DIPLOMARBEIT

Methoden zur EU-konformen mikrobiologischen Untersuchung von Fleisch und Fleischerzeugnissen

angestrebter akademischer Grad

Magistra der Naturwissenschaften (Mag. rer.nat.)

Verfasserin / Verfasser: Sabine Mifek
Matrikel-Nummer: 0301475
Studienrichtung / Studienzweig (lt. Studienblatt): A 474 Ernährungswissenschaften
Betreuerin / Betreuer: Ao. Prof. Dr. Friedrich BAUER
Veterinärmedizinische Universität Wien
Institut für Fleischhygiene, Fleischtechnologie und Lebensmittelwissenschaft

Wien, im Juni 2009
Danksagung

An erster Stelle möchte ich mich bei der Wirtschaftskammer Wien für den Auftrag dieser Arbeit bedanken.

Ein besonderer Dank geht an meine Betreuer Ao. Prof. Dr. Friedrich Bauer und Ass. Prof. Dr. Peter Paulsen für die Möglichkeit, meine Diplomarbeit am Institut für Fleischhygiene, Fleischtechnologie und Lebensmittelwissenschaft der Veterinärmedizinischen Universität durchführen zu können. Bedanken möchte ich mich sehr herzlich für die umfangreiche Unterstützung und die hervorragende Betreuung während der gesamten Dauer dieser Diplomarbeit.

Vielen Dank auch an alle Mitarbeiter des Instituts für die immer vorhandene Hilfsbereitschaft und das ausgezeichnete Arbeitsklima.

Mein Dank gilt überdies allen Personen, die an dieser Arbeit mitwirkt und mir während meines Studiums mit Rat und Tat beigestanden haben.
Inhaltsverzeichnis

1 ZUSAMMENFASSUNG .. 1
2 ABSTRACT .. 3
3 EINLEITUNG UND FRAGESTELLUNG ... 5
4 LITERATURÜBERSICHT ... 7
4.1 ARBEITSSCHRITTE IN DER KULTURELLEN MIKROBIOLOGIE .. 7
 4.1.1 Probenahme .. 7
 4.1.2 Verdünnungsreihe .. 8
 4.1.3 Kulturmedien .. 9
 4.1.4 Bestimmung der Keimzahl ... 10
 4.1.5 Bebrütung .. 11
 4.1.6 Auswertung ... 11
 4.1.7 Bestätigungsreaktionen ... 11
4.2 REFERENZMETHODEN ZUR KEIMBESTIMMUNG .. 11
4.3 ALTERNATIVMETHODEN ZUR KEIMBESTIMMUNG .. 15
 4.3.1 PCR (Polymerase-Kettenreaktion) .. 17
 4.3.2 Biolumineszenz (ATP-Messung) ... 18
 4.3.3 DEFT (direkte Epifluoreszenz Filtertechnik) .. 20
 4.3.4 Colorimetrische Verfahren ... 18
 4.3.5 Durchflusszytometrie .. 19
 4.3.6 Impedanzmethode .. 19
 4.3.7 Bakterien Limulus-Test ... 19
 4.3.8 Immunologische Verfahren .. 15
 4.3.9 Gensonden (Hybridisierungstechnik) .. 16
 4.3.10 Bio- und Immunosensoren ... 18
 4.3.11 FT-IR (Fourier-Transform-Infrarot)-Spektroskopie .. 20
 4.3.12 Automatische DNA-Analyse .. 18
 4.3.13 Membranfiltration ... 20
 4.3.14 Spiralplattenmethode .. 21
 4.3.15 MPN (Most Probable Number) - Verfahren .. 21
 4.3.16 Direkte Bestimmung der Keimzahl ... 22
 4.3.17 Bestimmung der Mikroorganismenkoncentration durch Trübungsmessung 22
 4.3.18 Petrifilmverfahren ... 22
 4.3.19 Tauchverfahren .. 23
4.4 RECHTLICHE RAHMENVORGABEN DER VO (EG) 2073/2005 FÜR ALTERNATIVMETHODEN 23
4.5 VERFAHREN DER VALIDIERUNG UND ZERTIFIZIERUNG ... 26
4.5.1 Feststellung der Gleichwertigkeit von Methoden ... 26
4.5.2 Programme zur Validierung und Zertifizierung ... 27
4.5.3 Spezielle Fälle bei der Anerkennungen von Methoden .. 27
4.6 VORGANGSWEISE BEI LABORINTERNEN VALIDIERUNGEN („IN HOUSE“ VALIDIERUNG) 28
 4.6.1 Schweizer Leitfaden zur Validierung mikrobiologischer Untersuchungsmethoden 29
5 EIGENE UNTERSUCHUNGEN ... 31
 5.1 PROBEENTNAHMESTELLEN BEI FASCHIERTEM ... 31
 5.1.1 Zielsetzung und Versuchsaufbau .. 31
 5.1.2 Probenahme bzw. Probevorbereitung ... 32
 5.1.3 Mikrobiologische Untersuchung .. 33
 5.2 VERGLEICHENDE UNTERSUCHUNG VON DESTRUKTIVER UND NICHT-DESTRUKTIVER
 PROBENAHME AN SCHLACHTKÖRPERHÄLFTEN .. 37
 5.2.1 Zielsetzung und Versuchsaufbau .. 37
 5.2.2 Probenahme bzw. Probevorbereitung .. 37
 5.2.3 Aufbereitung der Probe im Labor .. 39
 5.2.4 Mikrobiologische Untersuchung .. 40
 5.3 VERGLEICHENDE UNTERSUCHUNG ZUR HERSTELLUNG VON SERIELLEN VERDÜNNUNGEN 44
 5.3.1 Zielsetzung und Versuchsaufbau .. 44
 5.3.2 Probenahme bzw. Probevorbereitung .. 45
 5.3.3 Mikrobiologische Untersuchung .. 47
 5.4 MODIFIKATION DER ISO BESTIMMUNGSMETHODE FÜR ENTEROBACTERIACEAE (ISO 21258-2) 48
 5.4.1 Zielsetzung und Versuchsaufbau .. 48
 5.4.2 Probenahme bzw. Probevorbereitung .. 48
 5.4.3 Mikrobiologische Untersuchung .. 50
 5.4.4 Bestätigungsreaktionen .. 50
6 ERGEBNISSE UND DISKUSSION ... 52
 6.1 PROBEENTNAHMESTELLEN BEI FASCHIERTEM ... 52
 6.1.1 Analyseergebnisse .. 52
 6.2 VERGLEICHENDE UNTERSUCHUNG VON DESTRUKTIVER UND NICHT-DESTRUKTIVER
 PROBENAHME AN SCHLACHTKÖRPERHÄLFTEN .. 54
 6.2.1 Analyseergebnisse .. 54
 6.3 VERGLEICHENDE UNTERSUCHUNG ZUR HERSTELLUNG VON SERIELLEN VERDÜNNUNGEN 59
 6.3.1 Analyseergebnisse .. 59
 6.4 MODIFIKATION DER ISO BESTIMMUNGSMETHODE FÜR ENTEROBACTERIACEAE (ISO 21258-2) 62
 6.4.1 Analyseergebnisse .. 62
7 SCHLUSSBETRACHTUNG .. 63
8 LITERATURVERZEICHNIS .. 67
9 ANHANG ... 77

9.1 PROBEENTNAHMESTELLEN BEI FASCHIERTEM ... 77
9.2 VERGLEICHENDE UNTERSUCHUNG ZUR HERSTELLUNG VON SERIELLEN VERDÜNNUNGEN 82
9.3 LISTE VALIDIERTER UND ZERTIFIZIERTER METHODEN ... 87
 9.3.1 Salmonella ... 87
 9.3.2 Listeria spp. ... 93
 9.3.3 Listeria monocytogenes ... 98
 9.3.4 Enterobacteriaceae ... 102
 9.3.5 Coliforme Bakterien ... 103
 9.3.6 E.coli .. 107
 9.3.7 E.coli O157 ... 109
 9.3.8 Gesamtkeimzahl .. 112
 9.3.9 Staphylococcus ... 113
Abbildungsverzeichnis

Abbildung 1: Herstellung einer dezimalen Verdünnungsreihe (jeweils 1:10) ..8

Abbildung 2: Probeentnahmestellen bei Faschiertem (Ansicht von oben; 4*Eckpunkte, 2*Zentrum, 2* Längsseite) ...33

Abbildung 3: Zeitaufwand des automatisierten Systems zur Herstellung von seriellen Verdünnungen60

Abbildung 4: Zeitaufwand des konventionellen Systems zur Herstellung von seriellen Verdünnungen ...61
Tabellenverzeichnis

Tabelle 1: In der Verordnung (EG) 2073/2005 und 1441/2007 angeführte Referenzmethoden 12
Kriterien für Fleisch und Fleischerzeugnisse .. 12
Tabelle 3: Alternative Vorgehensweisen zur Untersuchung von Mikroorganismen nach Artikel 5 der
VO (EG) 2073/2005 .. 23
Tabelle 4: Vor 2003 bestehende ISO Normen, auf die sich die VO (EG) 2073/2005 beziehen, die ohne
Einschränkungen (ggf. mit Ergänzungen oder als Neuauflage) noch gültig sind und in frühere
(vor EN ISO 16140) Validierungsstudien einbezogen sein können .. 28
Tabelle 5: Kriterien für eine „in house“-Validierung ... 30
Tabelle 6: Zusammensetzung der Pepton-Kochsalzlösung .. 32
Tabelle 7: Zusammensetzung des Caseinpepton-Hefeextrakt-Glucose-Agars 34
Tabelle 8: Zusammensetzung des Coli ID Agars ... 34
Tabelle 9: Aerobe mesophile Keimzahl (log₁₀ kbE/g) in verschiedenen Entnahmestellen (A bis F) von
Handelspackungen „gemischtes Faschiertes“ ... 52
Tabelle 10: E. coli (log₁₀ kbE/g) in verschiedenen Entnahmestellen (A bis F) von 10 Handelspackungen
„gemischtes Faschiertes“ ... 53
Tabelle 11: Bestimmung der aeroben mesophilen Gesamtkolonienzahl aus destruktiv (mittels Stanze) und
nicht-destruktiv (mittels Kratzschwamm) gewonnenen Oberflächenproben von
Schweineschlachtkörperr .. 54
Tabelle 12: Bestimmung der Enterobacteriaceenkonzentration aus destruktiv (mittels Stanze) und nicht-
destruktiv (mittels Kratzschwamm) gewonnenen Oberflächenproben von
Schweineschlachtkörperr .. 56
Tabelle 13: Bestimmung der aeroben mesophilen Gesamtkolonienzahl (log₁₀ kbE/g oder cm²) aus mit
verschiedenen Verdünnungsmethoden untersuchten identischen Proben (ges. 62 Proben) 59
Tabelle 14: Benötigte Arbeitszeit zum Herstellen von 3 Verdünnungsstufen (in min) 60
Tabelle 15: Oxidasereaktion und Glucoseverwertung von „präsumtiven“ Enterobacteriaceenisolaten auf
Violettrot-Galle-Glucose-Agar (56 Oberflächenproben von Schlachtieren) 62
Tabelle 16: Korrekturfaktoren für präsumptive Enterobacteriaceen ... 62
Tabelle 17: Analyseergebnisse der Gesamtkolonienzahl verschiedener Probeentnahmestellen bei Faschiertem
.. 77
Tabelle 18: Analyseergebnisse von E. coli verschiedener Probentnahmestellen bei Faschiertem 79
Tabelle 19: Analyseergebnisse der Referenzmethode zur Herstellung von seriellen Verdünnungen 82
Tabelle 20: Analyseergebnisse der alternativen Methode zur Herstellung serieller Verdünnungen 83
Tabelle 21: Zeitmessergebnisse der Methoden zur Herstellung von seriellen Verdünnungen 85
Abkürzungsverzeichnis

°C Grad Celsius
µ mikro
Abb. Abbildung
Aqua dest. destilliertes Wasser
Art. Artikel
Art.-Nr. Artikelnnummer
bzw. beziehungsweise
CO2 Kohlendioxid
cm Zentimeter
d.h. das heißt
DIN Deutsches Institut für Normung
DNA Desoxyribonukleinsäure
dgl. dergleichen
Eb Enterobakterien
et al. und andere
E. coli Escherichia coli
EG Europäische Gemeinschaft
etc. und so weiter
Fa. Firma
g Gramm
h Stunde
HACCP Hazard Analysis and Critical Control Point
HPLC Hochleistungsflüssigkeitschromatographie
ISO Internationale Organisation für Normung
Kap. Kapitel
kbE koloniebildende Einheiten
l Liter
LFGB Lebensmittel- und Futtermittelgesetzbuch
log10 Logarithmus zur Basis 10
min Minute
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>MW</td>
<td>Mittelwert</td>
</tr>
<tr>
<td>Sd</td>
<td>Standardabweichung</td>
</tr>
<tr>
<td>Tab.</td>
<td>Tabelle</td>
</tr>
<tr>
<td>TVC</td>
<td>Total viable count</td>
</tr>
<tr>
<td>VO</td>
<td>Verordnung</td>
</tr>
</tbody>
</table>
1 Zusammenfassung

In der vorliegenden Arbeit sollte geklärt werden, unter welchen Bedingungen Methoden als „gleichwertig“ anzusehen sind.

