrationen den verringerten Abstand zur Nulllinie. So konnte man die Werte prozentual vergleichen. Dafür musste man jedoch einen Eichfaktor berücksichtigen der von den beiden Versuchen verwendeten mV Wert abhing. Beim Standard von 5 mV entsprach 1 cm 0,98 mN. Arbeitete man bei 2 mV musste der Wert mit 0,2 und bei 10 mV mit 2 multipliziert werden.

3.8.4. Dimethylsulfoxid

Als Lösungsmittel für die Substanzen diente Dimethylsulfoxid, kurz DMSO. Dieses dient in pharmazeutischen Zubereitungen einerseits als Lösungsmittel und andererseits zur Verbesserung der topischen Resorption. Des Weiteren wirkt es antiphlogistisch, lokalanästhetisch, schwach bakterio- und fungistatisch, ferner diuretisch und vasodilatorisch (Hunnius 2004).

Da aus diesem Grund eine Eigenwirkung von DMSO auf die Dilatation denkbar war, wurden Blindversuche mit DMSO als Wirkstoff alleine durchgeführt. Vor allem auf die glatte Muskulatur konnten zum Teil signifikante Wirkungen festgestellt werden. Die erhaltenen Werte für das jeweilige Organ wurden vor der statistischen Auswertung mit einberechnet.
Abbildung 15: Strukturformel von Dimethylsulfoxid

\[
\begin{align*}
\text{O} & \\
\text{H}_3\text{C} & \quad \text{S} & \quad \text{CH}_3
\end{align*}
\]

MG = 78,13 g/mol

3.8.5 Statistik

Zur statistischen Auswertung der Kontraktionskraft sowie der Schlagfrequenz wurden die Mittelwerte und die Standardfehler des Mittelwertes (SEM), berechnet. Zur Ermittlung dieser statistischen Daten bediente man sich dem Programm „Sigma Plot 9.0“ ebenso für die Berechnung des EC\textsubscript{50} Wertes. Dieser stellt die mittlere effektive Konzentration des Wirkstoffes in mmol/l dar, bei der die Hälfte des Kontrollwertes erreicht wird. In diesem Fall sind dies Kontraktion und Schlagfrequenz. Um die Irrtumswahrscheinlichkeit zu beurteilen wurde zusätzlich der „Student-t-Test“ für gepaarte Beobachtungen durchgeführt. Werte von < 5% (P < 0,05) und < 1% (P < 0,01) waren signifikant, Werte kleiner als 0,1% (P < 0,001) hochsignifikant.
4. ERGEBNISSE

4.1 Ergebnisse der Testsubstanz SWS 25a

4.1.1. Atrium cordis dexter

Um die Beeinflussung der Schlagfrequenz des rechten Vorhofes zu ermitteln wurden sechs Versuche durchgeführt. Die Methodik wurde schon in Kapitel 3.4.1.3 beschrieben. Die gesammelten Werte wurden arithmetisch gemittelt und so ein Kontrollwert (= 0 %) von 248 ± 25,47 Schläge pro Minute festgelegt. Die Substanz erzielte erst bei einer Badkonzentration von 30 µmol/l eine signifikante Wirkung auf die Chronotropie, eine EC50 konnte jedoch auch bei der Endkonzentration von 100 µmol/l nicht erreicht werden, in den ersten beiden Versuchen dieser Testreihe setzte die autonome Aktivität des Vorhofes bei dieser Konzentration gar vollständig aus.

Tabelle 5: Versuchsergebnisse von SWS 25a am Vorhof

<table>
<thead>
<tr>
<th>SMS 25a µmol/l</th>
<th>f ± SEM (x/min)</th>
<th>f ± SEM (%)</th>
<th>Anzahl der Versuche n</th>
<th>Irrtums-Wahrscheinlichkeit (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>248 ± 25,47</td>
<td>0 ± 0</td>
<td>6</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>244 ± 23,28</td>
<td>-1,08 ± 1,16</td>
<td>6</td>
<td>n.s</td>
</tr>
<tr>
<td>3</td>
<td>259 ± 25,74</td>
<td>-0,86 ± 1,28</td>
<td>6</td>
<td>n.s</td>
</tr>
<tr>
<td>10</td>
<td>233 ± 20,19</td>
<td>-5,01 ± 2,05</td>
<td>6</td>
<td>0,05</td>
</tr>
<tr>
<td>30</td>
<td>202 ± 22,46</td>
<td>-17,67 ± 3,0</td>
<td>6</td>
<td>0,01</td>
</tr>
<tr>
<td>100</td>
<td>143 ± 47,19</td>
<td>-47,19 ± 16,86</td>
<td>6</td>
<td>0,05</td>
</tr>
</tbody>
</table>

Erläuterung zu Tabelle 5:
In der Tabelle sind die arithmetischen Mittelwerte der Schläge (f) in Anzahl/Minute und die dem entsprechenden prozentualen Werte ersichtlich. SEM bezeichnet den Standardfehler. n ist die Anzahl an Versuchen.
Diagramm 1: Konzentrations-Wirkungskurve von SWS 25a am Vorhof

VORHOF, n = 6
SWS 25a

Abnahme der Schlagfrequenz (%)

0 0 0 0 0 0 0 0 0 0 0 0

-100 -75 -50 -25

0

0 1 3 10 30 100

Konzentration (µmol/l)

Abnahme der Schlagfrequenz (%)

Erläuterung zu Diagramm 1:

Dieses Diagramm zeigt den Einfluss von SWS 25a auf die Schlagfrequenz in einer übersichtlichen Kurve dargestellt. Die x-Achse stellt die Konzentration in µmol/l und die y-Achse die Abnahme der Chronotropie in Prozent dar. Die gefüllten Punkte markieren die Mittelwerte, die sie durchquerenden Balken symbolisieren die Größe der Standardfehler.
Abbildung 16: Originalaufzeichnungen der chronotropen Wirkung von SWS 25a

Legende zu Abbildung 16:
Die negativ chronotrope Wirkung ist an der Zahl der Amplituden abzulesen.
4.1.2 Musculus papillaris

Für die Untersuchung der inotropen Wirkungen am Papillarmuskel wurden sechs Versuche durchgeführt.
Als Ergebnis der Versuchsreihe ließ sich eine leichte Abnahme der Kontraktionskraft feststellen, die allerdings in keinem Versuch, berücksichtigt man die Standardabweichungen, signifikant war. Auf die Muskelpräparate lies sich bei höheren Konzentrationen ein leicht positiv inotroper Effekt nachweisen.

