Diplomarbeit

Titel der Diplomarbeit
„GIS in der Numismatik – Analysemethoden in der Interpretation von Fundmünzen“

Verfasser
Markus BREIER

angestrebter akademischer Grad
Magister der Naturwissenschaften (Mag. rer. nat.)

Wien, im August 2009

Studienkennzahl lt. Studienblatt: A 455
Studienrichtung lt. Studienblatt: Kartographie und Geoinformation
Betreuer: Univ.-Prof. Dipl.-Ing. Dr. Wolfgang Kainz
Inhaltsverzeichnis

Inhaltsverzeichnis .. 3
Abbildungsverzeichnis .. 7
Tabellenverzeichnis ... 9
Kurzfassung / Abstract ... 11
Vorwort ... 13

1 Einleitung ... 15
 1.1 Fragestellungen der vorliegenden Arbeit ... 16
 1.2 Zielsetzung .. 16
 1.3 Methodik ... 17
 1.4 Recherche des Forschungsstandes .. 17
 1.5 Struktur ... 17

2 Grundlagen der geographischen Informationssysteme ... 19
 2.1 Geschichte von GIS .. 19
 2.2 Begriffsbestimmung .. 20
 2.3 Bestandteile eines GIS .. 26
 2.4 Daten .. 35
 2.5 Datenqualität und Metadaten .. 40

3 Grundlagen der (antiken) Numismatik ... 47
 3.1 Numismatik .. 47
 3.2 Fragestellungen und Methoden .. 49
 3.3 Fundmünzen ... 53
 3.4 Interpretation von Fundmünzen, Fundmünzenauswertung 56

4 Exkurs: GIS in der Archäologie .. 59
 4.1 Theoretische Entwicklungen ... 59
Inhaltsverzeichnis

9.5最少成本路径 .. 118
9.6 Interpretation des Ergebnisses ... 120
10 Wo wurden die Münzen benutzt? – Münzumlauf und Zirkulationsgebiete 121
 10.1 Komponenten des Modells .. 121
 10.2 Vereinfachtes Modell des Zirkulationsgebietes 122
 10.3 Bewertung der Modelle .. 123
11 Zusammenfassung und Ausblick .. 125
 11.1 Beantwortung der Fragestellung .. 125
 11.2 Konsequenzen .. 127
 11.3 Ausblick .. 128

Literaturverzeichnis .. 131
Anhang ... 137
Lebenslauf .. 141
Eidesstattliche Erklärung .. 143
Abbildungsverzeichnis

<table>
<thead>
<tr>
<th>Abbildung</th>
<th>Beschreibung</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbildung 1</td>
<td>Daten, Informationen und Wissen</td>
<td>21</td>
</tr>
<tr>
<td>Abbildung 2</td>
<td>Bestandteile und Grundfunktionen eines GIS</td>
<td>27</td>
</tr>
<tr>
<td>Abbildung 3</td>
<td>Raster- und Vektordaten</td>
<td>38</td>
</tr>
<tr>
<td>Abbildung 4</td>
<td>Triangulated Irregular Network</td>
<td>39</td>
</tr>
<tr>
<td>Abbildung 5</td>
<td>Freie Hammerprägung</td>
<td>52</td>
</tr>
<tr>
<td>Abbildung 6</td>
<td>Umgebungen für Fokale Operatoren</td>
<td>64</td>
</tr>
<tr>
<td>Abbildung 7</td>
<td>Lokale, fokale und zonale Operatoren der Kartenalgebra</td>
<td>64</td>
</tr>
<tr>
<td>Abbildung 8</td>
<td>Graph der logistischen Funktion</td>
<td>65</td>
</tr>
<tr>
<td>Abbildung 9</td>
<td>Ablaufschema des Modellierungsprozesses</td>
<td>71</td>
</tr>
<tr>
<td>Abbildung 10</td>
<td>Genauigkeit und Präzision des Models</td>
<td>75</td>
</tr>
<tr>
<td>Abbildung 11</td>
<td>Prinzip des least cost path</td>
<td>76</td>
</tr>
<tr>
<td>Abbildung 12</td>
<td>Prinzip einer cost of passage map</td>
<td>77</td>
</tr>
<tr>
<td>Abbildung 13</td>
<td>Hangneigung und effektive Hangneigung</td>
<td>78</td>
</tr>
<tr>
<td>Abbildung 14</td>
<td>Energieaufwand beim Gehen auf geneigten Flächen</td>
<td>80</td>
</tr>
<tr>
<td>Abbildung 15</td>
<td>Digitales Höhenmodell</td>
<td>89</td>
</tr>
<tr>
<td>Abbildung 16</td>
<td>Artefakte der Interpolation fehlender Höhenwerte</td>
<td>90</td>
</tr>
<tr>
<td>Abbildung 17</td>
<td>Administrative Grenzen (Gemeinden und Bezirke)</td>
<td>90</td>
</tr>
<tr>
<td>Abbildung 18</td>
<td>Orte in der Steiermark</td>
<td>91</td>
</tr>
<tr>
<td>Abbildung 19</td>
<td>Flüsse</td>
<td>92</td>
</tr>
<tr>
<td>Abbildung 20</td>
<td>Antike Verkehrswege</td>
<td>93</td>
</tr>
<tr>
<td>Abbildung 21</td>
<td>Fundorte in der Steiermark</td>
<td>96</td>
</tr>
<tr>
<td>Abbildung 22</td>
<td>Raster der Hangneigungsgung</td>
<td>98</td>
</tr>
<tr>
<td>Abbildung 23</td>
<td>Raster der Exposition</td>
<td>99</td>
</tr>
<tr>
<td>Abbildung 24</td>
<td>Distanz zu Flüssen</td>
<td>100</td>
</tr>
<tr>
<td>Abbildung 25</td>
<td>Fundorte und Hintergrundorte</td>
<td>102</td>
</tr>
<tr>
<td>Abbildung 26</td>
<td>Exportierte Datentabelle in der Variablenansicht in SPSS 17</td>
<td>103</td>
</tr>
<tr>
<td>Abbildung 27</td>
<td>SPSS-Dialog zur logistischen Regression</td>
<td>106</td>
</tr>
<tr>
<td>Abbildung 28</td>
<td>Modell der Wahrscheinlichkeit für Münzfunde</td>
<td>109</td>
</tr>
<tr>
<td>Abbildung 29</td>
<td>Vorhersagegenauigkeit des Modells</td>
<td>110</td>
</tr>
<tr>
<td>Abbildung 30</td>
<td>Generalisiertes Vorhersagemodell für Münzfunde</td>
<td>110</td>
</tr>
<tr>
<td>Abbildung 31</td>
<td>Ablaufschema einer least cost path Analyse</td>
<td>113</td>
</tr>
<tr>
<td>Abbildung 32</td>
<td>Start- und Zielorte für least cost paths</td>
<td>114</td>
</tr>
</tbody>
</table>
Abbildung 33: Cost of passage map ... 116
Abbildung 34: Accumulated cost surface .. 118
Abbildung 35: Least cost paths ... 119
Abbildung 36: Münzfinden, römische Straßen und die berechneten least cost paths 120
Abbildung 37: Modell des Zirkulationsgebietes ... 122
Abbildung 38: Vereinfachtes Modell des Zirkulationsgebietes 123
Tabellenverzeichnis

Tabelle 1: Übergeordnete Metadatenelemente der Standards CSDGM und ISO 19115 45
Tabelle 2: Beispielhafte Designvariablen für die Variable "Bodenbedeckung" 69
Tabelle 3: Datenbanktabelle Fundmünzen (COINS) .. 87
Tabelle 4: Datenbanktabelle Fundorte (FO) .. 87
Tabelle 5: Reklassifizierung der Exposition .. 102
Tabelle 6: Ergebnis des Tests auf Normalverteilung .. 104
Tabelle 7: Testergebnisse für metrische Variablen .. 105
Tabelle 8: Testergebnis für die Exposition (Chi²-Test) ... 105
Tabelle 9: Regressionskoeffizienten und Variablen des Modells 107
Tabelle 10: Hosmer-Lemeshow-Test .. 107
Tabelle 11: Klassifizierungstabelle ... 108
GIS in der Numismatik
Kurzfassung / Abstract

Ein Teilgebiet der Numismatik (Münzkunde und Geldgeschichte) untersucht das Vorkommen und die Funktion von Münzen in Raum und Zeit. Trotz dieser deutlich geographischen Fragestellung werden in dieser Disziplin bis jetzt geographische Informationssysteme (GIS) kaum bis gar nicht benutzt.

Diese Arbeit geht der Frage nach, wie sich geographische Informationssysteme in der Numismatik, speziell bei der Interpretation antiker Fundmünzen, nutzen lassen. Es wird dabei auch die Situation der Geodaten in der Numismatik beleuchtet und die Auswirkungen auf den Einsatz von GIS berücksichtigt.

Ausgangspunkt für die Analysen und Modelle ist die Erfahrung der Archäologie mit GIS. Da die Archäologie ähnliche Fragestellungen wie die Fundmünzennumismatik behandelt, können Methoden, die in der Archäologie üblich sind, auch in der Numismatik angewandt werden.

Für diese Arbeit wird einerseits die Frage nach weiteren potenziellen Münzfundorten gestellt, andererseits wird versucht, zu bestimmen, wie Münzen in entlegene Gebiete gelangt sind. Die Antworten auf diese Fragen werden zur Bestimmung von Zirkulationsgebieten benutzt.

Dafür wurden vorhersagende Fundortmodellierung (*predictive site modelling*) und *least cost paths* als Analysemethoden ausgewählt, die zeigen sollen, dass GIS in der Numismatik eingesetzt werden kann.

The Interpretation of coin finds is a sub discipline of numismatics, which deals with the scientific description of coin finds and hoards, especially their function and its occurrence in space and time. Although function and occurrence in space and time are clearly geographic attributes, up to now this special field of cultural historic research is only rarely taking advantage of the strengths and opportunities which GIS can offer.

This paper investigates the suitability and application of methods proprietary to geographic information systems (GIS) in context with numismatics. One focus is on the situation of numismatic data and its fitness for use in a GIS.

In archaeology, which to a large part is dealing with the dispersal of research objects over space and time, the use of GIS is very much approved by scientists and already widely spread. Archaeologists adopted GIS early in its development, thus there are proven and
comprehensive methods for the use of GIS in archaeology. Some of the methods the archaeologists use can be applied in numismatics as well.

The aim of the analyses is the modeling of areas of circulation of Roman coins in Styria by the means of GIS software. Predictive site modeling is a method for predicting possible places of finding in previously not sampled regions based on the properties of known places of findings. Least cost path analyses can be used to find the most probable route on which the coins were imported to a specific area, especially in the more remote regions. These methods of analyses demonstrate the potential of the use of GIS in numismatics.
Vorwort

Nach meiner Matura stellte sich dann die Frage, was nun? In meiner jugendlichen Begeisterung für Computer inskribierte ich an der Technischen Universität Wien „Informatik“. Ich fand jedoch sehr schnell heraus, dass mich diese intensive Beschäftigung mit dem Computer „um seiner selbst willen“ nicht begeisterte. Als ich mir überlegte, was ich denn jetzt tun sollte, fiel mir wieder der Geographieunterricht ein. Da ich ein primär technisches Interesse hatte, stieß ich zuerst auf die Studienrichtung „Vermessungswesen und Geoinformation“ auf der Technischen Universität. (Aus irgendeinem Grund ist es mir damals entgangen, dass es den Studienzweig „Kartographie“ an der Universität Wien gab.)

Im Laufe des Studiums lernte ich die verschiedenen Aspekte dieser bedien Wissenschaften kennen und schätzen.

So kam ich auf die Idee, zu untersuchen, ob es Möglichkeiten gäbe, geographische Informationssysteme in Geschichtswissenschaften einzusetzen, die dies bis jetzt noch nicht oder in sehr geringem Umfang tun.

Es war natürlich naheliegend, diese Untersuchung mit einem der Projektpartner durchzuführen, und so kam ich zur Numismatik.
Ich möchte mich in diesem Zusammenhang bei Dr. Klaus Vondrovec vom Münzkabinett des Kunsthistorischen Museums in Wien bedanken, der mir sehr geholfen hat, das Wesen der Numismatik zu verstehen.

Ich möchte mich auch bei meinen Kollegen am Institut für Geographie und Regionalforschung in der Computerkartographie bedanken, die mir mit Rat und Tat zur Seite standen, und es mir auch ermöglichten, meine Arbeit vor einem Fachpublikum zu präsentieren.
1 **Einleitung**

Das Projekt „Cultural History Information System“ (CHIS)\(^1\) ist ein Teilprojekt des Forschungsprojekts „Cultural History of the Western Himalaya from the 8th Century“ (CHWH)\(^2\). Dieses Projekt findet unter der Leitung von Univ.-Prof. Deborah Klimburg-Salter vom Institut für Kunstgeschichte an der Universität Wien statt und wird vom österreichischen Wissenschaftsfonds FWF gefördert.

Ziel des Projektes CHIS ist die Erstellung einer kartenbasierten Online-Applikation zur Darstellung kulturhistorischer Inhalte. Durch die geographisch und thematisch weit gestreuten Inhalte wird in diesem Projekt ein Gebiet abgedeckt, das unter anderem Afghanistan, den Norden Indiens, Pakistan, Nepal sowie Teile Chinas (Tibet) umfasst.

Nach ersten Gesprächen mit Dr. Klaus Vondrovec wurde bald klar, dass der Einsatz von GIS in der Numismatik kaum üblich ist, die Möglichkeiten, die GIS bieten, für die Numismatik jedoch sehr interessant seien.

Dies führte dann in weiterer Folge zu Überlegungen, wie man GIS in der Interpretation von Fundmünzen (auch Fundmünzennumismatik) einsetzen könnte.

Ursprünglich sollte die Untersuchung mit Daten aus dem Untersuchungsgebiet des Projektes erfolgen. Aufgrund der politischen Situation in Afghanistan und Pakistan war es jedoch nicht möglich, eine für 2008 geplante Erhebung in Museen und Sammlungen dieser Länder durchzuführen.

Daher wurde beschlossen, diese Untersuchung mit den Daten der römischen Fundmünzen in der Steiermark durchzuführen, da dieser Datenbestand bereits aufgearbeitet ist und in digitaler Form vorliegt.

\(^1\) http://www.univie.ac.at/chis/
\(^2\) http://athene.geo.univie.ac.at/project/chwh/
1.1 Fragestellungen der vorliegenden Arbeit

Die Fragestellungen der vorliegenden Arbeit ergeben sich aus den im vorigen Absatz getätigten Überlegungen.

Wie stellt sich die Datenlage und Datenqualität der numismatischen Daten dar? Welche Probleme ergeben sich für den Einsatz in geographischen Informationssystemen?

Da Daten und deren Qualität ausschlaggebend für geographische Informationssysteme ist, soll auch dieser Aspekt beleuchtet werden. Die Daten, die in der Numismatik vorhanden sind, wurden ursprünglich nicht für die Verwendung in GIS erfasst. Daraus ergeben sich für die Verwendung in GIS Probleme, die bei der Erstellung der Modelle und der Beurteilung ihrer Tauglichkeit berücksichtigt werden müssen.

Wie lassen sich geographische Informationssysteme in der Numismatik einsetzen?

Besonderes Augenmerk soll dabei auf Analysen gelegt werden, die bei der Interpretation von Fundmünzen helfen können. Es sollen hierbei zwei Fragen mithilfe von GIS beantwortet werden:

- Können weitere potenzielle Fundstellen (Fundhoffnungsgebiete) anhand der bekannten Fundstellen modelliert werden?
- Wie kamen Münzen in entlegene Gegenden?
- Ist daraus eine Modellierung der Zirkulationsgebiete möglich und sinnvoll?

1.2 Zielsetzung

1.3 Methodik

1.4 Recherche des Forschungsstandes

Geographische Informationssysteme bzw. Geoinformatik in der Numismatik ist ein Thema, das bis jetzt weder in der Geoinformatik bzw. geographical information science, noch in der Numismatik behandelt wurde.

Das Portable Antiquities Scheme\(^3\) in Großbritannien ist ein Versuch, eine Funddatenbank (die unter Anderem auch Münzen enthält) mit kartographischer Visualisierung zu kombinieren. Auch im ViennaGIS ist es möglich, sich die archäologischen Fundstellen (auch hier finden sich Münzen unter den Funden) in Wien auf einem Stadtplan anzeigen zu lassen\(^4\). Beide Systeme dienen jedoch nur der Visualisierung der Fundorte. Analysefunktionen sind in diesem System nicht vorhanden.

Aufgrund der Themenverwandtschaft zwischen Numismatik und Archäologie wird auf den Forschungsstand der Archäologie zurückgegriffen.

1.5 Struktur

Zunächst werden die Grundlagen der geographischen Informationssysteme im gleichnamigen Kapitel erklärt. Es wird kurz die Entstehung und Entwicklung geographischer

\(^3\) http://www.finds.org.uk/

\(^4\) http://www.wien.gv.at/kultur/kulturgut/index.html
Informationssysteme beleuchtet und wichtige Begriffe definiert und erörtert. Anschließend werden die Bestandteile eines GIS erklärt und Aspekte der Geodaten beschrieben.

In Kapitel 3 werden die Grundlagen der Numismatik dargelegt, wobei ein Schwerpunkt auf der antiken Numismatik liegt. Die Fragestellungen, Methoden und Forschungsschwerpunkte der Numismatik werden vorgestellt. Schließlich wird die Fundmünzennumismatik und die Interpretation von Fundmünzen erklärt.

Der Exkurs in die Archäologie im vierten Kapitel dient dazu, die GIS-Methoden, die in der Archäologie Verwendung finden und deren Hintergrund in dieser Disziplin darzustellen.

Im Kapitel über die Grundlagen der Modellierung werden die allgemeinen theoretischen Hintergründe zu den in den folgenden Kapiteln verwendeten Modellierungsmethoden beschrieben. Dies sind Kartenalgebra, logistische Regression, predictive site modelling und least cost paths.

In Kapitel 6 werden die Ausgangsdaten für die Modellierung beschrieben. Besonders die Daten, die Ergebnis numismatischer Forschung sind, werden betrachtet.

Im Kapitel „Datenaufbereitung“ wird beschrieben, wie die Daten für die eigentlichen Analysen aufbereitet und verknüpft wurden. Hier wird gezeigt, wie die Daten der Fundmünzen mit Geometriedaten verknüpft wurden und weitere Datensätze aus vorhandenen Datensätzen abgeleitet wurden.

In Kapitel 8 wird die Frage nach weiteren potenziellen Fundorten mittels predictive site modelling beantwortet. Dabei wird der eigentliche Modellierungsprozess beschrieben.

Im anschließenden Kapitel wird die Frage untersucht, wie Münzen in entlegene Gebiete gelangt sein könnten. Dafür werden least cost paths berechnet.

In Kapitel 10 wird versucht, aus den Modellen der vorangegangenen beiden Kapiteln ein Modell des Zirkulationsgebietes antiker Münzen in der Steiermark zu bilden.

Im letzten Kapitel werden die Ergebnisse der Untersuchung noch einmal zusammengefasst. Es wird erörtert, welche Konsequenzen sich aus den Ergebnissen für den Einsatz von geographischen Informationssystemen ergeben und welche Fragen im Zuge der Arbeit aufgetaucht sind.

Anmerkung zu Bezeichnungen von Personen oder Personengruppen: Die in dieser Arbeit verwendeten Bezeichnungen für Personengruppen wie z.B. Anwender oder Wissenschaftler sind geschlechtsneutral zu verstehen.
2 Grundlagen der geographischen Informationssysteme

2.1 Geschichte von GIS

Aufgrund der hohen Kosten und der technischen Schwierigkeiten war die Benutzung von GIS bis Anfang der 90er Jahre staatlichen Organisationen und Universitäten vorbehalten. BILL (1999a, S. 17f) bezeichnet die Zeit von 1975 -1985 deshalb als die „Zeit der Behörden“, die Zeit bis dahin als die „Zeit der Pioniere“

In den späten 70er und frühen 80er Jahren begann die Entwicklung von kommerziellen GIS. ESRI (Environmental Systems Research Institute) und Integraph, bis heute in diesem Bereich marktführend waren unter den ersten kommerziellen Anbietern von GIS Software. (KAINZ 2004, S. 15) So veröffentlichte ESRI die erste Version von ARC/INFO 1982. (ESRI 2008a)

Seit Anfang der 90er Jahre entwickelten sich GIS zu allgemein benutzten Werkzeugen zur Verarbeitung raumbezogener Daten. (BILL 1999a, S. 17)
2.2 Begriffsbestimmung

2.2.1 Geodaten und Geoinformation

Als Geodaten (Englisch: geographical data, spatial data) werden all jene Daten bezeichnet, „die einen Raumbezug aufweisen, über den ein Lagebezug zur Erdoberfläche hergestellt werden kann“ (BOLLMANN 2002). Daten selbst werden oft als (digital) codierte Information bezeichnet und sind in erster Linie zur Weiterverarbeitung gedacht. (Über die verschiedenen Datenmodelle, die in der Geoinformatik üblich sind siehe Kapitel 2.4 „Daten“)

Analog werden jene Informationen, die einen geographischen, also räumlichen, Bezug aufweisen, als Geoinformationen (Englisch: geographical information, spatial information) bezeichnet. Diese Information soll in einem Kommunikations- und Handlungskontext bedeutsame Aspekte der Umwelt vermitteln. (BOLLMANN 2002) „In unserem Sinn kann man von Information dann sprechen, wenn auf eine spezifische Frage eine Antwort gegeben wird, die das Verständnisniveau des Fragenden erhöht […]“ (BARTELME 2005, S. 13)

Diese Definition gibt schon Aufschluss über den (oft vernachlässigten) Unterschied zwischen (Geo-)Daten und (Geo-)Information. Im Gegensatz zu Informationen, die sowohl strukturelle (syntaktische), inhaltliche (semantische) und anwendungsrelevante (pragmatische) Aspekte aufweisen, sind Daten

![Diagramm](image)

Abbildung 1: Daten, Informationen und Wissen (nach BARTELME 2005, S. 15)

2.2.2 GIS (Geographische Informationssysteme)

Der Begriff „geographische Informationssysteme“ geht auf das „Canada Geographical Information System“ (CGIS) zurück. Es wird oft auch der Begriff Geo-Informationssystem benutzt.