Dabei ergeben sich folgende Möglichkeiten:

- Testkits bzw. kommerzielle Verfahren gelten dann als gleichwertig, wenn sie nach dem Protokoll der Norm ISO 16140 (oder einem gleichwertigen Protokoll) gegen die entsprechenden Referenzmethoden der VO (EG) 2073/2005 validiert wurden und wenn die Validierung und ein bestehendes Qualitätssicherungssystem des Herstellers von einer dritten Stelle zertifiziert wurden.

- In der wissenschaftlichen Literatur beschriebene Verfahren- bzw. Methodenbeschreibungen gelten als gleichwertig, wenn sie im Labor gegen die Referenzverfahren der VO (EG) 2073/2005 werden. Dieser Fall ist in der VO (EG) 2073/2005 nicht explizit angeführt, und daher wäre eine Genehmigung durch die zuständige Behörde erforderlich.

- Andere Verfahren müssen gegen die Referenzverfahren der VO (EG) 2073/2005 validiert und durch die zuständige Behörde genehmigt werden.

- Die Untersuchung auf andere, als in der VO (EG) 2073/2005 angegebene, Mikroorganismen ist nur für Prozesshygienekriterien möglich. Dies bedeutet, dass eigene Grenzwerte und andere Methoden zur Anwendung kommen.

In einem gesonderten experimentellen Teil wurden Beispiele für laborinterne Validierungen von Modifikationen der Referenzverfahren beschrieben.
2 Abstract

According to the EU food law, food industries are obliged to perform microbiological analysis. There are detailed protocols for microbiological threshold values, sampling, sample preparation and for the analysis method itself. Partly those instructions work as guidelines, therefore the use of other methods that yield equivalent results is also possible. This study examines under which conditions the use of alternative methods is valid and can therefore be seen as equivalent.

In the first section the legal framework for alternative methods to the corresponding references is clarified.

Following results arose:

- Testkits, respectively commercial methods are equivalent if they are validated according to ISO Standard 16140 (or any equivalent protocol) towards the corresponding reference methods VO (EG) 2073/2005 and if the validation and an existing quality assurance of the supplier are certified by a third party.

- Methods that are described in scientific literature are equivalent if they are validated towards the corresponding reference methods VO (EG) 2073/2005, furthermore some cases require an authorization by the responsible administration.

- Other alternative methods have to be validated according to the reference methods of VO (EG) 2073/2005, contrary to the previous cases an authorization by the responsible administration is always required.

- Testing for microorganisms that are not listed in VO (EG) 2073/2005 is possible for process hygiene criteria only. In these cases other specific threshold values and methods have to be applied.

- The use of non microbiological alternative methods is also only valid for process hygiene criteria, and requires certain values and methods. However there are no specific instructions about equivalency for process hygiene criteria, necessarily the objectives by VO (EG) 2073/2005 have to be achieved.
In a separated experimental section examples for interlaboratory validations of modified reference methods are described.
3 Einleitung und Fragestellung

Die Verordnung (EG) 2073/2005 gibt mikrobiologische Grenzwerte für bestimmte Lebensmittel vor. Im Verbund mit diesen Grenzwerten werden auch die Untersuchungsmethoden, die Probenahme, die Prozessstufe, für die der Grenzwert gilt und Maßnahmen bei Nichteinhaltung des Grenzwertes normiert und als „Kriterium“ zusammengefasst. Dabei wird zwischen „Lebensmittelsicherheitskriterien“, die für das am Markt befindliche Lebensmittel gelten, und „Prozesshygienekriterien“, die sich auf das Ende des Herstellungsverfahrens beziehen, unterschieden.

Der Lebensmittelunternehmer ist dabei verpflichtet, Untersuchungen sowohl zu Prozesshygiene-, als auch Lebensmittelsicherheitskriterien durchzuführen. Im Anhang der Verordnung befinden sich die dafür vorgesehenen Referenzmethoden, wobei durch Artikel 5 eine gewisse Flexibilität bezüglich der Analyseverfahren eingeräumt wird. Dies geht aus der Wortwahl des Punktes 1 in Artikel 5: „Die in Anhang I genannten ... Verfahren sind als Referenzverfahren heranzuziehen.“ hervor. Das heißt, dass die genannten Verfahren eben nicht zur Routineanwendung verwendet werden müssen, sondern Verfahren, die einem „Referenzverfahren“ entsprechen, angewendet werden können.

Dementsprechend wird Lebensmittelunternehmern die Möglichkeit zur Anwendung von Alternativverfahren zur mikrobiologischen Untersuchung eingeräumt, welche häufig bei gleicher Genauigkeit einen geringeren Ressourcenauflwand erfordern als die gängigen Referenzverfahren.
Im Rahmen dieser Arbeit soll geklärt werden, welche gegenwärtig angebotenen Analysemethoden als Alternativen zu den in der VO (EG) 2073/2005 angeführten Referenzverfahren im Rahmen der betrieblichen Eigenkontrolle anwendbar sind, wobei der Schwerpunkt auf Fleisch und Fleischerzeugnissen liegt.

Im zweiten Teil der Arbeit sollen eigene Untersuchungen durchgeführt werden, in denen die Referenzmethoden modifiziert werden, mit dem Ziel der Zeit-, Material- und somit Kostenersparnis bei gleichbleibender Analysegenauigkeit.

Analysedauer und Anforderungen an die Infrastruktur für eine Implementierung in betriebseigene Laboratorien werden berücksichtigt. Ebenso soll die Notwendigkeit der Validierung bzw. Zertifizierung der Verfahren behandelt werden.
4 Literaturübersicht

4.1 Arbeitsschritte in der kulturellen Mikrobiologie

Die qualitative bzw. quantitative Untersuchung von pathogenen Mikroorganismen und Indikatorkeimen erfolgt in der Regel über kulturelle Nachweise [KRÄMER, 2005]. Bei qualitativen Verfahren wird ausschließlich auf das Vorhandensein bzw. Nichtvorhandensein von Mikroorganismen geprüft, wohingegen quantitative Methoden den Keimgehalt bestimmen (Keimzahl/g, cm² bzw. ml).

Die wesentlichen Arbeitsschritte sind in dem nachfolgenden Fließschema dargestellt.

Probenahme ↓
eventuelle Homogenisierung ↓
Verdünnungsreihe ↓
Beimpfung des Kulturmediums ↓
Bebrütung ↓
Auswertung ↓
eventuelle Bestätigung ↓
endgültiges Ergebnis

4.1.1 Probenahme

Die sachgemäße Probenahme muss von geschultem, neutralem Personal durchgeführt werden, da sie sich entscheidend auf die Qualität der Ergebnisse der nachfolgenden
mikrobiologischen Untersuchung auswirkt. Die gezogenen Proben müssen bis zur Analyse bei 0 bis 5°C (tiegefrorene Produkte bei ≤ 18°C) gelagert werden. Im Labor werden Teilmengen mit einem definierten Volumen bzw. Gewicht unter sterilen Bedingungen entnommen und eventuell vorzerkleinert [BAUMGART et al., 2004]. Als Referenzmethoden für die Entnahme und Aufbereitung des Probenmaterials sind die entsprechenden ISO-Normen und Richtlinien des Codex Alimentarius zu verwenden, ausgenommen es liegen genauere Vorschriften vor [BAUMGART, 2008].

4.1.2 Verdünnungsreihe

Um bei der späteren Auswertung eine auszählbare Keimzahl auf dem Kulturmedium zu erreichen, ist es in der Regel notwendig im Vorfeld eine Verdünnungsreihe anzulegen. In der Praxis ist die dezimale Verdünnung am gebräuchlichsten.

Zum Anlegen einer Erstverdünnung wird die Originalprobe durch Zugabe des neunfachen Volumens an Verdünnungsflüssigkeit 1:10 verdünnt. Aus dieser Verdünnungsstufe wird, nach Durchmischen auf dem Reagenzschüttler, 1 ml entnommen und zu 9 ml Verdünnungsflüssigkeit pipettiert. Ausgehend von dieser Stufe können je nach zu erwartender Keimzahl weitere Dezimalverdünnungen angelegt werden.

Abbildung 1: Herstellung einer dezimalen Verdünnungsreihe (jeweils 1:10) [Quelle: BAUMGART, 2008]

4.1.3 Kulturmedien

Kulturmedien unterscheiden sich je nach Verwendungszweck in ihrer Konsistenz und Zusammensetzung [BARTEL et al., 2003].

4.1.3.1 Nährbodenbestandteile

- Wasser (Aqua dest. oder demineralisiertes Wasser)
- stickstoffhaltige Verbindungen (z.B. Proteine)
- Kohlenstoff (z.B. Kohlehydrate)
- Wuchsstoffe (z.B. Vitamine)
- Agar oder Gelatine (Gelierungsmittel)

Stickstoffhaltige Verbindungen, Kohlenstoffe und Wuchsstoffe werden als komplexe Verbindungen (Fleischextrakt, Pepton, etc.) zugesetzt.

Von entscheidender Bedeutung, welche Mikroorganismen auf dem Nährboden wachsen, ist die pH-Wert Einstellung [BAUMGART, 2008].

4.1.3.2 Arten von Kulturmedien

- *flüssige, halbfeste und feste Kulturmedien:*
 Feste Kulturmedien dienen der Keimzahlbestimmung und Untersuchung von Reinkulturen, halbfeste der Beweglichkeitsprüfung und flüssige der Kultivierung bei größeren Probenmengen und geringer erwarteter Keimzahl („Anreicherung“).

- *Universalnährböden:*
 Auf Universalnährböden kann eine Vielzahl von Mikroorganismen wachsen (z.B. Plate-Count-Agar zur Bestimmung der Gesamtkeimzahl).

- *Differentialmedien:*
 Durch den Einsatz von Differentialmedien können Mikroorganismen anhand bestimmter Stoffwechsellastungen identifiziert werden.
• **Selektivnährböden:**
 Auf Selektivnährböden wird das Wachstum bestimmter Mikroorganismen gefördert und anderer gehemmt.

• **Resuszitationsmedien:**
 In Resuszitationsmedien werden „gestresste“ Zellen wieder regeneriert bzw. „wiederbelebt“ [BAUMGART, 2008].

4.1.3.3 Art der Kultivierung

• **Plattenkultur:**
 Bei der Plattenkultur wird das Impfmaterial entweder auf einen festen Agarnährboden in einer Petrischale ausgestrichen (Oberflächenverfahren), oder bereits mit dem noch flüssigen Medium vermischt (Gusskultur).

• **Schrägagarkultur:**
 Mit Hilfe eines Schrägagars kann eine große Nährbodenoberfläche in einem Röhrchen erzielt werden, welche mit einer Öse beimpft werden kann.

• **Stichkultur:**
 Das Impfmaterial wird mit einer Nadel oder Öse in ein halbfestes bzw. festes Medium eingebracht.

• **Kontaktverfahren:**
 Durch einen auf einem Träger fixierten Nährboden können Oberflächenabdrücke gemacht werden.

• **Bouillonkultur:**
 Bei der Bouillonkultur werden flüssige Nährmedien verwendet [BAUMGART, 2008; BARTEL et al., 2003].

4.1.4 Bestimmung der Keimzahl

• **Gusskultur:**
 Die Probe bzw. ihre Verdünnung wird mit dem geschmolzenen Kulturmedium vermischt.

• **Spatelverfahren:**
 Die Probelösung wird auf eine feste Nährbodenoberfläche mit einem Spatel ausgestrichen.
• **Tropfplattenverfahren:**
 Die Analytlösung wird auf die Oberfläche von vorgetrockneten Nährmedien getropft [BAUMGART, 2008].

4.1.5 Bebrütung

Die optimale Bebrütungstemperatur und –dauer richtet sich nach den zu untersuchenden Mikroorganismen.

Bei der Bebrütung von Petrischalen muss darauf geachtet werden, dass sie mit dem Boden nach oben bebrütet werden, damit kein Kondenswasser auf die Nährböden tropft [BAUMGART, 2008].