Tabelle 6: Versuchsergebnisse von SWS 25a am Papillarmuskel

<table>
<thead>
<tr>
<th>SMS 25a µmol/l</th>
<th>(f_c \pm \text{SEM}) (mN)</th>
<th>(f_c \pm \text{SEM}) (%)</th>
<th>Anzahl der Versuche</th>
<th>Irrtums- Wahrscheinlichkeit (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>1,58 ± 0,45</td>
<td>0 ± 0</td>
<td>6</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>1,49 ± 0,43</td>
<td>-4,7 ± 3,11</td>
<td>6</td>
<td>n.s</td>
</tr>
<tr>
<td>3</td>
<td>1,57 ± 0,48</td>
<td>-0,68 ± 4,76</td>
<td>6</td>
<td>n.s</td>
</tr>
<tr>
<td>10</td>
<td>1,63 ± 0,52</td>
<td>0,45 ± 5,87</td>
<td>6</td>
<td>n.s</td>
</tr>
<tr>
<td>30</td>
<td>1,66 ± 0,50</td>
<td>3,89 ± 6,39</td>
<td>6</td>
<td>n.s</td>
</tr>
<tr>
<td>100</td>
<td>1,59 ± 0,44</td>
<td>3,08 ± 7,73</td>
<td>6</td>
<td>n.s</td>
</tr>
</tbody>
</table>

Legende zu Tabelle 6: Darstellung der Mittelwerte samt Standardfehler, Irrtumswahrscheinlichkeit in Zahl und Prozent.
Diagramm 2: Konzentrations-Wirkungskurve von SWS 25a am Papillarmuskel

PAPILLARMUSKEL, n = 6
SWS 25a

Legende zu Diagramm 2:
Die vorher beschriebenen Wirkungen am Papillarmuskel werden durch diese Graphik dargestellt. Man sieht deutlich dass die Ab- und Zunahme der Inotropie nur leicht um den Ausgangswert schwankt. Auf der x-Achse ist die Konzentration in µmol/l, auf der y-Achse die Abnahme der Kontraktionskraft aufgetragen.
Abbildung 17: Originalaufzeichnung der inotropen Wirkung von SWS 25a

Legende zu Abbildung 17:
Die Aufzeichnungen des Schreibers zeigen die Veränderung der Amplitude im Laufe der Zugabe der Testsubstanz.
4.1.3 Aorta descendens

Um eine mögliche dilatierende Wirkung von SWS 25a auf die glatte Muskulatur der Aorta zu untersuchen wurden sechs Präparate vermessen. Die Vorgehensweise wurde schon in Kapitel 3 beschrieben. Durch errechnen der Mittelwerte kam man zu einem Kontrollwert von 8,11 ± 0,37 mN. Schon bei etwa einer Konzentration im Organbad von etwa 2 µmol/l war eine deutliche Abnahme der Kontraktion erkennbar. Dies steigerte sich mit jeder Zunahme erheblich, so dass schon bei einer Konzentration von 30 µmol/l eine vollständige Entspannung der Aortenringe vorlag.

Tabelle 7: Versuchsergebnisse von SWS 25a am Vorhof

<table>
<thead>
<tr>
<th>SMS 25a µmol/l</th>
<th>$f_c \pm \text{SEM}$ (mN)</th>
<th>$f_c \pm \text{SEM}$ (%)</th>
<th>Anzahl der Versuche</th>
<th>Irrtums-Wahrscheinlichkeit (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>8,11 ± 0,37</td>
<td>0 ± 0</td>
<td>6</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>7,13 ± 0,33</td>
<td>-11,89 ± 2,37</td>
<td>6</td>
<td>0,01</td>
</tr>
<tr>
<td>3</td>
<td>5,27 ± 0,61</td>
<td>-34,92 ± 7,07</td>
<td>6</td>
<td>0,001</td>
</tr>
<tr>
<td>10</td>
<td>2,02 ± 0,60</td>
<td>-75,14 ± 7,31</td>
<td>6</td>
<td>0,001</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
<td>-100</td>
<td>6</td>
<td>0,001</td>
</tr>
</tbody>
</table>

Legende zu Tabelle 6:
In dieser Darstellung sind die arithmetischen Mittelwerte und der Standardfehler angegeben. f_c steht hier für die Kontraktionskraft in mN. Ebenso ist der prozentuale Wert angegeben.
Legende zu Diagramm 3:
Die effektive Wirkung der Testsubstanz SWS 25a ist in dieser Graphik ersichtlich, schon ab etwa 1 µmol/l fällt die Kurve steil ab, noch bevor 30 µmol/l erreicht werden ist die maximal mögliche Dilatation erreicht.
Auf der Abszisse sind die Konzentrationen in µmol/l aufgetragen, auf der Ordinate die Abnahme der Kontraktion in Prozent.
Der EC₅₀ Wert kann, hier durch die strichlierten Linien dargestellt, zeichnerisch ermittelt werden und beträgt 4,7 µmol/l.
Abbildung 18: Originalaufzeichnung der vasodilatierenden Wirkung von SWS 25a

Legende zu Abbildung 18:
In der vorliegenden Kurve sieht man die rasche Abnahme der Kontraktion durch ihren schnellen Abfall. Die Pfeile markieren den jeweiligen Einspritzzeitpunkt, die Abstände dazwischen die Zeit von 45 Minuten.
4.1.4 Arteria pulmonalis

Um die Beeinflussung von SWS 25a auf die Lungenarterie zu ermitteln wurden fünf Versuche durchgeführt. Nach maximaler Kontraktion erfolgte die kumulative Substanzzugabe. Die gesammelten Werte wurden arithmetisch gemittelt, der Ausgangswert(= 0 %) mit 15,81 ± 2,49 mN festgelegt. Hier zeigte sich eine ähnlich starke Wirkung wie an der Aorta, wobei aber nicht bei jedem Präparat eine vollständige Entspannung eintrat. Die EC₅₀ lag dennoch bei mehr als passablen 9,1 µmol/l.

Tabelle 8: Versuchsergebnisse von SWS 25a an der Lungenarterie

<table>
<thead>
<tr>
<th>SMS 25a µmol/l</th>
<th>f_c ± SEM (mN)</th>
<th>f_c ± SEM (%)</th>
<th>Anzahl der Versuche</th>
<th>Irrtumswahrscheinlichkeit (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>15,81 ± 2,49</td>
<td>0 ± 0</td>
<td>5</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>14,73 ± 2,56</td>
<td>-7,2 ± 2,88</td>
<td>5</td>
<td>0,05</td>
</tr>
<tr>
<td>3</td>
<td>12,02 ± 2,94</td>
<td>-26,36 ± 6,67</td>
<td>5</td>
<td>0,01</td>
</tr>
<tr>
<td>10</td>
<td>48,11 ± 10,3</td>
<td>-51,89 ± 10,33</td>
<td>5</td>
<td>0,01</td>
</tr>
<tr>
<td>30</td>
<td>24,98 ± 9,97</td>
<td>-75,02 ± 9,97</td>
<td>5</td>
<td>0,001</td>
</tr>
<tr>
<td>100</td>
<td>14,57 ± 2,11</td>
<td>-85,43 ± 8,32</td>
<td>5</td>
<td>0,001</td>
</tr>
</tbody>
</table>

Legende zu Tabelle x:
Hier sind die Mittelwerte der Kontraktionsänderung samt Standardfehler und ihre Entsprechung in Prozent angegeben.
Diagramm 4: Konzentrations-Wirkungskurve von SWS 25a an der Lungenarterie