„Ein Geo-Informationssystem ist ein rechnergestütztes System, das aus Hardware, Software, Daten und den Anwendungen besteht. Mit ihm können raumbezogene Daten digital erfaßt, redigiert, gespeichert und reorganisiert, modelliert und analysiert sowie alphanumerisch und graphisch präsentiert werden.“ (BILL 1999a, S. 4)
Diese Definition von geographischen Informationssystemen (der Begriff Geo-Informationssystem wird synonym benutzt) ist weit verbreitet und Grundlage ähnlicher Definitionen. Sie fasst die grundlegenden Bestandteile und Aufgabenbereiche solcher Systeme zusammen, berücksichtigt jedoch nicht den Kontext, in dem dies geschieht und bezeichnet nur den technischen Teilbereich. In der Online-Hilfe für das Programm ArcGIS Desktop 9.3 (die Software, die in dieser Arbeit für die Analysen herangezogen wird) findet sich eine Definition, die noch enger gefasst ist:

"An integrated collection of computer software and data used to view and manage information about geographic places, analyze spatial relationships, and model spatial processes. A GIS provides a framework for gathering and organizing spatial data and related information so that it can be displayed and analyzed" (ESRI 2008b)

Ein GIS ist also ein Computersystem, das aus mehreren Komponenten besteht. Diese Komponenten sind Hardware, (Programm-)Software, Daten und Anwendungen. Manchmal, besonders wenn auf ein bestimmtes Software-Produkt verwiesen wird, wird auch nur das Computerprogramm, das die Funktionen bereitstellt, als GIS bezeichnet. Diese enge Definition ist für die vorliegende Arbeit ungeeignet.

Auch andere Ansätze zur Definition von GIS versuchen, den stark technischen Rahmen zu erweitern, und nicht nur Einzelpersonen als Benutzer einzubeziehen, wie zum Beispiel folgende Definition:

"Geographic Information System - A system of hardware, software, data, people organizations and institutional arrangements for collecting, storing, analyzing and disseminating information about areas of the earth" (DUEKER und KJERNE 1989, S. 7-8, zitiert in CHRISMAN 1999, S. 178)
Eine Definition, die geeignet erscheint, wenn man den Einsatz von GIS in Forschungsdisciplinen untersuchen will, die keine Geo-Wissenschaften sind, ist jene von Nicholas Chrisman:

„Geographic Information Systems (GIS) – The organized activity by which people

- measure aspects of geographic phenomena and processes;
- represent these measurements, usually in the form of a computer database, to emphasize spatial themes, entities and relationships;
- operate upon these representations to produce more measurements and to discover new relationships by integrating disparate sources; and
- transform these representations to conform other frameworks of entities and relationships.

These activities reflect the larger context (institutions and cultures) in which these people carry out their work. In turn GIS may influence these structures” (CHRISMAN 1997 S.5)

Diese Definition ist losgelöst von der technischen Basis. Die Begriffe Computer, Software oder Hardware fehlen hier ganz. Der Fokus liegt hier weniger auf der Beschreibung, was ein GIS ist. Es wird hingegen stark betont, welche Funktion GIS haben, und in welchem Kontext dies geschieht. Diese Sichtweise wird dem Ansatz gerecht, den die Geographical Information Science verfolgt.

Chrisman selbst komprimiert später seine Definition auf einen Satz:

„Geographic Information System (GIS) – Organized activity by which people measure and represent geographic phenomena then transform these representations into other forms while interacting with social structures” (CHRISMAN 1999, S.185)

Der große Unterschied in der Definition von CHRISMAN und BILL liegt darin, wie GIS-BenutzerInnen gesehen werden bzw. in welcher Beziehung das Werkzeug GIS mit seinen BenutzerInnen steht.

BILL erklärt ein technisches System, seine Bestandteile und Aufgaben. Die Benutzer müssen sich die Methoden aneignen, Hardware und Software bedienen können, und wissen, was sie damit tun sollen/können. Die Benutzer müssen sich an das System anpassen.

Chrisman stellt die Benutzer in den Vordergrund. Seine Formulierung geht davon aus, dass Personen GIS benutzen, um in sozialen Strukturen zu agieren. Das System ist ein Hilfsmittel
und hat sich den Bedürfnissen der Benutzer anzupassen. Dieser Unterschied ist wichtig, wenn man mit GIS in Wissenschaften gehen will, die an sich keinen geographischen Fokus haben, so wie die Numismatik.

Dennoch sollten beide Definitionen nicht entgegengesetzt, sondern als einander ergänzend betrachtet werden. So könnte man für diese Arbeit GIS folgendermaßen definieren:

Ein geographisches Informationssystem (GIS) ist ein System organisierter Tätigkeit, bei der Personen räumliche Phänomene messen und repräsentieren, diese dann in Abhängigkeit des sozialen und institutionellen Kontextes in andere Formen transformieren. Dazu wird ein rechnergestütztes System aus Hardware, Software und Daten benötigt, das als Grundfunktionen das Erfassen, Bearbeiten, Speichern, Analysieren und Modellieren sowie die Darstellung der Daten besitzt.

2.2.3 Geomatik, Geoinformatik und Geographical Information Science

Die beiden Begriffe Geomatik und Geoinformatik werden oft synonym benutzt. Teilweise wird die Geomatik aber auch als übergeordnete Disziplin verstanden, und die Geoinformatik als technische, anwendungsorientierte Teildisziplin. (BOLLMANN 2002, MÜLLER 2002) Zum Vergleich sind hier unterschiedliche Definitionen wiedergegeben, die auch die unterschiedlichen Auffassungen der Disziplinen zeigen:

„Mit der Geoinformatik ist ein neues interdisziplinäres Fachgebiet entstanden, das eine Brückenfunktion zwischen Informatik, Geographischen Informationstechnologien und Geowissenschaften oder raumbezogen arbeitenden Wissenschaften ausübt.“ (DE LANGE 2006, S. 1)

Im Lexikon der Kartographie und Geomatik (BOLLMANN 2002) wird die Geoinformatik als Teilbereich der angewandten Informatik beschrieben.

„Geomatik [...] ist das Wissenschaftsgebiet, das technologische Erkenntnisse zur Gewinnung und Verarbeitung georäumlicher Daten, einschließlich ihrer wissenschaftlichen Grundlagen
grundlagen der geographischen informationssysteme

und Anwendungen zusammenführt. [...] Das internationale Normierungskomitee ISO/TC 211
zur Standardisierung von Geodaten und Geoinformation verwendet die Begriffe [Geomatik
und Geoinformatik] allerdings wieder synonym, wenn auch darauf hingewiesen wird, dass die
Geomatik in ihrer Entstehung und Ausrichtung den Bereichen Geodäsie und
Vermessungswesen zuzuordnen ist, während die Geoinformatik im Schwerpunkt die
Entwicklung von Geoinformationssystemen betreibt.“ (Müller 2002)

Barelmete (2005) hingegen sieht die Geoinformatik als theoretische Basis für
Geoinformationssysteme. „Geoinformatik setzt sich systematisch mit dem Wesen und der
Funktion von Geoinformation, mit ihrer Bereitstellung in Form von Geodaten und den darauf
aufbauenden Anwendungen auseinander.“ (Barelmete 2005, S. 15)

Diese Beschreibungen deuten auf gewisse Auffassungsunterschiede hin. Bei Bollmann und
Müller ist die Geoinformatik noch stärker auf die technischen Aspekte beschränkt. Dies
geschieht wohl auch, um einen Kontrast zwischen Geomatik und Geoinformatik zu schaffen.
Für sie ist die Geomatik sozusagen die übergeordnete Disziplin, die Geoinformatik ist
eindeutig der praxisorientierte, technische Aspekt.

Im Englischen hat sich der Begriff der Geographical Information Science herausgebildet.
Umdeutung der Abkürzung GIS von Geographical Information Systems zu Geographical
Information Science. Deshalb ist auch hierfür die Abkürzung GIS üblich. (Um die
Abkürzungen dennoch zu unterscheiden, wird Geographical Information Science auch mit
GISc oder GIScience abgekürzt.)

Blaschke (2003) weist darauf hin, dass es einen Unterschied zwischen der
deutschsprachigen Geoinformatik und der englischen Geographical Information Science gibt.
So beschäftigt sich die Geoinformatik hauptsächlich mit technischen Aspekten wie der
Auflistung und Implementierung von Algorithmen, während kaum eigene Theorien
entwickelt werden. Theoretische Überlegungen werden hauptsächlich aus den
Nachbardisziplinen wie Informatik, Geodäsie oder Kartographie übernommen. Dies
entspricht der Definition eines interdisziplinären Fachgebiets von Barelmete und de Lange.
(siehe oben)

Geographical Information Science hingegen ist die Wissenschaft bzw. Forschung über
Geographische Informationsverarbeitung und -systeme. (Blaschke 2003, Chrisman 1999,

2.2.4 Begriffsverwendung in der vorliegenden Arbeit

Nachdem in den vorhergehenden Kapiteln einige synonyme Begriffe verwendet wurden, sind ein paar Bemerkungen zur Begriffs- und Abkürzungsverwendung in der vorliegenden Arbeit notwendig.

- Sofern nicht anders angegeben, wird in weiterer Folge die Abkürzung GIS für geographische Informationssysteme nach der Definition von BILL (1999a) und CHRISMAN (1999) verwendet.
- Geographic(al) Information Science wird mit GISc abgekürzt und steht für die Forschung über GIS.

2.3 Bestandteile eines GIS

2.3.1 Hardware

Hardware bezeichnet alle physischen Bestandteile eines Computersystems, also alles, was sichtbar und greifbar ist. Das inkludiert die Zentraleinheit des Computers (Prozessor, Arbeitsspeicher usw.) sowie Peripherie, die notwendig ist, um Eingaben zu tätigen, Daten zu speichern oder Ausgaben zu erhalten.

War es von der Anfangszeit der GIS bis in die 1990er Jahre noch notwendig, die GIS-Software auf Großrechnern laufen zu lassen, so sind heute handelsübliche Desktop- oder Notebook-Computer ausreichend.

Hier soll aus Platzgründen nur ein Überblick über die wichtigsten Hardwarekomponenten eines GIS gegeben werden.

Datenerfassung

Datenerfassungsgeräte sind meistens nicht fix mit dem GIS verbunden, sie gehören aber genauso zu einem GIS, da sie die Daten liefern. Zur Unterscheidung in Geräte zur Datenerfassung und Eingabegeräte dient hier das Kriterium, dass Datenerfassungsgeräte hauptsächlich Primärdaten liefern, während Eingabegeräte zur Steuerung des Computers bzw. zur Erfassung von Sekundärdaten dienen. (siehe auch Kapitel 2.4 „Daten“)

Kameras: Kameras sind Geräte, die fotografisch Bilder entweder auf Film oder in digitaler Form festhalten. Sie spielen in der Geoinformation eine untergeordnete Rolle, obwohl vor allem in Internetapplikationen (z.B. Google Earth) auch Bilder mit Koordinaten versehen werden.
GPS Empfänger: GPS (Global Positioning System) ist ein satellitengestütztes System zur dreidimensionalen Lagebestimmung auf der Erdoberfläche. Die meisten GPS Empfänger können Punkte und Routen speichern, die dann in ein GIS übertragen werden können.

Laserscanner: Laserscanner sind Erfassungsgeräte, die automatisch die Entfernung zu einer Vielzahl von Punkten messen. Dabei entstehen so genannte Punktwolken, die mit spezieller Nachbearbeitung in ein 3D Modell umgewandelt werden können.

Elektronische Tachymeter: Tachymeter sind Geräte, die im Vermessungswesen zur Punktbestimmung verwendet werden. Mit ihnen können Horizontal- und Vertikalwinkel sowie Strecken sehr präzise gemessen werden. Bei elektronischen Tachymetern besteht (im Gegensatz zu rein optischen Geräten) die Möglichkeit, die Daten (Winkel, Strecken und auch abgeleitete Koordinaten) zu speichern und an ein GIS zu übertragen. Moderne Tachymeter sind oft mit einem GPS-Empfänger kombiniert. (KAHLEN 1997)

Fernerkundungssysteme: Unter Fernerkundungssystemen werden im Allgemeinen Fernerkundungssatelliten und Luftbildkameras zusammengefasst, also jene Systeme, die die Erdoberfläche aus großer bis sehr großer Entfernung abtasten. Satellitenbilder entstehen seit Anfang der 70er Jahre ausschließlich digital (BOLLMANN 2002), während Luftbilder noch immer auch analog aufgenommen werden. (FRANZEN 2005) Diese Systeme nehmen sowohl Bilder im Bereich des sichtbaren Lichts auf, als auch in Spektralbereichen, die außerhalb des sichtbaren Bereichs liegen (Infrarot, Mikrowellen).

Fotogrammetrische Auswertegeräte: Fotogrammetrische Auswertegeräte dienen der Auswertung von fotogrammetrischen Aufnahmen (Luftbilder, Messbilder). Dabei können aus den Aufnahmen Koordinaten rekonstruiert und gespeichert werden. (FRANZEN 2005)

Eingabegeräte

Digitalisiertisch bzw. Digitalisiertablet: Digitalisiertische (oder die kleinere Form der Digitalisiertablets) werden benutzt, um Vorlagen (z.B. Karten) als Vektordatei zu digitalisieren. Dazu werden die einzelnen Objekte mittels eines stift- oder mausartigen Gerätes mit Fadenkreuz vom Benutzer digitalisiert.

Maus: Die Maus (oder ähnliche Zeigergeräte wie Touchpads, Trackballs oder Trackpoints) werden mit der Hand benutzt und dienen in erster Linie der Steuerung des Computersystems. Die steuert im Allgemeinen Zeiger auf dem Bildschirm.
Tastatur: Die Tastatur dient zur Eingabe von alphanumerischen Zeichen, sowie zur Systemsteuerung

Touchscreens: Touchscreens sind Bildschirme, die registrieren, wenn sie berührt werden. Sie ermöglichen es dem Benutzer, Elemente direkt auf dem Bildschirm anzutippen. Dadurch kann auf eine Maus (und meistens auch auf eine Tastatur) verzichtet werden. Sie sind damit zugleich Eingabe- als auch Ausgabegerät.

Zentraleinheit

Mainboard: Das Mainboard (oft auch Motherboard genannt) ist die Hauptplatine des Computers. Mit ihm sind alle Elemente wie Prozessor, Arbeitsspeicher, Grafikkarte (sofern diese nicht ebenfalls in das Mainboard integriert ist), Speicherlaufwerke und Peripheriesteuerung verbunden. Diese stecken oft in speziellen Sockeln bzw. Steckplätzen, die auf dem Mainboard untergebracht sind. Auch die grundlegende Computersteuerung (BIOS, Basic Input Output System) ist auf dem Mainboard zu finden.

Hauptspeicher (RAM, random access memory): In Hauptspeicher werden Betriebssystem, die gerade aktiven Programme und von diesen benutzte Daten geladen. Daher wird er oft auch als Arbeitsspeicher bezeichnet. Der Hauptspeicher ist im Gegensatz zu Massenspeichergeräten als Halbleiterspeicher konstruiert und weist daher eine höhere Zugriffsgeschwindigkeit auf. Die Größe des Hauptspeichers entscheidet über die
Arbeitsschwindigkeit des Computersystems. Der Hauptspeicher ist ein flüchtiger Speicher. Das heißt, dass die gespeicherten Inhalte bei Unterbrechung der Stromversorgung gelöscht werden.

Grafikkarte: Die Grafikkarte ist für die Ausgabe auf einem Bildschirm zuständig. Grafikkarten besitzen einen Grafikprozessor, der oft auch 3D-Berechnungen übernimmt und so den Hauptprozessor entlastet, und einen eigenen Speicher für Grafikdaten.

Speicherlaufwerke: Hierunter zählt man Festplatten, Solid State Drives (SSD), aber auch Laufwerke für Disketten und CD bzw. DVD Laufwerke oder Brenner (Wechselmedien). Blu-Ray Laufwerke gehören zurzeit noch nicht zur Standardausrüstung eines Computers, dies wird sich in den nächsten Jahren jedoch ändern.

Speichermedien

Disketten: Die 1,44 Megabyte fassende 3,5“ Diskette wird heute kaum mehr benutzt, dennoch gibt es viele Computer, die noch mit passenden Laufwerken ausgestattet sind. In den nächsten Jahren ist zu erwarten, dass sie gänzlich vom Markt verschwinden werden, wie zuvor schon die 5,25“ Disketten.

Magnetbänder (Streamer): Magnetbänder in schrankgroßen Stationen waren in der Frühzeit der Computer das vorherrschende Speichermedium, heute dienen sie in kompakter Form aufgrund der langsamen Zugriffszeit und des nur sequentiellen Lesens als Datensicherungsmedium.

Festplatten (Harddisk): Festplatten sind die häufigste und gängigste Form der Massenspeichermedien. Sie sind in nahezu jedem Computer zu finden. Sie haben eine kurze Zugriffszeit und bieten den zurzeit günstigsten Preis pro Speichereinheit. Die Daten werden dabei auf magnetischen Platten gespeichert.

Optische Medien dienen zur Auslieferung von Software und zur Datensicherung bzw. zum Datentransfer, da sie wesentlich unempfindlicher zu transportieren sind, als Festplatten.
Flash-Speicher (Flash-EEPROM): Flash-Speicher benutzt als Speichermedium Halbleiter-Chips. Im Gegensatz zum RAM, der den Hauptspeicher bildet, ist der Flash-Speicher nicht flüchtig, d.h. die gespeicherte Information bleibt auch ohne Stromversorgung erhalten. Flash-Speicher gibt es in mehreren Formen. Die Hauptformen sind sogenannte USB-Sticks, die zusätzlich zum eigentlichen Speicherschipp einen USB-Anschluss besitzen (USB = Universal Serial Bus) und somit direkt an den USB-Anschluss eines Computer angesteckt werden können, und Speicherkarten, die unter anderem in Digitalkameras oder GPS-Empfängern eingesetzt werden können. Von letzteren gibt es unterschiedliche Bauformen, die jedoch alle nach demselben Prinzip arbeiten.

Solid State Drives (SSD): SSDs sind Massenspeichergeräte, die auf der Flash-Technik basieren, jedoch wesentlich größere Kapazitäten aufweisen. Sie sind als Ersatz zu den magnetischen Festplatten konzipiert. Vorteile gegenüber der Festplatte sind die schnellere Zugriffszeit, höhere Ausfallssicherheit und geringere Empfindlichkeit durch das Fehlen mechanischer Komponenten, geringerer Energiebedarf (was sich vor allem im mobilen Betrieb mit längeren Akkulaufzeiten bemerkbar macht). Demgegenüber steht jedoch zur Zeit noch ein deutlich höherer Preis pro Speichereinheit als bei den Festplatten, und auch die maximale Kapazität einzelner SSDs reicht noch nicht an die der Festplatten heran. Mittelfristig ist jedoch zu erwarten, dass durch fallende Preise SSDs immer mehr Festplatten ersetzen werden. (CROTHES 2009)

Ausgabegeräte

Bildschirme (oder Monitore): Bildschirme sind Ausgabegeräte, die digitale Daten visuell ausgeben. Die Ausgabe erfolgt unmittelbar, weshalb der Bildschirm auch als Anzeige der Computerfunktion und somit als Element der Benutzeroberfläche fungiert. Bis vor einigen Jahren waren hier Bildschirme vorherrschend, die auf der Röhrentechnik basieren, heute sind diese jedoch von Flachbildschirmen mit Flüssigkristallanzeigen (LCD, liquid crystal display) weitgehend abgelöst.

Für die Arbeit mit GIS empfehlen sich Bildschirme mit großer Bilddiagonale (mindestens 19 Zoll) oder Computersysteme mit 2 Bildschirmen.

Es gibt auch (besonders für den mobilen Einsatz) berührempfindliche Bildschirme (Touchscreens) die Eingabe- und Ausgabegeräte in einem sind.