4.1.6 Auswertung

4.1.7 Bestätigungsreaktionen

4.2 Referenzmethoden zur Keimbestimmung

Referenzmethoden sind international anerkannte und akzeptierte Verfahren. Sie sind intensiv untersuchte Methoden, die eindeutig die Bedingungen und Verfahrensweisen zur Messung von Merkmalswerten beschreiben, von denen nachgewiesen ist, dass sie ihrem Verwendungszweck entsprechende Präzision und Richtigkeit besitzen.

Die in der VO (EG) 2073/2005 und VO (EG) 1441/2007 angeführten Referenzmethoden sind in Tab. 1 zusammengestellt, die für Fleisch,
Fleischererzeugnisse bzw. für Fleischbetriebe relevanten mikrobiologischen Kriterien sind in Tab. 2 zusammengefasst.

Tabelle 1: In der Verordnung (EG) 2073/2005 und 1441/2007 angeführten Referenzmethoden

<table>
<thead>
<tr>
<th>Mikroorganismus / Agens</th>
<th>Referenzmethode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listeria monocytogenes</td>
<td>EN/ISO 11290-1/-2</td>
</tr>
<tr>
<td>Salmonella sp.</td>
<td>EN/ISO 6579</td>
</tr>
<tr>
<td>Staphylokokken Enterotoxine</td>
<td>Referenzlabor-Methode*</td>
</tr>
<tr>
<td>Enterobacter sakazaki</td>
<td>ISO/TS 22964</td>
</tr>
<tr>
<td>E. coli</td>
<td>ISO 16649-1/-2; ISO/TS 16649-3</td>
</tr>
<tr>
<td>Histamin</td>
<td>HPLC**</td>
</tr>
<tr>
<td>Gesamtkeimzahl</td>
<td>ISO 4833</td>
</tr>
<tr>
<td>Enterobacteriaceae</td>
<td>ISO 21528-1/-2</td>
</tr>
<tr>
<td>koagulasepositive Staphylokokken</td>
<td>EN/ISO 6888-1/-2</td>
</tr>
<tr>
<td>präsumtive Bacillus cereus</td>
<td>EN/ISO 7932</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Probenahme</th>
<th>Referenzmethode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zur Untersuchung von Geräteoberflächen u. dgl.</td>
<td>ISO 18593</td>
</tr>
<tr>
<td>Zur Untersuchung von Schlachtkörpern</td>
<td>ISO 17604</td>
</tr>
</tbody>
</table>

* gemeint ist das gemeinschaftliche Referenzlaboratorium für koagulasepositive Staphylokokken

** [MALLE et al., 1996; DUFLOS et al., 1999]
Tabelle 2: In der VO (EG) 2073/2005 und in der österr. Leitlinie (2007) angeführte mikrobiologische Kriterien für Fleisch und Fleischerzeugnisse

<table>
<thead>
<tr>
<th>Mikroorganismus / Agens</th>
<th>Referenzmethode</th>
<th>S/P*</th>
<th>Anzuwenden auf**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listeria monocytogenes</td>
<td>EN/ISO 11290-1***</td>
<td>S</td>
<td>Andere als für Säuglinge oder für besondere medizinische Zwecke bestimmte, verzehrfrische Lebensmittel, die die Vermehrung von L. monocytogenes begünstigen können</td>
</tr>
<tr>
<td>Salmonella sp.</td>
<td>EN/ISO 6579</td>
<td>S</td>
<td>Hackfleisch, Faschiertes und Fleischzubereitungen zum Rohverzehr oder zum Verzehr in durcherhitztem Zustand; Separatorenfleisch; Fleischerzeugnisse, die zum Verzehr in rohem Zustand bestimmt sind, außer Erzeugnisse, bei denen das Salomellenrisiko durch das Herstellungsverfahren oder die Zusammensetzung des Erzeugnisses ausgeschlossen ist (betrifft nach österr. Leitlinie (2007) nur streichfähige</td>
</tr>
</tbody>
</table>
Rohwürste);
Fleischerzeugnisse aus Geflügelfleisch, die zum Verzehr in durcherhitzen Zustand bestimmt sind.

<table>
<thead>
<tr>
<th></th>
<th>ISO/EN</th>
<th>P</th>
<th>Schlachtorgan von Rind, Schaf, Ziege, Pferd, Schwein, Broiler, Pute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salmonella sp.</td>
<td>EN/ISO 6579</td>
<td>P</td>
<td>Faschiertes, Separatenfleisch, Fleischzubereitungen</td>
</tr>
<tr>
<td>E. coli</td>
<td>ISO 16649-2</td>
<td>P</td>
<td>Faschiertes, Separatenfleisch, Fleischzubereitungen</td>
</tr>
<tr>
<td>Gesamtkeimzahl</td>
<td>ISO 4833</td>
<td>P</td>
<td>Schlachtorgan von Rind, Schaf, Ziege, Pferd, Schwein; Faschiertes, Separatenfleisch, Fleischzubereitungen</td>
</tr>
<tr>
<td>Enterobacteriacae</td>
<td>ISO 21528-2</td>
<td>P</td>
<td>Schlachtorgan von Rind, Schaf, Ziege, Pferd, Schwein</td>
</tr>
</tbody>
</table>

Probenahme

| Probenahme | ISO 18593 | S/P | In Verbindung mit der Untersuchung auf L. monocytogenes
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ISO 17604</td>
<td>P</td>
<td>In Verbindung mit der Untersuchung auf Gesamtkeimzahl und Enterobacteriacae</td>
</tr>
</tbody>
</table>

*P = Prozesshygienekriterium; S = Lebensmittelsicherheitskriterium

*** qualitatives Verfahren (Nachweis in 25 g)

**** quantitatives Verfahren (Grenzwert 100 KbE/g)
4.3 Alternativmethoden zur Keimbestimmung

In vielen Fällen ist die Anwendung der vorliegenden ISO Referenzmethoden im Rahmen der mikrobiologischen Eigenkontrolle problematisch und nur beschränkt möglich. Häufig liegen Untersuchungsergebnisse erst nach mehreren Tagen vor, bzw. ist der Ressourcenaufwand dieser Methoden sehr hoch.

Die nachstehende Aufzählung soll einen Überblick der wichtigsten Alternativmethoden verschaffen.

4.3.1 Immunologische Verfahren

Eine wesentliche Verbesserung der Nachweisempfindlichkeit auf diesem Gebiet bringt der Einsatz enzymmarkierter Nachweisreagenzien (Enzymimmunoassay \(\rightarrow\) EIA, Enzyme Linked Immunosorbent Assay \(\rightarrow\) ELISA).

Im Wesentlichen können zwei Systeme unterschieden werden: Sandwich-ELISA und kompetitiver ELISA.

Mit dem Sandwich-ELISA können Antigene erst ab einer gewissen Mindestgröße nachgewiesen werden, da wenigstens zwei Antikörperbindungsstellen (Epitope) im
Molekül vorhanden sein müssen. Die Epitope müssen räumlich soweit voneinander entfernt sein, dass die Bindung von zwei unterschiedlichen Antikörpern möglich ist.

Die zentralen Schritte des Sandwich-ELISA sind:

1. Antikörper, welche gegen das gesuchte Antigen gerichtet sind, werden an eine Festphase (etwa eine Mikrotiterplatte) gebunden.
2. Durch Hinzufügen der Probe kommt es, falls die gesuchten Antigene enthalten sind, zur Antigen-Antikörperbindung.
4. Nachdem die nicht gebundenen Reagenzien heraus gewaschen sind, wird die Enzym-Substratreaktion durchgeführt, wobei die Konzentration der Reaktionsprodukte direkt proportional zur Antigenkonzentration der Probe ist.

4.3.2 Gensonden (Hybridisierungstechnik)

Die Bindung von zwei einzelsträngigen Nukleinsäuren (in diesem Fall der Gensonde an die Ziel-DNA-Sequenz) wird als Hybridisierung und das dabei gebildete Produkt, der Doppelstrang, als Hybrid bezeichnet. Auf diese Weise können durch eine bekannte Basensequenz und Markierung (Fluoreszenzfarbstoffe, Enzyme, radioaktive Isotope, etc.) der Sonden bestimmte Gene molekularbiologisch detektiert werden [EHRMANN & VOGEL, 2008; AMANN et al., 1992].

4.3.3 PCR (Polymerase-Kettenreaktion)

Diese molekularbiologische Methode hat sich weltweit in verschiedenen Anwendungsbereichen sehr rasch durchgesetzt. Sie wird eingesetzt, um bestimmte DNA-Abschnitte in vitro millionenfach zu kopieren. Üblicherweise durchläuft der PCR-Zyklus drei Stufen.

Die erste Phase wird als Denaturierung bezeichnet und führt zur Spaltung der DNA-Doppelstränge in ihre Einzelstränge bei Temperaturen zwischen 92 und 98 °C. In der zweiten Stufe kommt es beim Abkühlen auf <50°C zur Hybridisierung der Primer (Starter-Oligonukleotide zur Markierung des Startpunktes der DNA Synthese). Die Primer lagern sich dabei jeweils an die komplementären Basenabschnitten an. Im letzten Schritt des Zyklus wird die Temperatur auf 72°C erhöht. Bei dieser Temperatur hat die zugegebene, hitzestabile Taq-Polymerase ihr Aktivitätsmaximum. Sie kopiert den festgelegten DNA-Abschnitt anhand der Vorlage des komplementären Stranges. Anschließend wird die Temperatur erneut auf 92 – 98°C angehoben, um die DNA wieder in ihre Einzelstränge aufzutrennen.

4.3.4 Automatische DNA-Analyse

Bei dieser Methode werden Keime durch Hitze zuerst inaktiviert und deren DNA extrahiert. Daraufhin wird die DNA mit Hilfe einer Gelelektrophorese abgetrennt und nach Hybridisierung mit einer markierten Sonde detektiert. Auf diese Weise liegen Ergebnisse schon nach etwa 8 Stunden vor [BAUMGART, 2008].

4.3.5 Biolumineszenz (ATP-Messung)

4.3.6 Bio- und Immunosensoren

Bio- bzw. Immunosensoren sind Messfühler, die spezielle, sensitive biologische Elemente (Enzyme, Antikörper, DNA) besitzen, mit denen sie die gesuchten Objekte aufspüren können. Diese Elemente sind wiederum an Empfänger (z.B. Optoden) gekoppelt [BAUMGART, 2008].

4.3.7 Colorimetrische Verfahren

Colorimetrische Verfahren beruhen auf einer pH-Wert Änderung, welche durch die Bildung von Kohlendioxid und organischen Säuren hervorgerufen wird. Das System enthält einen colorimetrischen Sensor, der sich verfärbt, wenn Mikroorganismen Säuren oder CO₂ bilden.

Bei anderen colorimetrischen Verfahren werden die durch pH- und Eh-Wert Änderungen entstehenden Farbindikatorumschläge photometrisch gemessen [BAUMGART, 2008].
4.3.8 **Durchflusszytometrie**

Bei der Durchflusszytometrie werden Keime mit einem Fluorochrom angefärbt und anschließend durch eine Messzelle mit Fluoreszenzanregung geschickt. Die entstehenden Emissionsimpulse werden mit einem Photodetektor automatisch ausgewertet.

4.3.9 **Impedanzmethode**

Das Impedanzverfahren hat seit mehr als einem Jahrzehnt im Bereich der mikrobiologischen Analytik an Bedeutung gewonnen [EISGRUBER et al., 1999].

Das Prinzip dieser Methode beruht auf einer Änderung der elektrischen Leitfähigkeit oder des Widerstandes in einem entsprechenden Kulturmedium durch den Anstieg der Stoffwechselprodukte beim Bakterienwachstum. Je höher der Anfangskeimgehalt ist, umso schneller kann eine Widerstandsänderung nachgewiesen werden bzw. erfolgt eine Detektion erst ab einem Keimgehalt von >10⁶/ml. Durch die Wahl eines geeigneten Kulturmediums bei der Inkubation kann außerdem eine Selektion der Mikroorganismen erfolgen.

Die Methode ist einerseits an spezifische Geräte gebunden, hat aber andererseits den Vorteil, dass damit große Probemengen in relativ kurzer Zeit bearbeitet werden können [BAUMGART, 2008; BALTES & KROH, 2004].

4.3.10 **Bakterien Limulus-Test**

Neben Röhrchen- und Mikrotitertests werden auch automatisierte Systeme angeboten, die mit Trübungsmessung und chromogenen Nachweisverfahren arbeiten [BAUMGART, 2008].

4.3.11 FT-IR (Fourier-Transform-Infrarot)-Spektroskopie

4.3.12 DEFT (direkte Epifluoreszenz Filtertechnik)

Bei der direkten Epifluoreszenz Filtertechnik wird die Untersuchungsprobe durch Membranfilter (vom Nucleopore-Typ) filtriert. Dabei wird eine Aufkonzentrierung der Mikroorganismen erreicht, außerdem werden sie homogen über den Siebfilter verteilt. Im Anschluss werden die Keime mit einem Fluoreszenzfarbstoff (meist Acridinorange) angefärbi und im Fluoreszenzmikroskop mit Hilfe eines Bildanalysegerätes ausgezählt. Ergebnisse sind nach etwa einer Stunde verfügbar.