ARTERIA PULMONALIS, n = 5

SWS 25a

EC\textsubscript{50} = 9.1 µmol/l

Legende zu Diagramm 4:
Dieses Diagramm zeigt den Einfluss von SWS 25a auf die Arteria pulmonalis in einer übersichtlichen Kurve dargestellt. Die x-Achse stellt die Konzentration in µmol/l und die y-Achse die Abnahme der Kontraktion in Prozent dar.
Die gefüllten Punkte markieren die Mittelwerte, die sie durchquerenden Balken symbolisieren die Größe der Standardfehler. Der EC\textsubscript{50} Wert ist hier wieder mit strichlierter Linie markiert.
Abbildung 19: Originalaufzeichnung der vasodilatierenden Wirkung von SWS 25a

Legende zu Abbildung 19:
Diese Originalaufzeichnung zeigt die Abnahme der Kontraktion über die Zeit.
4.1.5 Terminales ileum

Die Wirkung auf das terminale Ileum bzw. seine glatte Muskulatur wurde in einer Versuchsreihe mit sechs Testungen untersucht. Der Kontrollwert wurde wie immer durch mitteln aller Experimente errechnet und betrug in diesem Fall 15,81 ± 2,49 mN. Schon nach Erreichen der ersten Badkonzentration von 1 µmol/l konnte eine Wirkung nachgewiesen werden, die nach Erreichen von 3 µmol/l sehr deutlich wurde und sich mit jeder Erhöhung noch steigerte. So konnte ein EC_{50} Wert schon bei 6 µmol/l eruiert werden. Bei der Endkonzentration von 100 µmol/l waren die Präparate nahezu vollständig relaxiert.

Tabelle 9: Versuchsergebnisse von SWS 25a am Dünndarm

<table>
<thead>
<tr>
<th>SMS 25a µmol/l</th>
<th>f_c ± SEM (mN)</th>
<th>f_c ± SEM (%)</th>
<th>Anzahl der Versuche n</th>
<th>Irrtums-Wahrscheinlichkeit (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>9,66 ± 1,93</td>
<td>0 ± 0</td>
<td>6</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>8,54 ± 1,84</td>
<td>-8,79 ± 1,56</td>
<td>6</td>
<td>0,01</td>
</tr>
<tr>
<td>3</td>
<td>6,77 ± 1,43</td>
<td>-30,25 ± 3,54</td>
<td>6</td>
<td>0,001</td>
</tr>
<tr>
<td>10</td>
<td>3,5 ± 0,79</td>
<td>-64,18 ± 3,75</td>
<td>6</td>
<td>0,001</td>
</tr>
<tr>
<td>30</td>
<td>1,89 ± 0,64</td>
<td>-80,97 ± 5,49</td>
<td>6</td>
<td>0,001</td>
</tr>
<tr>
<td>100</td>
<td>1,79 ± 0,66</td>
<td>-92,70 ± 4,89</td>
<td>6</td>
<td>0,001</td>
</tr>
</tbody>
</table>

Legende zu Tabelle 9:
f_c steht für die Kontraktionskraft, SEM für die Standardabweichung. n steht für die Anzahl der Versuche, die Irrtumswahrscheinlichkeit P ist ebenso angeführt.
Diagramm 5: Konzentrations-Wirkungskurve von SWS 25a am Dünndarm

TERMINALES ILEUM, n = 6

SWS 25a
EC₅₀ = 6 µmol/l

Legende zu Diagramm 5:
Die steile Abnahme der Kurve spiegelt die intensive Wirkung der Testsubstanz auf das Organpräparat wieder. Auf der x-Achse sind die Konzentrationen in µmol/l und auf der y-Achse die Abnahme der Kontraktionskraft aufgetragen.
Abbildung 20: Originalaufzeichnung der spasmolytischen Wirkung von SWS 25a

Legende zu Abbildung 20:
Hier ist der originale Kurvenverlauf des Schreibers unter die Wirkung von SWS 25a dargestellt. Man sieht die Kontraktionsabnahme durch den fallenden Verlauf deutlich. Die Pfeile markieren die Einspritzabstände im 45 Minuten Rhythmus.
4.2 Ergebnisse der Testsubstanz WHG 58 T

Zu beachten ist das ab hier alle Versuche mit 200 µmol DMSO durchgeführt wurden. Dadurch ergab sich ein geändertes Pipettierschema. Siehe dazu Kapitel 3.1.3.

4.2.1 Atrium cordis dexter

Tabelle 10: Versuchsergebnisse von WHG 58T am Vorhof

<table>
<thead>
<tr>
<th>SMS 25a µmol/l</th>
<th>f ± SEM (mN))</th>
<th>f ± SEM (%)</th>
<th>Anzahl der Versuche</th>
<th>Irrtumswahrscheinlichkeit (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>212 ± 12,70</td>
<td>0 ± 0</td>
<td>5</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>217 ± 12,70</td>
<td>2,40 ± 0,15</td>
<td>5</td>
<td>n.s</td>
</tr>
<tr>
<td>3</td>
<td>222 ± 12,41</td>
<td>4,85 ± 1,33</td>
<td>5</td>
<td>n.s</td>
</tr>
<tr>
<td>10</td>
<td>221 ± 12,39</td>
<td>4,38 ± 1,42</td>
<td>5</td>
<td>n.s</td>
</tr>
<tr>
<td>30</td>
<td>220 ± 14,41</td>
<td>3,68 ± 2,17</td>
<td>5</td>
<td>n.s</td>
</tr>
<tr>
<td>100</td>
<td>214 ± 13,55</td>
<td>0,88 ± 0,91</td>
<td>5</td>
<td>n.s</td>
</tr>
</tbody>
</table>

Legende zu Tabelle x:
Diese Tabelle zeigt die gesammelten Mittelwerte und die Veränderungen der Schläge pro Minute und in Prozent. Ebenso ist die Irrtumswahrscheinlichkeit angegeben.
Diagramm 6: Konzentrations-Wirkungskurve von WHG 58T am Vorhof

Legende zu Diagramm 6:
Diese Abbildung veranschaulicht die fehlende Wirkung auf das vorliegende Organpräparat eindrücklich. Unter Substanzeinfluss kam es zu einer leichten, nicht signifikanten Zunahme der Schlagfrequenz. Auf der Abszisse ist die Konzentrationszunahme, auf der Ordinate die Abnahme der Schlagfrequenz aufgetragen.
Abbildung 21: Originalaufzeichnungen der chronotropen Wirkung von WHG 58T

Legende zu Abbildung 21:
In der Abbildung sieht man die Aufzeichnungen der Amplituden an deren Anzahl man die Schläge pro Minute misst. Eine Aufzeichnung entspricht 12 Sekunden, um auf die Anzahl für eine Minute zu kommen multipliziert man mit fünf.
4.2.2 Musculus papillaris

Um die Beeinflussung von WHG 58 T auf die Inotropie zu ermitteln wurden sechs unabhängige Messungen durchgeführt. Als Kontroll- bzw. Ausgangswert wurde 1,58 ± 0,45 mN errechnet. Dieser diente als Basis für mögliche Abnahme der Schlagkraft während der Substanzzugabe. Im Versuch zeigte sich dass der Wirkstoff nicht in der Lage war die Inotropie entscheidend zu beeinflussen. Von der ersten Konzentrationszugabe bis zum Ende wurde lediglich eine leichte Abnahme bzw. anfänglich eine leichte Zunahme der Schlagkraft verzeichnet. Somit konnte auch kein EC\textsubscript{50} Wert ermittelt werden.