Drucker: sowohl Drucker als auch Plotter liefern Ausgabe auf Papier oder Folie. Dabei gibt es verschiedene Arten von Druckern. Am gebräuchlichsten sind heute Laser- oder Tintenstrahldrucker. Thermodrucker und Nadeldrucker spielen bei GIS keine Rolle.

2.3.2 Software

GIS-Programme sind Software-Produkte, die die Funktionalitäten zur Erfassung, Speicherung, Verwaltung, Analyse und Darstellung der Daten, zur Verfügung stellen. Eigentlich sind auch Daten Software, aufgrund ihrer speziellen Bedeutung für GIS werden sie aber extra erwähnt.

GIS-Programme haben zur Datenverwaltung oft ein eigenes Datenbankmanagementsystem integriert. Sie können sich jedoch meistens auch mit externen Datenbanksystemen verbinden und so diese Daten nutzen.

War es in den 90er Jahren nicht ungewöhnlich, dass bestimmte GIS-Programme entweder mit Vektor- oder mit Rasterdaten umgehen konnten und das jeweils andere Datenmodell nur rudimentär unterstützten, so können heutige GIS-Programme meist mit beiden Datenmodellen gut umgehen.

Es gibt sowohl kommerzielle GIS-Software, wie z.B. ArcGIS⁵ oder MapInfo⁶, als auch Open Source GIS-Software wie GRASS GIS⁷ oder Quantum GIS⁸.

Da CAD-Programme (Computer Aided Design) ähnliche grafische Funktionen besitzen wie GIS-Software, gibt es auch Zusatzprogramme, die CAD-Systeme zu GIS-Systemen erweitern.

⁵ http://www.esri.com/
⁶ http://www.mapinfo.com/
⁷ http://grass.osgeo.org/
⁸ http://www.qgis.org/

2.3.3 Anwendungen, Anwender
Da die Daten in einem GIS oft recht umfangreich sind und auch bearbeitet werden müssen, sind umfangreiche Funktionen zur **Datenverwaltung** notwendig. Da die Daten im Normalfall in Datenbanken gespeichert werden, ist dazu ein Datenbankmanagementsystem (DBMS) notwendig.
Die **Analysefunktionen** sind die Besonderheiten eines GIS und unterscheiden es von anderen Informationssystemen. In aktuellen Systemen sind diese sehr umfangreich. Grundsätzlich lassen sie sich in folgende Gruppen unterteilen (RIEDL und RIEDL 2003, S. 24ff):

Informationsabfrage: Hierzu gehören Suchfunktionen, sowie Sortier- und Verknüpfungsfunktionen. Auch statistische Funktionen sind in einem GIS integriert. Die

Informationsabfrage ist die grundlegende Funktion eines GIS. Die Ausgabe kann sowohl in tabellarischer als auch in grafischer Form geschehen.

Messfunktionen: Diese Funktionen ermöglichen das Zählen, Berechnen und Messen von Strecken, Flächen und Volumina.

Pufferfunktionen: Diese Funktionen erlauben es, eine Zone (Puffer) mit einem bestimmten Abstand um ein Objekt zu erzeugen. Bei Flächen ist auch ein Abstand nach innen möglich. Puffer dienen oft als Grundlage für Overlay-Operationen.

Interpolationen: Interpolationen dienen der Modellierung von Oberflächen oder Isolinien (z.B. Höhenlinien). Dabei werden die Flächen aus Punktwolken berechnet. Es werden verschiedene Interpolationsverfahren angewandt, wie z.B. Inverse Distance Weighting oder Kriging.

Netzwerkanalysen: Netzwerke sind Graphen nach der mathematischen Graphentheorie, also Knoten und Kanten. Sie werden unter Anderem benutzt, um Verkehrssysteme, Energieversorgungsnetze oder Flussnetze darzustellen. Ein Beispiel einer sehr häufig benutzten Netzwerkanalyse ist die Berechnung der schnellsten Route von Ort A nach Ort B (Routenplaner).

Geländemodellierung: Unter Geländemodellierung wird die Abbildung eines Teils der Erdoberfläche mittels dreidimensionaler Koordinaten verstanden. Dies geschieht meistens in Form eines Rasterbildes, deren Rasterzellen Höhenwerte besitzen. Das Ergebnis sind Digitale Höhenmodelle (DHM), die die topographische Oberfläche des Geländes wiedergeben. Eine andere Möglichkeit, ein Gelände digital darzustellen sind sogenannte TINs (*Triangular Irregular Network*). Dabei wird die Oberfläche als Netz aus unregelmäßigen Dreiecken repräsentiert. Die Knoten der Dreiecke besitzen dreidimensionale Koordinaten.

Ergebnisse aus den Analysen sollen natürlich auch entsprechend präsentiert werden. Im Normalfall werden diese Ergebnisse und Informationen in Form von kartenähnlichen Darstellungen, Karten oder Diagrammen präsentiert. Wichtig ist hier auch die Funktion der Signaturengenerierung. So können Signaturen, die quantitative Ebenen wiedergeben, automatisch skaliert werden. Legenden, Maßstabsleisten und ähnliche können sehr leicht über

2.3.4 Ebenenprinzip (Layer)

2.4 Daten
Daten sind die Grundlagen für Analysen mit GIS. Die Art der Daten entscheidet über die möglichen Analysemethoden. Zunächst liegt hier der Schwerpunkt auf geographischen Daten bzw. Geodaten, also Daten, die einen Raumbezug aufweisen. Daten sind eine Abbildung der Realität in digitaler Form. In der modernen GIScience fand Mitte der 90er Jahre eine „Ontologisierung“ statt. Das heißt, dass die Objekte in GIS Darstellungen der Konzeptualisierung der Realität sind, und nicht Darstellungen der Realität selbst. (Gruber 1993)

2.4.1 Primär- und Sekundärdaten
Grundsätzlich lässt sich je nach Datenquelle nach Primärdaten (auch Originärdaten) und Sekundärdaten unterscheiden. Primärdaten sind Daten, die durch Primärerfassung erhalten werden. Dabei werden die Daten am Objekt selbst oder dessen unbearbeitetem Abbild unmittelbar gewonnen. (Bill 1999a, S. 171)
Dies trifft auf Daten zu, die z.B. durch Tachymetermessung, Laserscanning, Fernerkundung oder mittels GPS Empfänger gewonnen werden. Im Bereich der Sachdaten wären das z.B. (unverarbeitete) Messwerte oder Felderhebungen. Sie sind meist kosten- und zeitaufwändiger zu gewinnen als Sekundärdaten.

2.4.2 Datenmodelle

Die meisten heute erhältlichen GIS-Programme können mit beiden Datenmodellen umgehen. Dies war jedoch nicht immer so, es gab Programme, die primär mit Rasterdaten umgehen konnten, und Programme, die auf Vektordarstellung spezialisiert waren. Raster- und Vektordaten sind die häufigsten Datenmodelle, daneben gibt es jedoch auch weitere Datenmodelle, wie zum Beispiel TINs (Triangulated Irregular Networks)

2.4.3 Rasterdaten

Bei Rasterdaten wird das Gebiet, das von Interesse ist, in regelmäßige rechteckige Zellen (Pixel), die in Reihen und Spalten angeordnet sind, unterteilt. Diese Zellen werden mit dem

So hat jede Zelle in diesem Raster einen Wert. Rasterdatensatz ist im Wesentlichen einer mathematischen Matrix gleichzusetzen.

Auch die Topologie (die Nachbarschaftsbeziehungen) sind durch die Datenstruktur des regelmäßigen Rasters bereits vorgegeben. (DE LANGE 2006, S.332)

2.4.4 Vektordaten

2.4.5 Triangulated Irregular Network (TIN)

Durch Dreiecksvermaschung können Oberflächenmodelle auf Vektorbasis berechnet werden. Dabei entsteht durch Triangulation ein Netz aus Dreiecksflächen mit den Koordinaten \((x_i, y_i)\) in der \(xy\)-Ebene. Jedem Eckpunkt der ebenen Dreiecke kann ein Attributwert \(z_i\) zugewiesen werden, der als Höhe dargestellt werden kann. Werden durch diese Höhenpunkte Ebenen gelegt, spricht man von einem dreidimensionalen Netz unregelmäßiger Dreiecksflächen (triangulated irregular network, TIN). Die Dreiecksvermaschung geht von einzelnen Punkten aus. Dabei werden nach der Delaunay-Triangulation die Dreiecke so gewählt, dass innerhalb des Umkreises eines Dreiecks kein weiterer Messpunkt liegt. Dabei können jedoch bei der Berechnung z.B. von Isohypsen Plateau-Effekte auftreten, wenn drei Punkte einer Linie näher...

Abbildung 4: Triangulated Irregular Network

2.4.6 Attribute, thematische Daten oder Sachdaten

Die Stärke von GIS liegt in der Möglichkeit, die Geometriedaten mit Attributen (oft auch als Sachdaten, thematische Daten, Merkmale oder semantische Informationen bezeichnet (Riedl und Riedl 2003, S. 32)) zu verknüpfen und gemeinsam zu verarbeiten und zu analysieren.

Bei Vektedaten können ganze Attributstabellen über Objekt-Identitätsnummern einzelnen Objekten zugewiesen werden.

2.4.7 Skalenniveaus

Die Attribute können verschiedene Eigenschaften haben. Es kann sich dabei z.B. um Messwerte oder um Kategorien der Bodennutzung handeln. Je nachdem welcher Inhalt dargestellt wird, können diese Attribute unterschiedliche Skalenniveaus haben, die unterschiedliche Vergleichsoperationen und damit Analysen und Aussagen erlauben.
Im Allgemeinen werden Nominal-, Ordinal-, Intervall- und Rationalskala unterschieden.

Die **Nominalskala** ist eine reine Benennung. Es ist dabei keine Ordnung vorhanden. Als Vergleichsoperation ist nur zulässig, ob zwei oder mehrere Elemente gleich oder ungleich sind. Beispiele für nominale Daten sind Namen, Zahlen als Codierung für verschiedene Klassen, Straßennummern,…

Die **Ordinalskala** (oder Kardinalska) erlaubt eine Ordnung der einzelnen Elemente. Es ist auch möglich zu vergleichen, ob ein Element größer oder kleiner als ein anderes ist. Beispiele für ordinal skalierte Daten sind Schulnoten, Ränge, Bewertungsstufen. ([De Lange 2006, S. 165](#))

Bei der **Rationalskala** liegt hingegen ein eindeutiger Nullpunkt vor, als Operationen sind zusätzlich zu allen vorher genannten auch Multiplikation und Division möglich. Auch das Vergleichen von Verhältnissen ist erlaubt. Beispiele wären die Temperatur in Kelvin, Alter in Jahren oder die Länge in Meter.

2.5 Datenqualität und Metadaten

Ein wichtiger Faktor für die Aussagekraft und Qualität der GIS-Analysen ist die Datenqualität. Für die Interpretation der Analyseergebnisse ist es wichtig, die Qualität der Daten, die die Grundlage bilden, zu berücksichtigen. Qualität im Allgemeinen bezeichnet die Menge der Eigenschaften eines Produktes, die sich auf die Fähigkeit des Produktes, Bedürfnisse zu befriedigen, beziehen. ([Kainz 1999, S. 84](#)) Umgelegt auf Geodaten bedeutet Qualität die Eignung der Daten (das Produkt) für bestimmte Einsatzzwecke (Bedürfnisse).

Diese Überlegungen sind vor allem auch für diese Untersuchung relevant, da die Datenqualität der numismatischen Daten Probleme aufwirft (siehe Kapitel 6 „Numismatische Daten“) Es ist jedoch auch zu bedenken, dass Datenqualität immer relativ ist, und vom Zweck, für den diese Daten verwendet werden sollen, abhängt. ([Albrecht 2007, S. 17](#)) So ist eine großmaßstäbige (1:50.000) topographische Karte, die eine sehr genaue Darstellung der Straßen enthält, nur bedingt geeignet, wenn der schnellste Weg von Wien nach Paris gesucht wird.
Metadaten hingegen helfen, Daten zu finden, zu verwalten und auch hinsichtlich ihrer Qualität und Tauglichkeit einzuschätzen.

2.5.1 Genauigkeit und Präzision
Zunächst muss zwischen den beiden Begriffen Genauigkeit und Präzision unterschieden werden.

Die Genauigkeit (engl. accuracy) gibt an, wie sehr das codierte Ergebnis dem entspricht, was codiert werden sollte. (ALBRECHT 2007, S. 17), oder anders ausgedrückt, wie gut die Daten die Realität wiedergeben. Genauigkeit kann sich auf die Geometriedaten, zeitliche Komponenten und Attribute (thematische oder semantische Genauigkeit) beziehen.

Die Präzision (engl. precision) bezieht sich auf die Detailliertheit geometrischer, zeitlicher oder sachlicher Daten. In Bezug auf Geometriedaten wird die Präzision häufig auch als Auflösung bezeichnet. (ALBRECHT 2007, S. 18)

Präzision ist indirekt mit der Genauigkeit verbunden, da sie das Maß ist, an dem die Genauigkeit gemessen wird. So haben Daten, die eine geringere Präzision aufweisen, auch meist eine geringere Anforderung an die Genauigkeit. (ALBRECHT 2007, S. 18)

2.5.2 Elemente der Datenqualität

Die Herkunft (engl. lineage) gibt Auskunft über die Verarbeitungsgeschichte des Datensatzes. Es sollten hier alle Bearbeitungsschritte von der Datenerfassung an angegeben.

10 Der Begriff der Realität ist hierbei eigentlich nicht korrekt, da die Realität an sich mit den Daten nicht wiedergegeben werden kann. Eigentlich ist hier immer von Konzeption der Realität bzw. einem bestimmten Aspekt der Realität gemeint.
sein. So kann hier festgehalten werden, ob der Datensatz von Primär- oder Sekundärdaten abstammt, welchen geographischen Transformationen oder Formatkonvertierungen er unterzogen wurde, usw.

Die **Lagegenauigkeit** (engl. *position accuracy*) ist die geometrische Genauigkeit der Daten. Sie gibt an, wie gut die gespeicherten Koordinaten die tatsächliche Lage darstellen.

Die **Attributgenauigkeit** (engl. *attribute accuracy*) ist ein Maß für die Genauigkeit der Attribute und „gibt an, wie gut die Attribute im Datensatz den tatsächlichen Attributen der entsprechenden Objekte in der Wirklichkeit entsprechen“ (KAINZ 1999, S. 87)

Die **Vollständigkeit** (engl. *completeness*) gibt an, in welchem Ausmaß alle der Thematik entsprechenden Objekte und ihre Attribute auch tatsächlich im Datensatz vorhanden sind. Als Maß wird die prozentuelle Anzahl der fehlenden (bzw. nicht dazugehörigen) Elemente verwendet. (KAINZ 1999, S. 87) Es gibt jedoch auch den Fall, dass zu viele Objekte vorhanden sind, etwa durch Inkonsistenzen in der Datenbank (doppelt digitalisierte Objekte) oder dadurch, dass das Objekt in der Realität nicht mehr existiert, der Datensatz jedoch noch nicht aktualisiert wurde.

Die **logische Konsistenz** (engl. *logical consistency*) gibt an, wie sehr ein Datensatz an die durch die zur Speicherung gewählten Datenstruktur vorgegebenen Regeln hält. Es kann hierbei zwischen Bereichs-, Format- und topologischer Konsistenz unterschieden werden.

Die Formatkonsistenz bezieht sich auf die Einhaltung der Regeln des Datenformates, in dem die Daten gespeichert sind.

Von topologischer Konsistenz ist die Rede, wenn es darum geht, korrekte Nachbarschaftsbeziehungen (topologische Relationen) zwischen den einzelnen Elementen zu beschreiben. Zur Gewährleistung der topologischen Konsistenz eines Vektordatensatzes aus Knoten (Punkten), Kanten (Linien) und Flächen müssen folgende Bedingungen erfüllt sein:

1. Jede Kante hat einen Start- und Endknoten
2. Zu jeder Kante gibt es eine Fläche, die links bzw. rechts (in Richtung vom Start- zum Endknoten) der Kante liegt.
4. Um jeden Knoten gibt es eine alternierende geschlossene Folge von Kanten und Flächen (eine Art Schirm)

5. Wenn Kanten einander schneiden, dann tun sie das immer in einem Knoten.“ (KAINZ 1999, S. 88)

Semantische Genauigkeit (engl. semantic accuracy) wird oft mit Attributgenauigkeit gleichgesetzt (siehe KAINZ 1999), ist aber von der ICA als das Maß definiert, mit dem die geographischen Objekte in Übereinstimmung mit dem gewählten Modell beschrieben sind. Sie wird auch als übergeordnetes Qualitätsmerkmal begriffen, die sich aus anderen Qualitätselementen zusammensetzt. (SALGÉ 1995)

Zeitliche Informationen (engl. temporal information) umfassen alle zeitrelevanten Informationen eines Datensatzes. Dies umfasst einerseits die Zeit und das Datum der Erfassung, aber auch die Art und Häufigkeit von Aktualisierungen oder die Gültigkeitsdauer von Objekten und Daten. (GUPTILL und MORRISON 1995)

Die Zuverlässigkeit (engl. reliability) ist ein Maß dafür, ob in einem Modell Fehler durch Kontrollmessungen gefunden werden können.

Die Zugänglichkeit (engl. accessability) gibt an, wie einfach der Zugriff auf ein bestimmtes Objekt oder Attribut ist. Es geht dabei einerseits um rechtliche oder administrative Zugänglichkeit, andererseits aber auch um den technischen Zugriff auf einzelne Objekte oder Attribute. (BARTELME 2005, S. 247)

Die Identifizierbarkeit (engl. identifiability) gibt an, wie gut einzelne Objekte einer Klasse von anderen Objekten derselben Klasse unterscheidbar sind.

Ein Datensatz kann unter Umständen nicht über den gesamten Bereich die gleichen Qualitätswerte aufweisen. Die Homogenität gibt an, wie gleichmäßig diese Werte im Datensatz verteilt sind.

2.5.3 Metadaten

Metadaten werden auch oft als „Daten über Daten“ bezeichnet. Tatsächlich sind Metadaten Angaben über die im Datensatz vorhandenen Daten bzw. deren Entstehung, Informationsgehalt und Qualität.

„Die Verfügbarkeit von Daten alleine ist völlig unzureichend, wenn nicht ausführliche Beschreibungen vorliegen, nach welchen Verfahren oder Genauigkeitsvorgaben, aus welchem Anlass, zu welchem Zeitpunkt und von welchem Bearbeiter diese erstellt wurden. Unter dem Begriff Metadaten werden solche Angaben verstanden, die zum Nachweis und Zugriff auf
Metadaten beinhalten verschiedene Datenelemente, die verschiedenen Zwecken dienen. Sie geben Auskunft über die Verfügbarkeit (welche Daten existieren für ein bestimmtes Thema oder geographisches Gebiet?), die einsatzgerechte Eignung (Sind die Daten für den geplanten Einsatz geeignet?), die Zugriffsmöglichkeit (Wie sind die Daten zu bekommen?) und den Transfer der Daten (Wie kann ich die Daten benutzen?). (GUPTILL 1999, S. 678)

In Metadaten werden demnach Angaben zur Datenqualität getroffen, aber auch über den Zweck, die Form, den Ursprung, die Entstehungsgeschichte und administrative bzw. rechtliche Details der Daten.

Metadaten können in unterschiedlichen Kontext benutzt werden. GUPTILL (1999, S.678) unterscheidet drei Möglichkeiten: die Benutzung als Datenkatalog, als Hilfsmittel zum Datenmanagement und als Begleitung zum eigentlichen (Geo-)Datensatz.

Aufgrund der Aufgaben und Einsatzgebiete von Metadaten ergibt sich die Notwendigkeit, den Aufbau der Metadaten zu standardisieren.

<table>
<thead>
<tr>
<th>CSDGM</th>
<th>ISO 19115</th>
</tr>
</thead>
<tbody>
<tr>
<td>identification information</td>
<td>identification</td>
</tr>
<tr>
<td>spatial reference</td>
<td>data quality</td>
</tr>
<tr>
<td>status information</td>
<td>spatial data representation information</td>
</tr>
<tr>
<td>metadata reference information</td>
<td>spatial reference</td>
</tr>
<tr>
<td>source information</td>
<td>feature and feature attribute</td>
</tr>
<tr>
<td>processing history</td>
<td>distribution</td>
</tr>
<tr>
<td>distribution information</td>
<td>metadata reference</td>
</tr>
<tr>
<td>entity/attribute Information</td>
<td></td>
</tr>
<tr>
<td>contact information</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 1: Übergeordnete Metadatenelemente der Standards CSDGM und ISO 19115 (nach GUPTILL 1999)
3 Grundlagen der (antiken) Numismatik

3.1 Numismatik

Es soll hier an dieser Stelle keine umfassende Darstellung der Numismatik gegeben werden, da dies den Umfang der Arbeit sprengen würde. Es wird jedoch ein Überblick über die für die Fragestellung dieser Arbeit relevanten Bereiche der Numismatik gegeben.