4.3.13 Membranfiltration

Mit Hilfe von Membranfiltern können je nach Zusammensetzung und Porengröße (zwischen 0,22 und 0,45 µm) bestimmte Keime von einer Probelösung abgetrennt werden. Nach Bebrütung auf einem Nährmedium erfolgt die Bestimmung der Keimzahl. Das Verfahren ist auf filtrierbare Proben beschränkt.

Eine spezielle, vorteilhafte Methode, das HGMF-(Hydrophobic-Grid-Membran-Filter)Verfahren, stellt eine Kombination aus Membranfiltertechnik und MPN (Most Probable Number)-Verfahren dar [AUCKENTHALER & HUGGENBERGER, 2002; BAUMGART, 2008].
4.3.14 Spiralplattenmethode

Bei dieser Methode wird eine genau definierte Menge an Probelösung mit einem Präzisionsdispenser spiralförmig auf einer sich drehenden Agarplatte vom Rand bis zur Mitte verteilt. Die Bestimmung der Keimzahl erfolgt mittels Bildanalyse, Schablone oder Laser-Counter. Das Verfahren ist auf partikelfreie Probelösungen beschränkt [DASCHNER et al., 2006; BAUMGART, 2008].

4.3.15 MPN (Most Probable Number) - Verfahren

4.3.16 Direkte Bestimmung der Keimzahl

Dieses Verfahren kann zur Bestimmung der Gesamtkeimzahl verwendet werden. Die Auszählung der Keime erfolgt in Zählkammern (0,02 mm Tiefe) mit einem Phasenkontrastmikroskop. Bei stark beweglichen Mikroorganismen muss der Probe Formalin beigefügt werden, um die Bakterien zu immobilisieren und damit die Zählung zu ermöglichen [BAUMGART, 2008].

4.3.17 Bestimmung der Mikroorganismenkonzentration durch Trübungsmessung

Die Keimzahlbestimmung einer Probensuspension kann durch Ermittlung der Trübung erfolgen. Dabei wird die optische Dichte der Lösung mit Hilfe eines Photometers oder eines Trübungsmessgerätes entweder in Form der Intensität des gestreuten Lichtes bzw. als Extinktion gemessen.

Um eine zu große Eigentrübung der Untersuchungsprobe auszuschließen, muss auf eine ausreichende Verdünnung geachtet werden [BAST, 1999; BARTEL et al., 2003].

4.3.18 Petrifilmverfahren

Bei der praktischen Anwendung wird die Deckfolie angehoben und 1 ml Probelösung auf die Inokulationszone pipettiert. Mit Hilfe eines Stempels wird der Tropfen gleichmäßig verteilt. Nach der Bebrütung werden wie bei der klassischen Methode in Petrischalen alle Kolonien ausgezählt.

4.3.19 Tauchverfahren

Beim Tauchverfahren werden Kunststoffträger, die auf einer oder auf beiden Seiten mit KulturmントMedium beschichtet sind, in die Probelösung getaucht. Nach Bebrütung im Röhrchen wird die Keimdichte durch Vergleich mit Vorlagen bestimmt. Die Methode ist semiquantitativ und für Koloniezahlen ab ca. 10³/ml anwendbar [BAUMGART, 2008; BÜLTE & REUTER, 1982].

4.4 Rechtliche Rahmenvorgaben der VO (EG) 2073/2005 für Alternativmethoden

Die VO (EG) 2073/2005 legt in Artikel 5 fest, welche, bzw. unter welchen Bedingungen Abweichungen von den in Anhang 1 der Verordnung genannten Referenzverfahren bzw. Vorgangsweisen zulässig sind. Dies betrifft:

1. die Anzahl der untersuchten Proben und den Probenahmeplan (Punkt 3 der Verordnung);

2. die Untersuchung auf alternative Mikroorganismen oder die Anwendung anderer als mikrobiologischer Untersuchungsmethoden bei Prozesshygienekriterien (Punkt 5 der Verordnung);

3. die Verwendung anderer mikrobiologischer Methoden bei Prozesshygiene- und Lebensmittelsicherheitskriterien (Punkt 5 der Verordnung).

Die möglichen „alternativen“ Vorgangsweisen sind in Tab. 3 zusammengestellt.

Tabelle 3: Alternative Vorgehensweisen zur Untersuchung von Mikroorganismen nach Artikel 5 der VO (EG) 2073/2005

<table>
<thead>
<tr>
<th>Änderung möglich</th>
<th>Sofern:</th>
<th>Betrifft:*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probenzahl</td>
<td>Ja</td>
<td>Nachweis, dass funktionierende HACCP gestützte Verfahren vorliegen</td>
</tr>
<tr>
<td>Probenahmeverfahren</td>
<td>Ja</td>
<td>sofern der Lebensmittelunternehmer der Behörde nachweisen kann, dass diese Verfahren zumindest gleichwertige Garantien bieten wie die in VO (EG) 2073/2005 vorgeschriebenen</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----</td>
<td>--</td>
</tr>
<tr>
<td>Mikroorganismen und dazugehörige Grenzwerte</td>
<td>Ja</td>
<td>siehe Analysenmethoden</td>
</tr>
</tbody>
</table>
| **Analysenmethoden** | Ja, ohne Genehmigung der Behörde | Bei kommerziellen Methoden oder Testkits („proprietary“ method), wenn:
• sie gegen die ISO Referenzverfahren der VO (EG) 2073/2005 validiert wurden und
• das Validierungsverfahren nach dem EN ISO 16140 Protokoll oder anderen international anerkannten Protokollen** erfolgt ist.
• eine dritte Stelle bestätigt (zertifiziert***), dass die Validierung wie oben beschrieben durchgeführt wurde. | S,P |
| **Nicht explizit in VO (EG) 2073/2005 behandelt.** | In nationale Normensammlungen (z.B. AOAC Official Methods) oder Sammlungen amtlicher Untersuchungsverfahren (z.B. §64 LFGB) aufgenommene Methoden | |
| Ja, mit Genehmigung der Behörde | Bei Methoden, zu denen keine zertifizierte Validierung vorliegt (siehe oben), hat eine Validierung (gemäß international anerkannten Protokollen, d.h. nicht notwendigerweise ISO 16140) gegen das Referenzverfahren zu erfolgen. | S,P |

* P … Prozesshygienekriterium; S … Lebensmittelsicherheitskriterium

** Die Norm EN ISO 16140 sieht auch die Möglichkeit der Anerkennung von früheren Vergleichsstudien vor, sofern bestimmte Bedingungen erfüllt sind; das betrifft die validierende Organisation (in der ISO Norm werden explizit einige „internationally recognized organisation performing method validations“ genannt), aber auch die Art der Studie (z.B. Produktkategorien, mind. 60 Proben je Kategorie, davon 50% positiv).

*** Es besteht eine Validierung und Zertifizierung (im Sinn von Punkt 4 der Norm EN ISO 16140, d.h. Angaben über die zertifizierende Organisation, ein Qualitätssicherungssystem des Herstellers und der Nachweis regelmäßiger Verifizierung). Dieser Fall entspricht Art. 5, Pkt. 5, Abs. 3 der VO (EG) 2073/2005.
4.5 Verfahren der Validierung und Zertifizierung

4.5.1 Feststellung der Gleichwertigkeit von Methoden

Zur Beurteilung der Gleichwertigkeit werden verschiedene Kennzahlen für die Alternativmethoden und die Referenzmethoden errechnet. Die Berechnung und Interpretation der Ergebnisse wird in der ISO Norm ausführlich dargestellt, ist vergleichsweise umfangreich und involviert mehrere Untersuchungsstellen (Ringversuche, „inter-laboratory studies“). Das bedeutet, dass diese Protokolle nicht immer vollumfänglich für Einzellaborvalidierungen bzw. „in-house“ Validierungen anwendbar sind (Kapitel 1, ISO 16140).

Der Validierungsvorgang umfasst zwei Phasen:

1. den Methodenvergleich gegen eine Referenzmethode, der nur von einem Labor durchgeführt wird und
2. „Inter-laboratory studies“

Für beide Phasen gibt es genaue Vorgaben in der Norm EN ISO 16140.

Validierungen, die nicht dem EN ISO 16140 Protokoll entsprechen, können unter bestimmten Bedingungen anerkannt werden (siehe unten).

Die Zertifizierung von Validierungen (Kapitel 4, ISO 16140) durch eine Zertifizierungsstelle (als „Dritte“ in der Terminologie der VO (EG) 2073/2005...
bezeichnet) setzt voraus, dass der Validierungsvorgang dokumentiert ist, der Hersteller des Alternativverfahrens ein Qualitätssicherungssystem (QS-System) implementiert hat und dass das Funktionieren des QS-Systems und die Kontrolle der laufenden Produktion regelmäßig verifiziert bzw. auditiert wird.

Aus den Ausführungen ist ersichtlich, dass

1. der Hersteller des Alternativverfahrens für die Validierung und Zertifizierung Sorge zu tragen hat, und dass

2. solche Zertifizierungen nicht nur sachlich beschränkt sind [VO (EG) 2073/2005], sondern auch eine begrenzte zeitliche Gültigkeit haben werden.

4.5.2 Programme zur Validierung und Zertifizierung

Nach der VO (EG) 2073/2005 sind auch andere, international anerkannte Validierungsprotokolle akzeptabel. Dies betrifft unter anderem: AFNOR Validierungen (Association Française de Normalisation; Frankreich), AOAC official methods (Association of Analytical Chemists; USA) und Microval (Europäische Union). Dabei ist aber zu klären, ob die Validierung gegen die in der VO (EG) 2073/2005 angegebenen Referenzmethoden erfolgte.

Eine Tabelle der derzeit (Stand Juni 2009) nach AFNOR, AOAC und Microval zertifizierten und validierten Methoden befindet sich im Anhang (Kapitel 9.3).

4.5.3 Spezielle Fälle bei der Anerkennungen von Methoden

Der Anhang A der Norm EN ISO 16140 behandelt die Anerkennung von früheren (nicht ISO 16140 basierten) Vergleichsstudien.
Dabei wird zwischen Validierungen gegen ISO Normen und gegen andere Normen unterschieden. Zu beachten ist aber, dass in der VO (EG) 2073/2005 festgelegt ist, welche Referenzmethoden verwendet werden müssen.
Da die EN ISO 16140 Norm aus dem Jahr 2003 datiert, besteht eine Möglichkeit der Anerkennung eigentlich nur für Verfahren, die vor dem bzw. im Jahr 2003 gegen Referenzmethoden validiert wurden, wobei diese Referenzmethoden auch nach 2003 im Prinzip gültig sein müssen (d.h. dass 2003 und später zwar Ergänzungen und Neuauflagen herausgegeben wurden, die Norm unter der angegebenen Nummer aber noch gültig ist; Beispiele sind in Tab. 4 zusammengestellt) [VO (EG) 2073/2005; EN ISO 16140:2003].

Tabelle 4: Vor 2003 bestehende ISO Normen, auf die sich die VO (EG) 2073/2005 beziehen, die ohne Einschränkungen (ggf. mit Ergänzungen oder als Neuauflage) noch gültig sind und in frühere (vor EN ISO 16140) Validierungsstudien einbezogen sein können

<table>
<thead>
<tr>
<th>Norm</th>
<th>Für</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 6579 (2003)</td>
<td>Salmonella</td>
</tr>
<tr>
<td>ISO 11290-1; ISO 11290-2</td>
<td>Listeria monocytogenes</td>
</tr>
<tr>
<td>ISO 16649-2 (2001)</td>
<td>E. coli</td>
</tr>
</tbody>
</table>

4.6 Vorgangsweise bei laborinternen Validierungen („In house“ Validierung)
Selektivnährböden [BAUMGARTNER et al., 2006; GAUTSCH et al., 2002; EN ISO 16140/2003].

4.6.1 Schweizer Leitfaden zur Validierung mikrobiologischer Untersuchungsmethoden

Das grundsätzliche Ziel der Verfahrensvalidierung besteht darin, eindeutig nachzuweisen, dass es den vorgegebenen Prüfaufgaben entspricht, wobei der Schwerpunkt auf die Spezifität und Sensitivität der Methode gelegt wird.

Prinzipiell müssen Validierungen vorgenommen werden bei:

- mikrobiologischen Verfahren, welche nicht genormt sind
- substantiell veränderten, genormten mikrobiologischen Verfahren
- mikrobiologischen Verfahren, bei denen die Validierung nicht durch einen „proficiency test“ bzw. einen Ringversuch erfolgt ist

Entscheidend für den Validierungsumfang und die Auswahl der Matrices ist, ob das Verfahren qualitativ oder quantitativ ist und ob es sich um eine neue oder alternative Methode handelt.