Tabelle 11: Versuchsergebnisse von WHG 58T am Papillarmuskel

<table>
<thead>
<tr>
<th>SMS 25a µmol/l</th>
<th>$f_c \pm$ SEM (mN))</th>
<th>$f_c \pm$ SEM (%)</th>
<th>Anzahl der Versuche n</th>
<th>Irrtums-Wahrscheinlichkeit (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>1,69 ± 0,36</td>
<td>0 ± 0</td>
<td>6</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>1,76 ± 0,40</td>
<td>2,73 ± 3,82</td>
<td>6</td>
<td>n.s</td>
</tr>
<tr>
<td>3</td>
<td>1,78 ± 0,41</td>
<td>2,43 ± 3,33</td>
<td>6</td>
<td>n.s</td>
</tr>
<tr>
<td>10</td>
<td>1,56 ± 0,35</td>
<td>-8,24 ± 5,06</td>
<td>6</td>
<td>n.s</td>
</tr>
<tr>
<td>30</td>
<td>1,50 ± 0,35</td>
<td>-13,36 ± 7,53</td>
<td>6</td>
<td>n.s</td>
</tr>
<tr>
<td>100</td>
<td>1,48 ± 0,36</td>
<td>-15,14 ± 7,92</td>
<td>6</td>
<td>n.s</td>
</tr>
</tbody>
</table>

Legende zu Tabelle 11:

Es werden die arithmetischen Mittelwerte, die Irrtumswahrscheinlichkeit, die Standardfehler und deren prozentuale Entsprechungen angeführt. Die Messungen wurden bei Konzentrationen von 1,3,10,30 und 100 µmol/l durchgeführt.
Diagramm 7: Konzentrations-Wirkungskurve von WHG 58 T am Papillarmuskel

Legende zu Diagramm 7:
An diesem Konzentrations-Wirkungsdiagramm ist die geringe Wirkung der Substanz ersichtlich. Auf der x-Achse sind die Konzentrationen in µmol/l und auf der y-Achse die Abnahme der Kontraktionskraft aufgetragen.
Abbildung 22: Originalaufzeichnungen der inotropen Wirkung von WHG 58T

Legende zu Abbildung 22:
Hier sind die Originalaufzeichnungen des Schreibers dargestellt.
4.2.3 Aorta descendens

Die Ergebnisse hinsichtlich der vasodilatierenden Wirkung an der Hauptschlagader erhielt man aus einer Reihe von fünf Versuchen. Schon nach den ersten Versuchen war ersichtlich dass keine signifikante Wirkung auf die Aorta zu erwarten ist. Die Kontraktion nahm erst bei einer Wirkstoffkonzentration von knapp unter 100 µmol/merkbar ab. Der Kontrollwert wurde, wie bei allen Versuchen, durch errechnen des Mittelwertes festgestellt und betrug hier 8,19 ± 0,64 mN.

Tabelle 12: Versuchsergebnisse von WHG 58T an Aorta

<table>
<thead>
<tr>
<th>SMS 25a µmol/l</th>
<th>f_c ± SEM (mN)</th>
<th>f_c ± SEM (%)</th>
<th>Anzahl der Versuche</th>
<th>Irrtums-Wahrscheinlichkeit (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>8,19 ± 0,64</td>
<td>0 ± 0</td>
<td>5</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>8,14 ± 0,66</td>
<td>-0,71 ± 0,79</td>
<td>5</td>
<td>n.s</td>
</tr>
<tr>
<td>3</td>
<td>8,21 ± 0,63</td>
<td>0,22 ± 1,55</td>
<td>5</td>
<td>n.s</td>
</tr>
<tr>
<td>10</td>
<td>7,86 ± 0,60</td>
<td>-3,17 ± 2,33</td>
<td>5</td>
<td>n.s</td>
</tr>
<tr>
<td>30</td>
<td>7,44 ± 0,69</td>
<td>-9,2 ± 4,21</td>
<td>5</td>
<td>n.s</td>
</tr>
<tr>
<td>100</td>
<td>6,79 ± 0,67</td>
<td>-17,05 ± 5,13</td>
<td>5</td>
<td>0,05</td>
</tr>
</tbody>
</table>

Legende zu Tabelle 12:
f_c steht für die Kontraktionskraft, SEM für die Standardabweichung. Beide Größen sind sowohl in mN als auch Prozent angegeben. Die Wirkung war außer bei 100 µmol/l nicht signifikant.
Diagramm 8: Konzentrations-Wirkungskurve von WHG 58T an der Aorta

AORTA, n = 5
WHG 58 T

Legende zu Diagramm 8:
Die Kurve in dieser Abbildung beschreibt den Effekt von WHG 58T auf die glatte Muskulatur der Aorta. Er besitzt keine Signifikanz. Die x-Achse zeigt die Konzentrationszunahme, die y-Achse die Abnahme der Kontraktionskraft.
Abbildung 23: Originalaufzeichnungen der dilatierenden Wirkung von WHG 58T

Legende zu Abbildung 23:
Der Originalkurvenverlauf des Schreibers der Testsubstanz WHG 58T ist hier abgebildet.
4.2.4 Arteria pulmonalis

Nach der Durchführung von fünf Versuchen konnte keine verwertbare Wirkung auf die Pulmonalarterie festgestellt werden. Lediglich bei höheren Wirkstoffkonzentrationen, welche durch kumulative Zugabe erreicht wurden, konnte lediglich eine schwache Abnahme der Kontraktion gezeigt werden. Der errechnete Ausgangswert dieser Versuchsreihe betrug 13,27 ± 1,90 mN.

Tabelle 13: Versuchsergebnisse von WHG 58T an der Lungenarterie

<table>
<thead>
<tr>
<th>SMS 25a µmol/l</th>
<th>(f_{c} \pm SEM) (mN)</th>
<th>(f_{c} \pm SEM) (%)</th>
<th>Anzahl der Versuche</th>
<th>Irrtums-Wahrscheinlichkeit (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>13,27 ± 1,90</td>
<td>0 ± 0</td>
<td>5</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>13,24 ± 1,85</td>
<td>-0,04 ± 0,90</td>
<td>5</td>
<td>n.s</td>
</tr>
<tr>
<td>3</td>
<td>13,11 ± 1,82</td>
<td>-0,94 ± 2,30</td>
<td>5</td>
<td>n.s</td>
</tr>
<tr>
<td>10</td>
<td>12,85 ± 1,78</td>
<td>-2,83 ± 3,41</td>
<td>5</td>
<td>n.s</td>
</tr>
<tr>
<td>30</td>
<td>12,20 ± 1,67</td>
<td>-7,5 ± 3,73</td>
<td>5</td>
<td>n.s</td>
</tr>
<tr>
<td>100</td>
<td>11,45 ± 1,61</td>
<td>-13,33 ± 4,32</td>
<td>5</td>
<td>n.s</td>
</tr>
</tbody>
</table>