„Numismatik ist also der übliche Fachausdruck für Münzkunde, für die Wissenschaft von der Münze“ (ALFÖLDI 1978, S. 1)

Im Lexikon der Numismatik (KROHA 1997) wird die Numismatik zunächst ebenfalls als die Wissenschaft der Münze angegeben, es wird aber gleichzeitig darauf verwiesen, dass die Numismatik über den deutschen Begriff der Münzkunde hinausgeht. Und auch in einem aktuellen Lexikon der Münzen (KAHNT 2005) wird die Numismatik umfassender beschrieben:

Nach GÖBL (1978, S. 19) gliedert sich die Numismatik in vier Hauptteile der Stoffgliederung:

1. Münzkunde
2. Münzgeschichte
3. Geldgeschichte
4. Methodenlehre

Die Münzkunde ist das Fachgebiet, dass sich mit der Münze an sich, also der Beschaffenheit, der Herstellungstechnik und der Ikonographie befasst. Sie wird als Grundlage der Numismatik verstanden und bildet die Voraussetzung für die anderen Teilbereiche.

Die Geldgeschichte untersucht die Beziehungen der Geldformen untereinander.
Die Methodenlehre ist die Sammlung aller in der Numismatik üblichen Methoden zur Auswertung numismatischer Quellen. Nach dieser Gliederung und Beschreibung erscheint besonders der Bereich der Münzgeschichte für die vorliegende Untersuchung geeignet.

3.1.1 Was ist eine Münze?
Die Münze ist eine Erscheinungsform des Metallgeldes. Die Form, die sich gegenüber anderen Varianten durchgesetzt hat, ist die zweiseitig geprägte (mehr oder weniger) kreisrunde Scheibe. Der Staat (der im Regelfall die für die Münzprägung zuständige Institution ist) garantiert den standardisierten Feingehalt und das Gewicht der Münze. Dadurch ist die Münze als allgemeines Zahlungs- und Zirkulationsmittel geeignet. Sie verkörpert auch einen festgelegten nominalen Wert bzw. einen Teil oder ein Vielfaches davon. (KAHN 2005, S. 294f)

Weitere Funktionen sind ihre ästhetische Funktion (Gegenstand künstlerischer Gestaltung) und die Möglichkeit der Einnahmequelle für die Münzherren mit Hilfe der Verschlechterung des Münzfußes (die gesetzliche Regelung über Gewicht und Edelmetallgehalt)

3.1.2 Antike Numismatik
Chr. angesiedelt, als mit den Karolingern das antike Münzsystem überholt wurde. (ALFÖLDI 1978, S. 3)

Es fallen also sowohl die Münzen, die im Rahmen des Projektes CHWH von Interesse sind, als auch die Fundmünzen der römischen Zeit in Österreich in den zeitlichen Bereich der antiken Numismatik.

3.2 Fragestellungen und Methoden

Aufgaben der Numismatik sind nach KAHNT (2005)

- Erarbeitung von Prinzipien und Methoden zur Auswertung von Münzfunden und zur Münzbeschreibung, Registrierung sowie historische und territoriale Einordnung des numismatischen Materials
- Erforschung der verschiedenen historischen Erscheinungsformen von Münzen und anderen Geldformen
- Erforschung der Gesetzmäßigkeiten, besonderen Erscheinungen und Auswirkungen des Prozesses der Münzverschlechterung
- Erforschung der metrologischen Bedingungen des Münzwesens
- Erforschung der Geschichte der Herstellung von Münzen (Münztechnik) und der Organisationsform des Münzbetriebs
- Erforschung der Geschichte des Münzrechts, der Münzgesetzgebung und der Münzkonventionen
- Ermittlung der Verbreitungsgebiete von Münztypen als Ausdruck von Handelsbeziehungen (KAHNT 2005, S. 318)

Es handelt sich bei der Numismatik demnach um eine umfassende Wissenschaft, die sich mit sämtlichen Aspekten des Geld- und Münzwesens beschäftigt. In der antiken Numismatik ist die Münze als vorherrschende Form des Geldes zu sehen, weshalb der Fokus der Forschung auf den Münzen liegt.

Für GÖBL (1978) ist die Münzkunde, also die Beschäftigung mit Stoff, Physis, Herstellungstechnik, Metrologie und Ikonographie, die Grundlage für alle weiteren Teile der wissenschaftlichen Numismatik. Eine der Grundlagenfrage der antiken Numismatik und Ausgangspunkt für alle weiteren Fragestellungen ist die Rekonstruktion der Prägesysteme (die Prägepläne und der organisatorische Ablauf der Münzprägung).

3.2.1 Münzbeschreibung

Natürlich sind zuerst einmal die Bilder bzw. die Schrift auf der Vorder- oder Hauptseite (Avers) und Rückseite (Revers) Gegenstand der Beschreibung. Was bei einer Münze Vorder- und Rückseite ist, ist nicht immer eindeutig. Meist wird jedoch die Seite als Hauptseite angenommen, die das Zeichen des Inhabers der Münzhoheit enthält, das die Echtheit garantiert (z.B. Staatswappen)

Gewicht, Abmessungen, Legierung und Nominal (Nennwert oder Nenngröße) einer Münze sind wichtige Kenngrößen, die zu jeder Münzbeschreibung gehören. Bei der Angabe der Abmessungen muss berücksichtigt werden, dass antike Münzen nicht wirklich kreisrund sind. Meist wird auch die Stempelstellung (Stellung der Vorder- und Rückseite zueinander, siehe Kapitel 3.2.5 „Münztechnik“) angegeben. (Alföldi 1978, S. 20ff)

3.2.2 Erscheinungsformen von Geld und Münzen

11 Auch wenn das private Münzsammeln, wie es (vergleichbar mit dem Briefmarkensammeln) als Hobby betrieben wird, oft ebenfalls als Numismatik bezeichnet wird, sind hier Münzsammlungen im wissenschaftlichen Kontext gemeint.
Als prämonetäre Geldformen werden auch *Naturalgeld* (aus pflanzlichen oder tierischen Produkten, wie z.B. Getreide und Vieh), *Barren* (aus denen sich die Münzen entwickeln), *Hackgeld* (Metallgegenstände, von denen Teile zur Bezahlung abgetrennt wurden), *Gerätegeld* (Metallwerkzeuge wie Hacken, Messer oder Pfeilspitzen bzw. Stellvertreterformen, also Geräte die ihrer eigentlichen Funktion enthoben wurden) und *Schmuckgeld* (Schmuck aus Horn, Bein, Metall) bezeichnet.

Neuer Geldformen beinhalten unter anderem Papiergeld, Zahlungsanweisungen sowie „[…] alle neueren staatsrechtlich wie bankmäßig definierten Geldmittel (Scheck, Wechsel Anleihe, Obligation, Kreditkarte u.a.m.) […]“ (GÖBL 1987, S. 20)

3.2.3 Münzverschlechterung

3.2.4 Metrologie

Die *Metrologie* ist das Messwesen, oder die Wissenschaft von Maß, Gewicht und Zahl. In der Numismatik ist das Ziel der Metrologie die Erforschung der antiken bzw. mittelalterlichen *Münzfüße* sowie deren Nominalenteilung, Gewichtseinheit des Währungsmetralls und des Feingehalts der Münzen.

12 Es entsteht jedoch sehr wohl ein Mehrwert der Münze, da eben der Feingehalt garantiert wird. Außerdem war dadurch die Liquidität des Münzherrn gegeben, der sich somit z.B. Soldaten leisten konnte, die in der Regel bar bezahlt wurden.

3.2.5 Münztechnik

Die **Münztechnik** umfasst alle Mittel und Prozesse zur Herstellung von Münzen. Es gibt zwei grundsätzliche Fertigungstechniken für Münzen: Gießen und Prägen.

Das Gießen war bis zum 19. Jahrhundert die in China übliche Methode zur Herstellung von Münzen. Die weitaus häufigere Technik ist jedoch das Prägen der Münzen, obwohl die ungeprägten Rohformen (*Rohling oder Schrötlung*) in der Antike durch Gießen hergestellt wurden. (Später wurden die Rohlinge durch Schmiedetechniken erzeugt.) Beim Prägen wird der Rohling zwischen zwei **Stempel** (*Ober- und Unterstempel*) gelegt. Durch einen Schlag (zunächst mit einem Hammer, später mithilfe von Maschinen) auf den **Oberstempel** werden die Formen, die als Negativ in die **Stempel** graviert sind, auf die Münze übertragen. In der Antike bis etwa ins 15. Jahrhundert war die **freie Hammerprägung** üblich. Dabei wurde der **Unterstempel** in einem massiven Stock eingesetzt. Der **Schrötlung** wurde darauf gelegt. Der **Oberstempel** wurde, frei mit einer Hand gehalten, aufgesetzt. Durch einen Hammerschlag auf den **Oberstempel** wurde die Münze geprägt. Die Stellung des **Oberstempels** im Vergleich zum **Unterstempel** ist die **Stempelstellung**. (Kahnt 2005)

![Freie Hammerprägung](image)

3.2.6 Münzrecht und Münzkonventionen

Das **Münzrecht** (das Recht, Münzen zu prägen) ist ein wichtiges staatliches Hoheitsrecht und steht generell der Zentralgewalt zu. Es kann vom Inhaber der Zentralgewalt auch delegiert oder verliehen werden. In Zeiten schwacher Zentralgewalt kann das Münzrecht auch in den
Händen mächtiger Feudalherren oder der Städte liegen. In allen heutigen Staaten liegt das Münzrecht in der Hand der staatlichen Zentralmacht. (KAHNT 2005, S. 302)

Münzkonventionen sind Übereinkommen mehrerer Münzherren oder Staaten, ihr Münzwesen nach einheitlichen Merkmalen zu organisieren. (KAHNT 2005, S. 299)

3.3 Fundmünzen

Die Fundmünzennumismatik oder auch Münzfundauswertung ist eine Methode der Numismatik, die erst seit jüngerer Vergangenheit intensiver betrieben wird. (ALFÖLDI 1978, S. 57) Hierbei wird weniger die Münze als Einzelobjekt betrachtet, sondern die Gesamtheit des Fundmaterials betrachtet. Dabei ist die Funktion der Münze im Umlauf von Interesse.

Alram schreibt im Vorwort von Schachingers Buch über die Fundmünzen der Steiermark (SCHACHINGER 2006): „*Die Münze wird hier nicht nur als solche betrachtet, sondern vornehmlich in ihrer Funktion in Raum und Zeit gewürdigt*“ (ALRAM 2006, S. 9)

„**Fundmünze**: Münze, die aus einem Einzelfund, einer Fundmasse oder einem Schatzfund stammt. Der Begriff Fund beinhaltet, dass der gefundene Gegenstand längere Zeit unbekannt und unzugänglich war, schließt also in bewusster Verwahrung gehaltene Münzen aus“ (KAHN 2005, S. 145)

Fundmünzen unterscheiden sich somit grundlegend von ausgesuchten Sammlungsbeständen. Bereits die korrekte Bestimmung der Fundmünzen stellt eine Herausforderung an die wissenschaftlichen Bearbeiter dar. (VONDROVEC 2007, S.58)

Es werden, je nach Art und Kontext des Fundes, mehrere Arten von Funden unterschieden, wobei hier je nach Autor unterschiedliche Gliederungen anzutreffen sind:

- Einzelfunde, Streufunde
- Schatz- oder Hortfunde
- Grabfunde
- Weihefunde

3.3.1 Einzelfunde, Streufunde

„*Einzelfund: Fund einer oder mehrere einzelner Münzen ohne sichtbaren Zusammenhang im Boden, in Brunnen oder Bauwerken.*“ (KROHA 1997, S. 134)

Das heißt also, dass die Münzen eben vereinzelt bzw. verstreut gefunden werden. Meistens handelt es sich dabei um Münzen, die verloren wurden. Sie machen den Hauptteil der

3.3.2 Schatzfunde
„Sind Münzfunde von größerem Umfang. Sie werden vielfach in Behältnissen[…], Ruinen oder Archäologischen Grabungsgebieten entdeckt.“ (KROHA 1997, S. 305)

3.3.3 Grabfunde und Weihefunde

3.3.4 Distribution, Zirkulation und coin drift

3.3.5 Verlust, Verstecken und Auffindung
Antike Münzen können auf verschiedene Arten gefunden werden. Neben dem zufälligen Finden von Münzen (Lesefund) werden auch viele Münzen nach gezielter Suche mit
Metalldetektoren gefunden (*Detektorfund*). Auch bei archäologischen Ausgrabungen werden Münzen gefunden. Obwohl in Österreich Meldepflicht besteht\(^\text{13}\), wird ein Großteil der von Privatpersonen gefundenen Münzen nicht gemeldet und ist daher für die Wissenschaft verloren. VONDOVEC (2007, S. 64) gibt an, dass Anzahl der in Österreich jährlich gefundenen antiken Münzen etwa 10.000 bis 20.000 beträgt, jedoch nur 1% davon gemeldet werden.

3.4 Interpretation von Fundmünzen, Fundmünzenauswertung

Alle Tätigkeiten in der Numismatik, die über das Dokumentieren und Sortieren des Materials hinausgehen, werden als Auswertung verstanden. Die Vorlage des Materials ist die Grundvoraussetzung für die Auswertung. Ziel der Auswertungen sind einerseits zusätzliche numismatische Sachverhalte zu erschließen, andererseits aber auch die Akzeptanz der Münze als Quelle für historische Forschungen zu erhöhen. (VONDOVEC 2007)

„Bei nüchterner Betrachtung gelangt man also zu der Erkenntnis, daß die Fundmünzen auf der einen Seite eine Bereicherung der Systemnumismatik und auf der anderen Seite eine neue Facette der Geschichtsforschung darstellen, das eigentliche Ziel jeder Tätigkeit kann aber nur die Erforschung des antiken Geldverkehrs selbst sein.“ (VONDOVEC 2007, S. 58)

Die Auswertung von Münzen kann auf verschiedenen Ebenen erfolgen. Sie kann auf einen Ort konzentriert sein, oder aber auch mehrere Orte miteinander vergleichen. Sie können in...\(^\text{13}\) In Österreich zählen Fundmünzen zu den Bodendenkmalen. Dadurch besteht nach §8 des Bundesdenkmalgesetzes Meldepflicht, d.h. der Fund muss gemeldet werden, um die wissenschaftliche Bearbeitung zu ermöglichen.

Die Auswertemethoden, die in den Bänden der FMRÖ benutzt werden, sind Diagramme, die die Verteilung nach Stückzahl und Wert, Nominalverteilung, Gewichte einzelner Nominale auf dessen Prägezeit, Stückgewichtsverteilung und die Münzstättenverteilung eines Bestandes darstellen. Es werden im Allgemeinen absolute Fundzahlen benutzt, statistische Berechnungen gibt es kaum. (VONDROVEC 2007, SCHACHINGER 2006)
4 Exkurs: GIS in der Archäologie

Die Archäologie ist eine Geschichtswissenschaft, die versucht, vergangenes menschliches Leben und Kultur anhand materieller Hinterlassenschaften zu erforschen. (LANG 2002)

„Die Artefakte selbst sind nicht die Geschichte: Erst unsere Analyse der Artefakte öffnet Wege in die Vergangenheit.“ (LANG 2002, S. 12)

Um aussagekräftige Analysen zu erstellen, sind geeignete Analysemethoden und –werkzeuge notwendig. Da in der Archäologie auch räumliche Fragestellungen behandelt werden, sind Werkzeuge für räumliche Analysen notwendig. Aus dieser Sicht ist es verständlich, dass ArchäologInnen GIS verwenden, da es sich hier um eine gute Werkzeugsammlung zur räumlichen Analyse handelt.

4.1 Theoretische Entwicklungen

Als Reaktion und Kritik auf den strengen Determinismus der prozessualen Archäologie bildeten sich die Strömungen der postprozessualen Archäologie heraus. Die Hauptkritikpunkte waren die „[…] Vernachlässigung des Individuums als handelndes Subjekt in der Gesellschaft, die Annahme universeller Prinzipien im menschlichen Handeln, fehlende Berücksichtigung der […] Denkweisen der Vergangenheit, das positivistische Denkmodell,

14 Hier finden sich parallelen zur Fundmünzennumismatik.
die Hervorhebung der etischen Perspektive und der einseitigen Anpassung der Menschen an ihre natürliche Umwelt.“ (LANG 2002, S. 66)

In den postprozessualen Ansätzen wird dem Individuum eine größere Bedeutung zugeschrieben. Es wird versucht, durch die materielle Kultur auf individuelles Verhalten zu schließen. Der räumliche und zeitliche Kontext bestimmt die Funktion von Objekten. Zum Verständnis der Veränderungen der Kulturen in der Vergangenheit ist es erforderlich, ihre Ideenwelt, also die Kultur aus ihrer Innenperspektive, zu verstehen. Auch die Auffassung, dass nicht die Vergangenheit selbst beschrieben wird, sondern die Vergangenheit in der Gegenwart durch den Archäologen als Subjekt konstruiert wird, ist Teil der postprozessualen Archäologie. (LANG 2002)

4.2 Anwendungsbereiche von GIS in der Archäologie

4.2.1 Kulturdenkmal-Verwaltung

Wie auch die Verwaltung anderer räumlicher Phänomene, profitiert die Kulturdenkmalpflege von der Verwendung von GIS. (Conolly und Lake 2006, S. 33ff)

4.2.2 Ausgrabungen

Es gibt jedoch viele Situationen, wo die Daten in drei Dimensionen aufgenommen werden. Da die meisten GIS-Programme jedoch kein echtes 3D beherrschen, sondern lediglich die dritte Dimension durch ein z-Attribut repräsentieren (Conolly und Lake 2006, S. 38), sind sie für diese Aufgaben nur bedingt geeignet.

4.2.3 Landschaftsarchäologie

Bei der Landschaftsarchäologie steht der Mensch in seinem Naturraum im Vordergrund.

„Ihr Ziel ist eine Landschaft in ihrem gesamten Erscheinungsbild, also Naturraum ebenso wie der vom Menschen gestaltete Kulturraum, mittels archäologischer, geowissenschaftlicher und archäobotanischer Methoden zu erforschen und zu rekonstruieren“ (Lang 2002, S. 251)

4.2.4 Modellierung

5 Die Grundlagen der Modellierung

Es gibt eine Vielzahl an Methoden der Modellierung in der Geoinformatik: Auch wenn diese auf die in der Archäologie gebräuchlichen Methoden eingeschränkt werden, ist dies noch immer eine recht große Anzahl. Alle diese Methoden auf ihre Tauglichkeit für die Interpretation von Fundmünzen zu untersuchen, würde den Umfang dieser Arbeit sprengen. Daher werden hier zwei Verfahren ausgewählt, die aufgrund des vorhandenen Datenmaterials und der Fragestellungen der Numismatik als zielführend angesehen werden. Dabei handelt es sich einerseits um eine Kosten-Analyse, die einen Hinweis liefern soll, wie die Münzen an ihre Fundorte gekommen sind, und andererseits um eine voraussagende Fundortmodellierung. Im Folgenden sollen diese beiden Methoden näher erklärt werden. Es werden hier zu einem großen Teil die englischen Fachausdrücke benutzt, da diese Methoden hauptsächlich in der anglo-amerikanischen Literatur geformt wurden und die deutschen Beiträge, die sich damit befassen, meist ebenfalls die englischen Ausdrücke benutzen.

5.1 Kartenalgebra

Eine Methode der kartographischen Modellierung (TOMLIN 1990) ist die Kartenalgebra. Sie basiert auf dem Ebenenprinzip der Kartographie und der Geoinformation (siehe Kapitel 2.3.4 „Ebenenprinzip (Layer)“)

Als *Kartenalgebra* oder *map algebra* werden alle mathematischen Operationen zusammengefasst, die auf einen oder mehrere Rasterdatensätze (Kartenebenen) angewandt werden können. Mehrere Rasterdatensätze bzw. deren Attributwerte derselben Region können auf diese Weise logisch miteinander verknüpft werden. Mathematisch gesehen handelt es sich dabei um Rechenoperationen auf Matrizen. Auf diese Zahlenmatrizen, die eben aus Attributwerten bestehen, werden die Operatoren ausgeführt, deren Ergebnis wieder eine Matrix ist. (DE LANGE 2006, S. 351)

Nach TOMLIN (1990) sind 62 Operatoren notwendig, um alle Verarbeitungsmöglichkeiten von Rasterdaten auszuführen. Dabei können folgende Kategorien von Operatoren unterschieden werden:

Fokale Operatoren arbeiten ebenfalls Zelle für Zelle ab, beziehen jedoch in die Berechnung eine definierte Umgebung der betreffenden Rasterzelle mit ein. Häufig werden die Umgebungen nach den Schachfiguren benannt, die diese Zellen auf einem Schachbrett erreichen könnten (Rook’s move, Queen’s move, Knight’s move), nach der Anzahl der benachbarten Zellen (N4, N8) oder es wird die Größe in Pixel x Pixel angegeben (z.B. 3x3, 5x5, siehe Abbildung 6). Für die meisten Operationen wird eine 3x3 (N8, queen’s move) Umgebung benutzt. Als Beispiel für fokale Operatoren dienen Filteroperationen, die vor allem in der Bildbearbeitung angewandt werden, etwa zur Kantenerkennung oder zur Bildschärfung.

