Diplomarbeit

TITEL DER DIPLOMARBEIT

„Ressourceneffiziente Modellierungsstrategie zur Generierung von Dachflächen für 3D-Stadtmodelle“

Verfasser
Christian SAM

Angestrebter akademischer Grad
Magister der Naturwissenschaften

Wien, im Dezember 2009

Studienkennzahl lt. Studienblatt: A 455
Studienrichtung lt. Studienblatt: Kartographie und Geoinformation
Betreuer: Ass.-Prof. Mag. Dr. Andreas Riedl
Inhalt

Inhalt.. i
Abbildungsverzeichnis ... iv
Tabellenverzeichnis ... viii
Kurzfassung .. ix

1 Einleitung.. 1
 1.1 Forschungsfrage ... 2
 1.2 Arbeitsübersicht .. 3

2 Grundlagen der 3D-Dachmodellierung ... 4
 2.1 3D-Stadtmodelle... 4
 2.1.1 Definition.. 5
 2.1.2 Inhalte.. 5
 2.2 Dachflächen.. 6
 2.2.1 Definition.. 6
 2.2.2 Dachelemente ... 8
 2.2.3 Dachformen ... 8
 2.2.4 Gauben ... 10
 2.3 Datengrundlagen... 11
 2.3.1 Einleitung .. 11
 2.3.2 Kataster .. 13
 2.3.3 Luft-/Satellitenbilder ... 15
 2.3.4 Digitales Geländemodell ... 17
 2.3.5 Orthophotos .. 19
 2.4 Detailierungsgrade... 21
 2.4.1 Special Interest Group 3D .. 21
 2.4.2 Level of Detail ... 22
 2.5 Anwendungsbereiche ... 25
2.5.1 Visualisierung ... 25
2.5.2 Analyse ... 29

3 Methoden und Verfahren zur Erstellung von Dachflächenmodellen 31

3.1 Übersicht des Erstellungsvorganges ... 31

3.2 Methoden zur Auswertung ... 32
 3.2.1 Photogrammetrie ... 32
 3.2.2 Laserscanner-Auswertung ... 35
 3.2.3 Dachausmittlung ... 38

3.3 Modelle für Dachflächen .. 41
 3.3.1 Verfahrensbezogenes Modell ... 41
 3.3.2 Darstellungsbezogenes Modell ... 43

3.4 Verfahren zur Modellerstellung ... 45
 3.4.1 Photogrammetrie und Prototypen-/Polyedermodell ... 45
 3.4.2 Laserscanner-Auswertung und Polyedermodell ... 50
 3.4.3 Dachausmittlung und Konstruktives Komponentenmodell 56

4 Exemplarische Implementierung eines Verfahrens zur Dachflächenmodellierung ... 61

4.1 Anforderungsprofil an die Implementierung ... 61
 4.1.1 Untersuchungsgebiete ... 62
 4.1.2 Anforderungen an die Auswertemethode ... 62
 4.1.3 Anforderungen an den Modelltyp ... 64

4.2 Spezifikation des Verfahrens .. 69
 4.2.1 Zielsetzung ... 69
 4.2.2 Umsetzung des Anforderungsprofiles .. 70
 4.2.3 Datenherkunft .. 71
 4.2.4 Übersicht des Verfahrens .. 71

4.3 Erstellung des verfahrensbezogenen Modelles ... 72
 4.3.1 Modellauswahl und -einfassung ... 72
4.3.2 Vervollständigung der Modellparameter ... 78

4.4 Modellmigration ... 82
 4.4.1 Formatkonvertierung ... 83
 4.4.2 Niveaualdaption ... 86

4.5 Fertigstellung des darstellungsbezogenen Modelles ... 87
 4.5.1 Datenimport .. 88
 4.5.2 Parametervalidierung ... 89
 4.5.3 Konstruktion der Dachflächen ... 92
 4.5.4 Zuweisung von Darstellungsstilen ... 94

4.6 Evaluierung des Dachflächenmodelles ... 99
 4.6.1 Übersicht der Evaluierung ... 99
 4.6.2 Untersuchungsgebiet 1 .. 102
 4.6.3 Untersuchungsgebiet 2 .. 108
 4.6.4 Untersuchungsgebiet 3 .. 113
 4.6.5 Ergebnisse der Evaluierung ... 114

5 Zusammenfassung .. 115

6 Literatur .. 117

Lebenslauf .. 121
Abbildungsverzeichnis

Abb. 1: Dächer als spezifischer Bestandteil eines 3D-Stadtmodelles..............................6
Abb. 2: Lage und Bezeichnungen der einzelnen Körper und Flächen eines Gebäudes..........7
Abb. 3: Bezeichnung der Dachelemente...8
Abb. 4: Satteldach...9
Abb. 5: Walmdach ...9
Abb. 6: Zeltdach ...9
Abb. 7: Mansarddach ..9
Abb. 8: Mansardwalmdach ...10
Abb. 9: Flachdach ..10
Abb. 10: Pultdach ..10
Abb. 11: Unterschiedliche Gaubenformen...11
Abb. 12: Vektorformat ..12
Abb. 13: Rasterformat ..12
Abb. 14: Digitale Katastralmappe..13
Abb. 15: Aufnahmen mit unterschiedlichen räumlichen Auflösungen......................16
Abb. 16: Aufnahmen mit unterschiedlichen spektralen Auflösungen17
Abb. 17: Aufnahmen mit unterschiedlichen radiometrischen Auflösungen................17
Abb. 18: DGM Datenstrukturen ...18
Abb. 19: Luftbild und Orthophoto ..20
Abb. 20: Perspektivische und reliefbedingte Verzerrung in Luftbildern......................21
Abb. 21: Detailstufen der Gebäudemodelle ..22
Abb. 22: LOD 0 – Regionalmodell ...23
Abb. 23: LOD 1 – Klötzenmodell ...23
Abb. 24: LOD 2 – Detailmodell ..24
Abb. 25: LOD 3 – Architekturmodell ...24
Abb. 26: LOD 4 – Innenraummodell ...25
Ressourceneffiziente Modellierungsstrategie zur Generierung von Dachflächen für 3D-Stadtmodelle

Abb. 27: Stadtplanung ... 26
Abb. 28: 3D-Stadtmodell Salzburg ... 27
Abb. 29: Begehbarer Athenatempel ... 27
Abb. 30: Navigationsgerät mit 3D-Ansicht .. 28
Abb. 31: 3D-Stadtmodell Modellierung ... 30
Abb. 32: 3D-Stadtmodell Analyse .. 30
Abb. 33: Schematischer Ablauf der Erstellung von Dachflächenmodellen 32
Abb. 34: Parameter der inneren und äußeren Orientierung .. 33
Abb. 35: Photogrammetrische Auswertung von Dachflächen .. 34
Abb. 36: Vegetationsdurchdringung des Laserscanners .. 36
Abb. 37: Laserscanning-Datensatz vor und nach der Filterung .. 37
Abb. 38: Unterschiedliche Varianten der Dachausmittelung ... 39
Abb. 39: Edge Event .. 40
Abb. 40: Split Event .. 40
Abb. 41: Kategorisierung der Vertreter des verfahrensbezogenen Modells 42
Abb. 42: Probleme bei der Zuweisung von Eigenschaften in CSG-Modellen 44
Abb. 43: Darstellungsschemata des darstellungsbezogenen Modells ... 45
Abb. 44: Kombination dreier Gebäudeprimitive zum einem Gebäudemodell 46
Abb. 45: Grobe Anpassung des Modelles mittels photogrammetrischer Auswertung 48
Abb. 46: Darstellung der Zuordnungshypothesen ... 49
Abb. 47: Gebäudemodelle, erstellt mittels eines photogrammetriebasierten Verfahrens 49
Abb. 48: Clusterbildung im dreidimensionalen Merkmalsraum ... 51
Abb. 49: Ablauf der Clusterbildung in getrennten, eindimensionalen Merkmalsräumen 52
Abb. 50: Verschiedene Stadien der Segmentierung koplanarer Bereiche einer Punktwolke 53
Abb. 51: Ermittlung des Grundrisses ... 54
Abb. 52: Verschnitt der Modellebenen zur Ableitung von Dachflächen .. 55
Abb. 53: Gebäudemodelle, erstellt mittels Laserscanning-Analyseverfahren 55
Abb. 54: Partitionierung eines verzweigten Grundrisses in einfache Formen 57
Abb. 55: Zusammenführung benachbarter Dachflächen mithilfe eines Regelsatzes ... 57
Abb. 56: Darstellung aller Fälle eines Laufrichtungs- und Längenvergleiches (Situation: „zwei folgende Rechts-Vertices“) .. 58
Abb. 57: Darstellung jener Fälle eines Laufrichtungs- und Längenvergleiches, die in mindestens einem akzeptierten Strahl resultieren (Situation: „drei folgende Rechts-Vertices“) .. 59
Abb. 58: Gebäudekonstruktion, bestehend aus einfachen CSG-Primitiven .. 60
Abb. 59: Gebäudemodelle, erstellt mittels Dachausmittlungsalgorithmus .. 60
Abb. 60: Lage der Untersuchungsgebiete im Raum Graz .. 62
Abb. 61: Differenzierte Betrachtung variierender Traufenhöhen .. 63
Abb. 62: Kombinierter Einsatz von Luftbild und Kataster zur Erleichterung des Auswertevorganges .. 64
Abb. 63: Prototypengeeignete und -ungeeignete Gebäudeformen im UG1 .. 65
Abb. 64: Gebäudekomplexe mit eigenständigen und verschachtelten Gebäudetrichten im UG1 .. 66
Abb. 65: Gebäudekomplexe mit eigenständigen und verschachtelten Gebäudetrichten im UG2 .. 67
Abb. 66: Freistehende Gebäude unterschiedlicher Formgestaltung im UG2 .. 68
Abb. 67: Komplexe Grundrisse und einfachen Dachformen der Gebäude im UG3 ... 69
Abb. 68: Erstellung des verfahrensbezogenen Modell der Dachlandschaft .. 73
Abb. 69: Im Verfahren zur Verfügung stehende Grundrisse/-Dachform-Kombinationen 74
Abb. 70: Nicht getreue Abbildung der Realität infolge der beschränkten Möglichkeiten eines Prototypenmodell .. 75
Abb. 71: Bewusste Manipulation der Abbildung zur Umgehung der Beschränktheit eines Prototypenmodell .. 76
Abb. 72: Bewusste Manipulation der Abbildung zur Umgehung der Beschränktheit eines Individualmodell .. 77
Abb. 73: Optionale Adaptierung der Firstlinien ... 78
Abb. 74: Ablauf des Analyseprozesses zur Vervollständigung der Modellparameter ... 82
Abb. 75: Formatkonvertierung samt Änderung des Geometrietyps ... 86
Abb. 76: Niveuadaption des Dachflächenmodell ... 87
Abb. 77: Untersuchung potentieller F-, T-, U-, oder S-Shapes .. 90
Abb. 78: Ergebnisse verfahrensinterner Testreihen zur Beurteilung der Grundrisstyp-Analysen ... 91
Abb. 79: Kontrolle bestimmter geometrischer Eigenschaften innerhalb der Grundrisse 92
Abb. 80: Positionsermittlung für Firstvertices .. 92
Abb. 81: Abbildung der ausgemittelten Grundrisstypen ... 93
Abb. 82: Erstellung der Dachflächenprimitive ... 94
Abb. 83: Einsatz von Farbwert und Helligkeit zur Unterscheidung individueller Strukturen ... 95
Abb. 84: Verwendung von Texturen zur Ergänzung von Farbwert und Helligkeit 97
Abb. 85: Flexibilität durch Einsatz diskret aufgebauter Darstellungsstile aus Grundfarbe und Grauwertbild ... 98
Abb. 86: Virtuelle Abbildung der zu evaluierenden Untersuchungsobjekte, integriert als Teil eines 3D-Stadtmodelles ... 101
Abb. 87: Reale Abbildungen der zu evaluierenden Untersuchungsobjekte in Form von Schrägluftbildern ... 102
Abb. 88: Vergleich der Abbildungen von Untersuchungsobjekt 1 ... 103
Abb. 89: Vergleich der Abbildungen von Untersuchungsobjekt 2 ... 104
Abb. 90: Vergleich der Abbildungen von Untersuchungsobjekt 3 ... 106
Abb. 91: Vergleich der Abbildungen von Untersuchungsobjekt 4 ... 107
Abb. 92: Vergleich der Abbildungen von Untersuchungsobjekt 5 ... 108
Abb. 93: Vergleich der Abbildungen von Untersuchungsobjekt 6 ... 109
Abb. 94: Vergleich der Abbildungen von Untersuchungsobjekt 7 ... 110
Abb. 95: Vergleich der Abbildungen von Untersuchungsobjekt 8 ... 112
Abb. 96: Vergleich der Abbildungen von Untersuchungsobjekt 9 ... 113
Tabellenverzeichnis

Tab. 1: Maßstäbe der österreichischen Katasterkarten .. 14
Tab. 2: Genauigkeitsklassen der österreichischen Katasterkarten ... 14
Tab. 3: Genauigkeitsklassen des österreichischen DGM ... 19
Tab. 4: Im Verfahren erlaubte Kombinationen aus Grundriss und Dachform 73
Tab. 5: Vorselektion potentieller Features mit vordefinierter Grundrisstypen 89
Tab. 6: Katalog der Firstvertices .. 93
Tab. 7: Beschränkungen und Auswirkungen einfacher Lösungsansätze zur
Dachflächenmodellierung ... 114
Kurzfassung

1 Einleitung

Seit im Zuge der Entwicklung der Informationstechnologie die, für die Erstellung und Nutzung, notwendigen technischen Voraussetzungen geschaffen wurden, entstehen aus dem Kreis der Nutzer von Daten mit Raumbezug mehr und mehr Anforderungen zur Erfassung, Visualisierung und Analyse von dreidimensionalen Geodaten. Besonders für dicht besiedelte Räume werden von den Behörden, der Wirtschaft oder sonstigen Institutionen entsprechende räumliche Informationen benötigt [GRÖ-04], wie auch folgendes Zitat beweist:

„Das dreidimensionale Stadtmodell von Wien ist Basis für die Bewältigung neuer Herausforderungen der modernen Stadtplanung. Vor allem für die Simulation geplanter Bauvorhaben und Flächenwidmungen sowie für die Berechnung von Sichtbarkeiten, Abschattungen, Lärm- und Schadstoffausbreitungsmodellen werden dreidimensionale Stadtmodelle benötigt.“ [SVW-09]

Aus diesem Zitat lassen sich zwei Kernaussagen extrahieren:

- Das komplexe System einer urbanen Region verlangt nach Vorausplanung um einen geregelten Ablauf zu gewährleisten
- Planung verlangt nach entsprechender Information. Je umfassender diese zur Verfügung steht, umso gezielter können daraus Erkenntnisse abgeleitet werden.

Es kann also behauptet werden, dass der Bedarf nach einem räumlichen Informationssystem für den urbanen Raum besteht. Dieses Erfordernis kann in Form eines 3D-Stadtmodelles bedient werden, welches sich i.A. durch folgende Inhalte auszeichnet:

„Innerhalb eines 3D-Stadtmodells stellen Gebäude neben dem Verkehrsnetz und der Vegetation die zentrale Objektkategorie dar.“ [STE-00]

Im Blickpunkt dieser Arbeit soll ein zentraler Bestandteil der Objektkategorie der Gebäude stehen, die Dächer. Die Auseinandersetzung mit anderen Objektkategorien des 3D-Stadtmodells ist nicht nur in wissenschaftlichen Arbeiten etwas vernachlässigt wie Jansa, Stanek [JAN-03] anmerken, auch folgendes praktisches Beispiel zeigt die Dominanz der Gebäude:

Die Nutzung, sprich die Ausführung derartiger Simulationen bedingt natürlich die Verfügbarkeit eines (möglichst aktuellen) Datenbestandes modellierter Dachabbildungen.
Die explizite Erwähnung dieser Prämisse mag auf den ersten Blick verwundern, doch wie sich beispielhaft am Wiener Beispiel zeigt kann meist nur von einem punktuellen Vorhandensein solcher Dachmodelle ausgegangen werden [STÄ-04]:

„Das Dachmodell wird nicht flächendeckend für das gesamte Stadtgebiet, sondern nach Bedarf [...] gebiets- und projektsbezogen erzeugt [...] Mithilfe der Luftbildauswertung werden zusätzlich Dachlinien (Taufe, Dachbruchkante, allgemeine Dachlinie) und Dachkoten (Flachdach, Gesims, Giebel) kodiert gemessen. In einem eigenen Arbeitsschritt erfolgt dann die Dachmodellierung.“ [SVW-09]

Um also trotz begrenzter Ressourcen der Modellerstellung einer unzulänglichen Abdeckung des Gebietes begegnen zu können bietet sich eine differenzierte Modellierung der Dächer in Form variierender Detailstufen an [STÄ-04]:

- Ausgewählte Bereiche von besonderem Interesse können somit vom Einsatz aufwändiger Verfahren, d.h. hoher resultierender Detaillierungsgrade profitieren.
- Die restlichen Gebiete sollen hingegen von simpleren Verfahren mit weniger detaillierten Dachmodellen möglichst flächendeckend „aufgefüllt“ werden.

Um zur adäquaten Abbildung der Dachlandschaften eine möglichst ressourcen- und effiziente Modellierungsstrategie anwenden zu können ist deshalb die genau Kenntnis der Grenzen solch einfacher Verfahren der Dachmodellierung von Interesse. Dieses Bedürfnis soll im Zuge der Arbeit aufgegriffen und als Forschungsfrage untersucht werden.