Für neue Untersuchungsverfahren existieren, im Gegensatz zu Alternativmethoden, keine genormten Referenzmethoden.

Die Validierung alternativer Verfahren geschieht, gemäß Schweizer Hygieneverordnung (1995; Art. 4), prinzipiell mittels Methodenvergleich.

Als Mindestumfang einer Validierung sieht der Schweizer Leitfaden die Bestimmung nachfolgender Kriterien an (Tab. 5).
Tabelle 5: Kriterien für eine „in house“-Validierung

<table>
<thead>
<tr>
<th>Kriterium</th>
<th>qualitatives Verfahren</th>
<th>quantitatives Verfahren</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Neu</td>
<td>alternativ</td>
</tr>
<tr>
<td>Anwendungsbereich</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Spezifität</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Sensitivität</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Richtigkeit</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>relative Richtigkeit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wiederholbarkeit</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Nachweisgrenze</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Bestimmungsgrenze</td>
<td></td>
<td></td>
</tr>
<tr>
<td>statistische Übereinstimmung</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Falsch-Positiv-Rate</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Falsch-Negativ-Rate</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Messunsicherheit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Quelle: BAUMGARTNER et al., 2006]
5 Eigene Untersuchungen

Im praktischen Teil dieser Arbeit wurden, im Rahmen eines Forschungsauftrages, vier eigene Untersuchungen durchgeführt, welche Aspekte der Probenahme (Kap. 5.1, Kap. 5.2), der Herstellung von seriellen Verdünnungsreihen (Kap. 5.3) sowie der Vereinfachung der ISO Referenzmethode zur Bestimmung der Enterobacteriaceenkonzentrationen (Kap. 5.4) behandeln.

5.1 Probenentnahmestellen bei Faschiertem

5.1.1 Zielsetzung und Versuchsaufbau

Um ein repräsentatives Ergebnis zu erzielen, wird eine Homogenisierung des Ausgangsmaterials angestrebt, da von einer inhomogenen Keimverteilung innerhalb des Probenmaterials ausgegangen wird.

Zielsetzung der Untersuchung war, ob die Entnahme von 25 g an einer Stelle repräsentativ für den Packungsinhalt ist.

Insgesamt wurden für die Untersuchung 10 Proben mit der Sachbezeichnung „gemischtes Faschiertes“ (je 2 Packungen aus 5 verschiedenen Betrieben; 6 Packungen mit Dehnfolie, 4 Packungen unter Schutzatmosphäre verpackt) herangezogen. Das Faschierte wurde unmittelbar aus der Verpackung heraus untersucht. Dazu wurden je
Probe acht verschiedene Entnahmestellen hinsichtlich der Gesamtkeimzahl (ISO 4833) und dem Vorhandensein von *Escherichia coli* (ISO 16649-2) untersucht.

5.1.2 Probenahme bzw. Probevorbereitung

5.1.2.1 Geräte und Hilfsmittel

- Waage; oberschalig; max.: 2100g; d: 0,01g; Electronic Balance FX-2000; Fa. AND Mercury PTY. LDT
- Pepton-Kochsalzlösung
- Laboratory Blender Stomacher® 400, Fa.: Seward
- Stomachersäcke mit Filterrohr; Fa.: Seward
- Pipettierhilfe
- sterile 1 ml Glasmesspipetten; Graduierung 0,01ml
- Eprouvetten mit Alukappen
- Eprouvettenständer
- Schüttelgerät Vortex-Genie 2; Fa.: Scientific Industries
- sterile Pinzetten und Scheren
- diverses Laborglas

5.1.2.1.1 Pepton-Kochsalzlösung

Tabelle 6: Zusammensetzung der Pepton-Kochsalzlösung

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aqua dest.</td>
<td>1000 ml</td>
</tr>
<tr>
<td>NaCl; Fa. Merck; Art.-Nr.: 6404</td>
<td>8,5 g</td>
</tr>
<tr>
<td>Fleischpepton; neutral; tryptisch verdaut; Art.-Nr.: 1134; Fa.: Oxoid</td>
<td>1,0 g</td>
</tr>
</tbody>
</table>

Zur Herstellung wurde das Pepton und das NaCl eingewogen und in einem Liter Aqua dest. bei Zimmertemperatur gelöst. Anschließend wurde die Lösung bei 121°C 15 min sterilisiert.
5.1.2.2 Durchführung

Pro Faschiertenpackung wurden an je 8 Stellen (siehe Abb. 2) Proben zu 25 g (+/- 0,1 g) entnommen und in sterile Stomachersäcke übergeführt, wobei darauf geachtet wurde, dass die Probe über die ganze Dicke gezogen wurde.

Abbildung 2: Probeentnahmestellen bei Faschiertem (Ansicht von oben; 4*Eckpunkte, 2*Zentrum, 2*Längsseite)

Durch Zugabe der 9-fachen Menge an steriler Verdünnungsflüssigkeit (siehe Tab. 1) und anschließender Homogenisierung im Stomacher (für 120 Sekunden bei „high speed“) wurde eine Erstverdünnung hergestellt. Ausgehend von dieser Primärverdünnung wurde eine dezimale Verdünnungsreihe (bis zur Verdünnungsstufe 10^-4) angelegt.

5.1.3 Mikrobiologische Untersuchung

5.1.3.1 Geräte und Hilfsmittel

- Einweg-Kunststoff-Petrischalen; 90 mm Durchmesser; Fa.: Sterilin
- Caseinpepton-Hefeextrakt-Glucose-Agar (Plate-Count-Agar); Fa.: Oxoid; Art.-Nr.: CM325 (Tab. 7)
- Coli ID Agar (ColiID-F); Fa.: bioMérieux; Art.-Nr.: 42017 (Tab. 8)
- sterile 1 ml Glasmesspipetten; Graduierung 0,01ml
- Schüttelgerät Vortex-Genie 2; Fa.: Scientific Industries
- Brutschrank BK 4266; Fa. EHRET Labor- und Pharmatechnik GmbH & Co.KG
• Wasserbad
• diverses Laborglas

5.1.3.1.1 Herstellung des Caseinpepton-Hefeextrakt-Glucose-Agars

Tabelle 7: Zusammensetzung des Caseinpepton-Hefeextrakt-Glucose-Agars

<table>
<thead>
<tr>
<th>Bestandteile</th>
<th>Menge (g/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caseinpepton</td>
<td>5,0</td>
</tr>
<tr>
<td>Hefeextrakt</td>
<td>2,5</td>
</tr>
<tr>
<td>Glucose</td>
<td>1,0</td>
</tr>
<tr>
<td>Agar</td>
<td>9,0</td>
</tr>
<tr>
<td>pH 7,0 ± 0,2 bei 25°C</td>
<td></td>
</tr>
</tbody>
</table>

17,5 g des Trockennährbodens (Tab.7) wurden in einen Erlenmeyerkolben eingewogen. Die Einwaage wurde in einem Liter Aqua. dest. suspendiert und bis zum vollständigen Lösen auf einer Heizplatte erhitzt. Anschließend wurde der Nährboden für 15 min bei 121°C autoklaviert. Danach wurde der geschmolzene Nährboden auf Petrischalen verteilt und bis zum Verfestigen stehen gelassen. Die Platten wurden unmittelbar zur Untersuchung verwendet.

5.1.3.1.2 Vorbereitung des Coli ID Agar (Coli ID-F)- Nährbodens

Tabelle 8: Zusammensetzung des Coli ID Agars

<table>
<thead>
<tr>
<th>Bestandteile</th>
<th>Menge (g/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gelatinpepton</td>
<td>7,0</td>
</tr>
<tr>
<td>Hefeextrakt</td>
<td>3,0</td>
</tr>
<tr>
<td>NaCl</td>
<td>5,0</td>
</tr>
<tr>
<td>Gallensalze</td>
<td>1,5</td>
</tr>
<tr>
<td>Aktivator-Mischung</td>
<td>0,3</td>
</tr>
<tr>
<td>chromogene Mischung</td>
<td>0,3</td>
</tr>
</tbody>
</table>
Nach Lockerung der Verschlußkappe wurde der Agar 45 min lang bei 95°C verflüssigt. Anschließend wurde die Flasche verschlossen und der Inhalt homogenisiert. Die Flasche wurde bis zum Gebrauch im Wasserbad (bei 47°C) warm gehalten.

5.1.3.2 Durchführung

5.1.3.2.1 Bestimmung der aeroben mesophilen Keimzahl
Zur Bestimmung der aeroben mesophilen Keimzahl wurde das Spatelverfahren in Anlehnung an die Referenzmethode ISO 4833 angewendet.

5.1.3.2.2 Bestimmung von *Escherichia coli*
Zum Nachweis von β-D-Glucuronidase-positiven *Escherichia coli* wurde das Plattendurchgangsverfahren in Anlehnung an die Referenzmethode ISO 16649-2 angewendet.

Die Funktionsweise des Agars beruht auf zwei, im Medium enthaltenen, chromogenen Substraten. Eines davon dient dem Nachweis von β-D-Glucuronidase, welche *Escherichia coli* Kolonien rosa färbt. Das andere Substrat detektiert β-Galaktosidasen,
die Kolonien der anderen coliformen Keime blau färbt. Das Wachstum der meisten grampositiven Keime wird durch diesen Agar gehemmt.

Bei der praktischen Durchführung wurde 1 ml aus der zuvor hergestellten 10^{-1} Verdünnung mit einer Pipette entnommen und in eine sterile Petrischale übergeführt. Dazu wurden etwa 15 ml flüssiges Medium gegossen und durch kreisförmige Bewegungen gründlich homogenisiert. Nach Verfestigung des Agars wurden die Platten im Brutschrank (bei 44°C) inkubiert. Nach 24 h wurden alle rosa bis violetten Kolonien zur Auswertung herangezogen und ausgezählt.
5.2 Vergleichende Untersuchung von destruktiver und nicht-destruktiver Probenahme an Schlachtkörperhälften

5.2.1 Zielsetzung und Versuchsaufbau

Die Zielsetzung dieser Untersuchung ist die Beurteilung der Vergleichbarkeit einer destruktiven („Stanzmethode“) und einer nicht-destruktiven Methode („Kratzschwamm“).

Als Probematerial wurden Schweineschlachtkörperhälften gewählt. Der Oberflächenkeimgehalt wurde zur Beurteilung der Vergleichbarkeit auf Enterobacteriaceae und anaerobe mesophile Gesamtkeimzahl überprüft (Prozesshygienekriterien).

5.2.2 Probenahme bzw. Probevorbereitung

5.2.2.1 Geräte und Hilfsmittel

- Edelstahlrohr; 2,5 cm weit; an einem Ende angeschliffen
- Ethanol 96% (zum Abflammen)
- sterile Pinzetten und Scheren
- transportabler Gasbrenner; Fa.: Camping Gaz
- Stomachersäcke mit Filterrohr; Fa.: Seward
- Verschlüsse Anaeroclip®; Fa. Merck
- autoklavierte Schablonen; 10 mal 10 cm
• 3M™ Hydra-Sponge; 10 ml gepuffertes Peptonwasser; 500 ml Beutel; 2 Handschuhe; Fa. Biotrace; Art.-Nr.: HS-10BPW/2G
• Einweg - Schutzkleidung
• Kühltasche

5.2.2.2 Durchführung

Die gewonnenen Proben wurden unter Kühlung (Kühltasche bzw. Kühlauto bei maximal 4°C) in das Labor gebracht.

5.2.2.2.1 Destruktive Methode

Mit einer sterilen, an einer Seite angeschliffenen Edelstahlstanze wurde ein 5 cm² großer und 0,5 cm dickes Gewebestück entnommen. Mit Hilfe einer sterilen Pinzette, und gegebenenfalls einer Schere, wurde die Probe in einen sterilen Stomachersack mit Filterrohr transferiert und der Sack verschlossen.
Zur Keimfreimachung wurde die Stanze vor jedem Arbeitsgang in Alkohol getaucht und abgeflammt.

5.2.2.2.2 Nicht – destruktive Methode

Das Probenahmeset besteht aus einem wiederverschließbaren Kunststoffsack, in dem sich ein steriles, mit 10 ml gepuffertem Peptonwasser anfeuchtetes Schwämmchen befindet. Außerdem ist ein zweiter Beutel mit sterilen Handschuhen an dem Kunststoffsack befestigt. Das Schwämmchen besteht aus biozid-freier Zellulose, welche die Zellviabilität begünstigt.
Bei der Probenahme wurde zuerst der Beutel mit dem darin enthaltenen Schwämmchen aufgerissen und durch Auseinanderziehen der beiden Laschen geöffnet. Anschließend wurde der Kratzschwamm erfasst und etwas Flüssigkeit ausgedrückt. Mit Hilfe einer autoklavierten Schablone wurden 100 cm² Schlachtköperoberfläche mit hohem Druck abgerieben.