![Abbildung 6: Umgebungen für Fokale Operatoren](image)

![Abbildung 7: Lokale, fokale und zonale Operatoren der Kartenalgebra](image)
Globale Operatoren bestimmen die räumlichen Beziehungen zwischen den Zellen, denen das Interesse gilt. Anders ausgedrückt geht es um die Distanz zwischen den Zellen. Dies kann einerseits die euklidische (räumliche) Distanz sein, oder einen gewichtete Distanz, wie im Fall der Kostenoberflächen ALBRECHT 2007, S. 57f)

Inkrementelle Operatoren werden entlang von vorgegebenen Objekten abgearbeitet.

5.2 Logistische Regression

Die logistische Regression ist eine statistische Modellierungsmethode, die ursprünglich im Rahmen der Epidemiologie entwickelt wurde, aber sich zusehends in anderen Wissenschaften durchgesetzt hat.

Das Ziel der Analyse ist es, die Wahrscheinlichkeit des Auftretens einer abhängigen Variable anhand von einer oder mehreren unabhängigen Variablen zu modellieren. Sie ist die statistische Grundlage des predictive site modelling.

Da im vorliegenden Fall nur zwei Ausprägungen der abhängigen Variablen möglich sind (Fundstelle oder keine Fundstelle), wird hier die binäre logistische Regression verwendet.

5.2.1 Logistische Verteilungsfunktion

Die Grundlage der logistischen Regression ist die logistische Verteilungsfunktion.

\[f(z) = \frac{1}{1 + e^{-z}} = \frac{e^z}{1 + e^z} \]

\(e\) ist die eulersche Zahl, die Basis des natürlichen Logarithmus.

Der Graph der Funktion (siehe Abbildung 8) zeigt, warum diese Funktion in der Modellierung sehr beliebt ist.

Abbildung 8: Graph der logistischen Funktion
Die Funktionswerte \(f(z) \) befinden sich unabhängig von \(z \) immer zwischen 0 und 1 und können daher als Wahrscheinlichkeiten interpretiert werden. Durch die S-Form der Wahrscheinlichkeitskurve entsteht, im Vergleich zur linearen Regression, ein recht schneller Übergang zwischen niedriger und hoher Wahrscheinlichkeit. Das bedeutet, dass die unsicheren Bereiche mittlerer Wahrscheinlichkeiten im Vergleich zur linearen Regression relativ klein sind. (KLEINBAUM, KLEIN und PRYOR 2002, S. 5ff)

5.2.2 Logistisches Modell

Um ein Modell zu bilden, müssen die unabhängigen Variablen in eine (mathematische) Beziehung zur abhängigen Variable gebracht werden. Die unabhängigen Variablen werden als \(X_1, X_2, \ldots, X_M \) bezeichnet.

Das logistische Modell wird hiernach als lineare Summe der Variablen, die mit unbekannten Parametern (Regressionskoeffizienten \(\beta_1, \beta_2, \ldots, \beta_M \) und Konstante \(\beta_0 \)) multipliziert werden, und der Konstante \(a \) verstanden. Es ist also \(\beta x \) ein Index, der die Variablen kombiniert:

\[
\beta x = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_M X_M
\]

Oder in Summenschreibweise:

\[
\beta x = \beta_0 + \sum_{m=1}^{M} \beta_m x_m
\]

Wird diese Modellgleichung nun mit der logistischen Verteilungsfunktion kombiniert, indem das \(z \) auf der rechten Seite der Verteilungsfunktion durch die lineare Summe \(\beta x \) ersetzt wird:

\[
f(z) = \frac{1}{1 + e^{-(\beta_0 + \sum \beta_m x_m)}}
\]

Wird das Ergebnis als Wahrscheinlichkeit für das Eintreten eines abhängigen Ereignisses \(Y \) interpretiert, lautet die Gleichung:

\[
P(Y) = \frac{1}{1 + e^{-(\beta_0 + \sum \beta_m x_m)}}
\]
5.2.3 Parameterschätzung

Da die unabhängigen Variablen bekannt sind, müssen für die Modellbildung die Parameter geschätzt werden. Üblicherweise wird dabei die Maximum-Likelihood-Methode (ML) benutzt.

„Hier werden Parameterschätzungen bestimmt, welche die Wahrscheinlichkeit der beobachteten Daten unter dem parametrisch spezifizierten Modell maximieren.“ (BALTES-GÖTZ 2008, S. 17)

Dazu wird eine konkrete Stichprobenrealisation benutzt. Nach der Modellgleichung können für einen \(i \)-ten Fall die Regressorenwerte (als Vektor \(\mathbf{x}_i \)) als fest gegeben angesehen werden, und die vom Parametervektor \(\mathbf{\beta} \) abhängige Wahrscheinlichkeit \(P(Y_i = 1) \) mit \(\pi_i \) bezeichnet werden.

\[
\pi_i := P(Y_i = 1) = \frac{e^{\mathbf{\beta} \cdot \mathbf{x}_i}}{1 + e^{\mathbf{\beta} \cdot \mathbf{x}_i}}
\]

Für die konkrete Stichprobe \((y_1, y_2, ..., y_N) \) wobei \(y_i \in \{0,1\}, i = 1, ..., N \) der abhängigen variable \(Y_i \) mit \(N \) unabhängigen Beobachtungen ergibt sich damit folgende Wahrscheinlichkeit:

\[
P(Y_1 = y_1, Y_2 = y_2, ..., Y_N = y_N) = \prod_{i=1}^{N} \pi_i^{y_i} (1 - \pi_i)^{1-y_i}
\]

Werden nun die unbekannten Parameter \(\mathbf{\beta} \) durch die schätzbaren Werte \(b_1, b_2, ..., b_M \) (als Vektor \(\mathbf{b} \)) ersetzt, und wird \(L_i(\mathbf{b}) \) als die Likelihood für \(Y_i = 1 \) bezeichnet, sieht die *Likelihood-Funktion* für die gesamte Stichprobe folgendermaßen aus:

\[
L(\mathbf{b}) := \prod_{i=1}^{N} \left(L_i(\mathbf{b}) \right)^{y_i} (1 - L_i(\mathbf{b}))^{1-y_i}
\]

Bei der Maximum-Likelihood Schätzung gilt es nun, den Vektor \(\mathbf{b} \) zu finden, der die Likelihood-Funktion maximiert.

Mittels Logarithmisierung der Funktion wird aus dem Produkt in der obigen Gleichung eine Summe, was es ermöglicht, die Extremwertbestimmung mittels iterativer Verfahren durchzuführen.
Das Ergebnis ist der Vektor $\hat{\beta} = (\hat{\beta}_0, \hat{\beta}_1, \ldots, \hat{\beta}_m)$, der die ML-Schätzungen der Parameter enthält und aus dem sich die ML-Schätzung $\hat{\pi}_i$ der Wahrscheinlichkeiten $P(Y_i = 1)$ ergeben:

$$\hat{\pi}_i := \frac{e^{\hat{\beta} x}}{1 + e^{\hat{\beta} x}}$$

Die Likelihood-Funktion sieht demnach folgendermaßen aus:

$$L(\hat{\beta}) := \prod_{i=1}^{N} \hat{\pi}_i^{y_i} (1 - \hat{\pi}_i)^{1-y_i}$$

(BALTES-GÖTZ 2008, S. 17f)

5.2.4 Auswahl der Variablen

Zunächst werden Variablen Aufgrund der Fragestellung ausgewählt. Dabei ist der aktuelle Forschungsstand ebenso zu berücksichtigen, wie die Theorien und Vorüberlegungen, die zur Untersuchung existieren. Diese Variablen werden zunächst alle in das erste Modell aufgenommen. (KLEINBAUM, KLEIN und PRYOR 2002, S. 164ff)

Nach der ersten Schätzung der Parameter kann die Signifikanz der einzelnen Variablen getestet werden. Dabei wird der Frage nachgegangen, ob das Modell, das die fragliche Variable enthält (uneingeschränktes Modell), mehr über die abhängige Variable aussagt, als ein Modell, das die fragliche Variable nicht enthält (eingeschränktes Modell). (HOSMER und LEMESHOW 2000, S. 11)

Sind die vorhergesagten Werte in dem Modell mit der Variable besser oder genauer (was das genau bedeutet, hängt vom jeweiligen Modell ab), ist diese Variable *signifikant*. Dies hängt jedoch nicht mit der Modellgüte, der *goodness-of-fit*, zusammen.

Eine der Möglichkeiten, diese Signifikanz zu überprüfen, bildet der Likelihood-Quotienten-Test, der in jeder Software zur logistischen Regression integriert ist. Der Likelihood Quotient ist das Verhältnis der Likelihood des eingeschränkten Modelles ($L(E)$) zur Likelihood des uneingeschränkten Modelles ($L(U)$). Für die statistischen Tests wird ein mit -2 vormultiplizierter logarithmierter Quotient verwendet:
\[-2 \ln \left(\frac{L(E)}{L(U)} \right)\]

Die Statistik-Software SPSS (Version 17) beherrscht die automatische Modellsuche, bei der entweder sukzessive Variablen hinzugefügt werden (vorwärts), oder zunächst alle Variablen integriert werden, und in weiterer Folge insignifikante Variablen ausgeschlossen werden (rückwärts). (BALTÉ-S-GÖTZ 2008)

5.2.5 Kodierung nominaler Variablen

Eine der Stärken der logistischen Regression ist die Eigenschaft, auch nominal skalierte Variablen einbeziehen zu können. Diese müssen allerdings kodiert werden. Da eine einfache numerische Kodierung, wie sie oft in GIS benutzt wird (z.B. Bodenbedeckung: Gras = 1, Wald = 2, Asphalt = 3), numerisch und statistisch nicht signifikant ist, muss eine andere Art der Kodierung gewählt werden. Die Methode, die HOSMER und LEMESHOW 2000 vorschlagen, ist die Kodierung als Designvariablen (oder Dummy-Variablen). Dabei werden mehrere Designvariablen pro unabhängiger, nominaler Variable generiert. Die Anzahl dieser Design-Variablen hängt von der Anzahl der möglichen Ausprägungen der Variable ab. Hat eine Variable \(k \) mögliche Ausprägungen, werden \(k - 1 \) Designvariablen benötigt. So wären es bei dem oben genannten Beispiel, der Bodenbedeckung, die drei Ausprägungen kennt, zwei Designvariablen, \(D_1 \) und \(D_2 \). Die Kodierung könnte dann folgendermaßen ausschauen:

<table>
<thead>
<tr>
<th>Bodenbedeckung</th>
<th>Design-Variablen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gras</td>
<td>(D_1)</td>
</tr>
<tr>
<td>Wald</td>
<td>1</td>
</tr>
<tr>
<td>Asphalt</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabelle 2: Beispielhafte Designvariablen für die Variable "Bodenbedeckung"

5.2.6 Modellgüte

5.3 Predictive Site Modelling

1. Sammlung der primären Daten
2. Ableitung der sekundären Daten
3. Erfassen der Variablen an Fundorten und zufälligen Hintergrundorten (Orte, an denen keine Funde gemacht wurden, non-sites)
4. Statistische Untersuchung und Analyse der zwei Stichproben
5. Durchführen einer logistischen Regression

15 Primäre und sekundäre Daten sind hier nicht streng im Sinne von Kapitel 2.4.1 zu verstehen. Sekundäre Daten sind jene Daten, die aus den primären Daten abgeleitet werden können, z.B. Hangneigung (sekundär) aus dem Geländemodell (primär)
6. Identifizieren der für das Modell signifikanten Variablen
7. Erstellen einer Modellgleichung
8. Vorhersagende Oberfläche aus der Formel erstellen
9. Internes Testen des Modells anhand der Trainings-Stichprobe
10. Externes Testen des Modells anhand einer Test-Stichprobe

Abbildung 9: Ablaufschema des Modellierungsprozesses (nach WARREN und ASCH 2000, Fig 2.4, bearbeitet)

5.3.1 Daten zur Modellierung

Predictive site modelling geht davon aus, dass es möglich ist, zwischen Bereichen der Landschaft, in denen es Fundorte (sites, \(Y_i = 1 \)) gibt und Bereichen, in denen es (trotz Untersuchung) keine Fundorte (non-sites, \(Y_i = 0 \)) gibt, zu unterscheiden. Diese Unterscheidung soll auf einem oder mehreren Attributen der Landschaft basieren. Um dies zu bewerkstelligen, ist es notwendig, einerseits die Fundorte zu kennen, andererseits müssen die relevanten Attribute bzw. deren Verteilung bekannt sein.

Als primäre Daten werden in diesem Zusammenhang Daten bezeichnet, “which are relatively common to most areas and which can be easily obtained or digitized.” (DUNCAN und BECKMAN 2000, S. 36) Die grundlegenden Daten, die in der Archäologie meist benutzt werden, sind Daten zu Höhe, Boden, Hydrologie, Geologie und Bodenbedeckung (Vegetation). Die Fundorte werden hier ebenfalls zu den primären Daten gezählt. Daten, die durch Ableitung aus diesen primären Daten erhalten werden, werden in der Modellierung als
sekundäre Daten bezeichnet. (siehe DUNCAN und BECKMAN 2000, WARREN und ASCH 2000) Dazu gehören unter anderem Hangneigung, Hangrichtung oder die Entfernung zum nächsten Fluss. Was jedoch allen diesen Daten gemein ist, und etwas, das vor allem bei der Interpretation der Ergebnisse berücksichtigt werden sollte, ist, dass sie aus der heutigen Zeit stammen, und daher heutige Verhältnisse widerspiegeln. Sie werden aber (in Ermangelung historischer Daten) zur Modellierung historischer Verhältnisse benutzt.

“Predictive modeling cannot be a productive archaeological pursuit without the explicit realization that statistical tests and correlations can only inform us about coincidences in the present, which must then be linked with the past through the process of explanation.” (EBERT 2000, S.130)

5.3.2 Erfassen der Stichprobe zur Modellierung

Sind die Variablen ausgewählt, die in die Modellierung mit einbezogen werden, müssen diese Variablen an den jeweiligen Fundorten und Hintergrundorten bestimmt werden. Die Fundorte sind in der Regel bekannt, mit Funktionen in der GIS-Software lassen sich die Attributwerte der jeweiligen Variablen an den Fundorten leicht auslesen und in Tabellen übertragen.

Die Auswahl der non-sites ist jedoch nicht ganz unproblematisch. Bei ihrer Auswahl sollte es vermieden werden, beliebige Orte auszuwählen, an denen keine Funde sind, da es sein könnte, dass diese Orte sehr wohl Funde enthalten, die nur noch nicht entdeckt wurden. (CONOLLY und LAKE 2006) Diese Forderung ist jedoch nicht einfach zu erfüllen, da in der Regel Orte, die diese Bedingung erfüllen, nicht in den Datensätzen der Fundorte aufgezeichnet sind. Auch in der Numismatik liegen keine Daten über Orte vor, an denen gründlich nach Münzen gesucht wurde, aber nichts gefunden wurde. (Siehe auch Kapitel 6.1 „Das Problem der Daten“) Die von DUNCAN und BECKMAN 2000 benutzte Bezeichnung „random background samples“ (zufällige Hintergrundproben) ist hier zutreffender, da nicht ausgeschlossen werden kann, dass an jenen Orten sehr wohl Münzen sind, die bis jetzt nicht gefunden wurden. Es wäre zwar für das Modell besser, wenn für Orte die Bedingung \(Y_i = 0 \) eindeutig erfüllt ist, in der Praxis der Numismatik (und meist auch der Archäologie) ist dies jedoch oft nicht a priori festzustellen. Es werden daher zufällig Orte ausgewählt, an denen angenommen wird, dass keine Münzen dort gefunden werden oder gefunden wurden. (Wie bereits in Kapitel 3.3 erwähnt, werden nur ca. 1% der Funde in Österreich gemeldet.)
Um eine Möglichkeit zu haben, das Modell zu überprüfen, werden nicht alle Orte in die Modellierung mit einbezogen. Ein zufällig ausgewählter Teil (die Trainings-Stichprobe) wird dazu benutzt, das Modell zu erstellen, die übrigen Orte (die Test-Stichprobe) dient dazu, das Modell zu testen. (CONOLLY und LAKE 2006, S. 181f)

5.3.3 Statistische Analyse
Zunächst ist es wichtig, zu untersuchen, welche der Attribute signifikant zwischen Fundorten und Hintergrund unterscheiden. Dazu eignen sich, je nach Skalenniveau, unterschiedliche statistische Testverfahren, wie z.B. der Chi²-Test, der Mann-Whitney-U-Test oder der Student’s t-Test.

Dabei wird immer eine sogenannte Null-Hypothese (H₀) überprüft. Diese H₀ wird meist entgegen der eigentlichen Erklärungshypothese (in diesem Fall lautet diese, dass die Attribute signifikant zwischen Fundorten und Hintergrund unterscheiden) formuliert. Die Null-Hypothese lautet demnach, dass die Attribute nicht zwischen Fundorten und Hintergrund.

Die Tests überprüfen demnach, ob die H₀ angenommen werden muss (kein signifikanter Unterschied), oder ob sie verworfen werden kann, und damit die Erklärungshypothese zutreffend ist.

Sind diese Test erfolgreich, d.h. ist es möglich die Nullhypothese, dass kein signifikanter Unterschied zwischen Fundorten und Hintergrund besteht, abzulehnen, macht es Sinn, dieses Attribut in den Modellierungsprozess mit einzubeziehen. Diese Tests geben nur Auskunft, ob ein signifikanter Unterschied zwischen den Werten der Variablen an Fundorten und Hintergrund besteht, sie sagen jedoch nichts über die Signifikanz der einzelnen Variablen für das Modell aus.

5.3.4 Logistischen Regression, signifikante Variablen und Modellgleichung
Nachdem die Variablen für die Bildung eines ersten Modelles ausgewählt sind, kann, wie in Kapitel 5.2 beschrieben, ein erstes Modell erstellt werden. WARREN und ASCH (2000) benutzen schrittweise Verfahren, die Variablen zu dem Modell hinzufügen, die signifikant für das Modell sind (F-to-enter, vorwärtsgerichtete Modellsuche). Dabei werden unter Umständen auch signifikante Variablen ausgeschlossen, wenn diese mit anderen korrelieren, die noch höhere Signifikanz aufweisen.

Als Ergebnis entsteht eine Modellgleichung, das in eine Score-Komponente und eine Wahrscheinlichkeitskomponente unterteilt werden kann (WARREN und ASCH 2000, S. 18ff, CONOLLY und LAKE 2006, S. 182f):
Score: $V = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_M X_M$

Wahrscheinlichkeit: $P_i = \frac{e^{V_i}}{1+e^{V_i}}$

5.3.5 Erstellen einer Wahrscheinlichkeitsoberfläche
Aus den oben ermittelten Gleichungen kann nun eine Oberfläche erstellt werden, die die Wahrscheinlichkeit für das Vorhandensein von Fundstellen am jeweiligen Ort repräsentiert. Zunächst wird der Score V über die Kartenalgebra für jede Zelle berechnet. Dieser Wert wird schließlich noch in die Wahrscheinlichkeit für das Vorhandensein eines Fundortes umgewandelt.

Das Ergebnis ist ein Raster-Datensatz, dessen Zellenwerte die relativen Wahrscheinlichkeiten sind. Es kann also die Aussage getroffen werden, dass es an einem Ort beispielsweise dreimal so wahrscheinlich ist, dass etwas gefunden werden kann, als dass nichts gefunden wird. Um absolute Aussagen zu treffen, müsste das Trainings-Sample durch Cluster-Sampling erstellt werden, was aber in den meisten Fällen nicht möglich oder sehr kostenaufwändig ist. (CONOLLY und LAKE 2006)

5.3.6 Testen des Modelles
Es gibt grundsätzlich zwei unterschiedliche Testmöglichkeiten für ein vorhersagendes Modell, die einander ergänzen. Die eine ist das interne Testen des Modells anhand des Trainings-Samples, das die Modellgüte überprüft. (siehe Kapitel 5.2.6 „Modellgüte“) VERHAGEN (2008, S. 287) weist darauf hin, dass diese Methode jedoch nur begrenzt Auskunft über die tatsächliche Qualität des Modells gibt, da sie als Referenz nur die Daten benutzt, die auch bei der Modellbildung beteiligt sind.

Die andere Möglichkeit, das externe Testen, beruht auf der Unterteilung in Trainings- und Teststichprobe (Split-Sampling). Nur die Trainingsstichprobe, üblicherweise 50% der vorhandenen Daten, wird bei der Modellbildung berücksichtigt, als Test-Stichprobe die Teststichprobe dient nur zur Überprüfung des Modells und wird bei dessen Bildung nicht mit einbezogen. Das Modell wird mit Hilfe der Trainingsstichprobe erstellt, und die Teststichprobe sollte vom Modell vorhergesagt werden.