1.1 Forschungsfrage

Zur differenzierten Betrachtung jener Beschränkungen, denen einfache Verfahren der Dachmodellierung – im Gegensatz zu elaborierten Vertretern – unterliegen, sollen folgende Punkte näher beleuchtet werden:

a. Welche Mindestanforderungen sind an ein Verfahren zu stellen, damit sich eine Abbildung der Dachlandschaft im Bereich von Level of Detail 1 bis 2 erreichen lässt?
b. Lassen sich alle diese Anforderungen mittels eines einfachen Verfahrens implementieren und welches Modell einer Dachlandschaft kann damit erstellt werden?

c. Können infolge einer Gegenüberstellung von Modell und Realität die theoretischen Anforderungen in der Praxis bestätigen werden? Stellt sich also eine adäquate Abbildung der Dachlandschaft ein, oder zeigen sich möglicherweise weitere Grenzen der Abbildbarkeit der Realität?

1.2 Arbeitsübersicht

Der Kernabschnitt dieser Arbeit kann in vier, aufeinander aufbauende Kapitel eingeteilt werden, die sich anfangs sukzessive der Vermittlung des notwendigen Wissens zur Erstellung von Dachmodellen widmen. Darauf aufbauend soll die Arbeit im vorletzten Kapitel, in der Beantwortung der Forschungsfrage, gipfeln, wobei Punkt a. anhand der bisher vermittelten theoretischen Grundlagen und die Punkte b. und c. anhand eines praktischen Umsetzung beantwortet werden sollen:

- Kapitel 2 soll an das Thema dieser Arbeit heranführen. Definitionen und Erläuterungen dienen dazu den Bogen vom 3D-Stadtmodell hin zum Dach zu spannen, um somit einen Bezug zwischen diesen beiden Begriffen herzustellen. Weitere Themen, wie die zur Modellerstellung nutzbaren Datengrundlagen, modellkategorisierende Detailierungsgrade und Anwendungsbereiche von Dachmodellen komplettieren das Kapitel, bilden zugleich aber auch die Basis für darauf aufbauende Themen in folgenden Kapiteln.

- Kapitel 5 soll eine Zusammenfassung der Ergebnisse dieser Arbeit bieten.
2 Grundlagen der 3D-Dachmodellierung

2.1 3D-Stadtmodelle

Die Fortschritte in der Computertechnik revolutionierten Anfang der 1990er Jahre den gesamten Bereich der Visualisierung durch Einsatz computergenerierter Animationen, welche sie auch hervorragend zur Darstellung urbaner Räume eignet. (Digitale) 3D-Stadtmodelle boten unzählige Vorteile, von der Wahl beliebiger Perspektiven bis hin zur vollkommenen Bewegungsfreiheit im virtuellen Raum [STÄ-04]. Diese Vorzüge machten sich auch andere Bereiche der Wissenschaft zu Nutze um Analysen innerhalb des städtischen Raumes unter frei definierbaren Testbedingungen in einer zuvor nicht möglichen Komplexität durchzuführen.

Bis heute fehlt es zwar mangels konkreter Auftraggeber an einer flächendeckenden Verfügbarkeit von 3D-Stadtmodellen, es gibt jedoch viele diffuse Interessen, welche punktuell verfügbare 3D-Stadtmodelle hervorgebracht haben [STÄ-04]. Laut Albert et al. [ALB-03] steigt in der Zukunft der Bedarf an Modellen für Visualisierungen und räumliche Analysen im urbanen Bereich. Planungen in diesen Umgebungen bedürfen einer immer umfassenderen Kenntnis der aktuellen räumlichen Gegebenheiten und Eigenschaften um effektive Beurteilungen, Simulationen oder Optimierungen treffen zu können [STE-00].
2.1.1 Definition

Damit eine umfassende Definition der 3D-Stadtmodelle überhaupt erfolgen kann ist zuerst die Bedeutung des gemeingültigeren Ausdruckes Modell zu erläutern:

„Modelle [...] sind Arbeitsmittel der Wissenschaft. Durch Ansatz mathematischer Beziehungen, graphischer Darstellungen [...] usw. nähern sie sich entsprechend dem jeweiligen Erkenntnisstand mehr oder weniger gut der Wirklichkeit oder Teilen davon. Die damit eintretende Ordnung und Reduktion der Information ist in ihrem Wesen nach eine Verallgemeinerung [...] aber erst auf diesem Wege gelingt es, die Fülle der Umweltinformation zu verarbeiten [...].“ [HAK-02]

Durch die Einführung des Modellbegriffs ist möglich den beiden zuvor erwähnten Anwendungsbereichen Visualisierung und Analyse durch folgende Definitionen eines 3D-Stadtmodelles Rechnung getragen:

„Unter einem digitalen 3D-Stadtmodell ist ein dreidimensionales Computermodell einer Stadt zu verstehen. In diesem Modell sollen die realen Objekte der Stadt möglichst realitätsnah abgebildet werden. Zu jedem Objekt werden die Informationen gespeichert, die für eine räumliche Rekonstruktion erforderlich sind.“ [LOR-96]

„3D-Stadtmodelle sind als raumbezogene Informationssysteme zu verstehen, in denen räumliche sowie inhaltliche Zusammenhänge der modellierten urbanen Räume erfasst, verwaltet und verarbeitet werden.“ [FÖR-93]

2.1.2 Inhalte

Abhängig vom vorgesehenen Anwendungsbereich (vgl. Kap. 2.5: S. 25) bzw. dem gewählten Detaillierungsgrad (vgl. Kap. 2.3: S. 11) kann ein 3D-Stadtmodell folgende Objektgruppen enthalten [STÄ-04]:

- Beschreibung der Geländeform (Geländemodell)
- Gebäude einschließlich wesentlicher Dachaufbauten sowie unterirdische Bauwerke (Gebäudemodelle)
- Texturen der Geländeoberfläche (Orthophotos, Karten) und der Gebäudeaußenflächen (Photos, Graphiken)
- sonstige Elemente: Brücken, Infrastruktur, Vegetation, Straßenmöblierung, Einrichtungen zur Verkehrsregelung

Unabhängig davon, welche Objektgruppen nun einem 3D-Stadtmodell zugezählt werden, sind für das Thema dieser Arbeit nur die Gebäude von Interesse, da Dächer
Gebäudebestandteile sind. Folgende Definition und Skizze (vgl. Abb. 1: S.6) sollen dies untermauern:

„Gebäude: ein oberirdisches Bauwerk mit einem Dach und wenigstens zwei Wänden, welches von Menschen betreten werden kann und dazu bestimmt ist [...] zu schützen.“ [BAU-96]

2.2 Dachflächen

2.2.1 Definition

So wie Dächer eines von mehreren Bestandteilen eines Gebäudes darstellen (Abb. 2: S. 7), so lässt sich auch ein Dach selbst in mehrere Teile unterscheiden. Als dabei am bedeutungsvollsten gelten die Dachflächen, welche nun anhand folgender Definition konkretisiert werden:

„Als Dachfläche wird die Summe aller Flächen eines Daches bezeichnet. Diese Flächen können eben oder konvex bzw. konkav gekrümmt sein. Festgelegt werden sie durch die
Es handelt sich bei Dachflächen also um jene Teile eines Gebäudes, die sich einem (fiktiven) Beobachter bei orthogonalen Parallelprojektion offenbaren. Als einzige Voraussetzung gilt dabei, dass das Gebäude lotrecht orientierte Wandflächen aufzuweisen hat.

Abb. 2: Lage und Bezeichnungen der einzelnen Körper und Flächen eines Gebäudes

Im Verlauf dieser Arbeit ergibt sich die Notwendigkeit abseits des Daches auf einen weiteren Gebäudebestandteil Bezug zu nehmen, der sich von Dachfläche-Unterkante (DF-UK) bis Gelände-Oberkant (G-OK) erstreckt. Dazu muss allerdings zuerst der Begriff des Geschosses eingeführt werden:

„Geschoß: die Gesamtheit der in einer Ebene liegenden Räume eines Gebäudes [...]“. [BAU-96]

Der gesuchte Gebäudebestandteil lässt sich somit durch eine einfache Subtraktion ausdrücken und wird im Folgenden als Gebäudetorso bezeichnet:

\[\text{Gebäudetorso} = \text{Gebäudevolumen}^* - \text{Summe der Dachgeschoße} \tag{1} \]

* oberhalb von G-OK.

2.2.2 Dachelemente

![Diagramm der Dachelemente](Quelle: ergänzt nach [IMM-09])

Abb. 3: Bezeichnung der Dachelemente

Zu den weiteren Teilen eines Daches gehören neben den Dachflächen jene linienhaften Elemente, welche als Dachkanten die Begrenzungs- oder Schnittlinien der Dachflächen bilden (vgl. Abb. 3: S. 8). Jene in horizontaler Lage werden in First (obere Dachkante) und Traufe (untere Dachkante) unterschieden. Begrenzen vertikale Dachkanten eine Wandfläche, so nennt man diese Fläche Giebel. Die Dachkanten werden in Folge als Ortsgang bezeichnet, und verbinden Traufe mit First. Befindet sich anstelle des Giebels hingegen eine schräg liegende Dachfläche, so spricht man von einem Walm, die begrenzenden Dachkanten heißen in diesem Fall Grat. Der Punkt, an dem sich die drei Dachflächen treffen, wird Anfallspunkt genannt [WIK-09c].

2.2.3 Dachformen

Wie bereits erläutert wurde ist für die Ausprägung der Dachflächen die Dachform des Gebäudes ausschlaggebend. Diese kann in vielfältiger Art und Weise auftreten, folgend werden nun die gängigsten Vertreter nicht gekrümmter Dachflächen angeführt.
Satteldach

Das Satteldach ist aufgrund seiner Einfachheit die am weitesten verbreitete Dachform. Es ist durch zwei gegeneinander geneigte Dachflächen gekennzeichnet, die sich am First schneiden, welcher entlang der längeren Gebäudeseiten verläuft. An den kürzen Seiten befinden sich die Giebel (vgl. Abb. 4: S. 9), welche das Dach abschließen. Dachneigungen bzw. Traufhöhen können sowohl identisch als auch unterschiedlich sein [HAA-06].

![Satteldach](Quelle: in [IMM-09])

Abb. 4: Satteldach

Walmdach

Das Walmdach unterscheidet sich vom Satteldach durch das Fehlen des markanten Giebels, welcher durch den Walm ersetzt wird (vgl. Abb. 5: S. 9). An jeder Gebäudeseite befinden sich somit geneigte Dachflächen, welche an den Graten oder am First ihre Schnittkanten bilden. Die Hauptdachflächen entlang der längeren Gebäudeseiten nehmen die Form eines Trapezes an, die Walmdachflächen weisen eine Dreiecksform auf [HAA-06], [IMM-09].

![Walmdach](Quelle: in [IMM-09])

Abb. 5: Walmdach

Zeltdach

Eine Spezialform des Walmdaches stellt das Zeltdach dar, alle gegeneinander geneigten Dachflächen treffen sich hier in einem Anfallspunkt (vgl. Abb. 6: S. 9), der Dachfirst entfällt somit [HAA-06]. Zeltdächer sind häufig auf Türmen (z.B. Kirchtürme) oder auf Erkern zu finden [KOP-02].

![Zeltdach](Quelle: in [IMM-09])

Abb. 6: Zeltdach

Mansarddach

Die Dachflächen beim Mansarddach sind ein- oder mehrfach geknickt. Daraus entstehen Bereiche mit unterschiedlicher Neigung, wobei die unteren Dachflächen steiler sind als die oberen (vgl. Abb. 7: S. 9). Diese Konstruktion vergrößert den zur Verfügung stehenden Innenraum und erlaubt dessen bessere Nutzung [IMM-09].

![Mansarddach](Quelle: in [IMM-09])

Abb. 7: Mansarddach
Mansardwalmdach
Hierbei handelt es sich um eine Mischform aus Mansard- und Walmdach bei der neben den Hauptdachflächen auch die Walme (vgl. Abb. 8: S. 10) jeweils zwei Neigungen aufweisen [HAA-06].

Flachdach
Dächer, die aus einer einzigen Dachfläche (vgl. Abb. 9: S. 10) bestehen und eine Neigung von 2 – 20 Grad nicht überschreiten, bezeichnet man als Flachdächer [IMM-09]. Das geringe Gefälle dient als Schutz vor eindringendem Wasser und ist behördlich vorgeschrieben [BAU-09].

Pultdach
Ein Pultdach besitzt genauso wie das Flachdach nur eine Dachfläche, allerdings mit einer Neigung größer 20 Grad. Die waagrechte obere Dachkante bildet den First, die untere die Traufe, welche bei dieser Dachform einzeln auftritt (vgl. Abb. 10: S. 10). Zu beiden Seiten befinden sich die vertikalen Ortgänge. Die Wand am First wird die Hohe Wand genannt [WIK-09h].

2.2.4 Gauben
Unterbrechungen oder Durchdringungen der Dachflächen treten als Durchlässe für Schornsteine oder in Form von Dachfenstern bzw. Dachgauben auf [WIK-09c]. Bei Gauben handelt es sich um Dachaufbauten, die aus dem Dach herausragen (vgl. Abb. 11: S. 11) und eine eigenständige Dachform besitzen [KOP-02]. Ursprünglich dienten Gauben kleinerer Ausführung nur der Dachbelüftung, erst mit der wohnlichen Nutzung von Dachräumen begannen Gauben in unterschiedlicher Ausprägung, angelehnt an die unterschiedlichen Dachformen, aufzutreten [IMM-09].
2.3 Datengrundlagen

Als Datengrundlagen werden in dieser Arbeit jene Geographischen Daten (Geodaten) (vgl. Kap. 2.3.1: S. 11) bezeichnet, welche eine Ableitung von Dächern erlauben und möglichst flächendeckend vorliegen.

2.3.1 Einleitung

Geodaten werden in einem Geographischen Informationssystem (GIS) objektbezogen vorgehalten und teilen sich in Geobasisdaten (raumbeschreibende, topographische Daten) und Geofachdaten (sachbezogene Informationen, auch anderer Fachdisziplinen). Die Speicherung und Datenverarbeitung von Geodaten bedarf zuvor einer Aufbereitung von Sachverhalten der realen Welt und geschieht in Form von mathematischen Formulierungen, Zuordnung zu Datenstrukturen, logischen Ausdrücken und weiteren Kriterien [GIL-09]. Riedl beschreibt den dazu notwendigen Prozess folgendermaßen:

Phänomene der realen Welt werden durch Features (geometrische Primitiva), dazugehörigen Attributen und graphischen Beschreibungen für bestimmte Sachverhalte abgebildet. Diese Abbildungen sind im Vergleich zu ihren realen Ebenbildern, dem Anwendungszweck entsprechend, vereinfacht modelliert. Die Lage der geometrischen Primitiva im Raum muss in einem einheitlichen Bezugssystem festgelegt sein. Geodaten bilden somit die Datenbasis in einem Geographischen Informationssystem [RIE-08].
Geometrische Primitiva liegen in zwei unterschiedlichen Formaten vor, Vektor- und Rasterformat.

Vektorformat

Folgende Eigenschaften zeichnen das Vektorformat aus:

- geeignet für diskrete Phänomene
- hohe Erfassungszeit
- logische Strukturierung und Objektbezug einfach zu realisieren
- komplexe Datenstruktur

Rasterformat

Folgende Eigenschaften zeichnen das Rasterformat aus:

- geeignet für kontinuierliche Phänomene
- niedrige Erfassungszeit
- logische Strukturierung und Objektbezug fast nicht zu realisieren
- einfache Datenstruktur
Bei den Attributen der Features handelt es sich um Sachverhalte thematischen Inhaltes, die semantische Informationen oder Ausprägungen wiedergeben. Ihre Abbildung erfolgt in Form von numerischen Daten, Zeichenketten, Zeitstempeln oder binären Daten um z.B. Messwerte, Adressen, Aufnahmedaten oder Umgebungsfotos wiedergeben. Die so in Tabellen und Datenbanken abgespeicherten Geofachdaten können in einem GIS mit den zuvor erwähnten Geobasisdaten verknüpft werden und stehen dann für räumliche Anwendungszwecke zur Verfügung [RIE-08].

2.3.2 Kataster

Unter einem Kataster versteht man die systematische Erfassung und Aufstellung gleichartiger Gegenstände, in diesem Fall die flächendeckende Beschreibung sämtlicher Parzellen (Grundstücke) eines Landes durch räumliche und attributive Daten. Das Wort Kataster stammt aus dem Griechischen und bedeutet Liste, Register bzw. Geschäfts buch [WIK-09f]. Die Bezeichnung Kataster ist länderspezifisch, zu finden sind u.a. auch die Begriffe Katastralmappen (Österreich), Flurkarten (Süddeutschland) oder Grundbuchpläne (Schweiz).