5.2.3 Aufbereitung der Probe im Labor

5.2.3.1 Geräte und Hilfsmittel

- Waage; oberschalig; max.: 2100g; d: 0,01g; Electronic Balance FX-2000; Fa.: AND Mercury PTY. LDT
- Laboratory Blender Stomacher® 400, Fa.: Seward
- Stomachersäcke mit Filterrohr; Fa.: Seward
- Pepton-Kochsalzlösung (Tab.6)
- Pipettierhilfe
- sterile 1 ml Glasmesspipetten; Graduierung 0,01ml
- Eprouvetten
- Eprouvettenständer
- Schüttelgerät Vortex-Genie 2; Fa.: Scientific Industries
- diverses Laborglas

5.2.3.2 Durchführung

5.2.4 Mikrobiologische Untersuchung

5.2.4.1 Testprinzip

5.2.4.2 TEMPO® TVC (Total Viable Count) Kit zum Nachweis der Gesamtkeimzahl

Der TEMPO® TVC Test zur Bestimmung der mesophilen aeroben Gesamtkeimzahl in Lebensmittel wurde gemäß dem EN ISO Standard 16140 als alternative Untersuchungsmethode zu der internationalen Referenzmethode EN ISO Norm 4833 durch die AFAQ (Association Française pour l’Assurance de la Qualité) AFNOR validiert und durch das AOAC® Research Institute zertifiziert.
Diese Methode ermöglicht die Bestimmung der Gesamtkeimzahl aus Lebensmitteln innerhalb von 40-48 Stunden.

Das Testprinzip beruht auf einer Fluoreszenzreaktion. Durch bestimmte Enzyme, der in der Probe vorkommenden Mikroorganismen, wird das Kulturmedium abgebaut und es entsteht eine messbare Fluoreszenz.

5.2.4.3 TEMPO® EB Kit (Enterobacteria) Kit zum Nachweis der Enterobakterien

Enterobacteriaceen werden mit dieser Methode durch eine Fluoreszenzreaktion innerhalb von 24 Stunden detektiert.

Während der Inkubation bauen Enterobacteriaceen den Zucker im Kulturmedium unter Säurebildung ab, dies führt zu einer pH–Wert Senkung und somit zur Löschung der Fluoreszenz von 4-Methylumbelliferone. Durch Ablesen der nicht-fluoreszierenden Kavitäten wird die ursprüngliche Keimzahl kalkuliert [PAULSEN et al., 2008].

5.2.4.4 Geräte und Hilfsmittel

- TEMPO® Filling Station; Fa.: bioMérieux
- TEMPO® Reading Station; Fa.: bioMérieux
- TEMPO® Inkubation Racks; Fa.: bioMérieux
- TEMPO® Reading Racks; Fa.: bioMérieux
- TEMPO® TVC Test Kit; Fa.: bioMérieux; Art.-Nr.:80007
- TEMPO® EB Test Kit; Fa.: bioMérieux; Art.-Nr.:80003
- Dispenser für 3,9 und 3,0 ml
- Pepton-Kochsalzlösung (Tab.6)
- Pipettierhilfe
- sterile 1 ml Messpipetten; Graduierung 0,01ml
5.2.4.5 Durchführung

Aus den beiden Test-Kits (TEMPO® TVC, TEMPO® EB) wurde für jede zu testende Probe ein Fläschchen mit dem getrockneten Kulturmedium entnommen.

Anschließend wurden die Kulturmedien in den Fläschchen verdünnt, indem mit Hilfe eines Dispensers 3 ml (TEMPO® EB) bzw. 3,9 ml (TEMPO® TVC) sekundäres Verdünnungsmittel zugegeben wurde.

Mit einer Vollpipette wurde 1 ml (TEMPO® EB) bzw. 0,1 ml (TEMPO® TVC) verdünnte Probe aus den Stomachersäcken entnommen und zu den aufgelösten Kulturmedien pipettiert. Danach wurde der Inhalt aller Fläschchen auf dem Vortex für jeweils 3 Sekunden homogenisiert. Auf diese Weise erhält man bei beiden Test Kits 4 ml beimpftes Medium.

Für jedes Fläschchen wurde eine Reaktionskarte aus dem entsprechendem Testkit entnommen. Auf jeder Karte befindet sich ein Barcode, der mit dem Reader der Vorbereitungsstation gescannt wird, wodurch das Gerät erkennt, welcher Test durchgeführt werden soll und gleichzeitig der Probe eine individuelle Kennung zuordnet.

Die Karten wurden anschließend gemeinsam mit den dazugehörigen Fläschchen so in das Filling Rack gestellt, dass der Ansaugschlauch der Karte in das Fläschchen reicht. Im Tempo Filler wurde der Befüllungsvorgang gestartet, wobei das beimpfte Medium komplett in die Karten übergeführt wird. Gleichzeitig wurde der Ansaugschlauch abgeschnitten und versiegelt.
Danach wurden die Karten aus dem Filling Rack in das Reading Rack übergeführt und bei 30°C für 40 – 48 h (TEMPO® TVC) bzw. bei 35 °C für 22 – 27 h (TEMPO® EB) inkubiert.

Nach der Inkubation wurden die Karten in der TEMPO® Reading Station abgelesen. Dieser scannt durch Anheben jeder Karte den Barcode und wertet die Fluoreszenzstärke der einzelnen Kavitäten aus. Das Gerät ist durch die vorhergehende Identifizierung in der Lage den jeweiligen Testtyp und die Verdünnung automatisch zuzuordnen und die Messergebnisse in kbE/g bzw. ml umzuwandeln.
5.3 Vergleichende Untersuchung zur Herstellung von seriellen Verdünnungen

5.3.1 Zielsetzung und Versuchsaufbau

Die Herstellung dezimaler Verdünnungsreihen ist eine Voraussetzung bei der Keimzahlbestimmung [BAUMGART, 1993]. Dafür sind die Proben-Erstverdünnung, und folgend, eine dezimale Verdünnungsreihe nötig, um die Probe in eine Form zu bringen, in der sie auf Nährböden aufgetragen werden kann, bzw. in der die erwartete Koloniezahl im auswertbaren Bereich je Nährboden (z.B. Gesamtkeimzahl 1-300 Kolonien) liegt.

Bei Verfahren mit weitem Nachweisbereich (z.B. Spiralplattenverfahren oder bestimmte MPN Anwendungen) werden nur wenige oder keine Dezimalverdünnungen, außer der Erstverdünnung, gebraucht. Es sind allerdings spezielle Gerätschaften erforderlich.

Neben der manuellen Herstellung von Verdünnungsreihen (Pipettieren von 1 ml Probensuspension in 9 ml Verdünnungsflüssigkeit; Mischen auf einem Rüttelgerät, z.B. Vortex; Pipettieren von 1 ml dieser 1:10 Verdünnung zu 9 ml Verdünnungsflüssigkeit etc.) gibt es auch teil-automatisierte Systeme.

Die Fa. LabRobot (LabRobot Products AB) bietet einen Rütteltisch mit Näherungsschalter an (Dilushaker®), der zur Aufnahme von Näpfchen eingerichtet ist, die bereits mit 9 ml Verdünnungsflüssigkeit beschickt sind (Dilucups®). Die praktische Anwendung erfolgt so, dass von der benötigten Anzahl an Näpfchen die Deckfolie entfernt wird und die Näpfchen in der Aufnahmeplatte des Rüttlers platziert werden. Die Näpfchen werden wie die üblichen Verdünnungsröhrchen mit Probensuspension befüllt, müssen aber zum Durchmischen nicht mehr in die Hand genommen und auf einen Vortex-Rüttler gedrückt werden.
Eigene Untersuchungen

Bei der Herstellung der seriellen Verdünnung wurden 2 Varianten betrachtet:

1. Verdünnungsreihe mit selbst abgefüllten und sterilisierten Eprouvetten (mit Alukappen verschlossen)
2. teil-automatisiertes System (Dilucups®; Fa. LabRobot)

5.3.2 Probenahme bzw. Probevorbereitung

5.3.2.1 Geräte und Hilfsmittel

- DiluShaker; Fa.: LabRobots
- DiluCups; Inhalt: 9 ml Dilucup-Pepton-Lösung; Fa.: LabRobots; Art.-Nr.: 400100
- Waage; oberschalig; max.: 2100g; d: 0,01g; Electronic Balance FX-2000; Fa.: AND Mercury PTY. LDT
- Pepton-Kochsalzlösung (Tab.)
- Laboratory Blender Stomacher® 400, Fa.: Seward
- Stomachersäcke mit Filterrohr; Fa.: Seward
- Pipettierhilfe
- sterile 1 ml Glasmesspipetten; Graduierung 0,01ml
- Eprouvetten mit Alukappen
- Eprouvettenständer
• Schüttelgerät Vortex-Genie 2; Fa.: Scientific Industries
• sterile Pinzetten und Scheren
• diverses Laborglas

5.3.2.2 Durchführung
Es wurden jeweils 20 g (± 1 g) der Probe unter sterilen Bedingungen aus der Verpackung entnommen und in einen Stomacherbeutel mit Filterrohr übergeführt. Zur Herstellung der Erstverdünnung (Verdünnungsstufe 10⁻¹) wurde zu jeder Probe die neunfache Menge sterile Pepton-Kochsalzlösung (Verdünnungsflüssigkeit) zugegeben und anschließend für 120 Sekunden bei der Geschwindigkeitseinstellung „high“ homogenisiert.

5.3.2.2.1 herkömmliche Methode zur Herstellung von seriellen Verdünnungen
Zur Herstellung der Verdünnungsstufe 10⁻² wurde je 1 ml Erstverdünnung mit einer sterilen 1 ml Glasmesspipette aus dem Filterrohr des Stomacherbeutels entnommen und in eine mit Verdünnungsflüssigkeit befüllte Eprouvette übergeführt. Danach wurde der Eprouvetteninhalt durch dreimaliges Aufsetzen für je 2 Sekunden auf dem Schüttelgerät durchmischt.
Dieser Vorgang wurde bis zum Erreichen einer Endverdünnung von 10⁻⁴ wiederholt.

5.3.2.2.2 Alternative Methode zur Herstellung von seriellen Verdünnungen
Das zu vergleichende System besteht aus fabrikmäßig abgefüllten, mit Kunststofffolie verschlossenen, Näpfchenreihen (zu 9 Stück) und einem eigenen Rüttelgerät.
Jeder Behälter ist mit 9 ml Verdünnungsflüssigkeit befüllt und durch Gammastrahlung sterilisiert. Durch Auseinanderschneiden der Reihe kann je nach benötigter Verdünnungsstufe die entsprechende Anzahl an Cups entnommen werden.
Das Rüttelgerät ist mit einem Gestell für 25 Näpfchen und einem Sensor ausgestattet.

5.3.3 Mikrobiologische Untersuchung

5.3.3.1 Geräte und Hilfsmittel

- Einweg-Kunstoff-Petrischalen; 90 mm Durchmesser; Fa.: Sterilin
- Caseinpepton-Hefeeextrakt-Glucose-Agar-Pulver (Plate-Count-Agar); Fa.: Oxoid; Art.-Nr.: CM325 (Tab. 7)
- sterile 1 ml Glasmesspipetten; Graduierung 0,01ml
- Schüttelgerät Vortex-Genie 2; Fa.: Scientific Industries
- Brutschrank BK 4266; Fa.: EHRET Labor- und Pharmatechnik GmbH & Co.KG
- diverses Laborglas

5.3.3.2 Durchführung

5.4 Modifikation der ISO Bestimmungsmethode für Enterobacteriaceae (ISO 21258-2)

5.4.1 Zielsetzung und Versuchsaufbau

Die Kolonien werden nach Reinzucht (Trypton-Soja Agar, Bebrütung 24 Stunden bei 37°C) auf Oxidasereaktion getestet und die Fähigkeit der Glucosefermentation (Glucose-Agar; Beimpfung im Stichverfahren) geprüft.

Der Anteil bestätigter (d.h. oxidasenegativer-glucosefermentierender) Kolonien an den fünf untersuchten Isolaten wird als Korrekturfaktor für das vorläufige Ergebnis verwendet.

Während die Bestimmung der vorläufigen Koloniezahl 24 Stunden benötigt, dauert die Bestätigung zumindest 48 Stunden. Davon entfallen ca. 24 Stunden auf die Reinzucht der ausgewählten Kolonien, ca. 10 Minuten auf die Bestimmung der Oxidasereaktion und etwa 24 bis ggf. 48 Stunden für die Bestimmung der Glucosefermentation.