Der Nachteil dieser Methode ist, dass die so erstellte Teststichprobe in den meisten Fällen keine tatsächlich unabhängige Stichprobe ist, da sie aus dem gleichen Datensatz stammt wie
die Trainingsstichprobe. Desweiteren ist davon auszugehen, dass Modelle, die auf größeren Stichproben basieren, eine größere Stabilität aufweisen, als solche, die auf kleineren Stichproben basieren, deshalb ist es wünschenswert, alle vorhandenen Daten in die Modellierung mit einzubeziehen. (VERHAGEN 2008, S. 287)

Letztendlich spielt bei der Qualität des Modells auch die Interpretation des Ergebnisses eine Rolle. So macht es einen Unterschied, ab welcher Wahrscheinlichkeit von einer „hohen Wahrscheinlichkeit“ gesprochen wird. Wird diese Schwelle niedrig angesetzt, ist das Modell unter Umständen sehr genau, aber nicht sehr präzise. Wird diese Schwelle höher angesetzt, wird das Modell präziser, aber weniger genau. (siehe Abbildung 10)

Abbildung 10: Genauigkeit und Präzision des Models. Das Model links ist 100% genau, alle Orte sind in der Zone der hohen Wahrscheinlichkeit (grau). Das rechte Modell ist präziser, aber weniger genau. (VERHAGEN 2008, Fig. 1, S. 286)

5.3.7 Kritik

5.4 Least Cost Path

5.4.1 Cost of Passage Maps und Accumulated Cost Surfaces (ACS)

Der erste Schritt einer Kosten-Analyse ist die Erstellung einer cost of passage map. Dies geschieht in Form eines Rasters. Jeder Rasterzelle wird ein Wert zugewiesen, der aussagt, wie
Die Grundlagen der Modellierung

![Accumulated cost surface](image)

5.4.2 Isotropie und Anisotropie

5.4.3 Hangneigung und effektive Hangneigung

![Abbildung 13: Hangneigung und effektive Hangneigung (nach CONOLLY und LAKE 2006, S. 218)](image)

Weiter muss berücksichtigt werden, dass der Zusammenhang zwischen dem Energieaufwand beim Überqueren eines Hanges und der Hangneigung (in Grad) nicht linear ist. Im Gehen ist der Energieverbrauch am geringsten auf einer Abwärtsneigung von 4°-6°. Er steigt in der Ebene leicht an und erhöht sich dann sehr stark und nicht-linear auf steileren Aufwärtsneigungen. Der Energieverbrauch steigt jedoch auch bei steileren Abwärtsneigungen.
an, jedoch nicht so stark, wie beim Bergaufgehen. (CONOLLY und LAKE 2006, S. 218, LLOBERA 2000, S.71)

Für die exakte Berechnung der Kosten muss also sowohl die effektive Hangneigung, als auch die Änderung des Energieverbrauchs bei unterschiedlicher Hangneigung berücksichtigt werden.

VAN LEUSEN (2002, Kapitel 6, S. 7) benutzt eine Formel zur Berechnung des Energieaufwandes beim Gehen:

\[M = 1,5W + 2,0(W + L) \left(\frac{L}{W} \right)^2 + N(W + L)(1,5V^2 + 0,35V \times |G + 6|) \]

Wobei M die Energie in Watt ist, W die Masse des Gehenden, L die Masse einer Last, die getragen wird, V die Geschwindigkeit (in km/h), N ein „Geländefaktor“ und G die Hangneigung in % ist. Der Ausdruck \(|G + 6|\) sorgt dafür, dass der minimale Energieaufwand bei einer Hangneigung von 6% auftritt.

Wenn nun die Formel verallgemeinert wird, für eine Person von 70kg und einer Last von 4kg, die sich mit 4,8km/h bewegt und der Geländefaktor nicht berücksichtigt wird (\(N = 1\), erhält man folgende Formel der Kostengewichtung für die (effektive) Hangneigung:

\[M = 2258,266 + 124,32 \times |G + 6| \]

Für die Hangneigung in Grad (Gr) ergibt sich folgende Gleichung:

\[M = 2258,266 + 124,32 \times |\tan(Gr + 5°) \times 100| \]
Abbildung 14: Energieaufwand beim Gehen auf geneigten Flächen (Berechnung nach VAN LEUSEN, (2002).)

5.4.4 Implementation in der Software

In ArcGIS 9.3 Desktop gibt es zwei Module zur Berechnung von accumulated cost surfaces: Cost distance und path distance. (ESRI 2008b) Cost distance dient der Modellierung isotropischer Kosten, path distance modelliert anisotropische Kosten. Im Folgenden wird speziell auf das Modul path distance eingegangen, da vor allem die Hangneigung ein anisotropischer Faktor ist.

Sowohl cost distance als auch path distance benutzen einen Algorithmus, der auf Knoten und Kanten (also Netzwerken) basiert. Dabei wird jede Zelle als Knoten gesehen, die mit ihren Nachbarn durch Kanten verbunden sind.
Das Modul *path distance* ist Bestandteil der Extension *Spatial Analyst* in ArcGIS. Dieses Modul berechnet die Kosten, um von einer Zelle *a* zu Zelle *b* (eine der acht benachbarten Zellen) zu kommen nach der Formel:

\[
costdistance = cost\ surface \times surface\ distance \\
\quad \times \frac{friction(a) \times horizontal\ factor(a) + friction(b) \times horizontal\ factor(b)}{2} \\
\quad \times vertical\ factor
\]

(ESRI 2008b)

Cost surface ist dabei die isotrope *cost of passage map*. Sollen mehrere Ausgangsdaten zu kombiniert werden, muss dies vorher mittels Kartenalgebra geschehen.

Die *surface distance* ist die Schrägdistanz zwischen zwei Zellen (bzw. deren Mittelpunkten). Da die Distanz auf einem zweidimensionalen Raster die Horizontaldistanz ist, die tatsächliche Strecke jedoch auch von der Neigung (und damit dem Höhenunterschied zwischen Start- und Endpunkt) der Strecke abhängt, muss zur Berechnung der tatsächlichen Strecke über ein dreidimensionales Gelände die Schrägdistanz ermittelt werden. Als Ausgangsdaten dienen meist Höhendaten. Dabei wird die Strecke nach dem pythagoreischen Satz berechnet:

\[
c = \sqrt{a^2 + b^2}
\]

Wobei *a* die Horizontaldistanz und *b* der Höhenunterschied der benachbarten Zellen sind.

Die anisotropen Kosten werden hauptsächlich über die Parameter *horizontal factors* und *vertical factors* modelliert. Sie beziehen sich immer auf die Kosten, um von einer Zelle zur anderen zu gelangen und werden für jedes Zellenpaar (jede Kante) bestimmt. Dabei gilt auch, dass die Kosten, um von *a* nach *b* zu gelangen nicht identisch mit den Kosten sind, die aufgewendet werden müssen, um von *b* nach *a* zu gelangen.

Die **horizontalen Faktoren** geben an, wie sich die Kosten, von einer Zelle zur nächsten zu gelangen, abhängig von der Richtung ändern. Dabei wird eine vorherrschende Richtung (pro Zelle) angegeben. Diese kann von 0°-360° reichen. Wird eine Zelle abweichend von dieser Richtung überquert, ändern sich die Kosten, abhängig von der Höhe der Abweichung (der *horizontal relative moving angle, HRMA*). Dabei wird die Strecke für die Berechnung wird dabei in zwei Segmente unterteilt. Das erste Segment besteht aus der Strecke vom Zentrum der gerade bearbeiteten Zelle bis zum Rand der Ziel-Zelle (mit der vorherrschenden Richtung...

Es kann auch eine Maximal-Distanz angegeben werden. Alle Zellen, die über diesem Wert liegen, bekommen im Ergebnis den Wert „*NoData*“ zugewiesen.

Als Ausgabe generiert *path distance* ein bis drei Rasterdatensätze. Der erste Raster, der auf jeden Fall erstellt wird, ist die *accumulated cost surface*. (In ArcGIS wird dieser Raster *accumulative cost distance raster* genannt.)

Der zweite Raster, der optional ausgegeben wird, aber für einen *least cost path* benötigt wird, ist der *back link raster*. Dieser Raster speichert für jede Zelle die Richtung zu der benachbarten Zelle, die bei Rückverfolgung zu dem Ausgangspunkt (der den Weg der geringsten Kosten zur Folge hat) die niedrigsten akkumulierten Kosten aufweist. Es ist also die Richtung, aus welcher ein *least cost path* kommen würde, wenn er die jeweilige Zelle passieren würde. Daher ist dieser Raster für die *least cost path* Analyse erforderlich.
Die Grundlagen der Modellierung

Der dritte Raster ist der \textit{cost allocation raster}. In ihm wird für jede Zelle diejenige Quellzone eingetragen, von der aus sie mit den geringsten Kosten zu erreichen ist.

Für das Bestimmen des eigentlichen \textit{least cost path} ist in ArcGIS 9.3 Desktop die Funktion \textit{cost path} zuständig, die ebenfalls Teil der Extension \textit{Spatial Analyst} ist.

Diese Funktion benötigt neben den von \textit{path distance} errechneten \textit{accumulative cost distance raster} und \textit{back link raster} noch einen Raster oder einen Vektordatensatz, der die Zielorte enthält. Zusätzlich ist noch anzugeben, welche Pfade berechnet werden sollen. Drei Möglichkeiten stehen zur Auswahl: \textit{each cell}, \textit{each zone} und \textit{best single}.

\textit{Each cell} berechnet zu jeder einzelnen Zelle, die im Zieldatensatz enthalten ist, einen Pfad, auch wenn diese Zellen nebeneinander liegen.

\textit{Each zone} berechnet für jede Zone einen Pfad, der bei der Zelle jeder Zone beginnt, die die niedrigsten akkumulierten Kosten aufweist.

\textit{Best single} berechnet einen Pfad, der bei der Zelle der Zielzonen beginnt, die die niedrigsten akkumulierten Kosten aufweist.
GIS in der Numismatik
6 Numismatische Daten

Als Grundlage für Analysen mittels GIS dienen Geodaten. Wenn man davon ausgeht, dass die gewählte Analyse an sich sinnhaft ist, hängen die Qualität des Ergebnisses und damit die Aussagekraft der Analyse von der Art und der Qualität der Ausgangsdaten ab.

6.1 Das Problem der Daten

Dadurch, dass die Numismatik bis jetzt GIS so gut wie gar nicht benutzt hat, sind die vorhandenen Daten auch nicht auf diesen Zweck ausgerichtet. Vor allem die Qualität der Fundortangaben, also die räumlich Komponente der Daten, ist sehr kritisch zu hinterfragen, bevor auf diesen Daten basierende Analysen durchgeführt werden.

Objekte in einem GIS sind Darstellungen der Konzeptualisierung der Realität (GRUBER 1993), daher ist es notwendig, sich Gedanken darüber zu machen, wie die Konzeptualisierung der Realität (eingeschränkt auf Fundmünzen) in der Numismatik aussieht. Oder einfacher Ausgedrückt: Was versteht die Numismatik unter Fundmünzen?

Wie in Kapitel 3.3 bereits erwähnt, sind Fundmünzen Münzen, die längere Zeit verborgen bzw. unbekannt gewesen sind. (KAHNT 2005, S. 145) Gleichzeitig soll hier auch die Funktion der Münzen in Raum und Zeit untersucht werden. (ALRAM 2006, S. 9) Um also aus einem Fundgegenstand (in diesem Fall Münzen) auf seine Funktion in Raum und Zeit schließen zu können, sollte bekannt sein, wo und wann dieser Gegenstand verloren bzw. versteckt wurde.

Oft ist es jedoch nicht immer klar, wo denn nun die Münze tatsächlich gefunden wurde, da sie oft nach ihrem Auffinden erst nach mehreren Besitzern einer wissenschaftlichen Bearbeitung unterzogen wird. Dies führt dazu, dass Ortsangaben oft sehr ungenau sind. Dies ist im Sinne der Datenqualität, wie in Kapitel 2.5.1 beschrieben, zu verstehen. Das bedeutet, dass sowohl die Genauigkeit, als auch die Präzision sehr gering sind. So finden sich zum Teil tatsächlich nur sehr grobe räumliche Angaben, wie z.B. der Name eines ganzen Tales. Oft können die Daten auch nur aus älteren Fundpublikationen entnommen werden, die nicht immer korrekte Angaben enthalten, und oft sind diese Funddokumentationen (besonders im Fall von Hort- bzw. Schatzfunden) auch unvollständig in dem Sinn, dass einige der Münzen erfasst sind, der Rest jedoch in irgendwelchen Depots schlummert. (SCHACHINGER 2006, S. 13f)

Eine weitere Eigenschaft der Daten ergibt sich aus der numismatischen Forschung: Man kann nicht annehmen, dass die Daten vollständig sind, selbst wenn alle Münzen, die in einer Region gefunden wurden, eingetragen sind. In der Numismatik wird davon ausgegangen, dass das Fundmaterial nicht vollständig ist, sondern niemals alle Münzen, die zu finden wären, auch tatsächlich gefunden werden. (GÖBL 1978, S. 259) Dennoch kann man davon ausgehen, dass bei größerer Fundmenge diese Funde auch mehr oder weniger die Verlustverhältnisse, und damit die zirkulierenden Münzen widerspiegeln (NEWTON 2006).

6.2 Die Datenbank der Fundmünzen

Die Datenbank „digitale Fundmünzen der römischen Zeit in Österreich“ (dFMRÖ) ist die Erweiterung zum Projekt „Fundmünzen der römischen Zeit in Österreich“ (FMRÖ), das seit

16 In Österreich zählen Fundmünzen zu den Bodendenkmälern. Dadurch besteht nach §8 des Bundesdenkmalgesetzes Meldepflicht, d.h. der Fund muss gemeldet werden, um die wissenschaftliche Bearbeitung zu ermöglichen.
1971 läuft und Fundmünzen in Form von Katalogen publiziert. Die Datenbank ist auch Online verfügbar und abrufbar17.

<table>
<thead>
<tr>
<th>Feldname</th>
<th>Datentyp</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>MZ_ID</td>
<td>Zahl</td>
<td>ID der Münze</td>
</tr>
<tr>
<td>PR_NAME</td>
<td>Text</td>
<td>Name des Prägeherrn</td>
</tr>
<tr>
<td>NOM_NAME</td>
<td>Text</td>
<td>Name bzw. Wert der Münze (Nominale)</td>
</tr>
<tr>
<td>MZST_NAME</td>
<td>Text</td>
<td>Münzstätte</td>
</tr>
<tr>
<td>DAT_VON</td>
<td>Zahl</td>
<td>Früheste Datierung</td>
</tr>
<tr>
<td>DAT_BIS</td>
<td>Zahl</td>
<td>Späteste Datierung</td>
</tr>
<tr>
<td>DAT_CA</td>
<td>Ja/Nein</td>
<td>Datierung exakt ja oder nein</td>
</tr>
<tr>
<td>GEWICHT</td>
<td>Zahl</td>
<td>Gewicht der Münze g</td>
</tr>
<tr>
<td>STST</td>
<td>Zahl</td>
<td>Stempelstellung</td>
</tr>
<tr>
<td>DM</td>
<td>Zahl</td>
<td>Durchmesser in mm</td>
</tr>
<tr>
<td>THES_FO_ID</td>
<td>Zahl</td>
<td>ID des Fundortes (Verknüpfung mit Tabelle der Fundorte)</td>
</tr>
<tr>
<td>F_ZEIT</td>
<td>Text</td>
<td>Datum des Fundes</td>
</tr>
<tr>
<td>Fundart</td>
<td>Text</td>
<td>Art des Fundes</td>
</tr>
</tbody>
</table>

Tabelle 3: Datenbanktabelle Fundmünzen (COINS)

Die Tabelle der Fundorte weist eine hierarchische Gliederung der Fundorte auf. So finden sich das Bundesland, die Bezirke und die Gemeinden sowie die Fundorte selbst in derselben Tabelle.

<table>
<thead>
<tr>
<th>Feldname</th>
<th>Datentyp</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>THES_REL_ID</td>
<td>Zahl</td>
<td>Fundort ID (Verknüpfung mit Tabelle der Fundmünzen)</td>
</tr>
<tr>
<td>PARENT_ID</td>
<td>Zahl</td>
<td>übergeordnete Fundort ID (THES_REL_ID)</td>
</tr>
<tr>
<td>TERM</td>
<td>Text</td>
<td>Bezeichnung des Fundortes</td>
</tr>
<tr>
<td>TYP</td>
<td>Text</td>
<td>Typ (Fundstelle, Stadt, Gemeinde Bezirk,…)</td>
</tr>
<tr>
<td>HIERARCHY_KEY</td>
<td>Text</td>
<td>hierarchischer Schlüssel</td>
</tr>
<tr>
<td>S_ORDER_KEY</td>
<td>Text</td>
<td>Sortierschlüssel für Thesaurus</td>
</tr>
</tbody>
</table>

Tabelle 4: Datenbanktabelle Fundorte (FO)

Wie Tabelle 2 zeigt, liegen die Fundorte nur als textliche Beschreibung vor. In den meisten Fällen handelt es sich dabei um die Angabe der Katastralgemeinde, in der die Münzen

17 http://www.oeaw.ac.at/numismatik/projekte/dfmroe/dfmroe.html

6.3 Bei den Analysen verwendete Daten

Neben den Daten aus der Münzdatenbank werden bei der Analyse weitere Geodaten verwendet. Diese Daten stammen aus unterschiedlichen Quellen und mussten demnach aneinander angeglichen werden. Als Referenzsystem wurde die UTM-Projektion ausgewählt, da dies das aktuell gültige Referenzsystem in Österreich ist.

6.3.1 Digitales Höhenmodell

\(^\text{18}\) ftp://e0srp01u.ecs.nasa.gov/srtm/version2/

19 http://csi.cgiar.org/index.asp
20 http://www.viewfinderpanoramas.org/dem3.html
6.3.2 Administrative Grenzen

Der Datensatz der Administrativen Einheiten stammt von der GIS-Abteilung des Landes Steiermark (GIS-Steiermark21). Diese können von der Homepage heruntergeladen werden. Die Administrativen Einheiten (Landesgrenzen, Bezirke, Gerichtsbezirke und Gemeinden) liegen als Polygone im ESRI Shapefile Format vor. Als zusätzliche Attribute weisen sie Namen, Fläche und Regionalcodes (Landes-, Bezirks- und Gemeindecodes) auf. Sie wurden für den Maßstab 1:15.000 generalisiert (Gerichtsbezirke für 1: 50.000)

21 http://www.gis.steiermark.at/
6.3.3 Siedlungen

Abbildung 18: Orte in der Steiermark

6.3.4 Flüsse

Auch der Datensatz der Hauptgewässer stammt von GIS-Steiermark und liegt im ESRI Shapefile Format vor. Die Liniendaten besitzen als Attribute lediglich die Namen der Flüsse. Sie wurden für den Maßstab 1:50.000 generalisiert.
6.3.5 Antike Wege

Die Daten wurden freundlicherweise vom Institut für Ur- und Frühgeschichte der Universität Wien zur Verfügung gestellt.
Abbildung 20: Antike Verkehrswege
GIS in der Numismatik
7 Datenaufbereitung

7.1 Verknüpfung der Münzdaten mit den Geometriedaten

Um die Fundortdaten mittels GIS zu verarbeiten, ist es in einem ersten Schritt notwendig, sie mit Geometriedaten, die in einem GIS-tauglichen Format vorliegen, zu verknüpfen. Obwohl die Fundortangaben im Allgemeinen nur den Namen der Katastralgemeinde aufweisen, in der die Münzen gefunden wurden, werden die Fundorte zunächst einmal mit den Punktdaten der Orte der Steiermark verknüpft. Werden die Fundmünzen im Maßstab der gesamten Steiermark betrachtet, ist das Darstellen der Fundorte als Punkte nicht die optimale Möglichkeit, da davon ausgegangen werden muss, dass der Fundort nicht dem Punkt im Datensatz entspricht.

Da die Münzdatenbank keine Gemeinde- oder Ortscodes enthält und die Namen der Fundorte nicht gleich geschrieben sind wie im Datensatz der GIS-Steiermark, müssen die beiden Datensätze manuell verknüpft werden. Es werden dazu die Orte im Shapefile mit dem entsprechenden Schlüssel (THES_REL_ID) aus der Münzdatenbank versehen. Bei manchen Fundorten finden sich Bezeichnungen, die eine genauere Verortung als die Katastralgemeinde erlauben (z.B. Flurnamen). Diese Namen werden in der digitalen Version der amtlichen Österreichischen Karte 1:50.000 (Austrian Map Fly 4.0) lokalisiert und die Koordinaten ausgelesen. Diese Punkte werden dann in den Ortsdatensatz eingefügt. Ein zusätzliches Attribut weist die neu digitalisierten Punkte als Fundorte aus.

Da die Anzahl der an einem Fundort gefundenen Münzen ebenfalls von Interesse ist, wurde in Microsoft Access eine entsprechende Abfrage erstellt. Das Ergebnis dieser Abfrage wird als Excel-Tabelle exportiert und kann über den Schlüssel THES_REL_ID mit der Geometrie der Fundorte verknüpft werden.

Das Ergebnis dieser Verknüpfung sind 119 Fundorte, an denen insgesamt 1520 Münzen gefunden wurden. Abbildung 21 zeigt die Fundorte der Münzen.
Hierbei zeigen sich besonders in Kalsdorf bei Graz und in geringerem Maß in Leibnitz und Gleisdorf deutliche Häufungen. Diese lassen sich durch die bekannte Bedeutung dieser Orte zur Römerzeit erklären: Bei Leibnitz befand sich die Stadt (municipium) Flavia Solva und auch bei Kalsdorf und Gleisdorf wurden Siedlungen (vici) gefunden. (LOHNER o.J.)