Legende zu Tabelle 13:
Aus der Tabelle kann man den geringen Effekt auf die Pulmonalarterie ablesen. Die prozentuale Abnahme beträgt maximal 13,33 %, eine EC\textsubscript{50} wurde somit nicht erreicht. Weiters sind die Werte für die Irrtumswahrscheinlichkeit angeführt.
Legende zu Diagramm 9:
Aus dieser Darstellung geht eindeutig hervor wie gering die Wirkung an der Pulmonalarterie ausfällt, so dass kein EC₉₀ Wert erreicht wurde. Auf der x-Achse ist die Konzentration in µmol/l aufgetragen, auf der y-Achse die Kontraktionsabnahme.
Abbildung 24: Originalaufzeichnungen der dilatierenden Wirkung von WHG 58T

Legende zu Abbildung 24:
Hier ist die Kurve wie sie der Flachbettschreiber aufzeichnet zu sehen.
4.2.5 Terminales Ileum

Für die Untersuchung einer möglichen dilatierenden Wirkung auf den Dünndarm wurden sechs Versuche durchgeführt. Quer durch alle Konzentrationsstufen ließ sich nur eine mäßige Wirkung nachweisen, die Abnahme der Kontraktion erreichte gegen Ende in etwa -15 Prozent vom Kontrollwert. Ein EC$_{50}$ Wert konnte demgemäß nicht erreicht werden. Ausgegangen wurde von einem Wert von 9,43 ± 1,09 mN.

Tabelle 14: Versuchsergebnisse von WHG 58T am Dünndarm

<table>
<thead>
<tr>
<th>SMS 25a µmol/l</th>
<th>f_c ± SEM (mN)</th>
<th>f_c ± SEM (%)</th>
<th>Anzahl der Versuche</th>
<th>Irrtums-Wahrscheinlichkeit (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>9,43 ± 1,09</td>
<td>0 ± 0</td>
<td>6</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>8,97 ± 1,17</td>
<td>-5,07 ± 2,00</td>
<td>6</td>
<td>n.s</td>
</tr>
<tr>
<td>3</td>
<td>8,58 ± 1,23</td>
<td>-10,25 ± 3,88</td>
<td>6</td>
<td>n.s</td>
</tr>
<tr>
<td>10</td>
<td>8,11 ± 1,22</td>
<td>-15,27 ± 4,45</td>
<td>6</td>
<td>0,01</td>
</tr>
<tr>
<td>30</td>
<td>8,18 ± 1,31</td>
<td>-15,12 ± 5,21</td>
<td>6</td>
<td>0,05</td>
</tr>
<tr>
<td>100</td>
<td>8,06 ± 1,46</td>
<td>-17,30 ± 7,25</td>
<td>6</td>
<td>0,05</td>
</tr>
</tbody>
</table>

Legende zu Tabelle 14:
In dieser Darstellung sind die arithmetischen Mittelwerte und der Standardfehler sowie die Irrtumswahrscheinlichkeit angegeben. f_c steht für die Kontraktionskraft in mN. Ebenso ist der prozentuale Wert angegeben.
Diagramm 10: Konzentrations-Wirkungskurve von WHG 58T am terminalen Ileum

TERMINALES ILEUM, n = 6
WHG 58 T

Legende zu Diagramm 10:
An diesem Konzentrations-Wirkungsdiagramm ist die geringe Wirkung der Substanz ersichtlich. Die Abszisse zeigt die Konzentrationszunahme in µmol/l, die Ordinate die Abnahme der Kontraktion in Prozent.
Abbildung 25: Originalaufzeichnungen der spasmolytischen Wirkung von WHG 58T

Legende zu Abbildung 25:
In der Abbildung ist klar ersichtlich, dass aufgrund der schwachen Wirkung keine EC$_{50}$ erreicht werden konnte.
4.3 Versuche zur Analyse des Wirkungsmechanismus von SWS 25 auf die Aorta

Aufgrund dessen dass die Wirkung auf die Aorta am Stärksten war wurden Untersuchungen durchgeführt um die Wirkweise näher zu erforschen. Hierzu wurden Versuchsreihen gestartet, bei denen die Substanzen Nitro-L-Arginin, Glibenclamid und Phenylephrin zum Einsatz kamen.

4.3.1 Effekt von SWS 25a in Kombination mit Nitro-L-Arginin auf die Aorta

Die Vorgehensweise wurde bereits früher angeschnitten, siehe dazu Kapitel 3.6.2.1. Die Untersuchung hatte das Ziel herauszuarbeiten ob SWS 25a über das NO-System wirkt. Nitro-L-Arginin ist ein Inhibitor der NO-Synthase. Würde Schwefelwasserstoff via Stimulation derselben wirken, käme es bei dem Versuch zu keiner Relaxation. Nach maximaler Kontraktion durch die Kaliumchloridlösung wurde ein Kontrollwert von 6,63 ± 1,33 mN ermittelt. Dann wurden zuerst 100 µmol/l Nitro-L-Arginin und nach 45 minütiger Gewöhnungszeit SWS 25a in einer Konzentration von 5 µmol/l zugesetzt, was der ermittelten, gerundeten EC$_{50}$ der Substanz entsprach.

Die Zugabe von 100 µmol/l Nitro-L-Arginin brachte keine signifikante Veränderung. Nach Zugabe von SWS 25a kam es nur zu einer sehr schwachen Abnahme von etwa 0,74 mN, was etwa 12 Prozent entsprach. Somit kann man die Wirkung über das NO-System als durchaus signifikant bezeichnen.

Tabelle 15: Ergebnisse Wirkmechanismus mit Nitro-L-Arginin

<table>
<thead>
<tr>
<th>Konz. (µmol/l)</th>
<th>f_c ± SEM (mN)</th>
<th>Anzahl der Versuche</th>
<th>Irrtums- wahrscheinlichkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>6,63 ± 1,33</td>
<td>4</td>
<td>---</td>
</tr>
<tr>
<td>100 µM Nitro-L-Arginin</td>
<td>6,58 ± 1,65</td>
<td>4</td>
<td>---</td>
</tr>
<tr>
<td>+ 5 µM SWS 25a</td>
<td>5,89 ± 1,81</td>
<td>4</td>
<td>n.s</td>
</tr>
</tbody>
</table>

Legende zu Tabelle 15:
Es werden die arithmetischen Mittelwerte und der Standardfehler der Ergebnisse während der Versuchsreihe angeführt.
Diagramm 11: Graphische Darstellung der Ergebnisse des Versuches in einem Balkendiagramm.