Abb. 14: Digitale Katastralmappe

<table>
<thead>
<tr>
<th>Ortskerne</th>
<th>Ländliche Gebiete</th>
<th>Ödland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vormetrische Maßstäbe</td>
<td>1:1440</td>
<td>1:2880 *</td>
</tr>
<tr>
<td>Metrische Maßstäbe</td>
<td>1:1000</td>
<td>1:2000 *</td>
</tr>
</tbody>
</table>

* Grundmaßstab
Quelle: in [RIE-08]

Tab. 1: Maßstäbe der österreichischen Katasterkarten

<table>
<thead>
<tr>
<th>Genauigkeitsklasse</th>
<th>Beschreibung</th>
<th>Grundstücke (10 Mio. = 100 %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klasse 1 – Grundsteuerkataster</td>
<td>Lagegenauigkeit: dm- bis m-Bereich Sekundäre Datenaufnahme, wurde von der analogen Katastralmappe vektorisiert. Keine koordinative Festhaltung von Grenzpunkten.</td>
<td>60 %</td>
</tr>
<tr>
<td>Klasse 2 – Grundsteuerkataster</td>
<td>Lagegenauigkeit: cm- bis dm-Bereich Wie Klasse 1, es erfolgte aber eine koordinative Festhaltung von Grenzpunkten.</td>
<td>30 %</td>
</tr>
<tr>
<td>Klasse 3 – Grenzkataster</td>
<td>Lagegenauigkeit: cm-Bereich Primäre Datenaufnahme, Rekonstruktion von Grenzpunkten in Natur möglich, da eine Vermessung erfolgte.</td>
<td>10 %</td>
</tr>
</tbody>
</table>

Quelle: in [BEV-09], [RIE-08]

Tab. 2: Genauigkeitsklassen der österreichischen Katasterkarten

Die Ausführung erfolgte ursprünglich in handgezeichneter Form, in Österreich wurde 1987 mit dem Aufbau der Digitalen Katastralmappe (DKM) begonnen. Durch Vektorisierung der bestehenden Kartenwerke geschah der Sprung ins digitale Zeitalter, wodurch sich folgende Vorteile ergaben:

14
Die Darbietung der Information erfolgt weitgehend unabhängig von Maßstab und Blattschnitt
Freie Wahl der Ausgabeform (analog, digital)

Neben den räumlichen Daten (Grundsteuer- bzw. Grenz kataster) beinhaltet der Kataster noch attributive Daten in Form des Grundstücksverzeichnisses [RIE-08]:
- Grundstücksdaten (Fläche, Nutzung,…)
- Eigentümerdaten
- Grundstücksadressen
- Anmerkungen
- Administrative und statistische Angaben

2.3.3 Luft-/Satellitenbilder

Thema dieses Kapitels sind jene Produkte, welche mit passiven Verfahren der Fernerkundung aus dem für Menschen sichtbaren Bereich des elektromagnetischen Spektrums plus dem angrenzenden nahen Infrarotbereich gewonnen werden.

Unter Fernerkundung versteht man die Datengewinnung durch Empfangseinrichtungen, die sich in einiger Entfernung zur Erdoberfläche (dem Ort der Messung) befinden, so z.B. in Luft- oder Raumfahrzeugen. Während der Datenaufnahme wird die natürliche Strahlung, die von der Oberfläche reflektiert oder ausgesendet wird (Sonnenlicht, Thermalstrahlung), durch einen Sensor empfangen und zu Bilddaten umgesetzt. Wenn hierbei nicht mittels künstlicher Strahlungsquellen auf die zu beobachtenden Objekte eingewirkt wird, spricht man von passiven Fernerkundungssystemen [RIE-08]. Als Beispiel der aktiven Fernerkundung sei Laserscanning erwähnt (vgl. Kap. 3.2.2: S. 35).

Luftbilder

Filme mit panchromatischer oder infraroter Sensibilisierung sowie Farbfilme zum Einsatz kommen. Das Bildformat beträgt vorwiegend 23 mal 23 cm², als Kammerkonstante kommen Brennweiten von 15, 21, 30 und 60 cm zum Einsatz [HAK-02].

Bei routinemäßigen Bildflügen, wie sie z.B. vom BEV durchgeführt werden, wird durch sogenannte Mehrzweckflüge ein möglichst großes Anwendungsspektrum für die erhobenen Daten angestrebt. Bei dieser Nutzenoptimierung kommen folgende Aufnahmespezifikationen zum Einsatz:

- Einsatz eines Farbfilmes
- Mittlerer Bildmaßstab von 1:15000

Luftbilder dienen u.a. zur visuellen Auswertung oder als Ausgangsprodukt zur Ableitung weiterer Datengrundlagen welche im Zusammenhang mit dem Thema dieser Arbeit stehen [BEV-05]:

- Qualitätsverbessernde Maßnahmen im Kataster
- Erstellung eines Digitalen Geländemodells (vgl. Kap. 2.3.4: S. 17)
- Ableitung von digitalen Orthophotos (vgl. Kap. 2.3.5: S. 19)

Satellitenbilder

Im Gegensatz zu Bildflugzeugen kommen bei Satellitensystemen bereits seit den 1970er Jahren digitale, multispektrale Sensoren zum Einsatz, welche auch elektromagnetische Bereiche außerhalb des optischen Spektrums erfassen können. Das Auflösungsvermögen dieser Sensoren ergibt sich somit aus mehreren Faktoren:

- Räumliche Auflösung

Hochauflösende Aufnahmen unter einem Meter/Pixel stehen zur öffentlichen Nutzung seit 2001 zur Verfügung [STE-06]. Aktuell reichen sie im zivilen bis 41 cm/Pixel (GeoEye-1), im militärischen Bereich bis 5 cm /Pixel [RIE-08].

Abb. 15: Aufnahmen mit unterschiedlichen räumlichen Auflösungen
• Spektrale Auflösung

![Panchromatisch und Multispektral](image)

Quelle: in [STE-06]

Abb. 16: Aufnahmen mit unterschiedlichen spektralen Auflösungen

• Radiometrische Auflösung

![256 Graustufen und 2 Graustufen](image)

Quelle: in [STE-06]

Abb. 17: Aufnahmen mit unterschiedlichen radiometrischen Auflösungen

Darunter wird die Anzahl und Bandbreite der Spektralbereiche verstanden, die ein Aufnahmesystem differenzieren kann. Die Wellenbereiche werden auch Kanäle bzw. Bänder genannt [RIE-08], [STE-06].

Panchromatisch: ein breitbandiger Kanal.
Multispektral: drei bis sieben schmalbandige Kanäle (vgl. Abb. 16: S. 17).

Die radiometrische Auflösung ist u.a. von der räumlichen und spektralen Auflösung abhängig [STE-06] und reicht von 1 – 11 Bit [RIE-08].

Ebenso wie Luft- können heutzutage hochauflösende Satellitenbilder als visuelle Grundlage zur Dachflächenableitung herangezogen werden.

2.3.4 Digitales Geländemodell

Das Gelände ist definiert als die Grenzfläche zwischen der Erdoberfläche und der Luft und kann mittels eines digitalen Geländemodells (DGM) beschrieben werden. Darunter ist eine Menge an regel- oder unregelmäßig verteilter, koordinativ erfasster Geländepunkte zu verstehen. Ergänzende Angaben wie lokale Extremwerte (Bergspitzen, Kuppen) oder
Geländekanten können zu dieser Menge hinzugefügt werden um die Geländeform hinreichend zu präsentieren. Zur Speicherung eines DGMs bieten sich zwei unterschiedliche Datenstrukturen an (vgl. Abb. 18: S. 18).

Abb. 18: DGM Datenstrukturen

erforderlich ist, jeweils eine Halbierung der Rasterweite [FRA-06]. Durch den Einsetzpunkt, die Dimension und die Rasterweite ergibt sich implizit die koordinative Zuordnung eines jeden GRID-Elements. Die damit einhergehende effektive Speicherstruktur des GRIDs erlaubt im Gegensatz zum TIN somit auch großflächige Gebiete abzuspeichern [STÄ-04]. Als Nachteil ergibt sich, dass jedem Element des GRIDs nur ein Höhenwert zugeordnet werden kann, man spricht hierbei auch von einem 2,5-dimensionalen Digitalen Höhenmodell (DHM) [BRA-06].

<table>
<thead>
<tr>
<th>Geändeform</th>
<th>Höhengenauigkeit *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offen und flach</td>
<td>±1 m – ±3 m</td>
</tr>
<tr>
<td>Offen und hügelig</td>
<td>±3 m – ±5 m</td>
</tr>
<tr>
<td>Wald und Hochgebirge</td>
<td>±5 m – ±20 m</td>
</tr>
</tbody>
</table>

Quelle: in [RIE-08], [BEV-05]

Tab. 3: Genauigkeitsklassen des österreichischen DGM

Die Übersicht (vgl. Tab. 3: S. 19) zeigt die geländeformabhängigen Genauigkeitsanforderungen an ein DGM, wie sie in Österreich bei der Produktion von Orthophotos zum Einsatz kommen. Dabei ist anzumerken, dass je nach Anwendungsfall natürlich auch höher aufgelöste DGM erstellt werden können [RIE-08].

2.3.5 Orthophotos

Abb. 19: Luftbild und Orthophoto

Entzerrtes Luftbild

Quelle: in [FRA-06]

Perspektivische Verzerrung

Zur Korrektur dieser Art von Verzerrung wird auf die Parameter der inneren und äußeren Orientierung des Luftbildes zurückgegriffen (vgl. Kap. 3.2.1: S. 32). Erstere liegen in Form des Kalibrierungsprotokolls der Messkammer vor, zweitere werden entweder bereits während des Fluges aufgenommen, können aber auch nachträglich durch Rückwärtsschnitt der Passpunkte berechnet werden oder werden im Zuge der Aerotriangulation ermittelt [FRA-06].

Reliefbedingte Verzerrung

Die auch Radialverschiebung genannte Verzerrung ist umso stärker ausgeprägt je:

- größer die Höhenunterschiede im Gelände ausfallen.
- weiter die Entfernung vom Bildmittelpunkt zunimmt.
- geringer die relative Flughöhe beim Bildflug ausgefallen ist.

2.4 Detaillierungsgrade

2.4.1 Special Interest Group 3D

Fragen zur Erstellung, Nutzung, Visualisierung und Vermarktung eines 3D-Stadtmodelles tauchen spätestens bei dessen Einsatz, mit großer Wahrscheinlichkeit jedoch bereits beim Aufbau auf. Deshalb hat sich die Initiative Geodateninfrastruktur Nordrhein-Westfalen (GDI NRW) im Mai 2002 dazu entschlossen eine Arbeitsgemeinschaft einzurichten, welche sich mit den nun angeführten Schwerpunkten auseinandersetzen soll. [STÄ-04].

2.4.2 Level of Detail

Level of Detail (LOD) bezeichnet einen Begriff aus der Computergraphik der zu einer Verminderung des Rechenaufwandes führt. Dies wird durch das Ausnutzen von kaum oder nicht wahrzunehmenden Unterschieden zwischen einem qualitativ hochwertigen und einem qualitativ niederwertigeren Objekt erreicht. Der LOD eines Objektes ist hierbei die daraus resultierende Qualitätsstufe, welche sich im allgemein in zu vertretenden Qualitätsverlust bei einer bestimmten Entfernung des Betrachters zum Objekt widerspiegelt [DGL-09].

Die SIG 3D definiert für 3D-Stadtmodelle fünf unterschiedliche Detaillierungsgrade (Abb. 21: S. 22), beginnend mit dem gröbsten LOD 0, bis hin zu dem am höchsten aufgelösten LOD 4. Zu den differenzierten Merkmalen innerhalb eines LOD zählen:

- Umfang an modellierten Objekttarten
- Geometrische Genauigkeit
- Detailreichtum der Modellierung

Die so eingeführten Detaillierungsgrade stellen ein Qualitätskriterium dar, welches die Eignung, den Vergleich sowie die Klassifikation von 3D-Stadtmodellen (verschiedener Datenlieferanten) ermöglicht [GRÖ-4]. Folgende Übersicht, entnommen aus [STÄ-04], listet die fünf Stufen nun im Detail auf, wobei auf dachspezifische Merkmale eingegangen wird.
Ressourceneffiziente Modellierungsstrategie zur Generierung von Dachflächen für 3D-Stadtmodelle

LOD 0 – Regionalmodell

- „Regionalmodell“ in Form eines Digitalen Geländemodell des (DGM) in 2,5D mit Textur/Orthophoto oder Flächennutzung
- Erfassungsgeneralisierung: maximal und Klassifizierung nach Flächennutzung
- Dachform/-struktur: Keine
- Punktgenauigkeit: >5m/>5m Lage/Höhe

LOD 1 – Stadt-/Standortmodell

- „Klötzenmodell“ ohne Dachstrukturen
- Erfassungsgeneralisierung: Objekttblöcke in generalisierter Form > 6m*6m Grundfläche
- Dachform/-struktur: ebene Flächen
- Punktgenauigkeit: 5m/5m Lage/Höhe

LOD 2 – Stadt-/Standortmodell

- „Detailmodell“ mit Texturen, differenzierten Dachstrukturen und Vegetationsmerkmalen (z.B. Bäume)
- Erfassungsgeneralisierung: Objektblöcke in generalisierter Form > 4m*4m Grundfläche
- Dachform/-struktur: Dachtyp und Ausrichtung
- Punktgenauigkeit: 2m/1m Lage/Höhe

LOD 3 – Stadt-/Standortmodell

- „Architekturmodell“ mit detailliert modellierten Gebäude- und Dachstrukturen, Vegetation und Straßenmöblierung (vgl. Abb. 25: S. 24)
- Erfassungsgeneralisierung: Objekte in realer Form; > 2m*2m Grundfläche
- Dachform/-struktur: reale Form
- Punktgenauigkeit: 0,5m/0,5m Lage/Höhe

Das „Architekturmodell“ wird durch hochauflösende Texturen sowie ein fein ausdifferenziertes Geometriemodell mit Öffnungen wie Türen und Fester und realer Dachkonstruktion beschrieben [GRÖ-04].
LOD 4 – Innenraummodell

- „Begehbare“ Architekturmodelle
- Erfassungsgeneralisierung: reale Form und Abbildung konstruktiver Elemente und Öffnungen
- Dachform/-struktur: reale Form
- Punktdetaillierungsgrad: 0,2m/0,2m Lage/Höhe

Diese Erweiterung ermöglicht die virtuelle Begehbarkeit von Gebäuden (vgl. Abb. 26: S. 25), womit sich z.B. Einsatzmöglichkeiten im Immobilienbereich oder als Leitsysteme in Museen ergeben.

2.5 Anwendungsbereiche

Wie bereits erwähnt dienen 3D-Stadtmodelle als Grundlage für Anwendungen, die sich in die Bereiche Visualisierung und Analyse glieder lassen. Dies soll nun anhand einiger konkreter Einsatzbereiche demonstriert werden, wobei auf dachspezifische Merkmale über die Angabe des empfohlenen Detaillierungsgrades eingegangen wird. Dabei ist anzumerken, dass sich in der Literatur keine konkreten Angaben diesbezüglich finden, der oder die empfohlenen LODs werden anhand der beschriebenen Anforderungen des Einsatzbereiches im Einklang mit dem Kapitel Detaillierungsgrade abgeleitet.

2.5.1 Visualisierung

Bei der Visualisierung wird das Modell zur Betrachtung optimiert. Die Darstellung muss weitgehend detailgetreu sein und einen realistischen Eindruck hinterlassen [KOP-02].

Stadtplanung

Um die Verständlichkeit bevorstehender städtebaulicher Projekte für die Öffentlichkeit zu erhöhen, bedient sich die Stadtplanung oft kartenverwandter Hilfsmittel, wie z.B. des maßstäblichen Baumassenmodells (aus Holz, Karton oder Kunststoff) und in den letzten Jahren zunehmend auch des virtuellen Computermodells.

Folgende Anforderungen an ein 3D-Stadtmodell, das in der Stadtplanung zum Einsatz kommen soll, lassen sich somit ableiten:

- präzise Abbildung des Gebäudeumrisses
- möglichst wirklichkeitsnahe Abbildung der Gebäudehöhe und der Dachgeometrie
- wirklichkeitsähnliche Abbildung der Gebäudefassaden und der Erdoberfläche durch photographische oder graphische Gestaltung
- Darstellung von Modellen mit einer genügend großen räumlichen Ausdehnung mit hohem Detaillierungsgrad [STÄ-04]

Bei der Wahl des Detaillierungsgrades im Einsatzbereich Stadtplanung ist in erster Linie der gewünschte Abstraktionsgrad mit einzubeziehen. So sollte das Interesse dem Projekt und nicht dem umgebenden 3D-Stadtmödell gelten, dieses also dezent in den Hintergrund der Szene treten. Laut Städtetag NRW kann aber eine zu hohe Abstraktion wiederum dazu führen, dass die Planungspräsentation ungenügend vermittelt wird und nicht der später fertig gestellten baulichen Realität entspricht [STÄ-04]. In Anbetracht dessen kann eine anwendungsabhängige Nutzung von LOD 1 bis LOD 2 empfohlen werden, in Einzelfällen,
wie z.B. bei einem Um-/Anbau, kann möglicherweise auch eine Darstellung der betroffenen Gebäude in LOD 3 stattfinden.

Tourismus

Abb. 28: 3D-Stadtmodell Salzburg

Abb. 29: Begehbarer Athenatempel

Eine weitere Möglichkeit der Visualisierung von 3D-Stadtmodellen ergibt sich seit der Verfügbarkeit leistungsfähiger Computer. Der sogenannte „virtuelle Spaziergang“ erlaubt die interaktive Navigation innerhalb virtueller Szenen und bietet sich bei Beachtung einer einfachen, intuitiven Bedienung, entsprechendem Informationsgehalt und Berücksichtigung von Implementierungsstandards hervorragend zur Darstellung von touristischen oder historisch interessanten Objekten an. Im Gegensatz zum konventionellen Werbemittel Text und Bild als Informationsträger ergeben sich beim Einsatz der beschriebenen Methode folgende Vorteile:

- Rekonstruktionen historisch interessanter, aber bereits verschwundener Stätten können ins Stadtmodell eingegliedert werden [KOP-02], [STÄ-04].

Bei der Wahl der Detailstufe im Einsatzbereich Tourismus ist differenziert vorzugehen. So ist als Empfehlung bei punktuellen Sehenswürdigkeiten LOD 3 abzugeben um eine möglichst realitätsnahe Darstellung zu ermöglichen. Falls vorhanden, geben LOD 4 Modelle ausgewählter Orte dem 3D-Stadtmodell natürlich einen besonderen Reiz. Der Rest des modellierten Gebietes sollte in LOD 2 vorhanden sein, wobei für die Texturierung jener Gebäude, welche von keinem besonderen anwendungsspezifischen Interesse sind, durchaus wiederverwendbare Fassadenbilder angewendet werden können, „[…] da die Texturierung die aufwändigste Arbeit bei der Aufstellung eines 3D-Modells ist“ [STÄ-04].
3D-Navigationssysteme

2.5.2 Analyse

Mobilfunk

Zu Beginn der 1990er Jahre entstand mit der breiten Vermarktung der Mobilfunknutzung und der damit notwendigen flächendeckenden Netzabdeckung für die betreibenden Unternehmen das Bedürfnis der optimierten Planung ihrer Funknetze [KOP-02]. Dafür wurden die ersten zur räumlichen Analyse eingesetzten 3D-Stadtmodelle aufgebaut, welche sowohl von geometrischen als auch inhaltlichen Parametern abhängig waren:

- Punktgenauigkeit und Detailreichtum der Modellierung
- Einbeziehung von Objekteigenschaften wie Oberflächenrauhigkeit und Reflexionsgrad

In den resultierenden Modellen wurden einzelne Gebäude zu Blöcken zusammengefasst, der Städtetag NRW merkt dazu an, dass sie somit nach heutiger Definition nicht einmal dem LOD 1 entsprechen würden, desweiteren war keine Modellierung der Oberflächenrauhigkeit enthalten. Durch diese sehr spezifische Ausrichtung eröffneten sich kaum anderweitige Einsatzmöglichkeiten für diese 3D-Stadtmodelle [STÄ-04].