In der Untersuchung sollte nun geklärt werden, ob die aus den aus Schlachtkörperoberflächen isolierten präsumtiven Enterobacteriaceae tatsächlich weiteren Bestätigungsreaktionen unterzogen werden müssen. Der Wegfall dieser Bestätigung bedeutet nicht nur eine Ersparnis von 48 Stunden, sondern auch eine Materialersparnis.

5.4.2 Probenahme bzw. Probevorbereitung

5.4.2.1 Geräte und Hilfsmittel

- Einweg-Kunststoff-Petrishalen; 90 mm Durchmesser; Fa.: Sterilin
• Edelstahlrohr; 2,5 cm weit; an einem Ende angeschliffen
• Ethanol 96% (zum Abflammen)
• sterile Pinzetten und Scheren
• transportabler Gasbrenner; Fa.: Camping Gaz
• Stomachersäcke mit Filterrohr; Fa.: Seward
• Waage; oberschalig; max.: 2100g; d: 0,01g; Electronic Balance FX-2000; Fa.: AND Mercury PTY. LDT
• Pepton-Kochsalzlösung (Tab.6)
• Laboratory Blender Stomacher® 400, Fa.: Seward
• Pipettierhilfe
• sterile 1 ml Glasmesspipetten; Graduierung 0,01ml
• Eprouvetten mit Alukappen
• Eprouvettenständer
• Schüttelgerät Vortex-Genie 2; Fa.: Scientific Industries
• sterile Pinzetten und Scheren
• diverses Laborglas

5.4.2.2 Durchführung

Bei der praktischen Durchführung wurden insgesamt 56 Schlachtkörperoberflächen untersucht (28 Rinderschlachtkörper, 28 Schweineschlachtkörper).

Aus den Schlachtkörperoberflächen wurden jeweils 25 g mit einem Edelstahlrohr ausgestanzt und in Stomachersäcke übergeführt. Zwischen den Arbeitgängen wurde die Stanze in Ethanol getaucht, abgeflammt und somit sterilisiert.

Durch Zugabe von Pepton-Kochsalzlösung wurden Erstverdünnungen aus den Proben hergestellt, die mittels Stomacher (hohe Geschwindigkeit, 120 Sek.) mazeriert wurden. Ausgehend von dieser Erstverdünnung wurde eine dezimale Verdünnungsreihe (bis Endverdünnung 10^{-3}) hergestellt.
5.4.3 Mikrobiologische Untersuchung

5.4.3.1 Geräte und Hilfsmittel

- Kristallviolett-Neutralrot-Galle-Glucose-Agar (VRBG); Fa.: bioMérieux; Art.Nr.: 42601
- Einweg-Kunstoff-Petrischalen; 90 mm Durchmesser; Fa.: Sterilin
- sterile 1 ml Glasmesspipetten; Graduierung 0,01ml
- Schüttelgerät Vortex-Genie 2; Fa. Scientific Industries
- Brutschrank BK 4266; Fa.: EHRET Labor- und Pharmatechnik GmbH & Co.KG
- diverses Laborglas

5.4.3.2 Durchführung

5.4.4 Bestätigungsreaktionen

5.4.4.1 Geräte und Hilfsmittel

- Trypton-Soja Agar; fertige Platten; Fa.:bioMérieux; Art.Nr.: 43011
- O/F-Medium; Fa.: bioMérieux; Art.Nr.: 50110
- Paraffin; flüssig; Fa.: bioMérieux; Art.Nr.: 70100
- Öse
• Impfnadel
• Oxidase Reagent; Fa.: bioMérieux; Art.Nr.: 55635
• Filterpapier
• sterile 1 ml Glasmesspipetten; Graduierung 0,01ml
• Brutschrank BK 4266; Fa.: EHRET Labor- und Pharmatechnik GmbH & Co.KG
• diverses Laborglas

5.4.4.2 Durchführung

Zur Reinzucht wurden jeweils fünf verdächtige, zufällig ausgewählte, Kolonien auf Trypton-Soja Agar ausgestrichen und bei 37°C für 24 h aerob bebrütet.

Für die biochemischen Bestätigungstests wurde jeweils eine gut isolierte Kolonie aus der Reinkultur ausgewählt und einem Oxidasetest unterzogen. Hierfür wurde mit Hilfe einer sterilen Öse eine Einzelkolonie entnommen und auf einem mit Oxidase Reagens befeuchtetem Filterpapier verteilt (Blaufärbung \(\rightarrow \) Oxidase-positiv).

6 Ergebnisse und Diskussion

6.1 Probeentnahmestellen bei Faschiertem

Die Analyseergebnisse zeigen, dass die Probenahmestelle keinen signifikanten Einfluss auf das Ergebnis hatte (ANOVA, F=0,02 für aerobe mesophile Gesamtkeimzahl bzw. 0,07 für E. coli; P = 1,000 bzw. 0,9995)\(^1\).

Die Ergebnisse sind in Tab. 10 und Tab. 11 wiedergegeben. Die gesamte Analyseliste befindet sich im Anhang (Tab. 16 und 17).

6.1.1 Analyseergebnisse

Tabelle 9: Aerobe mesophile Keimzahl (log\(^{10}\) kbE/g) in verschiedenen Entnahmestellen (A bis F; s. Abb.2) von 10 Handelspackungen „gemischtes Faschiertes“

<table>
<thead>
<tr>
<th>Probe</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teilprobe A</td>
<td>4,98</td>
<td>7,10</td>
<td>5,10</td>
<td>7,28</td>
<td>5,20</td>
<td>6,22</td>
<td>5,75</td>
<td>5,74</td>
<td>6,48</td>
<td>5,95</td>
</tr>
<tr>
<td>Teilprobe B</td>
<td>5,08</td>
<td>7,16</td>
<td>4,91</td>
<td>7,30</td>
<td>5,16</td>
<td>6,26</td>
<td>5,88</td>
<td>5,63</td>
<td>6,56</td>
<td>5,84</td>
</tr>
<tr>
<td>Teilprobe C</td>
<td>5,09</td>
<td>7,16</td>
<td>4,95</td>
<td>7,18</td>
<td>5,25</td>
<td>5,99</td>
<td>5,93</td>
<td>5,95</td>
<td>6,23</td>
<td>5,98</td>
</tr>
<tr>
<td>Teilprobe D</td>
<td>4,98</td>
<td>7,18</td>
<td>5,06</td>
<td>7,20</td>
<td>5,21</td>
<td>6,15</td>
<td>5,83</td>
<td>5,74</td>
<td>6,49</td>
<td>5,76</td>
</tr>
<tr>
<td>Teilprobe E</td>
<td>5,09</td>
<td>7,20</td>
<td>4,95</td>
<td>7,45</td>
<td>5,13</td>
<td>6,34</td>
<td>5,95</td>
<td>5,88</td>
<td>6,43</td>
<td>6,20</td>
</tr>
<tr>
<td>Teilprobe F</td>
<td>5,05</td>
<td>7,13</td>
<td>4,93</td>
<td>7,12</td>
<td>5,15</td>
<td>6,31</td>
<td>5,98</td>
<td>5,90</td>
<td>6,61</td>
<td>5,88</td>
</tr>
<tr>
<td>Teilprobe G</td>
<td>5,03</td>
<td>7,17</td>
<td>5,00</td>
<td>7,41</td>
<td>5,18</td>
<td>6,23</td>
<td>5,88</td>
<td>5,82</td>
<td>6,69</td>
<td>6,13</td>
</tr>
</tbody>
</table>

\(^1\) ANOVA: Varianzanalyse zur Untersuchung mehrerer Stichproben, F: Wert der Prüfgröße, P: ausgewählte „Irrtumswahrscheinlichkeit“
Teilprobe H
<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,06</td>
<td>7,16</td>
<td>4,97</td>
<td>7,26</td>
<td>5,21</td>
<td>6,29</td>
<td>6,05</td>
<td>5,70</td>
<td>6,18</td>
<td>5,98</td>
</tr>
</tbody>
</table>

Mittelwert
| 5,04 | 7,16 | 4,98 | 7,27 | 5,18 | 6,22 | 5,90 | 5,80 | 6,46 | 5,97 |

Standardabweichung
| 0,04 | 0,03 | 0,06 | 0,11 | 0,04 | 0,11 | 0,09 | 0,11 | 0,18 | 0,15 |

Tabelle 10: *E. coli* (log₁₀ kbE/g) in verschiedenen Entnahmestellen (A bis F) von 10 Handelspackungen „gemischtes Faschiertes“

<table>
<thead>
<tr>
<th>Probe</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teilprobe A</td>
<td>3,49</td>
<td>2,78</td>
<td>3,11</td>
<td>2,78</td>
<td>3,85</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Teilprobe B</td>
<td>3,04</td>
<td>2,70</td>
<td>2,95</td>
<td>2,90</td>
<td>4,04</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Teilprobe C</td>
<td>3,63</td>
<td>2,30</td>
<td>2,95</td>
<td>2,78</td>
<td>4,18</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Teilprobe D</td>
<td>3,23</td>
<td>2,70</td>
<td>3,11</td>
<td>2,48</td>
<td>4,61</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Teilprobe E</td>
<td>3,08</td>
<td>2,00</td>
<td>3,20</td>
<td>2,85</td>
<td>3,95</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Teilprobe F</td>
<td>3,04</td>
<td>2,30</td>
<td>3,15</td>
<td>2,60</td>
<td>4,15</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Teilprobe G</td>
<td>3,20</td>
<td>2,95</td>
<td>2,95</td>
<td>2,70</td>
<td>3,85</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Teilprobe H</td>
<td>3,18</td>
<td>2,48</td>
<td>2,85</td>
<td>2,48</td>
<td>4,32</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>3,24</td>
<td>2,53</td>
<td>3,04</td>
<td>2,69</td>
<td>4,12</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>0,22</td>
<td>0,31</td>
<td>0,12</td>
<td>0,16</td>
<td>0,26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.2 Vergleichende Untersuchung von destruktiver und nicht-destruktiver Probenahme an Schlachtkörperhälften

Der Methodenvergleich wurde bei 67 Schlachtschweinehälften durchgeführt, wobei darauf geachtet wurde, dass sich die Probenahmestellen der Destruktivprobe und der Tupferprobe in unmittelbarer Nähe befanden.

Aus den Werten in Tab. 11 und 12 ist zu entnehmen, dass sowohl bei der Untersuchung der Gesamtkeimzahl, als auch bei der Enterobacteriaceenkonzentration kein statistisch signifikanter Unterschied zwischen den Messwerten beider Methoden besteht. Daraus kann geschlossen werden, dass die destruktive und die untersuchte nicht-destruktive Probenahmetechnik gleichwertige Ergebnisse liefern.

Mehreren Studien haben bereits gezeigt, dass die Ausbeute bei nicht-destruktiver Probenahme durch Wischen mit angefeuchteten, rauen Kunststoff-Schwämmchen jener von destruktiven Verfahren im Wesentlichen entspricht (etwa die Studien von BYRNE et al., 2005 und PEARCE & BOLTON, 2005). Die durchschnittlichen Differenzen können dabei bis 0,2 log₁₀ Einheiten betragen.

Weiters ist aber zu beachten, dass bei niedrigen Bakterienkonzentrationen bzw. ungleichmäßiger Verteilung dieser am Schlachtkörper die Beprobung größerer Oberflächen (wie dies bei der Probenahme mit einem Kratzschwamm der Fall ist) auch höhere Ergebnisse erhalten werden bzw. ist die Wiederfindung besser [GILL & JONES, 2000].