AORTA Nitro-L-Arginin 100 µM

Legende zu Diagramm 11:
Die blauen Balken stellen die Stärke der Kontraktion in mN dar, die dünnen Striche darauf geben die Größe des Standardfehlers an. Wie ersichtlich ist die Wirkung von SWS 25a minimal. Auf der y-Achse ist die Kontraktionskraft in mN aufgetragen.
Abbildung 25: Originalaufzeichnungen des Versuchs mit Glibenclamid an der Aorta

Legende zu Abbildung 25:
Im Kurvenverlauf des Detektors sieht man die schwache Abnahme der Kontraktion übersichtlich dargestellt. Die Pfeile markieren die Einspritzzeitpunkte bzw. den Zeitabstand.
4.3.2 Effekt von SWS 25a in Kombination mit Glibenclamid auf die Aorta

Somit schwächt die Zugabe des Kaliumkanalblockers die Wirkung von SWS 25a ab, was auf eine Beteiligung von diesen Kanälen schließen lässt.

Tabellen 15 und 16: Ergebnisse Wirkmechanismus mit Glibenclamid

<table>
<thead>
<tr>
<th>Konz. (µmol/l)</th>
<th>f_c ± SEM (mN)</th>
<th>Anzahl der Versuche</th>
<th>Irrtums- wahrscheinlichkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>6,37 ± 1,16</td>
<td>4</td>
<td>---</td>
</tr>
<tr>
<td>30 µM Glibenclamid</td>
<td>6,16 ± 1,09</td>
<td>4</td>
<td>---</td>
</tr>
<tr>
<td>+ 5 µM SWS 25a</td>
<td>5,39 ± 0,92</td>
<td>4</td>
<td>n.s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Konz. (µmol/l)</th>
<th>f_c ± SEM (mN)</th>
<th>Anzahl der Versuche</th>
<th>Irrtums- wahrscheinlichkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>8,93 ± 1,66</td>
<td>4</td>
<td>---</td>
</tr>
<tr>
<td>100 µM Glibenclamid</td>
<td>7,33 ± 1,38</td>
<td>4</td>
<td>---</td>
</tr>
<tr>
<td>+ 5 µM SWS 25a</td>
<td>6,59 ± 1,33</td>
<td>4</td>
<td>n.s</td>
</tr>
</tbody>
</table>

Legende zu Tabelle 15 und 16:
Hier sind die Mittelwerte der Kontraktionsänderung samt Standardfehler sowohl für 30 µmol/l als auch für 100 µmol/l angegeben.
Diagramm 12: Graphische Darstellung der Ergebnisse der Versuche in einem Balkendiagramm.

AORTA Glibenclamid 30 µM
Diagramm 13: Graphische Darstellung der Ergebnisse der Versuche in einem Balkendiagramm.

AORTA Glibenclamid 100 µM

![Balkendiagramm](image)

Legende zu Diagramm 12 und 13:
In dieser Graphik werden die Auswirkungen auf die Kontraktilität nach Zugabe von Glibenclamid in den zwei Testkonzentrationen, sowie nach Zugabe der EC\textsubscript{50} Konzentration von SWS 25a dargestellt.
Abbildung 26: Originalaufzeichnungen des Versuchs mit Glibenclamid an der Aorta

- 5 µmol/ SWS 25a
- 30 µmol/ Glibenclamid
- 45 min
- 1 cm = 0,98 mN
Legende zu den Abbildungen 26 und 27:
Die Abbildungen der beiden Versuche zeigen wie sich die jeweiligen Substanzzugaben auf die Kontraktion der Aorta auswirkten.
4.3.3 Effekt von SWS 25a in Kombination mit Phenylephrin auf die Aorta

Als letzte Möglichkeit wurde eine Wirkung von SWS 25a über eine Blockade von α-Rezeptoren ausgetestet. Dafür wurde mit dem α-Sympathomimetikum Phenylephrin (PHE) gearbeitet. Zuerst wurde eine Verdünnungsreihe mit 0,1, 0,3, 1, 3, 10 µmol/ hergestellt und mit diesen zuerst Blindwerte ohne SWS 25a und danach Messwerte in Kombination erfasst. Siehe dazu auch Kapitel 3.6.2.2 und 3.7.3.

Unter Einfluss von 5 µmol/l SWS 25a wurde Wirkung von 10 µmol/l PHE um 1,05 mN abgeschwächt, dies entspricht etwa -12 Prozent, bei der niedrigsten Konzentration von 0,1 µmol/l Phenylephrin änderte sich das Ergebnis um 0,08 mN auf -45 Prozent. Der Durchschnitt des Versuchs lag bei etwa -33 Prozent Verlust an Kontraktionskraft von PHE.

Ein gewisser Einfluss auf α-Rezeptoren scheint demnach gegeben.

Tabellen 17a und17b:

<table>
<thead>
<tr>
<th>Phenylephrin HCl (µmol/l)</th>
<th>Kontrolle</th>
<th>f_c ± SEM</th>
<th>Anzahl der Versuche</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1</td>
<td>0,18 ± 0,04</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0,3</td>
<td>0,79 ± 0,30</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3,64 ± 1,17</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7,70 ± 2,19</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>8,97 ± 1,97</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Legende zu Tabellen 17a und 17b:
Tabellarische Darstellung der Änderung der Kontraktionskraft \(f_c \) in mN während den Versuchen.

<table>
<thead>
<tr>
<th>SWS 25a (5 µmol/l) + Phenylephrin</th>
<th>(f_c \pm \text{SEM}) (mN)</th>
<th>Anzahl der Versuche (n)</th>
<th>Irrtumswahrscheinlichkeit (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1</td>
<td>0,10 ± 0,04</td>
<td>3</td>
<td>n.s</td>
</tr>
<tr>
<td>0,3</td>
<td>0,26 ± 0,09</td>
<td>3</td>
<td>0,05</td>
</tr>
<tr>
<td>1</td>
<td>2,35 ± 1,05</td>
<td>3</td>
<td>n.s</td>
</tr>
<tr>
<td>3</td>
<td>6,86 ± 1,96</td>
<td>3</td>
<td>n.s</td>
</tr>
<tr>
<td>10</td>
<td>7,92 ± 2,41</td>
<td>3</td>
<td>n.s</td>
</tr>
</tbody>
</table>
Legende zu Diagramm 14:
Dieses Balkendiagramm zeigt die Ergebnisse übersichtlich dargestellt. Auf der Abszisse ist die Konzentration von Phenylephrin dargestellt, auf der Ordinate die Kontraktionskraft. Die Konzentration von SWS 25a betrug immer den EC$_{50}$ Wert von 5 µmol/l. Es ist deutlich zu sehen, dass durch alle Stufen eine leichte α-blockierende Wirkung vorliegt. Die x-Achse beschreibt die Phenylephrin Konzentrationen in µmol/l, die y-Achse die Kontraktion in mN.
Abbildung 28: Originalaufzeichnung des Versuchs mit Phenylephrin an der Aorta

Kontrollmessungen:

Messungen in Kombination mit SWS 25a:

Legende zu Abbildung 28:
5. DISKUSSION

In der vorliegenden Diplomarbeit wurde die Wirkung zweier neu synthetisierter, H₂S freisetzender Substanzen, SWS 25 a und WHG 58T auf isolierte Organe von Meerschweinchen getestet.