Lärmschutz

Eines der schlagkräftigsten Argumente (zum Aufbau und) zur Nutzung eines fortschreibungsfähigen 3D-Stadtmodelles ist in der Forderung der Durchführbarkeit von Lärmausbreitungsberechnungen zu sehen. Dabei sind die zuständigen Instanzen aufgefordert jene Bereiche innerhalb ihres Territoriums festzustellen, die in besonderem Maße von Lärm betroffen sind, um darauf aufbauend Maßnahmen der Lärmminderung zu planen. Die Forderung beruht zumeist auf nationaler Gesetzgebung sowie seit 2002 auf einer EU-Richtlinie, laut der die Anzahl lärmbelasteter Fassaden sowie der betroffenen Einwohnern zu ermitteln ist.

Eine Angabe der empfohlen Detailstufe entfällt, da bei dieser Analyse mit unsegmentierten Datensätzen wie z.B. einem DGM gearbeitet wird [DOR-08], [STÄ-04]. Der Detaillierungsgrad der daraus resultierenden Modelle kann aber nicht mit jenen der SIG-3D (vgl. Kap. 2.3: S. 11) verglichen werden.
GIS-Analyse

Abb. 31: 3D-Stadtmodell Modellierung
Abb. 32: 3D-Stadtmodell Analyse

Der Vorteil bei der Analyse von strukturierten, aus der Visualisierung bekannten, 3D-Stadtmodellen im Gegensatz zu unstrukturierten Datensätzen zeigt sich in folgendem Beispiel:

3 Methoden und Verfahren zur Erstellung von Dachflächenmodellen

3.1 Übersicht des Erstellungsvorganges

Die Durchführung des Erstellungsvorganges sollte kostengünstig, flächendeckend sowie wiederhol- und vergleichbar sein [STE-00]. Im Laufe der Zeit entwickelten sich dazu:

- mehrere unterschiedliche Verfahren (vgl. Kap. 3.4: S. 45),
- welche je nach verfügbarer Datengrundlage
- und dem gewünschten Detaillierungsgrad

zur Anwendung kommen können. Die Zusammensetzung dieser drei Kriterien (vgl. Abb. 33: S. 32) ist bestimmend für die Beschaffenheit der modellierten Dachflächen. Bei den dabei erwähnten Verfahren handelt es sich jeweils um zweistufige Prozesse, bestehend aus [JAN-03]:

a. der Auswertung von Datengrundlagen zur Gewinnung von Dachflächenmerkmalen
b. und der Modellierung von Dachflächen auf Basis dieser Merkmale.
3.2 Methoden zur Auswertung

3.2.1 Photogrammetrie

Mit Hilfe dieser Methode ist die Rekonstruktion dreidimensionaler Objekte, aus zwei sich überlappenden, zweidimensionalen Abbildern der Objekte möglich. Der räumliche Effekt tritt ein, wenn die gegenseitige Lage der Bilder bzw. Luftbilder (vgl. Kap. 2.3.3: S. 15) zum Zeitpunkt der Aufnahme wiederhergestellt wird. Dies ist bei Kenntnis der folgenden Parameter möglich [FRA-05].
Innere Orientierung

Äußere Orientierung

Hiermit wird die Lage des Projektionszentrums und der Richtung der Bildebene relativ zum Aufnahmeobjekt angegeben. Die Lage wird durch das Koordinatentripel (x, y, z) des Projektionszentrums O beschrieben, die Richtung durch drei voneinander unabhängige Drehwinkel bestimmt, Azimut α, Neigung ν und Kantung κ. Bei Senkrechtaufnahmen gibt das Verhältnis $C_k:h$ (Kammerkonstante zu Flughöhe) den Abbildungsmaßstab an. Lage und Richtung werden genähert, während des Bildfluges aufgezeichnet und lassen sich mit Hilfe der – in Bild- und Objektebene koordinativ bekannten – Passpunkte berechnen [WIK-09g], [FRA-05].

Abb. 34: Parameter der inneren und äußeren Orientierung
Sobald die Orientierung der Luftbilder wiederhergestellt ist, kann eine dreidimensionale Betrachtung erfolgen. Um die Aufnahmesituation auswerten zu können muss jedoch zuvor ein Bezug zum äußeren Koordinatensystem gegeben sein. Die Transformation von der relativen hin zu einer absoluten Orientierung erfolgt mit Hilfe der bereits erwähnten Passpunkte.

Die dabei erforderliche visuelle Interpretation basiert auf Differenzierung der in den Luftbildern enthaltenen Strukturen, Formen und Texturen. Als visuelle Hilfestellung können die Gebäudegrundrisse eines Katasters als unterstützende Datengrundlage herangezogen werden, da bei einer Dachflächenerhebung Störfaktoren wie z.B. überhängende Bäume und Schattenwurf den Messvorgang behindern können [STE-00]. Dies zeigt, dass bei der photogrammetrischen Luftbildauswertung zumindest der kritische Auswerteschritt der Objektinterpretation durch einen menschlichen Operateur vollzogen werden muss, da vollautomatische Ansätze zur Gebäudeextraktion mittels Bildanalyse das Forschungsstadium noch nicht verlassen haben [JAN-03], [STA-04]. Elaborierte Verfahren können jedoch auf Basis manueller Grobmessungen automatisierte Feinmessungen einsetzen, die den Auswertevorgang erheblich beschleunigen (vgl. Kap. 3.4.1: S. 45). Durch den manuell durchgeführten Auswertevorgang und die hohe räumliche Auflösung der Luftbilder gilt die Photogrammetrie als die genaueste Auswertemethode für
Dachflächen. Das Landesvermessungsamt Nordrhein-Westfalen gibt die Genauigkeit mit 0,15 ‰ der Flughöhe an, i.A. liegt sie zwischen 0,1 – 0,2 m [STÄ-04], [ULM-06], sie eignet sich damit zur detaillierten Erfassung der Dachlandschaft samt Gauben und Kaminen.

3.2.2 Laserscanner-Auswertung

Laserscanning ist eine Methode zur schnellen dreidimensionalen Datenerfassung auf der Basis von Winkel- und Streckenmessungen. Die kombinierte Sende-/Empfangseinheit des Laserscanners führt dabei innerhalb eines definierten horizontalen und vertikalen Bereiches eine nichtselektive, rasterweise Abtastung der Umgebung durch. Bei diesem aktiven Verfahren der Fernerkundung(vgl. Kap. 2.3.3: S. 15) wird ein Laserstrahl ausgeschickt, bei eintreffenden Reflexionen werden die Signallaufzeit sowie die Ausrichtung des Empfängers registriert. Im Falle von Gebäudeaufnahmen kommen terrestrische oder fluggestützte Systeme zum Einsatz, wobei hier auf letzteres, das sogenannte Airborne Laserscanning (ALS), eingegangen wird.

- Das Digitale Höhenmodell, welches wie bereits erwähnt auch durch photogrammetrische Auswertung gewonnen werden kann (vgl. Kap. 2.3.4: S. 17) lässt sich aus dem Last Pulse-Datensatz erstellen. Im Gegensatz zur Photogrammetrie können damit auch bewaldete (verdeckte) Gebiete ausgewertet werden.
- Das Digitale Oberflächenmodell (DOM, bzw. im englischen DSM) beschreibt einerseits, so wie das DHM, offene Geländeoberflächen, aber ggf. auch die sich darauf befindlichen Objekte wie Autos, Gebäude, etc. Verwendet man zur Erstellung den First Pulse-Datensatz, so fällt auch die Vegetation darunter.
- Aus den beiden vorhin genannten Modellen lässt sich ein normiertes Digitales Oberflächenmodell (nDSM) bilden, welches die relativen Höhen der Objekte über der Erdoberfläche enthält. Die Berechnung des Offsets der Referenzfläche wird durch einfache Subtraktion erreicht:

\[nDSM = DOM - DHM \]

Filtermethoden

Speziell für die Ableitung eines DHMs sind nur die Bodenpunkte, also jene Messpunkte direkt auf der unbedeckten Erdoberfläche, von Interesse. Last Pulse-Reflexionen, die durch Objekte über der Erdoberfläche hervorgerufen wurden, müssen durch geeignete Filtermethoden entfernt werden [BRA-06]:

- Bei der Morphologischen Filterung wird die Höhe eines Punktes der Wolke in Bezug zu seinem Umfeld untersucht. Je größer dabei die horizontale Entfernung zu einem Nachbarn ausfällt, umso größer darf der Höhenunterschied sein, die Beschreibung dieser Funktion erfolgt über das sogenannte Strukturelement. Bei der Filterung wird

Abb. 36: Vegetationsdurchdringung des Laserscanners

Quelle: ergänzt nach [GPX-09]
das Strukturelement unter jeden Messpunkt lagemäßig zentriert, danach erfolgt so lange eine vertikale Verschiebung nach oben bis ein Messpunkt berührt wird. Handelt es sich dabei nicht um den Punkt im Zentrum, so ist jener auch kein Bodenpunkt.

Abb. 37: Laserscanning-Datensatz vor und nach der Filterung

Quelle: in [HAA-04], [MAA-05]

3.2.3 Dachausmittlung

Ein komplett anderer Ansatz zur Gewinnung von Dachflächenmerkmalen besteht darin für einen gegebenen Gebäudeumriss auf geometrischem Wege ein passendes Dach zu ermitteln und aus diesem die erforderlichen Merkmale abzuleiten. Somit kann auf einfache Art und Weise auf kostspielige oder möglicherweise nicht verfügbare Datengrundlagen bzw. deren Auswertung verzichtet werden, natürlich im Wissen darüber, dass die so erzeugten Dachlandschaften auf Basis zwar gebräuchlicher, aber trotzdem rein hypothetischer Annahmen fußen.

• In der ersten Version werden die Dachflächen so angelegt, dass der First über das gesamte Gebäude auf gleicher Höhe verläuft. Teilt sich das Gebäude in einen Haupt- und einen Nebentrakt und fallen dabei die Seitenlängen am Walm unterschiedlich aus, resultieren daraus ungleiche Dachneigungen. Dies wird optisch i.A. als wenig gefällig empfunden, als Gegenmaßnahme kann zumindest die Walmfläche des Nebentraktes neigungsmäßig an den Haupttrakt angepasst werden. Diese Variante ist in der Architektur eher verpönt und gilt als einfache, nicht stilvolle Lösung.

• Die zweite Version ist schwieriger zu konstruieren, was sowohl die Berechnung als auch die Umsetzung angeht. Die Variante sieht vor, dass die Dachneigung aller Dachflächen gleich ist und aus diesem Grund die Firsthöhen zwischen den einzelnen Dächern verschieden ausfallen können. Für eine Verbindung bei unterschiedlichen Höhen sorgt dann ein kurzes Stück Grat, die sogenannte Verwerfung.

Abb. 38: Unterschiedliche Varianten der Dachausmittlung

Straight-Skeleton

Der Algorithmus teilt das Innere eines n-eckigen Polygons in n monotone Polygone. Diese werden aus geraden Liniensegmenten gebildet, die entweder den Winkelsymmetralen des Polygons oder sich neu ergebender Kanten entsprechen.

Alle Kanten des Polygons werden kontinuierlich parallel nach innen versetzt. Dabei wandern die Start- und Endpunkte einer Kante entlang der entsprechenden Winkelsymmetrale, wobei sie sich entweder voneinander entfernen oder annähern. Während diesem sogenannten Schrumpfprozess können zwei Ereignisse eintreten:

- Eine Kante schrumpft auf Länge 0 und löst sich dadurch auf. Die beiden Nachbarkecken grenzen nun aneinander (vgl. Abb. 39: S. 40).
- Eine Kante teilt sich in zwei einzelne Liniensegmente. Dieser Fall tritt infolge spitzer, (konvexer) Einschnitte im Polygon auf (vgl. Abb. 40: S. 40).

Durch jedes Ereignis entstehen ein oder zwei neue Polygone, die wieder dem soeben beschriebenen Vorgang unterzogen werden. Sobald sich alle Polygone im Zuge der Ereignisse aufgelöst haben, ergibt sich aus den Strecken entlang der Winkelsymmetralen das Straight-Skeleton [TER-01].

3.3 Modelle für Dachflächen

3.3.1 Verfahrensbezogenes Modell

Prototypenmodelle

Dieser Modelltyp hat sich z.B. bei der Erfassung von Vorortsiedlungen mit einheitlichen oder zumindest beschränkten Dachkonstruktionen bewährt.

- Konstruktive Komponentenmodelle ermöglichen die Modellierung von Dächern durch wohldefinierte Kombination von parametrisierten Modellen. Somit lassen sich auch Dachkonstruktionen abbilden deren Grundrisse zu ungewöhnlich sind um sie direkt in den Katalog aufzunehmen [STE-00]. Grundsätzlich stellt diese Herangehensweise einen robusten Ansatz dar, der jedoch an komplexen Grundrissen bzw. den daraus resultierenden Dachkonstruktionen scheitern kann, wenn die zur Bildung benötigten Dachformen nicht im Katalog enthalten sind [WAC-03].

Abb. 41: Kategorisierung der Vertreter des verfahrensbezogenen Modelles

Individualmodelle

Es wird versucht aus der Gesamtmenge der Dachflächenmerkmale Teilmengen mit gewissen homogenen Eigenschaften zu detektieren um diese durch eine kompakte, mathematische Formulierung zu ersetzen. Zum Einsatz kommen dabei meist Analyseverfahren, die anhand bestimmter Indikatoren möglichst koplanare Merkmalsanhäufungen suchen um in diese Ebenen einzupassen. Durch Verschneidung oder Vereinigung der das Dach repräsentierenden Ebenen lassen sich Dachkanten und in weiterer Folge Dachflächen ermitteln, dies kann zur Bildung von bestimmten darstellungsbezogenen Modellformen (vgl. Kap. 3.3.2: S. 43) eingesetzt werden. Durch die Möglichkeit einzelne Dachflächen individuell modellieren zu können eignet sich die auch als „data-driven“ bzw. datenbasiert bezeichnete Modellkategorie dazu komplexe Dachkonstruktionen abzubilden [BRA-06], [WAC-03]. Je detaillierter allerdings die abzubildenden Objekte ausfallen, umso dichter müssen die Dachflächenmerkmale vorliegen und umso größer wird die Gefahr von strukturellen Modellierungsfällen, die einen zeitaufwändigen Überprüfungsprozess nach sich ziehen [JAN-03]. Folgende Modelltypen stellen Vertreter der Individualmodelle dar:
• Der Einsatz prismatischer Polyedermodelle bietet sich an, wenn die Abbildung mittels konstruktiver Komponentenmodelle aufgrund komplizierter Grundrissformen nicht zielführend erscheint. Sie erlauben die Bildung polygonaler Grundrisse außerhalb jeglicher Vorgaben durch Kataloge, beschränken sich aber ausschließlich auf die Dachform Flachdach. Dieser Modelltyp wurde vorwiegend in den USA erprobt, wo er sich in Hochhausszenarien oder industriellen Flachbautenarealen bewährt hat.

• Als Weiterentwicklung des oben genannten Modelltyps können allgemeine Polyedermodelle gesehen werden. Die dabei ermittelten Ebenen sind bestmöglich an die abzubildende Dachkonstruktion angepasst, was sowohl für Grundriss als auch die Dachform gilt [STE-00].

3.3.2 Darstellungsbezogenes Modell

Ist für das Dachflächenmodell eine graphische Ausgabe geplant, wie dies z.B. für den gesamten Anwendungsbereich der Visualisierung gilt, muss zusätzlich ein darstellungsbezogenes Modell zum Einsatz kommen. Um den reibungslosen Ablauf einer späteren Darstellung zu gewährleisten hat dieses den gängigen Darstellungsschemata der Computergraphik zu gehorchen, wovon in dieser Arbeit zwei Vertreter angeführt werden.

Constructive Solid Geometry

Boundary Representation

Die Randdarstellung oder kurz B-Rep genannte Darstellungsform beschreibt Flächen- oder Volumenmodelle anhand ihrer begrenzenden Oberflächen. Die Definition der Modelle erfolgt mittels der drei Elemente Knoten (nodes), Kanten (edges) und Flächen (faces). Die Geometrie wird hierbei durch die Koordinaten der Knoten (nodes), Kanten (edges) und Flächen (faces) bestimmt, die Topologie durch die Beziehungen der Elemente zueinander. Kanten werden dabei jeweils durch zwei Knoten gebildet, mindestens drei Kanten bilden bei geschlossenem Verlauf eine Fläche und diese formen Flächen- oder Volumenmodelle [WIK-09a]. Bei so erzeugten Dachflächenmodellen ist darauf zu achten, dass die Flächen eine geschlossene, durchdringungsfreie Oberfläche bilden, dies ist für spätere Visualisierungen oder Analysen von Bedeutung. Ein Nachteil von B-Rep ist die schwierige Überprüfbarkeit dieser Eigenschaft sowie die im Vergleich zu CSG nicht gegebene Kompaktheit der Modelldefinition. Als Vorteil ergibt sich die Möglichkeit der Bezugnahme auf einzelne Flächen, was mittels CSG nicht möglich ist. Es ist anzumerken, dass Echtzeit-3D-Rendermethoden dieses Darstellungsschema sehr effektiv ausgeben können, wohingegen eine Ausgabe von CSG-Modellen meist gar nicht direkt möglich ist. Dazu ist erst eine Transformation in ein anderes Schema erforderlich [WIK-09d].