Abbildung 21: Fundorte in der Steiermark

7.2 Zusammenfügen der Höhenmodelle

Um mit einem Rasterdatensatz mit gleicher Auflösung über das gesamte Gebiet (das auch Bereiche außerhalb der Fläche des Landes Steiermark beinhaltet) arbeiten zu können, werden als nächster Schritt die beiden Datensätze zusammengeführt. Die Bereiche, die nicht vom Höhenmodell des BEV abgedeckt werden, werden aus den SRTM-Daten entnommen. Um die hohe Auflösung der BEV-Daten zu nutzen, wird ein Datensatz angestrebt, der eine 25m Auflösung bietet. Da die Bereiche, die aus dem SRTM-Datensatz verwendet werden, im Verhältnis zu den Bereichen des BEV-Datensatzes gering sind und sich zum größten Teil auf Bereiche mit geringen Höhenunterschieden beschränken, wird das SRTM-Höhenmodell auf die höhere Auflösung interpoliert.

7.3 Abgeleitete Daten

7.3.1 Hangneigung und Exposition

Die Hangneigung und die Exposition lassen sich in einem GIS aus einem digitalen Höhenmodell berechnen. Dabei wird die Hangneigung über die Höhendifferenz zu den umliegenden Rasterzellen berechnet. Es wird jeweils die benachbarte Zelle benutzt, die die größte Höhendifferenz zur bearbeiteten Zelle aufweist.

Der Algorithmus zur Berechnung der Exposition, also die Kompassrichtung, in die die Falllinie des Hanges zeigt, versucht eine Ebene durch die bearbeitete Zelle und ihre acht Nachbarn zu legen. Die Richtung der Ebene wird mittels einer Differentialgleichung bestimmt, bei der die Änderungen der Höhen in x-Richtung mit der Änderung der Höhe in y-Richtung verglichen wird. (ESRI 2008b, BURROUGH und MCDONNELL 1998, S. 190) daraus wird in einem weiteren Schritt die Exposition als Kompassrichtung bestimmt.

Abbildung 22: Raster der Hangneigung

Analog dazu erfolgt die Berechnung mit dem Befehl *ArcToolbox → Spatial Analyst Tools → Surface → Aspect*. Ebenen Stellen wird der Wert -1 zugewiesen.
7.3.2 Entfernungen

Da für die Modellierung auch die Entfernung von bestimmten topographischen Elementen wie Flüsse und Straßen interessant sind, werden auch Layer berechnet, die die Entfernung jeder Rasterzelle zum nächstgelegenen Element enthalten.

Für dieses Modell ist die euklidische Distanz ausreichend. Für eine genauere Modellierung wäre eine durch das Relief kostengewichtete Distanz möglich. Zur Berechnung der euklidischen Distanz wird der Befehl *ArcToolbox → Spatial Analyst Tools → Distance → Euclidean Distance* benutzt. Dies wird für die römischen Verkehrswege und die Flüsse durchgeführt.
Abbildung 24: Distanz zu Flüssen
8 Wo könnten Münzen sein? – Predictive Site Modelling

Der erste Schritt bei der Durchführung einer vorhersagenden Modellierung ist die Fragestellung, was überhaupt modelliert werden soll. Anhand dieser Fragestellung werden dann die Attribute bestimmt, die an der Modellierung teilnehmen sollen. Werden bei der Fragestellung die Möglichkeiten und Eigenschaften der Modellbildung berücksichtigt, kann die Frage folgendermaßen formuliert werden:

An welchen Orten im Untersuchungsgebiet besteht eine hohe Wahrscheinlichkeit, dass, basierend auf ihren geographischen Eigenschaften, antike Münzen gefunden werden können?

In diesem Fall sollen potenzielle Fundorte antiker Münzen in der Steiermark modelliert werden. Wichtig ist hierbei festzustellen, dass dies weder bedeutet, dass in diesem Bereich auf jeden Fall Münzen zu finden sind, noch, dass außerhalb der ausgewiesenen Bereich keine Münzen anzutreffen sind. Einzelfunde (um die es sich in der Steiermark vorwiegend handelt) sind Anzeichen dafür, dass eine Stelle begangen wurde.

8.1 Datenauswahl

Aufgrund der vorangegangenen Überlegungen (und aus vergleichbaren Untersuchungen in der Archäologie) werden folgende Attribute in den Modellierungsprozess mit einbezogen:

- Höhe
- Hangneigung
- Exposition
- Entfernung zu antiken Wegen
- Entfernung zu Flüssen

Obwohl die Exposition nach der Berechnung eigentlich ein metrischer Wert (Winkel in Grad) ist, macht es mehr Sinn, die Exposition als nominale Variable handzuhaben. Schließlich ist eine Süd-Exposition nicht mehr oder weniger als eine Nord-Exposition. Daher wird die Exposition in neun Klassen reklassifiziert. Diese Klassen spiegeln die Himmelsrichtungen und die Ebene wieder. (Tabelle 5)
102 GIS in der Numismatik

Grad	Himmelsrichtung	Klassencode
Eben (-1) | Eben | 0
0° - 22,5° und 337,5° - 360° | Norden | 1
22,5° - 67,5° | Nordosten | 2
67,5° - 112,5° | Osten | 3
112,5° - 157,5° | Süden | 4
157,5° - 202,5° | Süden | 5
202,5° - 247,5° | Südwesten | 6
247,4° - 292,5° | Westen | 7
292,5° - 337,5° | Nordwesten | 8

Tabelle 5: Reklassifizierung der Exposition

8.2 Stichprobe

Als Stichprobe für die Fundorte ($Y_i = 1$) werden die Punktdaten der Fundorte verwendet. Für die Hintergrundorte ($Y_i = 0$) werden zufällige Punkte gewählt. Da der Datensatz der Fundorte 119 Orte enthält, werden ebenfalls 119 Hintergrundorte bestimmt. Die Hintergrundorte werden in den gleichen Datensatz eingefügt, zur Unterscheidung zwischen Fundorten und Hintergrundorten wird ein Datenfeld Y eingefügt, das für Fundorte auf 1 und für Hintergrundorte auf 0 gesetzt wird.

Abbildung 25: Fundorte und Hintergrundorte

Da jedoch zusätzliche Attribute der Punkte (wie das Attribut Y, das für die weitere Analyse erforderlich ist) in der Datentabelle nicht erfasst werden, müssen diese zunächst noch über die Join-Funktion verknüpft werden (Das MASK-Feld in der durch den Befehl Sample erzeugten Tabelle entspricht der ObjectID des Shapefiles) und werden dann der Datentabelle hinzugefügt.

Diese Datentabelle kann nun als dBase-Datei exportiert und in SPSS 17 importiert werden.

Die Qualität des Modells hängt sehr stark von der Stichprobe ab. Einerseits spielt es eine Rolle, ob die Attributwerte an den Orten, an denen sie gemessen wurden, korrekt sind, aber noch mehr davon, ob sie an den richtigen Orten gemessen wurden. Dieses Problem tritt bei den vorliegenden numismatischen Daten auf, deren Lagegenauigkeit nicht sehr gut ist. Es sind eben keine exakten Fundortangaben vorhanden, es ist also geradezu unausweichlich, die Attributwerte an den falschen Orten zu messen.

8.3 Signifikanztests

Zunächst wird jede Variable auf ihr Verteilung untersucht. Je nachdem, ob sie normalverteilt ist oder nicht, kommen in weiterer Folge unterschiedliche Testverfahren zum Einsatz.
Ob eine Variable normalverteilt ist oder nicht, wird mit dem Kolmogoroff-Smirnow-Test überprüft. Dabei gilt die Nullhypothese, dass eine Normalverteilung vorliegt. (Bei sämtlichen Test wird ein Signifikanzniveau von 5% angenommen.) Dieser Test wird in SPSS mit dem Befehl Analysieren → Deskriptive Statistiken → Explorative Datenanalyse durchgeführt. Dabei wird unter der Option Diagramme das Kästchen Normalverteilungsdiagramme mit Tests angekreuzt.

Das Ergebnis der Überprüfung auf Normalverteilung ergibt, dass alle Variablen signifikant von einer Normalverteilung abweichen (siehe Tabelle 6).

<table>
<thead>
<tr>
<th>Tests auf Normalverteilung</th>
<th>Kolmogorov-Smirnov²</th>
<th>Shapiro-Wilk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statistik</td>
<td>df</td>
</tr>
<tr>
<td>Höhe</td>
<td>,195</td>
<td>239</td>
</tr>
<tr>
<td>Hangneigung</td>
<td>,164</td>
<td>239</td>
</tr>
<tr>
<td>Exposition</td>
<td>,123</td>
<td>239</td>
</tr>
<tr>
<td>Entfernung von Fluss</td>
<td>,171</td>
<td>239</td>
</tr>
<tr>
<td>Entfernung von röm. Straße</td>
<td>,121</td>
<td>239</td>
</tr>
</tbody>
</table>

a. Signifikanzkorrektur nach Lilliefors

Tabelle 6: Ergebnis des Tests auf Normalverteilung

Der nächste Schritt ist die Untersuchung, ob die jeweiligen variablen Signifikant zwischen Fundorten und Hintergrundorten unterscheiden.

Dabei wird die Nullhypothese aufgestellt, dass die Attributwerte zwischen Fundorten und Hintergrundorten gleich verteilt sind.

Für metrische Variablen kommt der Mann-Whitney-U-Test und für nominale Variablen der Chi²-Test zum Einsatz. (WARREN und ASCH 2000, S. 15)

Das Ergebnis dieses Tests zeigt, dass bis auf die Variable Entfernung von römischen Straßen alle anderen signifikant zwischen Fund- und Hintergrundorten unterscheiden. (siehe Tabelle 7)
Wo könnten Münzen sein? – Predictive Site Modelling

<table>
<thead>
<tr>
<th>Statistik für Test(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
</tr>
<tr>
<td>Manh-Whitney-U</td>
</tr>
<tr>
<td>Wilcoxon-W</td>
</tr>
<tr>
<td>Z</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
</tr>
</tbody>
</table>

\(a\). Gruppenvariable: Y

Tabelle 7: Testergebnisse für metrische Variablen

Der Chi\(^2\)-Test untersucht den Zusammenhang zwischen zwei nominal skalierten Variablen. In diesem Fall wird untersucht, ob ein statistischer Zusammenhang zwischen der Exposition und der Variable Y (also Fundort oder Hintergrundort) existiert. Auch hier ist der Zusammenhang signifikant. (siehe Tabelle 8)

<table>
<thead>
<tr>
<th>Chi-Quadrat-Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wert</td>
</tr>
<tr>
<td>Chi-Quadrat nach Pearson</td>
</tr>
<tr>
<td>Likelihood-Quotient</td>
</tr>
<tr>
<td>Zusammenhang linear-mitlinear</td>
</tr>
<tr>
<td>Anzahl der gültigen Fälle</td>
</tr>
</tbody>
</table>

\(a\). 0 Zellen (0%) haben eine erwartete Häufigkeit kleiner 5. Die minimale erwartete Häufigkeit ist 8,96.

Tabelle 8: Testergebnis für die Exposition (Chi\(^2\)-Test)

8.4 Modellbildung

Aus den vorhergehenden Tests folgt, dass von den ursprünglichen Variablen, die für das Modell ausgewählt wurden, folgende Variablen in den Modellierungsprozess mit einbezogen werden:

- Höhe
- Hangneigung
- Exposition
• Entfernung zu Flüssen

Um in eine Trainings- und eine Teststichprobe zu unterteilen, wurde mittels Zufallsgenerator eine Variable erstellt, die jedem Fall entweder 0 oder 1 zuweist. So wurden 130 Fälle in die Modellbildung einbezogen, 109 Fälle dienten als Teststichprobe. Die logistische Regression wurde mit dem Befehl Analysieren → Regression → Binär logistisch aufgerufen.

Als Methode zur Modellbildung wurde die bedingte Vorwärtsmethode gewählt, bei der die Variablen sukzessive ins Modell integriert werden. Mit der Auswahlvariable wird die Trainingsstichprobe ausgewählt. Bei der Option Kategorial wird festgelegt, in welcher Form nominale Variablen in Designvariablen kodiert werden. Hier wurde Indikator gewählt, was dem reference cell coding entspricht. Als Referenz wurde dabei die Kategorie Eben gewählt.

Bei der Modellbildung wurden in zwei Schritten nur die Variablen Höhe und Hangneigung in das Modell aufgenommen. Sowohl die Exposition als auch die Entfernung zu Flüssen ergaben keine signifikante Verbesserung des Modells. (Ein Versuch mit der Rückwärtsmethode kam zum gleichen Ergebnis)
Wo könnten Münzen sein? – Predictive Site Modelling

Variablen in der Gleichung

<table>
<thead>
<tr>
<th>Schritt 1</th>
<th>Variable</th>
<th>Regressionskoeffizient B</th>
<th>Standardfehler</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schritt 1</td>
<td>H_Neigung</td>
<td>-0.141</td>
<td>0.028</td>
<td>25.328</td>
<td>1</td>
<td>0.000</td>
<td>0.868</td>
</tr>
<tr>
<td>Schritt 1</td>
<td>Konstante</td>
<td>1.436</td>
<td>0.305</td>
<td>22.158</td>
<td>1</td>
<td>0.000</td>
<td>4.203</td>
</tr>
<tr>
<td>Schritt 2</td>
<td>Höhe</td>
<td>-0.002</td>
<td>0.001</td>
<td>8.348</td>
<td>1</td>
<td>0.004</td>
<td>0.998</td>
</tr>
<tr>
<td>Schritt 2</td>
<td>H_Neigung</td>
<td>-0.102</td>
<td>0.031</td>
<td>11.075</td>
<td>1</td>
<td>0.001</td>
<td>0.903</td>
</tr>
<tr>
<td>Konstante</td>
<td>2.316</td>
<td>0.447</td>
<td>26.852</td>
<td>1</td>
<td>0.000</td>
<td>10.132</td>
<td></td>
</tr>
</tbody>
</table>

a. In Schritt 1 eingegebene Variablen: H_Neigung.
b. In Schritt 2 eingegebene Variablen: Höhe.

Tabelle 9: Regressionskoeffizienten und Variablen des Modells

Die daraus resultierende Modellgleichung (Score-Komponente) lautet:

\[V = 2.316 - 0.102 \cdot \text{Höhe} - 0.002 \cdot \text{Höhe} \]

8.5 Modellgüte und prädiktive Effizienz

<table>
<thead>
<tr>
<th>Hosmer-Lemeshow-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schritt</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

Tabelle 10: Hosmer-Lemeshow-Test

Die Klassifizierungstabelle gibt Auskunft über die Rate der korrekten Klassifikation (Correct Classification Rate) (BALTIES-GÖTZ 2008, S. 36) und ist Ergebnis einer Kreuzvalidierung. Dabei wird angegeben, wie viele der Fälle durch das Modell richtig vorhergesagt werden. Dabei werden die Trainingsstichprobe (Ausgewählte Fälle) und die Teststichprobe (Nicht ausgewählte Fälle) separat aufgelistet. (siehe Tabelle 11)
Das vorliegende Modell erreicht einen Gesamtprozentsatz von 76,9% bei der Trainingsstichprobe und 76,1% bei der Teststichprobe. Interessant ist hierbei jedoch, dass die Fundorte (Y=1) deutlich besser vorhergesagt werden, als die Hintergrundorte (Y=0), und zwar 85,3% in der Trainingsstichprobe und sogar 88,2% in der Teststichprobe.

Klassifizierungstabelle

<table>
<thead>
<tr>
<th></th>
<th>Vorhergesagt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ausgewählte Fälle</td>
</tr>
<tr>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>Beobachtet</td>
<td></td>
</tr>
<tr>
<td>Schritt 2 Y 0</td>
<td>42</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Gesamtprozentsatz</td>
<td></td>
</tr>
</tbody>
</table>

a. Ausgewählte Fälle Auswahl EQ 1
b. Nicht ausgewählte Fälle Auswahl NE 1
c. Der Trennwert lautet ,500

Tabelle 11: Klassifizierungstabelle

8.6 Anwendung der Regressionsgleichung im GIS

Die aufgestellte Regressionsgleichung wird nun im GIS umgesetzt. In ArcGIS wird der Score V mithilfe des Kartenalgebra-Moduls *Spatial Analyst → Raster Calculator* berechnet. Die entsprechende Syntax lautet:

\[
\text{[score]} = -0.102 \times \text{[neigung]} - 0.002 \times \text{[höhe]} + 2.316
\]

Aus diesem Score wird nun die Wahrscheinlichkeit für das Vorhandensein von Fundmünzen berechnet:

\[
\text{[modell]} = \frac{\exp([\text{score}])}{(1 + \exp([\text{score}]])}
\]

Das Ergebnis ist eine Karte, in der die Wahrscheinlichkeiten für Münzfunde dargestellt werden. Hierbei sind Bereich mit hohen Fundwahrscheinlichkeiten in Rot eingetragen, Bereiche, in denen die Wahrscheinlichkeit eher gering ist, sind blau. (siehe Abbildung 28, Anhang Seite 137)
Wo könnten Münzen sein? – Predictive Site Modelling

Abbildung 28: Modell der Wahrscheinlichkeit für Münzfunde (eine größere Abbildung dieser Karte findet sich im Anhang auf Seite 137)

8.7 Beurteilung des Modells

Mit diesem Wert als Schwellenwert lässt sich der Raster reklassifizieren, sodass ein Modell entsteht, das nur mehr zwei Werte hat: hohe Wahrscheinlichkeit und niedrige Wahrscheinlichkeit.

Abbildung 29: Vorhersagegenauigkeit des Modells

Abbildung 30: Generalisiertes Vorhersagemodell für Münzfunde
8.8 Interpretation der Ergebnisse

Obwohl das Modell formal die Kriterien für ein gutes Modell erfüllt, so ist es doch mit einer gewissen Vorsicht zu interpretieren. Wie bereits erwähnt, wurden nahezu alle Fundorte mit den Zentren der Hauptorte der jeweiligen Katastralgemeinde gleichgesetzt, was gerade bei dieser Art der Modellierung problematisch ist. Bereits geringe Änderungen der Lage können starke Einflüsse auf die gemessenen Landschaftsattribute nach sich ziehen.

Aus theoretischer Sicht könnte dem Modell Naturdeterminismus vorgeworfen werden, da sich die verwendeten Attribute nur auf die Naturlandschaft, nicht aber auf die soziale Landschaft beziehen. Da solche Überlegungen in der Numismatik jedoch zur Zeit nicht angestellt werden, muss das Modell auf diese naturdeterministischen Auslegung beschränkt bleiben.

Dennoch zeigt dieses Modell, dass diese Prozeduren in der Numismatik, zumindest die theoretischen Überlegungen, durchaus eine Funktion haben können. Die endgültige Beurteilung des Modells können jedoch nur entsprechende aufwendige Feldforschungen ermöglichen.
GIS in der Numismatik
9 Wie kamen die Münzen dorthin? – Zugänglichkeitsanalyse, Least Cost Path

Das Modell des least cost path ist deshalb jedoch nicht ganz unbrauchbar für die Numismatik. Statt zu versuchen, den genauen Weg einzelner Münzen zu modellieren, könnte mithilfe dieser Analysen generelle Verbreitungstendenzen in der Zirkulation bestimmter Münztypen oder Emissionen modelliert werden. Diese Modelle können auch Hinweise auf Handelsrouten geben, für die es sonst nur wenige Hinweise gibt.

Für diese Untersuchung wird davon ausgegangen, dass die Münzen von der Stadt Flavia Solva, die in der Nähe von Leibnitz gefunden wurde, in die weitere Umgebung getragen wurde. Als Zielorten werden vier entlegene Fundstellen ausgewählt, die hier die Möglichkeiten dieser Analyse für die Numismatik aufzeigen sollen. Die Fragestellung wird daher folgendermaßen formuliert:

Wie verlaufen die energieeffizientesten Routen von Flavia Solva zu den entlegenen Fundorten Gams, Pyhrn, Weisenbach und St. Nikolai, unter der Annahme, dass diese Routen zu Fuß zurückgelegt werden?

Abbildung 31: Ablaufschema einer least cost path Analyse
9.1 Datenauswahl

Zunächst wird eine Auswahl getroffen, welche Daten für die Ermittlung eines kostengünstigsten Weges von Bedeutung sind.

Das wesentlichste Element in diesem Fall ist die Hangneigung. Ein weiteres Element, das in solchen Analysen oft benutzt wird, ist die Bodenbedeckung. Für diese Untersuchung wird jedoch die Bodenbedeckung nicht benutzt, da davon ausgegangen werden muss, dass diese sich seit der Antike in Österreich stark verändert hat. In Ermangelung genauerer Daten, welche Flüsse an welchen Stellen leichter oder schwerer zu überqueren sind, werden die Flüsse (der Datensatz beinhaltet ohnehin nur größere Gewässer) als Barrieren (mit sehr hohem Kostenfaktor) in die Berechnung integriert. Für eine weitere Analyse werden zusätzlich die römischen Straßen als begünstigender Faktor (ebenfalls isotrop) mit einbezogen.