Die erhaltenen Versuchsergebnisse sowie deren Auswertung wurden im Kapitel 4 ausführlich aufgelistet und beschrieben. In diesem Kapitel soll nun die Bewertung folgen. Da die Wirkung auf glattmuskuläre Präparate einerseits und auf Herzmuskelpräparate andererseits untersucht wurde, können in dieser Hinsicht die Daten vergleichend gegenübergestellt werden.

Zunächst wird auf die Wirkung von SWS 25a genauer eingegangen.

Die Wirkung auf die glatte Muskulatur der getesteten Organe kann durchwegs als signifikant bezeichnet werden, in allen Fällen konnte ein EC₅₀ Wert von unter 10 µmol/l erreicht werden.

Folgende Tabelle stellt die Daten übersichtlich dar

<table>
<thead>
<tr>
<th>Organpräparat</th>
<th>EC₅₀ (µmol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aorta</td>
<td>4,7</td>
</tr>
<tr>
<td>Arteria pulmonalis</td>
<td>9,1</td>
</tr>
<tr>
<td>Terminales Ileum</td>
<td>6</td>
</tr>
</tbody>
</table>

Dieses Ergebnis legte eine Untersuchung der zugrunde liegenden Wirkungsmechanismus nahe. Dies wurde durch Untersuchungen mit den

Abschließend wurde mit Phenylephrin auf eine mögliche Mitwirkung von α-Rezeptoren untersucht. Die Ergebnisse zeigten dass unter dem Einfluss der EC_{50} Konzentration der Testsubstanz die Wirkung des Sympathomimetikums abgeschwächt wurde. Bei der höchsten Konzentration lag der Wert bei – 12 Prozent.

Zusammenfassend kann man zu dem Schluss kommen, dass die Wirkung von SWS 25a hauptsächlich im Zusammenhang mit dem NO-System und der Öffnung von Kaliumkanälen steht. Ein Einfluss auf α-Rezeptoren muss auch in Betracht gezogen werden.

Die Versuche an der Arteria pulmonalis lieferten ebenfalls statistisch höchst signifikante Ergebnisse. Die Vasodilatation verlief zwar geringfügig langsamer und
bei der Organbadendkonzentration kam es zu keiner vollständigen Relaxierung der Organe, es konnte jedoch auch ein erfreulicher niedriger EC$_{50}$ Wert von 9,1 µmol/l festgestellt werden.

Der Effekt auf die Herzmuskulatur ist in der nachfolgenden Tabelle dargestellt.

Tabelle 19: Wirkung auf Herzmuskelpräparate

<table>
<thead>
<tr>
<th>Organpräparat</th>
<th>SWS 25a Kontraktkraft f_c (%) ± SEM bei 100 µmol/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rechter Vorhof</td>
<td>-47,19 ± 16,86</td>
</tr>
<tr>
<td>Papillarmuskel</td>
<td>3,08 ± 7,73</td>
</tr>
</tbody>
</table>

Verglichen mit den Resultaten an der glatten Muskulatur, mussten hier deutlich geringere Effekte festgestellt werden. Am Vorhof wurde ein EC$_{50}$ Wert nur knapp nicht erreicht, die Auswirkungen auf den Papillarmuskel waren verschwindend gering.

Die Schlagfrequenz des Vorhofs wurde erst bei ab 30 µmol/ deutlich beeinflusst, -17,67 ± 3,0, die Endkonzentration lieferte Werte von -47,19 ± 16,86 Prozent. Allerdings wirkte sich die Substanz in der höchsten Konzentration in einigen Fällen stark negativ chronotrop, so dass sich die Auswertung aufgrund der kleinen Amplituden sehr schwer gestaltete. In 2 Fällen setzte der Vorhof seine autonome Aktivität sogar vollständig aus.

Der Einfluss auf die Inotropie der Papillarmuskeln war ohne Aussagekraft. Während bei den beiden niedrigsten Konzentration eine schwache bis keine negativ inotrope Wirkung festzustellen war, nahm die Schlagkraft ab 10 µmol/l zu und erreichte am Ende einen Wert von +3,08 ± 7,73 Prozent verglichen mit dem Ausgangswert (=0 %). Aufgrund dieser Ergebnisse konnte eine Wirkung ausgeschlossen und somit natürlich auch ein EC$_{50}$ Wert.

Zusammenfassend kann gesagt werden, dass SWS 25a entscheidend auf alle Präparate mit glatter Muskulatur wirkt, im Gegensatz zu den Herzmuskelpräparaten.
Nun werden die Ergebnisse der Untersuchung der Testsubstanz WHG 58T detaillierter eingegangen.

Tabelle 20: Wirkung auf Präparate mit glatter Muskulatur

<table>
<thead>
<tr>
<th>Organpräparat</th>
<th>EC$_{50}$ (µmol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aorta</td>
<td>> 100 µmol/l</td>
</tr>
<tr>
<td>Arteria pulmonalis</td>
<td>> 100 µmol/l</td>
</tr>
<tr>
<td>Terminales Ileum</td>
<td>> 100 µmol/l</td>
</tr>
</tbody>
</table>

Wie hier sogleich ersichtlich wird konnte an keinem der glattmuskulären Präparate ein EC$_{50}$ Wert ermittelt werden bzw. lagen über 100 µmol/l.

Der Versuch an der Aorta zeigte bei den Konzentrationen bis 10 µmol/l so gut wie keinen Einfluss, erst ab etwa 30 µmol/l betrug die Relaxation $-9,2 \pm 4,21$ Prozent. Am Ende des Versuchs wurde eine Kontraktionsabnahme von $-17,05 \pm 5,13$ Prozent bezogen auf den Kontrollwert festgestellt.

Ganz ähnlich stellte sich die Konzentration am terminalen Ileum dar. Ab der ersten Konzentrationsstufe kam es zu einer schwachen, gleich bleibenden Abnahme der Kontraktilität. Bei 100 µmol/l wurde die maximale Entspannung mit $-17,30 \pm 7,25$ Prozent des Kontrollwertes erreicht. Die in Kapitel 4.2.5 dargestellte Konzentrations-Wirkungskurve verdeutlicht dies sehr schön. Auch hier konnte folglich kein EC$_{50}$ Wert ermittelt werden.

Den schwächsten aller Effekte wies WHG 58T an der Arteria pulmonalis auf. Es konnte zwar vom Beginn bis zum Ende des Versuches eine wachsende Entspannung des Präparates festgestellt werden, die jedoch bei der Endkonzentration in lediglich $-13,33 \pm 4,32$ Prozent gipfelte.
Nachfolgend ist die Wirkung auf die Herzmuskelpräparate angeführt.

Tabelle 21: Wirkung auf Herzmuskelpräparate

<table>
<thead>
<tr>
<th>Organpräparat</th>
<th>WHG 58T Kontraktionskraft f$_c$ (%) ± SEM bei 100 µmol/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rechter Vorhof</td>
<td>0,88 ± 0,91</td>
</tr>
<tr>
<td>Papillarmuskel</td>
<td>-15,14 ± 7,92</td>
</tr>
</tbody>
</table>

In vorangehender Tabelle wird auf einen Blick der fehlende Effekt der Testsubstanz auf die isolierten Herzmuskelpräparate ersichtlich.