Abb. 42: Probleme bei der Zuweisung von Eigenschaften in CSG-Modellen

Es ist nicht möglich dem Giebel Eigenschaften von Primitiv 2 zuzuordnen.

Quelle: ergänzt nach [WIK-09c]
3.4 Verfahren zur Modellerstellung

Es werden ausgewählte Verfahren zur Erstellung von Gebäudemodellen präsentiert, die verschiedene manuelle aber auch teilweise automatisierte Techniken zur Auswertung und Modellierung einsetzen. Bei der Auswahl lag das Hauptaugenmerk darauf möglichst unterschiedliche Verfahrensansätze abzudecken, die in Modellen unterschiedlicher Detaillierungsgrade bzw. Nachbearbeitungsaufwand resultieren.

3.4.1 Photogrammetrie und Prototypen-/Polyedermodell

Rottensteiner stellt in [ROT-01] ein photogrammetriebasiertes Verfahren zur halbautomatischen Erstellung dreidimensionaler Gebäudemodelle aus Luftbildern (und deren Orientierungsparameter) vor. Durch die hohe räumliche Auflösung des Ausgangsmaterialies (Datengrundlage des Evaluierungsprojektes: Maßstab 1:4500, Kammerkonstante 15 cm, Digitalisierungsinterval 15 µm) ist die Basis für Auswertungen gelegt, die auch hohen Ansprüchen der 3D-Stadtmodellierung genügen. Wie der Autor im Text anmerkt, können allerdings aufgrund der praktisch unendlichen Anzahl an Gebäudeausprägungen bis heute nur halbautomatische Methoden der Gebäudeextraktion verlässliche Ergebnisse liefern. Als halbautomatisch, wozu auch dieses Verfahren zu
zählen ist, werden dabei Methoden bezeichnet, die im Zuge ihrer Durchführung auf einzelne menschliche Eingriffe angewiesen sind. Meist handelt es sich dabei um programmkritische Auswahlschritte, die nach wie vor vom Mensch besser gelöst werden können als mittels maschineller Bearbeitung – etwa die Interpretation von Strukturen, Formen oder Texturen [STE-06]. So erfolgen bei diesem Verfahren sowohl die Auswahl der unterschiedlich formgestalteten Gebäudeteile als auch deren grobe Justierung durch manuelle visuelle Interpretation von Luftbildern. Der Rest des Verfahrens wird automatisiert durchgeführt. Dazu zählen die Aggregation der Gebäudeteile zu Gebäuden, die Umwandlung in die Randflächendarstellung zur Visualisierung und die Feinjustierung einzelner Gebäudeflächen durch Mittel der Bildanalyse.

Das Verfahren wird als Softwaremodul auf einer digitalen photogrammetrischen Auswertestation durchgeführt. Um ein Gebäudemodell zu erstellen stehen dem Benutzer über einem Katalog unterschiedliche, parametrisierbare Primitive zur Auswahl, die es bestmöglich in das Untersuchungsobjekt einzupassen gilt (vgl. Abb. 44: S. 46). Dies erfordert die Positionierung, Orientierung und Skalierung, wodurch sich für jeden Gebäudeteil folgende Parameter der Justierung ergeben:

- Referenzpunkt: Gibt die Position des Einsetzpunktes des Primitives an.
- Rotation um die Z-Achse: Passt die anfangs willkürliche Orientierung des Primitives dem realen Sachverhalt an.

Die dem Benutzer als parametrisierte Modelltypen präsentierten Primitive sind anwendungsintern als Polyedermodelle definiert und erlauben somit einen größeren Spielraum bei der Formgestaltung. Durch eine geschickt gewählte mathematische Formulierung der formbeschreibenden Ebenen kann auch bei diesem Modelltyp die gewünschte kompakte Formulierung erreicht und implizit Eigenschaften wie Parallelität und Orthogonalität eingeführt werden. Folgende Parameter dienen zur Beschreibung der Primitive:

- Aufstellung der am Modell beteiligten Knoten, Kanten und Ebenen sowie deren topologische Beziehungen.

b. Da inzwischen im linken Bild dieselbe Gebäudeecke ebenfalls identifiziert wurde, kann aus dem Schnittpunkt der beiden Betrachtungen die dreidimensionale Position des Modellpunktes berechnet werden.

c. Durch Identifizierung einer weiteren Gebäudeecke lassen sich die Orientierung sowie eine der drei notwendigen Skalierungen herstellen.

d. Die nächste Skalierung kann in Folge durch Identifikation einer dritten Gebäudeecke bestimmt werden. Die letzte Anpassung des Modelles, die noch ausstehende dritte Skalierung, wird im Zuge der Demonstration der Feinjustierung vorgenommen.
Abb. 45: Grobe Anpassung des Modelles mittels photogrammetrischer Auswertung.

- Ein Segment s der Bildkante l wird dann der Dachkante e zugeordnet, wenn mindestens einer seiner Endpunkte innerhalb eines gewissen Puffers um die Dachkante liegt und
- der Winkel zwischen den Vektornormalen von s und e einen bestimmten Schwellwert nicht überschreitet.

Als Ergebnis erhält man eine der Auflösung des jeweiligen Pyramidenlevels entsprechende Verbesserung der Justierungsparameter und gleichzeitig die Näherung für den nächsten Zuordnungsdurchgang. Diese Prozedur wird solange wiederholt, bis die höchste Auflösungsstufe erreicht ist. Die hierarchische Vorgehensweise vom niedrigsten zum höchsten Pyramidenlevel wird eingesetzt um ausgehend vom vorgegebenen Bereich
der Grobjustierung den Suchradius beschränkt halten zu können, da in den hochfrequenten, höheren Pyramidenstufen zu viele ablenkende Bildkanten hervortreten.

Abb. 46: Darstellung der Zuordnungshypothesen

Abb. 47: Gebäudemodelle, erstellt mittels eines photogrammetriebasierten Verfahrens

Anhand der Erfahrungen, die durch das Evaluierungsprojekt (ländlicher Dorfkern) gesammelt werden konnten, merkt Rottensteiner im Schlusstext an:

- Als kritisch für den Erfolg der automatischen Feinjustierung haben sich Verschattungen und fehlende Kontraste im Bildmaterial herausgestellt, jedoch soll angemerkt sein, dass zur Auswertung keine Farbbilder herangezogen wurden.
- Im Zuge der photogrammetrischen Auswertung hat sich die fehlende stereoskopische Betrachtungsmöglichkeit erschwerend bei der Auswahl und Justierung der Gebäudeprimitive ausgewirkt.

3.4.2 Laserscanner-Auswertung und Polyedermodell

Das Verfahren versucht schrittweise ein Gebäude nach dem anderen zu erstellen. Jeder Durchlauf beginnt damit, dass aus der Punktwolke ein Bereich grob auszuwählen ist, der das gewünschte Gebäude komplett einschließt. Laut den Autoren handelt es sich dabei um einen verfahrenskritischen Schritt, der manuell durchgeführt werden sollte um bestmögliche Endresultate zu erzielen. Der selektierte Ausschnitt enthält neben den Messpunkten des Gebäudes natürlich auch Messpunkte anderer, sich in diesem Bereich befindlicher, Objekte. Um in den weiteren Prozessschritten auf diese Störfaktoren eingehen zu können muss in einem Auswertevorgang eine Segmentierung der unstrukturierten Punktwolke hinsichtlich dieser Objekte erfolgen:

- Geländereflexionen lassen sich auffinden, indem mittels Filtermethoden aus der Punktwolke ein DHM gebildet wird, das zur Normalisierung der Höhenwerte (nDSM) innerhalb der Wolke herangezogen werden kann (vgl. Kap. 3.2.2: S. 35). Ein gewisser Schwellenwert definiert alsdann Punkte in Bodennähe, womit eine Segmentierung der Gelände Punkte gebildet werden kann.

- Reflexionen anderer Gebäude(teile) können durch den sogenannten „Mean Shift-Algorithmus“ erkannt werden. Dieser versetzt die in einer Wolke annähernd regelmäßig verteilten Punkte in die Zentren, einer um jeden Punkt neu zu bestimmenden Nachbarschaft. So löst sich die Wolke schrittweise auf und es kommt zur Clusterbildung, welche zur Segmentierung logisch zusammengehöriger Objekte herangezogen werden kann.

- Reflexionen, hervorgerufen durch freistehende oder in Gebäude ragende Vegetation, können infolge von variierender Oberflächenrauheit jener Flächen erkannt werden, die sich aus benachbarten Punktansammlungen ergeben. Somit erfolgt eine Segmentierung der Wolke auf Basis koplanarer Punkt nachbarschaften.

Die Verfahrensweise des letztgenannten Segmentierungsalgorithmus wird nun einer eingehenden Betrachtung unterzogen. Es gilt die Annahme, dass Punkte, die innerhalb der Wolke einen koplanaren Bereich bilden, jeweils die gleiche lokale Regressionsebene teilen. Um solche Regionen innerhalb der Wolke zu finden, ist es nötig fortan jeden Punkt
eine ihm spezifische Regressionskurve zuzuweisen, die entsprechend der Parameterform der Ebene definiert ist:

\[\theta = a_0 + a_1 x + a_2 y + a_3 z \]

(3)

Dabei entspricht \((a_1, a_2, a_3)^T\) dem Normaleneinheitsvektor jener Ebene, welche durch eine den Punkt umgebende Nachbarschaft (Richtwert: 8 – 32 Punkte) gebildet wird, während \(a_0\) die Normaldistanz der Ebene zum Koordinatenursprung bezeichnet.

Es bedarf allerdings noch einer Betrachtung der Distanzen im Objektraum um festzustellen, welche dieser Punkte eine zusammenhängende, koplanare Ebene innerhalb der Wolke bilden. Die Autoren weisen darauf hin, dass eine gleichzeitige Einbeziehung aller Punkte der Wolke in die Distanzprüfung zu einer rasant ansteigenden Zeitkomplexität \(O(n^2)\) führt. Es ist daher erforderlich mittels einer Vorauswahl die Anzahl jene Punkte zu beschränken, die der Prüfung unterzogen werden. An einer auf Geländepunkte und Fremdgebäude segmentierten Punktfolie soll nun eine Clusterbildung mit anschließender Distanzprüfung demonstriert werden:

Auflösung des Wertebereiches der Histogramme halbiert und die Suche erneut gestartet.

Abb. 49: Ablauf der Clusterbildung in getrennten, eindimensionalen Merkmalsräumen

Quelle: ergänzt nach [DOR-08]

Abb. 51: Ermittlung des Grundrisses
Um eine Aussage bezüglich Vollständigkeit und Genauigkeit der erstellten Modelle treffen zu können wurde von den Autoren folgendes Testverfahren eingeführt:

- Konnte jedem koplanaren Segment der Wolke ein Dachflächenpolygon zugeordnet werden?
- Entsprachen die Flächen, die die Alpha-Shapes einnehmen, in etwa den Flächen der Dachflächenpolygone?
- Sind die Höhenwerte der Vertices eines Dachflächenpolygones mit den Höhenwerten der deckungsgleichen Punkte im koplanaren Segment vergleichbar?

Im Evaluierungsprojekt, bei dem ein historischer Stadtkern (vgl. Abb. 53: S. 55) untersucht wurde ergab sich bezüglich dieser Kriterien folgendes Ergebnis. Für 75% der Gebäude konnte, bezogen auf die Messpunkte der ALS-Erhebung, ein vollständiges und genaues Modell erstellt werden. 60% der restlichen Gebäude konnten vom Verfahren immerhin mehr als zur Hälfte abgebildet werden. In Anbetracht dessen, dass es sich zwar um einen halbautomatischen Ansatz zur Punktwolkenanalyse handelt, die notwendigen Eingriffe des Operators jedoch auf ein Minimum beschränkt werden, spiegelt das Ergebnis das hohe Potential dieses Verfahrens wieder. Durch die Auswertung hochauflösender ALS-Aufnahmen sowie des Einsatzes von Polyedermodellen ist bei diesem Verfahren eine adäquate und genaue Abbildung sowohl komplexer Grundrisse als auch Dachformen möglich. Es darf jedoch nicht vergessen werden, dass Individualmodelle die Implementierung eines Verfahrens erschweren, und die nicht vollständig umgesetzten Modelle eine aufwändige, manuell durchzuführende Konstruktion nach sich ziehen.
3.4.3 Dachausmittlung und Konstruktives Komponentenmodell

b. Gleichzeitig wird ein Straight-Skeleton (vgl. Kap. 3.2.3: S. 38) in den Grundriss eingepasst, dessen orthogonale Liniensegmente selektiert werden.

c. Jede dieser Kanten wird konzentrisch mit einem achsparallelen Rechteck umschlossen, die Ausdehnung dieser Rechtecke wird durch die nächstliegenden Kanten des Grundrisses begrenzt.

d. Pro Rechteck werden jene Teilmengen der Gesamtfläche vereint, die sich innerhalb der Ausdehnung des Rechtecks befinden.

Sugihara und Hayashi merken zum vorangehenden Verfahren an, dass im Falle sehr verzweigter Gebäudegrundrisse der Algorithmus unnötig komplizierte Partitionierungen erzeugt, dessen Dächer sich im konstruktiven Komponentenmodell nicht immer ineinander integrieren lassen. Sie präsentieren in ihrer Implementierung [SUG-08] ein alternatives Verfahren zur Dachausmittlung orthogonaler Grundriss-Polygone.
Auch hierbei erfolgt als erster Schritt die Aufteilung des Grundrisses mittels achsparalleler Strahlen, die von den konkaven Eckpunkten des Polygons aus verlaufen. Im Unterschied zum zuvor beschriebenen Verfahren bestimmt aber hier ein Auswahlprozess, welche der Strahlen zur Partitionierung des Polygons beitragen und welche nicht. Das orthogonale Polygon wird dazu im Uhrzeigersinn durchlaufen, für jeden Vertex wird bestimmt, ob sich der folgende Nachbar zu seiner linken oder seiner rechten befindet. Pro Links-Vertex wird anschließend die Anzahl der unmittelbar darauf folgenden Rechts-Vertices ermittelt. Abhängig von diesem Wert wird aus dem Vergleich der Kantenlängen \((a_1, a_2)\) des Polygons sowie der Strahl- zu Laufrichtung bestimmt, welche vom Links-Vertex ausgehenden Strahlen für die Partitionierung akzeptiert bzw. verworfen werden (vgl. Abb. 56: S. 58).

\[\begin{array}{|c|c|}
\hline
\text{STRAHL GLEICH LAUFRICHTUNG} & \text{STRAHL GEGEN LAUFRICHTUNG} \\
\hline
\end{array}\]

\[\begin{array}{|c|c|}
\hline
\text{a1} & \text{a2} \\
\hline
\end{array}\]

→ Akzeptierter Strahl → Verworfener Strahl → Laufrichtung → First

Quelle: in [SUG-08]

Abb. 56: Darstellung aller Fälle eines Laufrichtungs- und Längenvergleiches (Situation: „zwei folgende Rechts-Vertices“)

Ab drei folgenden Rechts-Vertices kann es durch die mehrdeutigen Formausprägungen in diesem Teil des Polygons erforderlich sein eine Anpassung der Firstlinie vornehmen zu müssen. Deren Verlauf kann bestimmt werden, indem zwei weitere Kantenlängen \((b_1, b_2)\) des Polygons zur Betrachtung in das Auswahlverfahren mit einfließen (vgl. Abb. 57: S. 59). Nach jedem Auswahlschritt vereinfacht sich die Form des Grundrisses, da abhängig von der Anzahl der folgenden Rechts-Vertices mindestens zwei Eckpunkte wegfallen. Durch einen neuen Durchlauf wird die Liste der Links-/Rechts-Vertices den sich geänderten Gegebenheiten angepasst und der Auswahlprozess wiederholt sich bis das

Abb. 57: Darstellung jener Fälle eines Laufrichtungs- und Längenvergleiches, die in mindestens einem akzeptierten Strahl resultieren (Situation: „drei folgende Rechts-Vertices“)

Quelle: in [SUG-08]
Durch den Einsatz der Dachausmitteilung als alleinige Analysemethode gelten für beide Verfahren die damit einhergehenden Einschränkungen (vgl. Kap. 3.2.3: S. 38). Die zusätzliche Beschränkung auf orthogonale Umrisse führt dazu, dass im Modell nun sowohl bei den Dachformen als auch Grundrissen Abweichungen vom realen Sachverhalt auftreten können. Somit kann die Aussage getroffen werden, dass sich dieses Verfahren nicht dazu eignet Gebäude mit außergewöhnlichen Dachkonstruktionen oder schiefwinkligen Grundrissen abzubilden, was z.B. historische Stadtkerne ausschließt. Die Einführung dieser Beschränkung gestattet jedoch einen hohen Grad an Automatisierung und erzeugt verlässlich Gebäudemodelle, die dem Anspruch der Plausibilität genügen. Insofern bietet sich diese Erzeugungsweise an, wenn es gilt die peripheren Bereiche einer urbanen Umgebung (vgl. Abb. 59: S. 60) schnell und einfach zu erfassen, um somit die Abdeckung eines 3D-Stadtmodelles auszuweiten oder Lücken aufzufüllen.
4 Exemplarische Implementierung eines Verfahrens zur Dachflächenmodellierung

4.1 Anforderungsprofil an die Implementierung

4.1.1 Untersuchungsgebiete

Drei unterschiedliche Untersuchungsgebiete (UG) im Raum Graz:
- Stadtkern
- Wohnsiedlung
- Gewerbezone

- UG1 – Stadtkern: Die Lage dieses zentral gelegenen, bevölkerungsreichsten Untersuchungsgebietes wurde in Hinblick auf innerstädtische Gebäudestrukturen gewählt und befindet sich in der Grenzregion der Grazer Stadtbezirke Innere Stadt (I.), St. Leonhard (II.) und Jakomini (VI.). Das Gebiet zeichnet sich durch einen Mix aus zahlreichen Prunk- und Wohnbauten aus der Gründerzeit sowie großen Gebäudekomplexen aus späteren Epochen aus.