Aufgrund der Geländesituation im alpinen Bereich wie z.B. Felsen oder Karstformen, wird angenommen, dass auch hier die Begehbarkeit erschwert wird. Als Grenze für diesen Bereich wird die allgemeine Waldgrenze angenommen, die in den Ostalpen bei ungefähr 1800m Seehöhe liegt. (MAYER 1974)

Somit bilden die Hangneigung, Höhe, Gewässer und römische Straßen die Daten, die für die Berechnung der Kosten herangezogen werden.

Abbildung 32: Start- und Zielorte für least cost paths
Als Ausgangspunkt für die Wege wird Flavia Solva, einer Siedlung im heutigen Gemeindegebiet von Wagna bei Leibnitz, angenommen. Sie lag im keltischen Königreich Noricum, das ab 15 v. Chr. römische Provinz wurde. Um 70 n. Chr. erhielt Flavia Solva römisches Stadtrecht und wurde damit zum municipium. Als solches war sie die wichtigste Siedlung auf dem Gebiet der heutigen Steiermark. (MARKTGEMEINDE WAGNA 2007)

Als Zielpunkte werden vier Münzfundorte in der Obersteiermark ausgewählt, Gams, Pyhrn, Weißenbach und St. Nikolai. (siehe Abbildung 32)

9.2 Isotrope Kostenfaktoren

Isotrope oder richtungsunabhängige Kostenfaktoren in diesem Modell sind die Höhe und die Flüsse. Die Flüsse sind nicht isotrop im eigentlichen Sinn, es gibt schon einen Unterschied, ob der Fluss gequert wird, ob er flussauf- oder flussabwärts begangen wird. Da die Flüsse durch sehr hohe Kosten quasi als Barrieren modelliert werden, sollte der Algorithmus ohnehin den Pfad so wählen, dass er den Fluss höchstens quert und nicht im Fluss verläuft.

Um die Flüsse in die Kostenberechnung mit einbeziehen zu können, müssen die Daten, die als Vektoren vorliegen, in Rasterdaten umgewandelt werden. Dies geschieht mit der Funktion Spatial Analyst → Convert → Feature to Raster. Anschließend wird der Raster reklassifiziert, den Flüssen wird der Kostenfaktor 10 zugewiesen, allen anderen Gebieten 1.

Für die Höhe wird mit dem raster calculator ein neuer Raster erstellt. Dieser wird mit einem conditional statement so reklassifiziert, dass alle Bereiche bis 1800m den Wert 1 zugewiesen bekommen, alle anderen Werte bekommen nach folgender Formel Kosten zugewiesen:

\[Kosten = 1 + \frac{Höhe - 1800}{200} \]

Wobei hier das Ansteigen der Kosten über den Wert 200 im Nenner gesteuert wird.

Der Befehl dazu im raster calculator lautet:

\[
[kosten]=\text{con} ([höhe] \leq 1800, 1, (1 + (([höhe] - 1800) / 200)))
\]

Die endgültige cost of passage map für die isotropen kosten wird durch einfache Multiplikation der beiden Raster im raster calculator erstellt.
In einer weiteren cost of passage map werden zusätzlich noch die römische Straßen als begünstigender Faktor integriert. Dazu wird den Straßen ein Kostenfaktor von 0,5 zugewiesen.

9.3 Anisotrope Kostenfaktoren

Als anisotroper oder richtungsabhängiger Faktor kommt bei dieser Untersuchung nur die effektive Hangneigung zum Einsatz. Die effektive Hangneigung wird in ArcGIS im Modul path distance über die Komponente vertical factor realisiert. Der Eingaberaster für diese Funktion ist das Höhenmodell, nicht der abgeleitete Hangneigungs raster.

Für den vertical factor graph wird eine Wertetabelle angelegt, die aus der Gleichung in Kapitel 5.4.3 abgeleitet ist. Dazu wird die Gleichung etwas abgeändert, da der tatsächliche Energieaufwand in Watt für diese Untersuchung nicht relevant ist. Die Werte werden dahingehend normiert, dass die Werte bei einer Hangneigung von +40° und -50° (also symmetrisch um -5°, der Hangneigung mit dem geringsten Energieaufwand) einen Kostenfaktor von 100 aufweisen. Zusätzlich wird noch 1 addiert, sodass der Kostenfaktor
Wie kamen die Münzen dorthin? – Zugänglichkeitsanalyse, Least Cost Path

mindestens 1 ist. Die Gleichung, die für die Erstellung der Wertetabelle benutzt wird ist damit (wobei Gr die Hangneigung in Grad ist):

$$M = 1 + |\tan(Gr + 5^\circ) \times 100|$$

Die Wertetabelle wird in 2,5-Grad Schritten angegeben, von -50° bis +40°. Hangneigungen, die außerhalb dieses Wertebereichs liegen, werden über den Wert -1 unendlich hohe Kosten zugewiesen. Treten Hangneigungen auf, die zwischen den Schritten liegen, werden die Zwischenwerte linear interpoliert.

9.4 Accumulated cost surface

Es wird zunächst ein Raster erstellt, der nur eine Zelle mit einem Wert enthält, nämlich den Ort Wagna. Allen anderen Zellen wird „NoData“ zugewiesen. Dieser Raster dient als source raster.

Mit dem Modul ArcToolbox → Spatial Analyst Tools → Distance → Path Distance wird der Raster mit den akkumulierten Kosten und der Backlink-Raster berechnet. Für den input cost raster wird die isotrope cost of passage map verwendet. Sowohl für den input surface raster als auch für den input vertical raster wird das Höhenmodell verwendet, als vertical factor wird die Wertetabelle benutzt. Die horizontal factor parameters bleiben in diesem Fall leer.

Das Ergebnis nach dieser aufwendigen Berechnung ist eine accumulated cost surface und ein backlink raster, in dem für jede Zelle die Richtung angegeben wird, aus der die Zelle mit den geringsten Kosten erreicht wird.

Diese Berechnung wird zweimal durchgeführt, einmal mit der cost of passage map, in der die römischen Straßen berücksichtigt sind, und einmal mit der cost of passage map ohne Straßen als Kostenfaktor.
Abbildung 34: Accumulated cost surface (Die römische Straßen sind hier berücksichtigt.)

9.5 Least cost path

Ist eine accumulated cost surface und ein backlink raster erstellt, können nun die kostengünstigsten Pfade vom Startpunkt, der im vorhergehenden Schritt bestimmt wurde, zu einem oder mehreren Zielpunkten bestimmt werden. Mit dem Modul ArcToolbox → Spatial Analyst Tools → Distance → Cost Path werden unter Angabe der accumulated cost surface und des backlink rasters die kostengünstigsten Wege zu den angegebenen Zielpunkten berechnet.

Je nachdem, ob die bekannten antiken römischen Verkehrswege in die Kostenberechnung einbezogen wurden, unterscheiden sich die gefundenen Pfade. Wie zu erwarten war, folgen die Pfade über große Teile der Strecken den römischen Straßen, wenn diese in die Kostenberechnung einbezogen wurden (Abbildung 35 unten). Allerdings fallen die Wege vor allem in Gebieten mit starkem Relief mit den römischen Verkehrswegen zusammen, auch wenn diese in der Kostenberechnung nicht berücksichtigt wurden. (Abbildung 35 oben)

Eine Karte in größerem Format findet sich im Anhang. (Seite 139)
Wie kamen die Münzen dorthin? – Zugänglichkeitsanalyse, Least Cost Path

9.6 Interpretation des Ergebnisses

Die Ergebnisse zeigen, dass least cost paths dazu genutzt werden können, um einen möglichen Weg der Münzen von ihrem Ursprungsort zu ihrem Fundort zu modellieren. Auch zeigt es, wie Münzen als Quellen für nicht-numismatische Fragestellungen genutzt werden können. So können Münzen, gemeinsam mit anderen Quellen, Auskunft über Handelsrouten geben. So zeigt Abbildung 36, dass entlang der berechneten Routen (z.B. Kainachtal) mehrere Münzen gefunden wurden, was darauf schließen lässt, dass diese Wege tatsächlich begangen wurden, auch wenn sich sonst bis jetzt keine archäologischen Hinweise darauf finden.

Abbildung 36: Münzfunde, römische Straßen und die berechneten least cost paths
Wo wurden die Münzen benutzt? – Münzumlau und Zirkulationsgebiete

Das Zirkulationsgebiet von Münzen ist das Gebiet, in dem die Münzen in Umlauf waren. Für einen bestimmten Münztyp oder eine Münzgruppe umfasst das Zirkulationsgebiet den Prägeort, die Orte an denen mit den Münzen gehandelt wurde, die Wege auf denen sie transportiert wurden und die Verlustorte der Münzen.

In den vorhergehenden Kapiteln wurde bereits auf die Schwierigkeiten der Bestimmung der einzelnen Komponenten eingegangen, wobei sich die Orte, an denen die Münzen nicht dauerhaft verblieben sind, am schwierigsten festmachen lassen. Neben räumlichen Faktoren (Zirkulationsgebiete) hat der Münzumlau auch zeitliche Gesichtspunkte (coin drift, Zirkulationsdauer).

10.1 Komponenten des Modells

Da die Prägeorte der gefundenen Münzen entweder nicht genau bekannt sind oder außerhalb des Untersuchungsgebietes liegen, beschränkt sich dieses Modell auf die Verlustorte (entsprechen den Fundorten) und die Handelswege.

Um die Handelswege zu modellieren, wird auf least cost paths zurückgegriffen. Es wird die accumulated cost surface verwendet, die die Kostenfaktoren für die römischen Straßen beinhaltet. Als Zielorte werden alle Fundorte in der Steiermark ausgewählt. Als Startpunkt dient wieder Flavia Solva.

Für den Hauptteil des Zirkulationsgebietes wird das Modell benutzt, das das Ergebnis der vorhersagenden Fundortmodellierung ist. Es kommt die generalisierte Version zum Einsatz,
die nur zwischen hoher und niedriger Wahrscheinlichkeit unterscheidet und die in Vektordaten umgewandelt wurde. (siehe Abbildung 30)

Die Komponenten werden nun mit der Overlay-Funktion ArcToolbox → Analysis Tools → Overlay → Union vereinigt. Das Ergebnis ist eine Fläche, die als Zirkulationsgebiet römischer Münzen in der Steiermark interpretiert werden kann.

10.2 Vereinfachtes Modell des Zirkulationsgebietes

Die Erstellung des vereinfachten Modells des Zirkulationsgebietes römischer Münzen in der Steiermark geschieht mit einfachen Verschneidungsfunktionen des GIS. Dabei wird zuerst ein Puffer von 5km um die Fundorte gelegt. Die so entstehenden Flächen werden anschließend mit der Funktion ArcToolbox → Data Management Tools → Generalization → Aggregate Polygon zu größeren Flächen aggregiert.

Als letzter Schritt wird die Höhe des höchsten Fundortes festgestellt. Diese beträgt in diesem Fall 1128m. Das Höhenmodell wird reklassifiziert, so dass Bereiche, die höher als 1128m liegen, von tiefer liegenden Bereichen getrennt werden können. Die Bereiche über 1128m werden in einer Vektordatensatz konvertiert. Mit der Funktion ArcToolbox → Analysis Tools
→ Overlay → Union werden die Datensätze verschchnitten und anschließend alle Bereiche entfernt, die höher als 1128m liegen.

Abbildung 38: Vereinfachtes Modell des Zirkulationsgebietes, das mit Hilfe von Overlay-Operationen erstellt wurde

10.3 Bewertung der Modelle

Die Aussagekraft der beiden Modelle ist sehr gering, da sie in Ermangelung eines theoretischen Hintergrundes ohne einen solchen erstellt wurden. Die Distanzen, die für die Pufferbildung und die Aggregation gewählt wurden, sind willkürlich gewählt. Zudem kann die Komplexität der Münzzirkulation mit diesen Ansätzen nicht erfasst werden.

Der Informationsgewinn gegenüber der Darstellung der einzelnen Fundorte (Abbildung 21) ist vernachlässigbar.
11 Zusammenfassung und Ausblick

Die Ausführungen der vorangegangenen Kapitel zeigen das Potenzial der Zusammenarbeit zwischen der Geoinformatik und Numismatik. Sie zeigen aber auch, welche Schwierigkeiten dabei auftreten. Zum Abschluss der Untersuchung soll nun noch ein Resümee gezogen werden und gleichzeitig ein Ausblick auf mögliche weitere Forschung in diesem Bereich gegeben werden.

11.1 Beantwortung der Fragestellung

Zunächst soll die Fragestellung aus der Einleitung noch einmal wiederholt werden.

Wie stellt sich die Datenlage und Datenqualität der numismatischen Daten dar? Welche Probleme ergeben sich für den Einsatz in geographischen Informationssystemen?

Wie lassen sich geographische Informationssysteme in der Numismatik einsetzen?

- Können weitere potenzielle Fundstellen (Fundhoffnungsgebiete) anhand der bekannten Fundstellen modelliert werden?
- Wie kamen Münzen in entlegene Gegenden?
- Ist daraus eine Modellierung der Zirkulationsgebiete möglich und sinnvoll?

11.1.1 Datenlage und Datenqualität

Die meisten Anwendungen geographischer Informationssysteme benötigen genaue und präzise Daten. Selbst wenn die Daten nicht die erforderliche Genauigkeit aufweisen, behandeln die Programme und Algorithmen die Daten so, als wären sie genau und liefern dementsprechende Ergebnisse. Es ist also in der Verantwortung des Benutzers, zu beurteilen, ob die Qualität der vorhandenen Daten für die geplante Analyse geeignet sind.

Obwohl die Daten von Fundmünzen in immer größerem Umfang in Datenbanken zu Verfügung stehen, wurde im Rahmen dieser Untersuchung auch klar, dass die Präzision und Genauigkeit der raumbezogenen Daten nicht so hoch ist, wie es für eine Verwendung in geographischen Informationssystemen wünschenswert wäre. Dieser Umstand hat mehrere Gründe. Zum einen besteht in der Numismatik (zumindest bis jetzt) nicht der Bedarf nach genaueren Daten. Für die Methoden der Numismatik ist die vorhandene Genauigkeit ausreichend. Zum anderen handelt es sich bei Fundmünzdatenbanken meist um historisch
gewachsene Datenbestände, die über einen langen Zeitraum hinweg entstanden sind. Sie gehen in den meisten Fällen auf eine Zeit zurück, in der es keine Computer gab, und die Daten können zum Teil nur aus älteren Fundpublikationen entnommen werden. Zudem lag lange Zeit das Hauptinteresse der Numismatik am Objekt selbst, weniger an der Funktion der Münzen in einem räumlichen Kontext.

So finden sich oft nur ungefähre Ortsangaben, ältere Funddokumentationen sind zum Teil unvollständig, weil nur wenige Stücke von Hort- oder Schatzfunden erfasst wurden. Es sind die Daten demnach nicht nur ungenau, es ist auch kaum möglich, eine quantitative Einschätzung der Genauigkeit zu treffen.

Es ist jedoch mit einigem Aufwand möglich, die Daten in einem GIS zu verwenden, wie diese Untersuchung zeigt. Die daraus abgeleiteten Modelle und Analyseergebnisse müssen aber mit entsprechender Sorgfalt interpretiert werden.

11.1.2 Der Einsatz von GIS in der Numismatik

Konkret wurde dabei drei numismatische Fragestellungen untersucht. Der Erfolg der GIS Analysen war jedoch nicht in allen drei Fällen gleich erfolgreich.

Können weitere potenzielle Fundstellen (Fundhoffnungsgebiete) anhand der bekannten Fundstellen modelliert werden?

Mittels *predictive site modelling* wurde ein Modell erstellt, das anhand bekannter Fundstellen weitere potenzielle Münzfundstellen modellierte. Das Modell wurde sowohl intern mit statistischen Methoden als auch extern mit einer Teststichprobe getestet. Es erfüllt damit die formalen Kriterien für ein aussagekräftiges Modell.

Bei der Interpretation des Modells ist jedoch die Datenqualität der Ausgangsdaten zu berücksichtigen. Die Fundorte wurden mit den Zentren der Hauptorte der jeweiligen Katastralgemeinde gleichgesetzt, was jedoch mit hoher Wahrscheinlichkeit nicht der tatsächlichen Fundsituation entspricht. Dies hat zur Folge, dass die Werte der Landschaftsattribute wie Höhe und Hangneigung, an den falschen Stellen gemessen wurden. Diese Art der Modellierung basiert jedoch auf den gemessenen Werten an bekannten Orten, und weist Orte mit ähnlichen Attributswerten als potenzielle Fundorte aus. Somit setzt sich
Zusammenfassung und Ausblick

Wie kamen Münzen in entlegene Gegenen?

Ist aus den potenziellen Fundorten und den least cost paths eine Modellierung der Zirkulationsgebiete möglich und sinnvoll?

11.2 Konsequenzen

Die Situation raumbezogener Daten in der Numismatik hat weitreichende Folgen für den Einsatz von geographischen Informationssystemen in dieser Wissenschaft. Es ist nicht zu

Dieses Problem tritt jedoch auch in anderen kulturhistorischen Disziplinen wie der Archäologie auf, daher sind verschiedenen Lösungsansätze in Entwicklung. Um zu entscheiden, welche dieser Lösungsansätze für die Numismatik sinnvoll wären, sind weitere Untersuchungen notwendig.

Die Möglichkeiten der Modellierung, die ein GIS bietet, sind sehr vielfältig. Um diese Möglichkeiten zielführend im Wissenschaftsbetrieb der Numismatik einzusetzen reicht es jedoch nicht, ein paar Daten zu digitalisieren und beliebige Modelle zu produzieren. Es ist notwendig, für diese Modelle ein modernes (wissenschafts-)theoretisches Fundament zu schaffen.

Es soll auch nicht verschwiegen werden, das der Aufbau eines GIS mit Kosten verbunden ist. Neben der eigentlichen Hardware und Software fallen auch für Daten und vor allem Ausbildung („Brainware“) Kosten an.

11.3 Ausblick

Es wurde gezeigt, dass geographische Informationssysteme in der Numismatik durchaus ihren Platz haben, gleichzeitig wurden aber auch Probleme aufgezeigt. Diese offenen Frage, wie die Datensituation oder die Beschränkung der Modelle auf die naturräumlichen Gegebenheiten, bieten sich für weitere Forschungen im interdisziplinären Bereich zwischen Geoinformatik, GI Science und Numismatik an.

Einen möglichen Lösungsansatz für die Datenproblematik könnte die Fuzzy-Logik liefern, also die Modellierung unscharfer Daten. Um dem Vorwurf des Naturdeterminismus zu begegnen, könnten Möglichkeiten gesucht werden, wie die soziale Landschaft in die Modellierung mit einzubeziehen. Ebenfalls von Interesse von Seiten der Numismatik wäre eine Applikation, die bisherige Münzdatenbanken mit einer kartographischen Darstellung verknüpfen. Eine solche Applikation könnte einerseits die Ergebnisse von Datenbankabfragen
in einer Karte darstellen, andererseits könnten über Auswahlwerkzeuge räumliche Abfragen erstellt werden.

Mit der vorliegenden Arbeit werden geographische Informationssysteme aus Sicht der Geoinformatik als potenzielles Werkzeug für die Numismatik präsentiert. Wie und in welchem Ausmaß die Numismatik dieses Werkzeug in Zukunft nutzt, müssen letztendlich die Numismatiker entscheiden.
GIS in der Numismatik
Literaturverzeichnis

ESRI (2008b), *ArcGIS Desktop Help 9.3*.

HOWGEGO, C. (2000), Geld in der antiken Welt: was Münzen über Geschichte verraten, Theiss, Stuttgart.

Leichteste Kostpfade und römische Straßen

Legende

- Landeshauptstadt
- Fundorte
- römische Straßen
- Pfad
- Pfad (Städte in Kosten mit einbezogen)

Lebenslauf

Markus Breier
Geboren am 21. 09. 1976 in Wien

Ausbildung
1983 - 1986 Volksschule Wien 9
1986 – 1995 AHS Bundesrealgymnasium XVIII Schopenhauerstraße
1995 Matura mit gutem Erfolg bestanden

Berufliche Tätigkeit
1994-1995, 1997 Ferialpraktikum bei der Post
2001 Promotion-Tätigkeit für Mobilkom Austria
2005-2007 Tutor für Lehrveranstaltungen im Bereich Geoinformation und GIS an der Universität Wien, Institut für Geographie und Regionalforschung
2007-andauernd Projektmitarbeiter (FWF-Projekt „Cultural History of the Western Himalaya from the 8th Century“) an der Universität Wien, Institut für Geographie und Regionalforschung, Tätigkeitsbereich Kartographie und Geodaten
2009 Tutor für die Lehrveranstaltung „Anwendungsbereiche der thematischen Kartographie“ an der Universität Wien, Institut für Geographie und Regionalforschung
Eidesstattliche Erklärung

Ich versichere:

- dass ich die Diplomarbeit selbstständig verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt und mich auch sonst keiner unerlaubten Hilfe bedient habe.
- dass ich dieses Diplomarbeitsthema bisher weder im In- noch im Ausland (einer Beurteilerin / einem Beurteiler zur Begutachtung) in irgendeiner Form als Prüfungsarbeit vorgelegt habe.
- dass diese Arbeit mit der vom Begutachter beurteilten Arbeit übereinstimmt

_______________________ _________________________
Datum Unterschrift