Die Substanz WHG 58T wies keinen Effekt auf den rechten Vorhof auf. Bei der Testendkonzentration von 100 µmol/l blieb die Schlagfrequenz bis auf eine vernachlässigbare Zunahme stetig konstant.

Am Papillarmuskel konnte zwar am Ende der Versuche eine gemittelte Abnahme um 15,14 ± 7,92 Prozent vom Ausgangswert erreicht werden, für weitere Untersuchungen ist solch ein Wert jedoch, sowie für alle Präparate wenn keine EC$_{50}$ erreicht werden kann, nicht signifikant genug.

Zusammenfassend ist über WHG 58T zu sagen, dass es kein Organ entscheidend beeinflussen konnte, die stärkste Wirkung prozentual gesehen ergab sich auf Aorta und das terminale Ileum.

Die sehr wahrscheinliche Beteiligung von ATP-abhängigen Kaliumkanälen an der vaskulären Regulation des Blutdrucks wurde in mehreren Studien beleuchtet.

Es zeigte sich, dass H$_2$S in Konzentrationen von 18 bzw. 60 µM, mit 20µM KCl bzw. Phenylephrin kontrahierte Rattenaortenringe dilatierte (Zhao et al.2001).
Tests mit unterschiedlichen Blockern von calciumsensitiven Kaliumkanälen zeigten keine Auswirkung auf die Vasokonstriktion. In einem weiteren Versuch zeigte sich
jedoch dass der hypotensive Effekt von \(\text{H}_2\text{S} \) durch den \(\text{K}_{\text{ATP}} \)-Kanalblocker Glibenclamid antagonisiert wurde und vom \(\text{K}_{\text{ATP}} \) Kanalöffner Pinacidil imitiert wurde (Zhao et al. 2001). Dieselbe Arbeitsgruppe untersuchte auch die physiologischen Spiegel von Schwefelwasserstoff im Plasma und kam zum Ergebnis dass dieser bei Ratten etwa 50 µM betrug. Die physiologische Konzentration in Geweben ist deutlich höher. Im Gehirngewebe wurde eine Konzentration von 50-160 µM nachgewiesen (Hosoki et al. 1997).

Zusammenfassend kam man zum Schluss das Schwefelwasserstoff innerhalb von physiologisch relevanten Konzentrationen eine Vaso- dilatation hervorruft und so neben NO und CO einen weiteren intrinsischen, gasförmigen vasoaktiven Mediator darstellt (Zhao et al. 2001).

Zhao et al. postulierten jedoch auch das \(\text{H}_2\text{S} \), im Gegensatz zu NO und CO, nicht nur an der vaskulären glatten Muskulatur wirkt, sondern auch einen geringen Endothel abhängigen Effekt aufweist. Dies ist darauf zurückzuführen, dass die Aktivierung des cGMP Pfades für NO und CO Freisetzung essentiell ist, während \(\text{H}_2\text{S} \) hauptsächlich via Öffnung \(\text{K}_{\text{ATP}} \) Kanälen an den Gefäßmuskeln wirkt aber auch durch eine Veränderung der Kaliumleitfähigkeit im Endothel.

Legt man diese Daten auf die Versuchsreihe von SWS 25a an der Aorta um muss man davon ausgehen, dass die Wirkung nicht nur über Beeinflussung \(\text{K}_{\text{ATP}} \) Kanäle läuft. Denn in den Versuchen wurde die Aorta mit 90 mmol KCl vorkontrahiert und es wurde im Endeffekt eine Relaxation von 100 Prozent erreicht. Also müssen noch andere Faktoren an der Wirkung beteiligt sein.
Diese These wird auch in einer Studie bestätigt (Elsey et al. 2010).

Abschließend kann festgestellt werden, dass die untersuchte Substanz SWS 25a im Gegensatz zu WHG 58T stark vasodilatorisch und spasmolytisch wirkt. Diese Wirkungen beruhen vermutlich auf einer Freisetzung von H₂S, während hingegen WHG 58T keine oder nur geringe H₂S freisetzende Eigenschaften besitzen dürfte.
6. ZUSAMMENFASSUNG

Vorliegende Diplomarbeit behandelt die Prüfung zweier schwefelwasserstofffreisetzender Substanzen, SWS 25a und WHG 58T, auf deren Einfluss auf isolierte Organe von Meerschweinchen. Ziel war es einen EC\textsubscript{50} zu erreichen. Dieser stellt die mittlere effektive Konzentration des Wirkstoffes in mmol/l dar, bei der die Hälfte des Kontrollwertes erreicht wird.

Der Wirkstoff SWS 25a erzielte vor allem an der glatten Muskulatur hochsignifikante Effekte, am Stärksten war dieser an der Aorta ausgeprägt. Es konnte ein EC\textsubscript{50} von 4,7 µmol/l erreicht werden. An der Arteria pulmonalis betrug dieser 9,1 µmol/l, am terminalen Ileum 6 µmol/l. Am Atrium dexter und am Muscullus papillaris konnten keine signifikanten Ergebnisse erzielt werden.

Das Screening des Wirkstoffes WHG 58T brachte bei allen Organen keine signifikanten Resultate, die Wirkungen waren zu wenig ausgeprägt. Der stärkste Effekt wurde noch an der Aorta gemessen, er betrug jedoch lediglich −17,30 Prozent vom Kontrollwert.

Da SWS 25a an der Aorta hochpotente Wirkung zeigte, wurden an diesem Organ auch Versuche hinsichtlich der zugrundliegenden Wirkmechanismen durchgeführt.
Als Ergebnis konnte eine Beteiligung des NO-Systems sowie von K_{ATP}-Kanälen festgestellt werden. Auch ein gewisser Einfluss auf die sympathische Regulation der Gefäße hinsichtlich Blockade von α-Rezeptoren könnte gegeben sein.

7. LITERATURVERZEICHNIS

Wang R (2002) Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? Faseb J 16:1792-1798

8. LEBENSLAUF

Persönliche Daten:

Geburtsort: Wiener Neustadt
Familienstand: ledig
Staatsbürgerschaft: Österreich
Religionsbekenntnis: Römisch-katholisch

Schulbildung:

1990-1994 Volksschule in Wöllersdorf
1994-1997 Hauptschule in Berndorf
1997-1998 Hauptschule in Pernitz
1998-2003 Handelsakademie Wiener Neustadt
Matura im Mai 2003 mit gutem Erfolg
ab Oktober 2004 Studium der Pharmazie in Wien

Bisherige Arbeitsstellen:

Ferialpraxis „Bahnhof Apotheke“ in 2700 Wiener Neustadt, Juli 2009
Ferialpraxis Apotheke „Zur Madonna“ in 2620 Neunkirchen, September 2009
Tutor für Erste Hilfe am Department für Pharmakologie und Toxikologie 2005-2010

Fähigkeiten und Kenntnisse:

Fremdsprachen: Englisch und Französisch in Wort und Schrift
PC-Kenntnisse: Microsoft Word, Excel, Outlook, Project
Power Point, Access, ECDL-Führerschein 2003