- UG3 – Gewerbezone: Im südöstlichen Teil von Graz, dem südlichen St. Peter, befindet sich mit dem Industriepark Messendorf ein weitläufiges gewerblich genutztes Areal.

4.1.2 Anforderungen an die Auswertemethode

Mit Ausnahme der Gewerbezone begegnet man in allen UGs mitunter auf Schwankungen der Traufenhöhe. Dies trifft sowohl beim Vergleich aggregierter Gebäudeformen (Baublöcke oder Gebäudekomplexe) zu als auch bei differenzierter Betrachtung einzelner
Gebäude innerhalb solcher Bauformen (vgl. Abb. 61: S. 63). Um eine zufriedenstellende Abbildung der Dachlandschaften bezüglich dieser Eigenschaft erreichen zu können ist also die Ermittlung der entsprechenden Höhenwerte unabdingbar, womit zumindest auf photogrammetrische oder ALS-Auswertungen zurückgegriffen werden muss.

Abb. 61: Differenzierte Betrachtung variierender Traufenhöhen

Mit Ausnahme der Gewerbezone herrscht in allen UGs eine große Varianz unterschiedlicher Dachformen vor. Unter der Annahme, dass ein Modelltyp zum Einsatz kommen wird, der dieser Herausforderung in adäquater Weise begegnen kann, müssen im Zuge der Auswertung die entsprechenden Dachflächenmerkmale gewonnen werden. Somit stehen verschiedene Auswertestrategien zur Auswahl, das Spektrum reicht dabei von der manuellen Interpretation von Luftbildern zur Bestimmung einer prototypischen Dachform, bis hin zur automatisch durchgeführten Analyse einer ALS-Punktwolke zur Anfertigung eines individuellen Dachflächenmodelles.

Der Grundriss einer Dachkonstruktion orientiert sich in den meisten Fällen am Gebäudegrundriss, lässt sich also hinreichend ohne weitere Auswertung aus einem topologisch behafteten Kataster übernehmen. Der höchste Grad an Genauigkeit bei horizontalen Messungen der Dachlandschaft kann freilich erst durch eine photogrammetrische Auswertung von Luftbildern erreicht werden [KAA-06]. Wie bereits erwähnt, können dabei Verschattungen oder Hindernisse wie Bäume den Vorgang erschweren (vgl. Kap. 3.2.1: S. 32), es bietet sich somit ein kombinierter Einsatz mit dem Kataster an, durch den eine eindeutige Zuordnung der Messpunkte auf Gebäudebasis ermöglicht wird, was sich besonders bei der Identifikation von Gebäuden innerhalb von Baublöcken als hilfreich erweist (vgl. Abb. 62: S. 64).
Abb. 62: Kombinierter Einsatz von Luftbild und Kataster zur Erleichterung des Auswertevorganges

4.1.3 Anforderungen an den Modelltyp

Im innerstädtisch geprägten UG1 finden sich vornehmlich Baublöcke deren Grundrisse auf den ersten Blick schiefwinkelig und sehr individuell anmuten. Verlagert man jedoch die Betrachtungsebene vom Block auf das einzelne Gebäude, ist festzustellen, dass sich die erstgenannte Eigenschaft nunmehr ausschließlich auf die abgewinkelten Eckbauten beschränkt und sich die Grundrisse zumeist einfachen Figuren zuordnen lassen (vgl. Abb. 63: S. 65). Die vorherrschende Dachform stellt das Satteldach dar. Da es sich im Baublock jeweils um eigenständige Gebäude handelt, finden Verschneidungen der Dachflächen nur gebäudeintern, aber praktisch nie zwischen benachbarten Dächern statt. Durch diese prototypenfreundlichen Eigenschaften wird davon ausgegangen, dass bei geschickt gewählten Grundrisstypen eine adäquate Abbildung von innerstädtischen Baublöcken bereits mit parametrisierten Modellen erreicht werden kann.
Vereinzelt finden sich im Stadtkern auch Gebäudekomplexe oder andere, aus mehreren Trakten bestehende Gebäude (Kirchen, Theater, Universitäten, etc.). Je kompakter, d.h. je verschachtelter oder unselbstständiger, die Bauform eines solchen Gebäudes ausfällt (vgl. Abb. 64: S. 66), umso ungeeigneter scheint eine prototypenbasierte Methode zu sein und es sollte ein höherrangigeres Modell (vgl. Abb. 41: S. 42) zur Abbildung eingesetzt werden. Ein prototypenbasierter Ansatz scheint nur dann erfolgversprechend wenn folgende Kriterien erfüllt werden:

- lockere Bauform vorherrscht, es sich also um eigenständige, freistehende Gebäudetrakte handelt zwischen denen keine Dachverschneidungen auftreten. Dies trifft prinzipiell bei unterschiedlich hohen Gebäudetrakten zu.
- Natürlich müssen für diese, dem Anwendungsbereich, entsprechend detaillierte Prototypen bezüglich der kombinierten Abbildung von Grundriss und Dachform vorliegen.

Abb. 63: Prototypengeeignete und -ungeeignete Gebäudeformen im UG1
In der Wohnsiedlung von UG2 trifft man hauptsächlich auf Wohnbauten und freistehende Einfamilienhäuser. Die Wohnbauten treten häufig als Gebäudekomplexe auf, einzelne Gebäude eines solchen Komplexes können sich durchwegs durch ihre ungewöhnlichen Grundrisse, meist fernab der vordefinierten Prototypen, auszeichnen (vgl. Abb. 65: S. 67). Im Gegensatz zum innerstädtischen Bereich begegnet man hier allerdings praktisch keinen komplexen Dachkonstruktionen, als bestimmende Dachform gilt das Flachdach. Dieser Umstand sollte die Nutzung einfacher prismatischer Modelle erlauben, welche gestatten individuell auf die speziellen Grundrissfiguren einzugehen ohne die hierbei vorherrschende Dachform zu vernachlässigen. Nichtsdestotrotz müssen zur Festlegung der Mindestanforderung die bereits erwähnten Kriterien in Betrachtung gezogen werden:

- Bei lockerer Bauform mit eigenständigen Gebäudeeinheiten kann je nach Ausgeprägtheit des Grundrisses ein einfaches parametrisiertes oder prismatisches Modell als Mindestanforderung angesehen werden.
- Trifft man hingegen auf gedrängte, verschachtelte Bauformen, sollte zur korrekten Modellierung auf höherrangigere Modelltypen ausgewichen werden.
Die freistehenden Einfamilienhäuser weisen zu einem guten Teil großen Variantenreichtum bezüglich der Formgestaltung auf, dies mag im Umstand begründet liegen, dass sie sich nicht in bestehende Gegebenheiten wie Baublöcke integrieren müssen. Im Falle der Grundrisse findet man ein breites Spektrum:

- einfache geometrische Formen,
- daraus kombinierte Figuren
- oder vereinzelte, undefinierbare Formgebilde.

Abb. 66: Freistehende Gebäude unterschiedlicher Formgestaltung im UG2

4.2 Spezifikation des Verfahrens

4.2.1 Zielsetzung

Durch die Anwendung einfach umzusetzender Lösungsansätze sollen sich Vorteile sowohl für die Implementierung des Verfahrens (Entwickler) als auch den Prozess der Modellerstellung (Benutzer) ergeben:

Entwickler

Es soll ein hybrides Verfahren zur einfachen Erstellung von Dachflächenmodellen entwickelt werden. Dieser Ansatz soll es ermöglichen für komplexe Arbeitsschritte auf bereits bestehende Werkzeuge zurückgreifen zu können, während für den Rest des Verfahrens eine individuelle Umsetzung mit einer selbstentwickelten Applikation erfolgt. Somit ergibt sich auch für Entwickler mit begrenzten Ressourcen (Zeit, Personenstunden, Wissen) die Möglichkeit Erfahrung infolge einer konkreten Verfahrens-Umsetzung zu sammeln. Es besteht allerdings die Gefahr, dass bestehende Werkzeuge nur ungenügend
Ressourceneffiziente Modellierungsstrategie zur Generierung von Dachflächen für 3D-Stadtmodelle

auf individuelle Anforderungen reagieren können und, in Anbetracht der erwähnten Ressourcen, selbstentwickelte Anwendungen nur ungenügende Resultate produzieren.

Benutzer

4.2.2 Umsetzung des Anforderungsprofiles

Die Auswertung soll manuell anhand von Orthophotos erfolgen und eine Verortung der Grundrisse sowie eine, attributiv festzuhalteende, Interpretation der Dachform umfassen. Die Auflösung der Bilder sollte bei mindestens 0,25 m/Pixel liegen, da bei niedrigeren Auflösungen die Abgrenzung einzelner Gebäude eines Baublockes oder die Auswertung kleinerer Objekte wie Einfamilienhäuser zu schwer fallen würde. Optional soll die Angabe einer Firstline pro Dach gestattet sein, womit sich der First bei Satteldächern versetzten oder wenden lassen wird. Die Traufenhöhe soll automatisiert anhand von ALS-Daten bestimmbar sein, eine zusätzliche Ermittlung der Dachneigung ist jedoch nicht umsetzbar. Es sollen allerdings in einem Analysevorgang Gebäude mit Flachdächern detektierbar sein, dies soll die Bestimmung der Dachformen beschleunigen, dazu werden Laserscanningdaten mit 1 Punkt/m² als ausreichend angesehen.

Für die automatisierte Modellbildung soll ein kombinierter Ansatz aus parametrisierten und prismatischen Modelltypen zum Einsatz kommen. Mit minimalem Implementierungsaufwand sollten sich auf diese Weise:

- weite Teile des UG1 – Stadtkern (Baublöcke)
- nahezu das gesamte UG3 – Gewerbezone
- sowie bestimmte Teile des UG2 – Wohnsiedlung (Wohnbauten in lockerer Bauform und einfach gehaltene Einfamilienhäuser)

in adäquater Qualität (LOD 1 bis LOD 2) abbildbar sein. In Hinblick eines gemeinsamen Einsatzes von Prototypen für Gebäude des Baublockes und einfache Einfamilienhäuser sollen die dafür gängigsten Kombinationen aus Grundriss und Dachform (Sattel-, Walm- und Flachdach) umgesetzt werden. Aufgrund fehlender Ressourcen kann für Gebäude komplexe des innerstädtischen Bereiches und der Wohnsiedlung – die erfundungsgemäß einen höhere-höherrangigem Modelltyp erfordern – keine diesbezüglichen Implementierungen erfolgen. Für diese Fälle wird eine nicht akzeptable Abbildungsqualität
erwartet, welche sich vermutlich als Grenze einfacher Lösungsansätze entpuppen wird. Welche Auswirkungen sich konkret aufgrund der Abbildung solcher Gebäudetypen mit niederrangigeren Modelltypen ergeben wird die Evaluierung zeigen.

4.2.3 Datenherkunft

Für die Visualisierung sollte ein Datensatz bereitstehen, der auch eine lückenlose Abdeckung zwischen den UGs erlaubt. Aufgrund der enormen Datenmenge, die auswertungsfähige Geodaten für solch ein großflächiges Gebiet aufweisen würden, musste allerdings auf niedriger aufgelöste Datensätze zurückgegriffen werden. Diese, vom BEV erhobenen, Geodaten wurden im Rahmen dieser Arbeit vom Institut für Geographie und Regionalforschung der Universität Wien bereitgestellt.

4.2.4 Übersicht des Verfahrens

Werkzeuge und Anwendungen

- Desktop-GIS: ArcGIS 9.x mit SpatialAnalyst Erweiterung
- 3D-Bibliothek: OpenSceneGraph 2.x mit OSGGIS Erweiterung
- Beispielapplikation: Win32-C++ Anwendung

Verfahrensablauf

Bis aus Datengrundlagen ein Dachflächenmodell erstellt ist und dieses visualisiert werden kann, sind mehrere Prozesse zu durchlaufen. Diese lassen sich in vier Verfahrensschritte gliedern und werden im Folgenden kurz vorgestellt:

- In einem Desktop-GIS erfolgt die größtenteils manuelle Auswertung der Datengrundlagen zur Erstellung des verfahrensbezogenen Modelles.
- In einem Utility, der in späterer Folge zur Visualisierung eingesetzten 3D-Bibliothek, erfolgt die Migration des verfahrensbezogenen Modelles zu einer Vorstufe des darstellungsbezogenen Modelles.
• In einer selbstentwickelten Beispielapplikation erfolgt automatisiert die Fertigstellung des darstellungsbezogenen Modelles, ausgerichtet auf den Anwendungsbereich der Visualisierung.

• Die Visualisierung des Dachflächenmodelles mit weiteren Objektgruppen eines 3D-Stadtmodelles ermöglicht durch Vergleich mit Schrägluftbildern eine Evaluierung des Verfahrens hinsichtlich der adäquaten Abbildung von Dachlandschaften.

4.3 Erstellung des verfahrensbezogenen Modells

Das Ziel dieses Verfahrensschrittes ist die Auswertung der Datengrundlagen zur Erzeugung eines verfahrensbezogenen Modelles der Dachlandschaft:

Eingabe: Datengrundlagen

• Orthophotos: RGB-Raster, 0,25 m/Pixel
• 2,5D-DHM aus ALS-Erhebung: ASCII-Format, 1 Punkt/m²
• 2,5D-DOM aus ALS-Erhebung: ASCII-Format, 1 Punkt/m²

Ausgabe: Verfahrensbezogenes Modell

• Geobasisdaten Dachgrundrisse: 2D-Shapefile, Geometrietyp: Polygon
• Geofachdaten Dachform: dBASE-Format
• Geobasisdaten Firstlinien: 2D-Shapefile, Geometrietyp: Polyline

Die Auswertung erfolgt innerhalb des Desktop-GIS, durch die geographische Lage von Graz wird als Bezugssystem der Geodaten das Österreichische Bundesmeldenet, Zone M34 eingesetzt. Der Verfahrensschritt teilt sich in einen manuellen Prozess der Modellauswahl und -einpasung sowie einen automatisierten Analyseprozess zur Vervollständigung ausstehender Modellparameter.

4.3.1 Modellauswahl und -einpasung

<table>
<thead>
<tr>
<th>Dachform</th>
<th>Parametrische Grundrisse</th>
<th>Prismatischer Grundriss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flachdach</td>
<td>Alle Typen</td>
<td>Ja</td>
</tr>
<tr>
<td>Satteldach, Walmdach</td>
<td>Quad, L-, T-, U Shape, Quad_1, Quad_2</td>
<td>Nein</td>
</tr>
</tbody>
</table>

Tab. 4: Im Verfahren erlaubte Kombinationen aus Grundriss und Dachform
Es liegt letztendlich im Ermessen des Benutzers, ob bei der Digitalisierung bewusst solche typverzerrende Grundriss-Erweiterungen unterschlagen werden, um mit den zurzeit verfügbaren Prototypen bestmöglich der dominanten Charakter des Grundrisses einzufangen. Grundsätzlich kann dazu folgende Empfehlung abgegeben werden:

- Im Fall von Gebäude E zeigen sich jedoch bereits gravierende Abweichungen und es gilt die Empfehlung den Grundriss bestmöglich aufzunehmen. Wenngleich das so erzeugte Abbild doch sehr von der Realität abweicht, so ist damit prinzipiell die Möglichkeit offen gehalten, im Nachhinein neue Prototypen in das Verfahren einzufügen ohne die Datengrundlagen neu auswerten zu müssen.

Abb. 70: Nicht getreue Abbildung der Realität infolge der beschränkten Möglichkeiten eines Prototypenmodèles
Abb. 71: Bewusste Manipulation der Abbildung zur Umgehung der Beschränktheit eines Prototypenmodèles

Abb. 72: Bewusste Manipulation der Abbildung zur Umgehung der Beschränktheit eines Individualmodell

Um auf zwei Spezialfälle bei Giebeldächern eingehen zu können lassen sich neben den Grundrissen bei Bedarf auch Firstlinien digitalisieren (vgl. Abb. 73: S. 78):

- Versetzten des Firstes um asymmetrische Satteldächer abbilden zu können
- Wenden des Firstes, der Dachgiebel wandert dadurch von der kurzen zur langen Seite im Grundriss.

Firstlinien werden zurzeit nur für die Prototypenkombination aus Satteldach mit Quad, L_Shape oder U_Shape unterstützt.
4.3.2 Vervollständigung der Modellparameter

Für all jene Features, die nicht im prismatischen Sinne digitalisiert wurden, muss der Dachformtyp bestimmt werden. Wird dieser Vorgang nicht während, sondern erst nach der fertigen Digitalisierung durchgeführt, kann ein automatisierter Analyseprozess zur Attributierung von Gebäuden mit Flachdächern eingesetzt werden. Die verbleibende, manuelle Interpretation der Dachformen für die anderweitigen Features wird somit beschleunigt, weiters kann eine Ermittlung der Traufenhöhe erfolgen, die ebenfalls in den Fachdaten vermerkt wird (vgl. Abb. 74: S. 82):

a. Aus den beiden Höhenmodellen der ALS-Erhebungen (DOM, DHM) wird durch Subtraktion ein normalisiertes DSM mit relativen Höhenwerten erzeugt.

b. Die Höhenangaben des nDSM dienen im nächsten Schritt zur Ableitung von Neigungswerten (0 – 90°), welche den Klassen 1 bis 3: flach (0 – 10°), mittel (10 – 50°) und steil (50 – 90°) zugeordnet werden.

c. Die Neigungsklasse flach wird nun mit den Grundrissen der Features verschnitten um die weitere Analyse auf die dachrelevanten Gebiete zu beschränken.
d. Anschließend werden sowohl für die verschnittene Neigungsklasse flach als auch für die Grundrisse die Flächeninhalte berechnet und die Ergebnisse zueinander in Relation gesetzt. Liegt der flächenmäßig normalisierte Deckungsgrad über dem Faktor 0,3, wird von einem Flachdach ausgegangen.

e. Zum Schluss lässt sich mithilfe der Geostatistik die ungefähre Traufenhöhe aus den gemittelten Höhenwerten eines Grundrisses ermitteln.

Wie bereits erwähnt, gab es Schwierigkeiten für das UG Graz Geodaten zu beziehen, die Analyse der Höhendatensätze wird deshalb am Beispiel eines UG in Klagenfurt demonstriert. Die verwendeten Datensätze wurden über KAGIS, das Geographische Informationssystem der Kärntner Landesregierung, bezogen, da freundlicherweise ein Demodatensatz zur freien Verfügung steht [KAG-09]. Für das UG Graz musste mangels vorliegender Höhenwerte somit eine Adaption des verfahrensbezogenen Modelles vollzogen werden, die Traufenhöhe wurde durch die Stockwerksanzahl ersetzt und in Folge aus Schrägluftbildern geschätzt, als Stockwerkshöhe wird in weiterer Folge ein Wert von 4 m angenommen.
Ressourceneffiziente Modellierungsstrategie zur Generierung von Dachflächen für 3D-Stadtmodelle

Schritt b.)

Neigungs-klassen

Normalisiertes DSM

Schritt c.)

Neigungsklasse 1
∩ Features

Neigungs-klassen 1-3
Ressourceneffiziente Modellierungsstrategie zur Generierung von Dachflächen für 3D-Stadtmodelle

Schritt d.)

Deckungsgrad größer 0,3

Schritt e.)

Gemittelter Höhenwert
Abb. 74: Ablauf des Analyseprozesses zur Vervollständigung der Modellparameter

Der Vergleich des Resultats des Analyseprozesses mit dem der visuellen Interpretation von Schrägluftbildern zeigt, dass mit einer Ausnahme sämtliche Gebäude mit Flachdach innerhalb des UGs erkannt wurden.

4.4 Modellmigration

Das Ziel dieses Verfahrensschrittes ist die Überführung des verfahrensbezogenen Modelles in eine Vorstufe des darstellungsbezogenen Modelles um es für weitere Verfahrensschritte nutzbar zu machen.

Eingabe: Verfahrensbezogenes Modell
- Geobasisdaten Dachgrundrisse: 2D-Shapefile, Geometrietyp: Polygon
- Geofachdaten Dachform: dBASE-Format
- Geobasisdaten Firstlinien: 2D-Shapefile, Geometrietyp: Polyline

Ausgabe: Vorstufe des darstellungsbezogenen Modelles
- Visualisierungsdaten Dachgrundrisse mit Dachformattributen: 3D-Szenengraph-Format, Geometrietyp: Polyline
- Visualisierungsdaten Firstlinien: 3D-Szenengraph-Format, Geometrietyp: Polyline

Mittels eines Utility der für die Visualisierung zum Einsatz kommenden 3D-Bibliothek erfolgt eine Formatkonvertierung der Shapefiles in Szenengraph Dateien. Dies beinhaltet...
Ressourceneffiziente Modellierungsstrategie zur Generierung von Dachflächen für 3D-Stadtmodelle

auch einen strukturellen Eingriff in die Geometrie der Modelle, die in den spezifischen Anforderungen von Echtzeit-3D-Rendermethoden bzw. der Beispielapplikation begründet liegt. Das Dachflächenmodell muss außerdem für die bevorstehende Integration in ein 3D-Stadtmodell höhenmäßig angepasst werden.

4.4.1 Formatkonvertierung

Shapefiles stellen quasi den Dateiformat-Standard für Vektorgeodaten im Desktop-GIS-Bereich dar [WIK-09i]. Um außerhalb dieses Anwendungsbereiches auf die so gespeicherte Information zugreifen zu können, bedarf es zumeist einer Formatkonvertierung in andere Dateiformate, im Falle der Beispielapplikation dieses Verfahrens handelt es sich dabei um das visualisierungsorientierte Szenengraph-Format. Beide Dateiformate sind einfach aufgebaut, jedoch für unterschiedliche Anwendungsbereiche ausgelegt.

Das binäre Shapefile beschreibt geometrische Primitiva samt optionalen Attributangaben. Konkret handelt es sich hierbei um einzelne Dateien, die dem Benutzer innerhalb eines GIS jedoch als ein einzelner Datensatz präsentiert werden:

- Die geometrischen Angaben zu den Features finden sich in einer <name>.shp Datei, diese besitzt folgenden Aufbau:

<table>
<thead>
<tr>
<th>CODE</th>
<th>KOMMENTAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Header</td>
<td>DATENSATZ METADATEN</td>
</tr>
<tr>
<td>File code</td>
<td>Magic Number zur Dateiidentifikation</td>
</tr>
<tr>
<td>File length</td>
<td>Angabe der Dateigröße</td>
</tr>
<tr>
<td>Shape Type</td>
<td>Angabe des Geometrietyps</td>
</tr>
<tr>
<td>MBR</td>
<td>Angabe des Extent des Datensatzes</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Features</td>
<td>FEATURES</td>
</tr>
<tr>
<td>Record header</td>
<td>FEATURE METADATEN</td>
</tr>
<tr>
<td>Record number</td>
<td>Feature-ID</td>
</tr>
<tr>
<td>Record length</td>
<td>Angabe der Datenstrukturgröße</td>
</tr>
<tr>
<td>Record</td>
<td>FEATURE GEOMETRIE</td>
</tr>
<tr>
<td>(0-4 Bytes, int32) Shape type</td>
<td>Angabe des Feature-Geometrietyps</td>
</tr>
<tr>
<td>(4- Bytes, double) Shape content</td>
<td>Feature-Extent, Angaben zum Primitive, Koordinaten: XY(ZM)</td>
</tr>
<tr>
<td>Record header...</td>
<td>NÄCHSTES FEATURE...</td>
</tr>
</tbody>
</table>

Quelle: in [WIK-09i]
Die Angabe des Bezugssystems erfolgt gesondert im WKT-Format innerhalb der Datei <name>.prj:

```csharp
PROJCS["MGI_M34",
GEOGCS["GCS_MGI",
DATUM["D_MGI",
  SPHEROID["Bessel_1841",6377397.155,299.1528128],
  PRIMEM["Greenwich",0.0],
  UNIT["Degree",0.0174532925199433],
  PROJECTION["Transverse_Mercator"],
  PARAMETER["False_Easting",750000.0],
  PARAMETER["False_Northing",0.0],
  PARAMETER["Central_Meridian",16.33333333333334],
  PARAMETER["Scale_Factor",1.0],
  PARAMETER["Latitude_Of_Origin",0.0],
  UNIT["Meter",1.0]
]
```

Die attributiven Angaben zu den Features finden sich in der <name>.dbf dBASE Datei. Ohne auf den internen Aufbau dieses Dateiformates genauer eingehen zu wollen, kann festgehalten werden, dass die Zuordnung der Attribute zu einzelnen Features durch das Einhalten der gleichen sequentiellen Reihenfolge wie in <name>.shp ermöglicht wird.

Das Szenengraph-Format dient zur Beschreibung kompletter Visualisierungsszenen, bietet also neben der abstrakten Beschreibung von geometrischen und attributiven Eigenschaften auch die Möglichkeit der Zuordnung konkreter Darstellungsstile. Dafür anwendungsrelevante Beispiele wären etwa die Definition von Punktgrößen, Strichstärken, Farbfüllungen oder Texturen. All diese Angaben erfolgen innerhalb der Datei <name>.osg wie folgendes Beispiel zeigt:

<table>
<thead>
<tr>
<th>CODE</th>
<th>KOMMENTAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group {</td>
<td>FEATURES</td>
</tr>
<tr>
<td>num_children 2</td>
<td>Anzahl der Features im Datensatz</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Geoide {</td>
<td>FEATURE</td>
</tr>
</tbody>
</table>
Die Formatkonvertierung erfolgt mithilfe des Werkzeugs OSGGIS, einer GIS-Erweiterung der 3D-Bibliothek. Durch die Unterschiedlichkeit der Anwendungsbereiche bedingt dieser Vorgang nicht einfach nur eine Transformation der Dateiformat-Schemata, sondern auch eine Anpassung der geometrischen Struktur um bestimmten Beschränkungen Genüge zu leisten. Die 3D-Graphikroutinen der heutzutage eingesetzten Hardware erlauben unter Einhaltung bestimmter Regeln eine sehr schnelle Verarbeitung, die zu visualisierenden Objekte dürfen dabei jedoch ausschließlich aus koplanaren, sich nicht selbst schneidenden Polygonen konvexer Form bestehen [WRI-07]. Es wäre höchst kompliziert, wenn auf diese Anforderungen während der Digitalisierung explizit eingegangen werden müsste, das Utility ist deshalb in der Lage für Features, deren

Abb. 75: Formatkonvertierung samt Änderung des Geometrietyps

4.4.2 Niveauadaption

Das Ziel dieses Verfahrensschrittes ist die Finalisierung der Vorstufe des darstellungsbezogenen Modelles.

Eingabe: Vorstufe des darstellungsbezogenen Modelles

- Visualisierungsdaten Dachgrundrisse mit Dachformattributen: 3D-Szenengraph-Format, Geometrietyp: Polylne
- Visualisierungsdaten Firstlinien: 3D-Szenengraph-Format, Geometrietyp: Polylne

Ausgabe: Darstellungsbezogenes Modell

- Visualisierungsdaten Dachflächenmodell mit Darstellungsstilen: 3D-Szenengraph-Format, Geometrietyp: Polygon

4.5.1 Datenimport

Als erster Schritt jeglicher Manipulation erfolgt das Einlesen der Eingabedaten in eine größenvariable Datenstruktur. Diese soll einen wahlfreien und bequemen Zugriff auf einzelne Elemente gestatten, da dies in den folgenden Prozessschritten noch oft erforderlich sein wird. Zur Elementidentifikation bietet sich die eindeutige Feature-ID an:

<table>
<thead>
<tr>
<th>CODE</th>
<th>KOMMENTAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>struct FetchedPolygon {</td>
<td>BASIS-FEATURE DATENSTRUKTUR</td>
</tr>
<tr>
<td>osg::ref_ptrosg::Geometry geometry;</td>
<td>Vektornormalen, Texturkoordinaten, Farbwerte</td>
</tr>
<tr>
<td>osg::ref_ptrosg::Vec3Array vertices;</td>
<td>Koordinaten: XYZ</td>
</tr>
<tr>
<td>std::vector< osg::ref_ptrosg::PrimitiveSet > primitiveSets;</td>
<td>Angaben zum Primitiv</td>
</tr>
<tr>
<td>}</td>
<td>Feature-ID</td>
</tr>
<tr>
<td>typedef std::map< const unsigned int, FetchedPolygon> FetchedPolygons;</td>
<td></td>
</tr>
<tr>
<td>struct Roof: public FetchedPolygon {</td>
<td>DACH-FEATURE DATENSTRUKTUR</td>
</tr>
<tr>
<td>enum ShapeTypes {UNRECOGNIZED, QUAD, L_SHAPE, F_SHAPE, T_SHAPE, U_SHAPE, S_SHAPE, QUAD_1_QUAD};</td>
<td>Grundrisstypen</td>
</tr>
<tr>
<td>ShapeTypes* shapeType;</td>
<td></td>
</tr>
<tr>
<td>enum RoofTypes {FLAT, HIP, GABLE};</td>
<td>Dachformtypen</td>
</tr>
<tr>
<td>RoofTypes roofType;</td>
<td></td>
</tr>
<tr>
<td>enum MaterialTypes {CLAY, ETERNIT, COPPER, PLATE, ALUMINIUM, STAINLESS};</td>
<td>Darstellungsstile</td>
</tr>
<tr>
<td>MaterialTypes materialType;</td>
<td></td>
</tr>
</tbody>
</table>
int* wellDefinedOffset;
int* synchronOffset;
};

typedef std::map<const unsigned int, Roof> Roofs;

4.5.2 Parametervalidierung

<table>
<thead>
<tr>
<th>Anzahl der Vertices</th>
<th>Anzahl der Primitive</th>
<th>Möglicher parametrisierter Grundrisstyp</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>Quad</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>L_Shape</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>F-, T-, U-, S_Shape</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>Quad_1_Quad</td>
</tr>
</tbody>
</table>

Tab. 5: Vorselektion potentieller Features mit vordefinierter Grundrisstypen

In weiterführenden Tests wird versucht die soeben getroffenen Annahmen durch typspezifische Kontrollen zu bestätigen bzw. weitere Unterscheidungen zu treffen. Schlagen diese fehl, wird das Feature als prismatisches Modell (Grundrisstyp:
Unrecognized) eingestuft. Ein Test zur Unterscheidung von F-, T-, U- bzw. S_shapes soll nun erläutert werden:

Um den genauen Gundrisstyp eines Features bestimmen zu können, wird nach geometrischen Merkmalen gesucht, die möglichst einmalig auf die jeweilige Figur zutreffen. In diesem Fall stellt das Resultat eines Richtungsvergleiches bestimmter Kantenpaare des Grundrisses ein solches Merkmal dar. Durch die Überprüfung der Ausrichtung sämtlicher Kanten einer Figur kann deren Signatur ermittelt werden, in dieser wird dann nach den spezifischen Merkmalsmustern Ausschau gehalten (vgl. Abb. 77: S. 90). Die Muster sind so gewählt, dass sie präfixfrei sind, d.h. die Signaturaufnahme kann an jeder beliebigen Kante gestartet werden ohne Auswirkungen auf das Resultat befürchten zu müssen.

Dieser Test ist einfach zu implementieren und performant, in den Testreihen des Verfahrens hat sich jedoch gezeigt, dass der Ansatz des Richtungsvergleiches bei einigen schiefwinkeligen Figuren versagen kann. So werden im UG1 bestimmte Eckgebäude der Baublöcke, die als U_Shape digitalisiert wurden, dem falschen Grundrisstyp zugeordnet bzw. als prismatisches Modell eingestuft. Um im Zuge der Dachausmittlung für diese Features keine fehlerhaft konstruierten Dachflächen zu erhalten, mussten ihnen kurzerhand Flachdächer zugeteilt werden. Für die restlichen Gebiete, in denen prototypenbasierte Grundrisse beinahe ausschließlich in orthogonaler Ausführung anzutreffen sind, zeigt sich ein robustes Verhalten mit einwandfreier Erkennungsrate (vgl. Abb. 78: S. 91).
Abb. 78: Ergebnisse verfahrensinterner Testreihen zur Beurteilung der Grundrisstyp-Analysen

4.5.3 Konstruktion der Dachflächen

Durch die Validierung ist sichergestellt, dass die Features einen beschränkten Satz definierter Dachkonstruktionen aufweisen, im Falle der derzeit definierten Prototypen genügt bereits ein einfacher Ansatz der Dachausmittlung zur Konstruktion der Dachflächen. In erster Linie regelt dabei die zugewiesene Dachform, ob die bereits bekannten Vertices des Grundrisses zur Bildung der Dachflächen ausreichen, wie dies z.B. bei Flachdächern der Fall ist.

Bei davon abweichenden Dachformen muss die Position der Dachfirste bestimmt werden, die dazu notwendigen Koordinatenberechnungen der diesbezüglichen Vertices lassen sich je nach ihrer Position innerhalb des Firstes auf drei unterschiedliche Rollen reduzieren (vgl. Abb. 80: S. 92):

- Abschlussvertex
- Gelenksvertex
- Gabelungsvertex

Abb. 79: Kontrolle bestimmter geometrischer Eigenschaften innerhalb der Grundrisse

Abb. 80: Positionsermittlung für Firstvertices

<table>
<thead>
<tr>
<th>Grundrisstyp</th>
<th>Abschlussvertex</th>
<th>Gelenksvertex</th>
<th>Gabelungsvertex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quad</td>
<td>V5, V6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L_Shape</td>
<td>V7, V9</td>
<td>V8</td>
<td></td>
</tr>
<tr>
<td>U_Shape</td>
<td>V9, V12</td>
<td>V10, V11</td>
<td>V12</td>
</tr>
<tr>
<td>T_Shape</td>
<td>V9, V10, V11</td>
<td></td>
<td>V12</td>
</tr>
<tr>
<td>Quad_1_Quad</td>
<td>V9, V10, V11, V12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alle anderen Grundrisstypen können zurzeit nur mit Flachdächern kombiniert werden (vgl. Kap. 4.3.1: S. 72).

Tab. 6: Katalog der Firstvertices

Die nachfolgend zum Einsatz kommende 3D-Bibliothek wird das B-Rep Darstellungsprinzip anwenden, dabei stellen Vertices rein abstrakte Positionsangaben dar (vgl. Kap. 3.3.2: S. 43), die graphische Repräsentation eines Objektes ist erst dann gegeben, wenn geometrische Primitiva durch diese Punkte aufgespannt werden. Ähnlich der Formatkonvertierung muss nun bei der Definition der dachflächen-repräsentierenden Primitive darauf geachtet werden, ausschließlich koplanare Polygone in konvexer Form zu bilden. Polygone, die Flachdächer darstellen, werden deshalb durch denselben automatisierten Algorithmus zerlegt, der schon bei der Modellmigration zum Einsatz kam, die Dachflächen aller anderen Dachformen können aufgrund ihrer bekannten Eigenschaften selbständig aufgegliedert werden. Die Primitivebildung erfolgt ähnlich der Verticesberechnungen, auch hier gibt ein grundrisstyp-spezifischer Katalog Anzahl und Art bestimmter vordefinierter Erstellungsmuster vor, die sich zur Bildung von Dachflächen herauskristallisieren haben. Die Muster definieren jeweils für einzelne Dachflächentypen, welche Vertices ein Primitive aufspannen, dabei ist es wichtig die Auflistung entgegen
VOR DER PRIMITIVEBILDUNG DER DACHFLÄCHEN

NACH DER PRIMITIVEBILDUNG DER DACHFLÄCHEN

Abb. 82: Erstellung der Dachflächenprimitive

4.5.4 Zuweisung von Darstellungsstilen

der Dachflächenmodelle und sollen die Fähigkeit des Verfahrens demonstrieren, der Geometrie automatisiert Darstellungsstile zuweisen zu können.

Unterscheidung einzelner Objektgruppen nicht möglich

![Unterscheidung einzelner Objektgruppen nicht möglich](image1)

Verschiedene Farbwerte machen Gebäudebestandteile ersichtlich

![Verschiedene Farbwerte machen Gebäudebestandteile ersichtlich](image2)

Unterscheidung einzelner Flächen dank Schattierung möglich

![Unterscheidung einzelner Flächen dank Schattierung möglich](image3)

Abb. 83: Einsatz von Farbwert und Helligkeit zur Unterscheidung individueller Strukturen
Die Definition der Grundfarbe der Dachkonstruktion geschieht auf Vertexbasis, es könnte also jeder einzelnen Dachfläche ein Farbverlauf zugeteilt werden, verwendet wird jedoch ausschließlich ein Farbwert pro Dach. Durch unterschiedliche Farbgebungen können Dach und Gebäudetorso unterschieden sowie benachbarte Dächer variiert werden. Damit einzelne Dachflächen ersichtlich werden und nicht im Einheitsfarbton „untergehen“, muss eine weitere Eigenschaft, wie z.B. die Helligkeit, verändert werden, als erwünschter Nebeneffekt kann damit Schattenwurf ausgedrückt werden (vgl. Abb. 83: S. 95). Der Helligkeitswert wird in erster Linie durch die Orientierung der Dachfläche bestimmt, d.h. weist die Lichtquelle in Richtung Polygonvorderseite, dann verhält sich der Betrag des Kosinuswertes des Winkels zwischen Polygonnormale a und Lichtvektor b proportional zur Helligkeit der Polygonfarbe [APE-08]:

$$
\cos(\alpha) = \frac{(a_x * b_x + a_y * b_y + a_z * b_z)}{(a_{length} + b_{length})}
$$

(4)

color_{flat_shaded} = -\cos(\alpha) * color_{brightest}

(5)

Vereinfachte Formel, geht von einer einkanaligen Farbpalette aus, die von Dunkel nach Hell verläuft.

Angabe der Texturkoordinaten für jeden Vertex einer Dachfläche.

Visualisierung eines Dachflächenmodell es mittels der graphischen Variablen Farbe, Helligkeit und Muster.

Abb. 84: Verwendung von Texturen zur Ergänzung von Farbwert und Helligkeit

Bei den im Verfahren verwendeten Texturen handelt es sich um Grauwertbilder mit Mustern typischer Dachdeckungen, die Bilder werden später so in die 3D-Bibliothek eingebunden, dass dabei rein weiße Flächen im Bild die Grundfarbe der unterliegenden Geometrie annehmen. Dadurch kann bereits mit einer geringen Musteranzahl ein weites Maß an Darstellungsstilen erzeugt werden und durch einfaches Hinzufügen weiterer Grundfarben können neue Stile erstellt werden (vgl. Abb. 85: S. 98).
Abb. 85: Flexibilität durch Einsatz diskret aufgebauter Darstellungsstile aus Grundfarbe und Grauwertbild
4.6 Evaluierung des Dachflächenmodelles

Das Ziel dieses Verfahrensschrittes ist die Visualisierung des Dachflächenmodelles zusammen mit weiteren Objektgruppen eines 3D-Stadtmodelles um in einer anschließenden Gegenüberstellung mit Abbildungen der Realität die virtuellen Dachlandschaften einer Evaluierung unterziehen zu können.

Eingabe: Darstellungsbezogenes Modell
- Visualisierungsdaten Dachflächenmodell mit Darstellungsstilen: 3D-Szenengraph-Format, Geometrietyp: Polygon
- Visualisierungsdaten Gebäudetorsi mit Darstellungsstilen: 3D-Szenengraph-Format, Geometrietyp: Polygon
- Visualisierungsdaten Geländemodell mit Darstellungsstilen: 3D-Szenengraph-Format, Geometrietyp: Polygon
- Visualisierungsdaten Vegetation mit Darstellungsstilen: 3D-Szenengraph-Format, Geometrietyp: Polygon

Eingabe: Vergleichsdaten
- Schrägluftbilder: RGB-Raster, variable Auflösung

Ausgabe: Evaluierungsergebnis

Durch die Einbindung einer 3D-Bibliothek in die Beispielapplikation kann eine Echtzeitdarstellung der Visualisierungsdaten erfolgen, damit ist die technische Grundlage gelegt um eine Beantwortung der Forschungsfrage in Form eines visuellen Vergleiches mit Schrägluftbildern durchzuführen.

4.6.1 Übersicht der Evaluierung

Ressourceneffiziente Modellierungsstrategie zur Generierung von Dachflächen für 3D-Stadtmodelle

eine Restriktionsklasse erstellt und eine Aussage darüber abgeliefert, inwieweit sich diese Restriktion auf den Gesamteindruck des modellierten Gebäudes bzw. Daches auswirkt.

Die Gegenüberstellung wird für neun ausgewählte Untersuchungsobjekte (UO) durchgeführt, die sich auf die einzelnen UGs aufteilen (vgl. Abb. 86: S. 101), die Auswahl der UO (vgl. Abb. 87: S. 102) erfolgte mit der Intention ein möglichst breites Spektrum unterschiedlicher Gebäudetypen abzudecken. Die virtuelle Darstellung erfolgt nicht nur für die Ebene der Dachflächen alleine, sondern in Form eines (texturierten) 3D-Stadtmodelles mit den folgenden Objektgruppen:

- Gebäude (Dachflächen, Gebäudefrissi)
- Vegetation
- Gelände

Abb. 86: Virtuelle Abbildung der zu evaluierenden Untersuchungsobjekte, integriert als Teil eines 3D-Stadtmodells
Abb. 87: Reale Abbildungen der zu evaluierenden Untersuchungsobjekte in Form von Schrägluftbildern

4.6.2 Untersuchungsgebiet 1

Bei Untersuchungsobjekt 1 handelt es sich um ein typisch zweckmäßiges Bürohochhaus in lockerer Bauform mit unterschiedlichen Dachflächenniveaus, die Modellierung erfolgte mittels vordefinierter Grundrisstypen und zugeteiltm Flachdach, aufgrund der einfachen Dachform (keine Dachflächenverschneidungen) wäre auch ein prismatischer Ansatz für komplizierte Grundrisse möglich gewesen. Die Gegenüberstellung (vgl. Abb. 88: S. 103) bestätigt die Annahme der Anforderungsanalyse, dass eine adäquate Abbildung der Dachflächen dieses Gebäudetypus unter Einsatz einfacher Mittel möglich ist. Als Grenze erweisen sich Dachaufbauten (Restriktion 1), deren Abwesenheit aber wenig Einfluss auf das Gesamtbild nimmt.
Abb. 88: Vergleich der Abbildungen von Untersuchungsobjekt 1

Abb. 89: Vergleich der Abbildungen von Untersuchungsobjekt 2

Untersuchungsobjekt 3 stellt einige Baublöcke im gründerzeitlichen Stil dar, angesichts dafür typischer Eigenschaften wie der Dachform Satteldach oder einer beschränkten Anzahl an grundrissabhängigen Typen von Dachflächenverschneidungen galt die Annahme, dass ein Satz an vordefinierten Prototypen eine adäquate Abbildung der Dachlandschaft ermöglichen sollte. Unter Vernachlässigung der Dachdetails bestätigt die Gegenüberstellung grundsätzlich diese Hypothese, vereinzelt zeigen sich jedoch Grenzen der Abbildbarkeit in Form bereits bekannter (Erkerdächer), aber auch neuer Beschränkungen wie fehlende, aber ergänzungswertige Grundriss- bzw. Dachformprototypen (Restriktion 4) oder gemischte Dachabschlüsse von Giebel und Walm.
(Restriktion 5). I.A. wirken sich diese Beschränkungen nur mittel auf das Gesamtbild der Gebäude aus, da sie nur punktuell in Erscheinung treten, allerdings kann dadurch ein monotoner Eindruck entstehen.
Abb. 90: Vergleich der Abbildungen von Untersuchungsobjekt 3

Bei Untersuchungsobjekt 4 handelt es sich um einen Gebäudekomplex mit Gebäudetrakten unterschiedlicher Traufenhöhe. Es galt die Annahme, dass infolge der gegebenen Eigenständigkeit sowie der Absenz gebäudeübergreifender Dachverschneidungen prinzipiell auch ohne höherrangige Modelltypen ein vernünftiges Resultat erzielt werden könnte. Wie der Vergleich (vgl. Abb. 91: S. 107) zeigt, lassen sich aber nicht die Dachflächen aller Gebäude in adäquater Weise erfassen, da der Grundriss des Hauptgebäudes keinem der vordefinierten Typen entspricht. Als Grenze erweist sich in diesem Beispiel also die ungewöhnliche Form eines Grundrisses (Restriktion 6), die eine Aufnahme in den Katalog schlichtweg ausschließt. Die verfahrensbedingt resultierende,
fehlende Dachkonstruktion solcher Grundrisstypen wirkt sich generell stark auf das Gesamtbild eines Gebäudes aus, speziell in diesem Fall, wo es sich um das markanteste Gebäude im Komplex handelt.

Abb. 91: Vergleich der Abbildungen von Untersuchungsobjekt 4
4.6.3 Untersuchungsgebiet 2

Abb. 92: Vergleich der Abbildungen von Untersuchungsobjekt 5
Untersuchungsobjekt 6 zeigt mehrere, dem Untersuchungsobjekt 1 bzw. 3 ähnliche Gebäudetypen, die aufgrund ihrer ungewöhnlichen Grundrissform nach einem prismatischen Modelltyp verlangen. Im Vergleich (vgl. Abb. 93: S. 109) zeigen sich keine neuen Erkenntnisse, sondern nur bereits bekannte Restriktionen und Auswirkungen auf das Gesamtbild.

Abb. 93: Vergleich der Abbildungen von Untersuchungsobjekt 6
Auch durch Untersuchungsojekt 7 können keine neuen Erfahrungen gewonnen werden.

Abb. 94: Vergleich der Abbildungen von Untersuchungsojekt 7
Bei Untersuchungsobjekt 8 handelt es sich um mehrere Einfamilienhäuser, bei denen sich wie angenommen das größte Spektrum an Restriktionen zeigt, der Vergleich (vgl. Abb. 95: S. 112) fördert ein sehr inhomogenes Bild zu Tage, sodass die Frage einer adäquaten Abbildung nur differenziert pro Gebäude beantwortet werden kann. Zu den bereits bekannten Beschränkungen gesellen sich zwei neue Kriterien, die aufgrund der Dimensionen der bisherigen Untersuchungsobjekte vernachlässigt werden konnten, nun aber bereits wenig bis mittlerer Auswirkungen auf das Gesamtbild eines Gebäudes nehmen. Bei diesen größenpezifischen Grenzen der Abbildbarkeit handelt es sich um Dachüberhange (Restriktion 8) und größere Gauben (Restriktion 9).
Abb. 95: Vergleich der Abbildungen von Untersuchungsobjekt 8
4.6.4 Untersuchungsgebiet 3

Abb. 96: Vergleich der Abbildungen von Untersuchungsobjekt 9
4.6.5 Ergebnisse der Evaluierung

Folgende Übersicht (vgl. Tab. 7: S. 114) soll die in der Evaluierung bestätigten bzw. neu ausgemachten Restriktionen zusammengefasst auflisten:

<table>
<thead>
<tr>
<th>Restriktionsklasse</th>
<th>Beschreibung der Beschränkung</th>
<th>Auswirkung der Beschränkung auf das Gesamtbild der Abbildung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dachaufbauten. Klima- und Aufzugsanlagen, meist anzutreffen auf Flachdachbauten größeren Ausmaßes</td>
<td>wenig</td>
</tr>
<tr>
<td>2</td>
<td>Ausgeprägte Dachkonstruktionen. Dachformen repräsentativer Gebäude die bewusst aufwändig gehalten wurden.</td>
<td>stark</td>
</tr>
<tr>
<td>3</td>
<td>Dachflächen gedrängter, verschachtelter oder unselbstständiger Gebäudeteile/-trakte</td>
<td>stark</td>
</tr>
<tr>
<td>4</td>
<td>Fehlende, aber ergänzungswertige Prototypen</td>
<td>mittel* bis stark</td>
</tr>
<tr>
<td>5</td>
<td>Gemischte Dachabschlüsse der Gebäudestirnseiten Walm- und Giebelkonstruktionen innerhalb des selben Daches</td>
<td>wenig</td>
</tr>
<tr>
<td>6</td>
<td>Dachflächen mit komplexen Grundrissen, denen eine Umsetzung als Grundrisstyp verwehrt bleibt Auch prinzipiell einfache Dachformtypen führen aufgrund verworrener Grundrisse zu komplizierten Dachflächenverschneidungen</td>
<td>stark</td>
</tr>
<tr>
<td>7</td>
<td>Dachflächen (teile) die aufgrund bewusst manipulierter Auswertungen verloren gehen</td>
<td>wenig bis mittel</td>
</tr>
<tr>
<td>8</td>
<td>Dachüberhänge bei Gebäuden kleineren Ausmaßes</td>
<td>wenig bis mittel</td>
</tr>
<tr>
<td>9</td>
<td>Gauben bei Gebäuden kleineren Ausmaßes</td>
<td>wenig bis mittel</td>
</tr>
</tbody>
</table>

* wenn ein formverwandter Prototyp definiert ist

Tab. 7: Beschränkungen und Auswirkungen einfacher Lösungsansätze zur Dachflächenmodellierung
5 Zusammenfassung

- zur automatisierten Verarbeitung an bestehende Werkzeuge delegiert werden oder
- durch die Bereitstellung einer adäquater Arbeitsumgebung auf manueller Basis gelöst werden.

Unmittelbar aus der (mangelnden) Qualität der Implementierung resultierend, mussten jedoch bei der manuell durchzuführenden Auswertung Abstriche in der Bedienbarkeit hingenommen werden. Es war zwar kein Expertenwissen oder gar heikle Modellierungsprozesse für die Dachflächenerstellung erforderlich, jedoch mussten einige
verfahrensspezifische Besonderheiten bei Digitalisierung und Attributierung berücksichtigt werden, welche sich negativ auf den Arbeitsfluss auswirkten. Im abschließenden Evaluierungsprozess (Punkt c. der Forschungsfrage) konnten das, auf theoretischen Annahmen, basierende Anforderungsprofil der Implementierung in der Praxis bestätigt werden. Es zeigten sich auch neue, bisher umadressierte Beschränkungen, die jedoch wenig Einfluss auf das Gesamtbild nehmen. Als wesentlichste Restriktionen sollen folgenden Gebäude-/Dachmerkmale angeführt werden:

- Dachkonstruktionen unselbstständiger Gebäudeteile
- Dachkonstruktionen komplexer Grundrissformen
- Ausgeprägte Dachkonstruktionen, jeglicher Grundrissform

Die verschiedenen Arten an Beschränkungen und deren unterschiedliche Auswirkungen lassen daraus schließen, dass eine einheitliche, adäquate Abbildung der Dachlandschaften inhomogener Gebiete unter Anwendung einfacher Lösungsansätze i.A. nicht möglich ist. Nur unter der Bedingung, dass a priori Wissen über:

- Anforderung: Kenntnis der baulichen Strukturen (Gebäudetypen) der abzubildenden Region
- Fähigkeit: Stärken und Schwächen des Verfahrens

vorliegt, kann bei Übereinstimmung beider Kriterien von den Vorzügen einfacher Verfahren der Dachflächenmodellierung profitiert werden.
6 Literatur

Ressourceneffiziente Modellierungsstrategie zur Generierung von Dachflächen für 3D-Stadtmodelle

[FRA-05] FRANZEN, Michael: Photogrammetrische Datenerfassung 1 – Begleittext zur Vorlesung. 2005

[FRA-06] FRANZEN, Michael: Photogrammetrische Datenerfassung 2 – Begleittext zur Vorlesung. 2006

Ressourceneffiziente Modellierungsstrategie zur Generierung von Dachflächen für 3D-Stadtmodelle

Lebenslauf

PERSÖNLICHE DATEN
Name: Christian Sam
Geburtsort: Wien
Staatsbürgerschaft: Österreich

AUSBILDUNG
2002 – 2003: FH Technikum Wien, Elektronische Informationsdienste
seit 2005: Universität Wien, Diplomstudium Geographie im Studienzweig Kartographie und Geoinformation

GRUNDWEHRDIENST
2001 – 2002: Kaserne Fliegerhorst Brumowsky, Langenlebarn

BERUFLICHE ERFahrung
2005, 2006 Tutor am Institut für Geographie und Regionalforschung der Universität Wien
2006 Praktikum am Institut für Militärisches Geowesen des Bundesministerium für Landesverteidigung
2007 Studienassistent am Institut für Geographie und Regionalforschung der Universität Wien
2007, 2008 Praktikum bei Austro Control: Air Traffic Management
Ich versichere:

- dass ich die Diplomarbeit selbstständig verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt und mich auch sonst keiner unerlaubten Hilfe bedient habe.
- dass ich dieses Diplomarbeitsthema bisher weder im In- noch im Ausland (einer Beurteilerin/ einem Beurteiler zur Begutachtung) in irgendeiner Form als Prüfungsarbeit vorgelegt habe.
- dass diese Arbeit mit der vom Begutachter beurteilten Arbeit übereinstimmt.

Datum Unterschrift