6.2.1 Analyseergebnisse

Tabelle 11: Bestimmung der aeroben mesophilen Gesamtkeimzahl aus destruktiv (mittels Stanze) und nicht-destruktiv (mittels Kratzschwamm) gewonnenen Oberflächenproben von Schweineschlachtkörpern

<table>
<thead>
<tr>
<th>Tag 1</th>
<th>Stanze TVC kBE/g</th>
<th>Schwamm TVC kBE/g</th>
<th>Stanze log₁₀</th>
<th>Schwamm log₁₀</th>
<th>logdiff*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>210,00</td>
<td>450,00</td>
<td>2,32</td>
<td>2,65</td>
<td>-0,33</td>
</tr>
<tr>
<td>2</td>
<td>99,00</td>
<td>440,00</td>
<td>2,00</td>
<td>2,64</td>
<td>-0,65</td>
</tr>
<tr>
<td>3</td>
<td>100,00</td>
<td>100,00</td>
<td>2,00</td>
<td>2,00</td>
<td>0,00</td>
</tr>
<tr>
<td>4</td>
<td>99,00</td>
<td>100,00</td>
<td>2,00</td>
<td>2,00</td>
<td>0,00</td>
</tr>
<tr>
<td>5</td>
<td>99,00</td>
<td>680,00</td>
<td>2,00</td>
<td>2,83</td>
<td>-0,84</td>
</tr>
<tr>
<td>6</td>
<td>210,00</td>
<td>99,00</td>
<td>2,32</td>
<td>2,00</td>
<td>0,33</td>
</tr>
</tbody>
</table>
Ergebnisse und Diskussion

<table>
<thead>
<tr>
<th>Tag 2</th>
<th>TVC kbE/g</th>
<th>TVC kbE/g</th>
<th>log₁₀</th>
<th>log₁₀</th>
<th>logdiff</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13</td>
<td>380000,00</td>
<td>330000,00</td>
<td>5,58</td>
<td>5,52</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>90000,00</td>
<td>88000,00</td>
<td>4,95</td>
<td>4,94</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>300000,00</td>
<td>148000,00</td>
<td>5,48</td>
<td>5,17</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>200000,00</td>
<td>113000,00</td>
<td>5,30</td>
<td>5,05</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>75000,00</td>
<td>67000,00</td>
<td>4,88</td>
<td>4,83</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>820000,00</td>
<td>900000,00</td>
<td>5,91</td>
<td>5,95</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>2000000,00</td>
<td>1140000,00</td>
<td>6,30</td>
<td>6,06</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1740000,00</td>
<td>1000000,00</td>
<td>6,24</td>
<td>6,00</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>64000,00</td>
<td>152000,00</td>
<td>4,81</td>
<td>5,18</td>
</tr>
<tr>
<td>Median</td>
<td></td>
<td></td>
<td></td>
<td>5,48</td>
<td>5,18</td>
</tr>
<tr>
<td>mittelwert</td>
<td></td>
<td></td>
<td></td>
<td>5,49</td>
<td>5,41</td>
</tr>
<tr>
<td>MW±Sd</td>
<td></td>
<td></td>
<td></td>
<td>5,56±0,57</td>
<td>5,46±0,48</td>
</tr>
<tr>
<td>P-Wert**</td>
<td></td>
<td></td>
<td></td>
<td>0,27</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tag 3</th>
<th>TVC kbE/g</th>
<th>TVC kbE/g</th>
<th>log₁₀</th>
<th>log₁₀</th>
<th>logdiff</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>22</td>
<td>2400,00</td>
<td>12000,00</td>
<td>3,38</td>
<td>4,08</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>99,00</td>
<td>99,00</td>
<td>2,00</td>
<td>2,00</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>99,00</td>
<td>1100,00</td>
<td>2,00</td>
<td>3,04</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>210,00</td>
<td>14000,00</td>
<td>2,32</td>
<td>4,15</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>2800,00</td>
<td>1400,00</td>
<td>3,45</td>
<td>3,15</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>7100,00</td>
<td>5700,00</td>
<td>3,85</td>
<td>3,76</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>2100,00</td>
<td>1500,00</td>
<td>3,32</td>
<td>3,18</td>
</tr>
<tr>
<td>Median</td>
<td></td>
<td></td>
<td></td>
<td>3,32</td>
<td>3,18</td>
</tr>
<tr>
<td>Mittel</td>
<td></td>
<td></td>
<td></td>
<td>2,90</td>
<td>3,33</td>
</tr>
<tr>
<td>MW±Sd</td>
<td></td>
<td></td>
<td></td>
<td>3,01±0,77</td>
<td>3,44±0,74</td>
</tr>
<tr>
<td>P-Wert**</td>
<td></td>
<td></td>
<td></td>
<td>0,195</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tag 4</th>
<th>TVC kbE/g</th>
<th>TVC kbE/g</th>
<th>log₁₀</th>
<th>log₁₀</th>
<th>logdiff</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>29</td>
<td>13090,91</td>
<td>15181,82</td>
<td>4,12</td>
<td>4,18</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>4000,00</td>
<td>2590,91</td>
<td>3,60</td>
<td>3,41</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>1454,55</td>
<td>1500,00</td>
<td>3,16</td>
<td>3,18</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>16363,64</td>
<td>13000,00</td>
<td>4,21</td>
<td>4,11</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>173000,00</td>
<td>159000,00</td>
<td>5,24</td>
<td>5,20</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>95000,00</td>
<td>73000,00</td>
<td>4,98</td>
<td>4,86</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>1000,00</td>
<td>1290,91</td>
<td>3,00</td>
<td>3,11</td>
</tr>
<tr>
<td>Median</td>
<td></td>
<td></td>
<td></td>
<td>4,12</td>
<td>4,11</td>
</tr>
<tr>
<td>Mittel</td>
<td></td>
<td></td>
<td></td>
<td>4,04</td>
<td>4,01</td>
</tr>
<tr>
<td>MW±Sd</td>
<td></td>
<td></td>
<td></td>
<td>4,17±0,86</td>
<td>4,12±0,82</td>
</tr>
</tbody>
</table>
Tabelle 12: Bestimmung der Enterobacteriaceen-Konzentration aus destruktiv (mittels Stanze) und nicht-destruktiv (mittels Kratzschwamm) gewonnenen Oberflächenproben von Schweineschlachtkörpern

<table>
<thead>
<tr>
<th>Tag 1</th>
<th>Stanze Eb kBE/g</th>
<th>Schwamm Eb kBE/g</th>
<th>log10</th>
<th>log10</th>
<th>logdiff</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9,00</td>
<td>9,00</td>
<td>0,95</td>
<td>0,95</td>
<td>0,00</td>
</tr>
<tr>
<td>2</td>
<td>9,00</td>
<td>9,00</td>
<td>0,95</td>
<td>0,95</td>
<td>0,00</td>
</tr>
<tr>
<td>3</td>
<td>10,00</td>
<td>9,00</td>
<td>1,00</td>
<td>0,95</td>
<td>0,05</td>
</tr>
<tr>
<td>4</td>
<td>10,00</td>
<td>10,00</td>
<td>1,00</td>
<td>1,00</td>
<td>0,00</td>
</tr>
<tr>
<td>5</td>
<td>10,00</td>
<td>9,00</td>
<td>1,00</td>
<td>0,95</td>
<td>0,05</td>
</tr>
<tr>
<td>6</td>
<td>10,00</td>
<td>9,00</td>
<td>1,00</td>
<td>0,95</td>
<td>0,05</td>
</tr>
<tr>
<td>7</td>
<td>9,00</td>
<td>9,00</td>
<td>0,95</td>
<td>0,95</td>
<td>0,00</td>
</tr>
<tr>
<td>8</td>
<td>9,00</td>
<td>9,00</td>
<td>0,95</td>
<td>0,95</td>
<td>0,00</td>
</tr>
<tr>
<td>9</td>
<td>9,00</td>
<td>9,00</td>
<td>0,95</td>
<td>0,95</td>
<td>0,00</td>
</tr>
<tr>
<td>10</td>
<td>9,00</td>
<td>9,00</td>
<td>0,95</td>
<td>0,95</td>
<td>0,00</td>
</tr>
<tr>
<td>11</td>
<td>9,00</td>
<td>9,00</td>
<td>0,95</td>
<td>0,95</td>
<td>0,00</td>
</tr>
<tr>
<td>12</td>
<td>9,00</td>
<td>9,00</td>
<td>0,95</td>
<td>0,95</td>
<td>0,00</td>
</tr>
<tr>
<td>13</td>
<td>9,00</td>
<td>9,00</td>
<td>0,95</td>
<td>0,95</td>
<td>0,00</td>
</tr>
<tr>
<td>14</td>
<td>9,00</td>
<td>9,00</td>
<td>0,95</td>
<td>0,95</td>
<td>0,00</td>
</tr>
<tr>
<td>median</td>
<td></td>
<td></td>
<td>0,95</td>
<td>0,95</td>
<td></td>
</tr>
<tr>
<td>mittel</td>
<td></td>
<td></td>
<td>0,97</td>
<td>0,96</td>
<td></td>
</tr>
<tr>
<td>MW±Sd</td>
<td></td>
<td></td>
<td>0,97±0,02</td>
<td>0,95±0,01</td>
<td></td>
</tr>
<tr>
<td>P-Wert**</td>
<td></td>
<td></td>
<td>0,082</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tag 2</th>
<th>Eb kBE/g</th>
<th>Eb kBE/g</th>
<th>log10</th>
<th>log10</th>
<th>logdiff</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>9,00</td>
<td>9,00</td>
<td>0,95</td>
<td>0,95</td>
<td>0,00</td>
</tr>
<tr>
<td>16</td>
<td>9,00</td>
<td>9,00</td>
<td>0,95</td>
<td>0,95</td>
<td>0,00</td>
</tr>
<tr>
<td>17</td>
<td>9,00</td>
<td>9,00</td>
<td>0,95</td>
<td>0,95</td>
<td>0,00</td>
</tr>
<tr>
<td>18</td>
<td>9,00</td>
<td>9,00</td>
<td>0,95</td>
<td>0,95</td>
<td>0,00</td>
</tr>
<tr>
<td>19</td>
<td>9,00</td>
<td>9,00</td>
<td>0,95</td>
<td>0,95</td>
<td>0,00</td>
</tr>
</tbody>
</table>

* logdiff bedeutet die Differenz der log10 Ergebnisse.

** P-Wert über dem gewählten Signifikanzniveau (hier α=0,05), d.h. die Nullhypothese auf Gleichheit der Proben kann nicht verworfen werden; t-Test.
<table>
<thead>
<tr>
<th>Tag 3</th>
<th>Eb kbE/g</th>
<th>Eb kbE/g</th>
<th>log10</th>
<th>log10</th>
<th>logdiff</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>9,00</td>
<td>9,00</td>
<td>0,95</td>
<td>0,95</td>
<td>0,00</td>
</tr>
<tr>
<td>31</td>
<td>9,00</td>
<td>10,00</td>
<td>0,95</td>
<td>1,00</td>
<td>-0,05</td>
</tr>
<tr>
<td>32</td>
<td>21,00</td>
<td>9,00</td>
<td>1,32</td>
<td>1,00</td>
<td>0,32</td>
</tr>
<tr>
<td>33</td>
<td>10,00</td>
<td>9,00</td>
<td>1,00</td>
<td>0,95</td>
<td>0,05</td>
</tr>
<tr>
<td>34</td>
<td>45,00</td>
<td>9,00</td>
<td>1,65</td>
<td>0,95</td>
<td>0,70</td>
</tr>
<tr>
<td>35</td>
<td>130,00</td>
<td>9,00</td>
<td>2,11</td>
<td>0,95</td>
<td>1,16</td>
</tr>
<tr>
<td>36</td>
<td>9,00</td>
<td>9,00</td>
<td>0,95</td>
<td>0,95</td>
<td>0,00</td>
</tr>
<tr>
<td>37</td>
<td>55,00</td>
<td>10,00</td>
<td>1,74</td>
<td>1,00</td>
<td>0,74</td>
</tr>
<tr>
<td>38</td>
<td>9,00</td>
<td>10,00</td>
<td>0,95</td>
<td>1,00</td>
<td>-0,05</td>
</tr>
<tr>
<td>39</td>
<td>110,00</td>
<td>9,00</td>
<td>2,04</td>
<td>0,95</td>
<td>1,09</td>
</tr>
<tr>
<td>40</td>
<td>10,00</td>
<td>9,00</td>
<td>1,00</td>
<td>0,95</td>
<td>0,05</td>
</tr>
<tr>
<td>41</td>
<td>10,00</td>
<td>9,00</td>
<td>1,00</td>
<td>0,95</td>
<td>0,05</td>
</tr>
<tr>
<td>42</td>
<td>21,00</td>
<td>9,00</td>
<td>1,32</td>
<td>0,95</td>
<td>0,37</td>
</tr>
<tr>
<td>43</td>
<td>10,00</td>
<td>32,00</td>
<td>1,00</td>
<td>1,51</td>
<td>-0,51</td>
</tr>
<tr>
<td>44</td>
<td>9,00</td>
<td>10,00</td>
<td>0,95</td>
<td>1,00</td>
<td>-0,05</td>
</tr>
</tbody>
</table>

| Median | 1,00 | 0,95 |
| Mittel | 1,26 | 1,01 |

| MW±Sd | 0,95±0 | 1,05±0,2|

| P-Wert** | 0,129 |

<table>
<thead>
<tr>
<th>Tag 4</th>
<th>Eb kbE/g</th>
<th>Eb kbE/g</th>
<th>log10</th>
<th>log10</th>
<th>logdiff</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>10,00</td>
<td>150,00</td>
<td>1,00</td>
<td>2,18</td>
<td>-1,18</td>
</tr>
<tr>
<td>46</td>
<td>200,00</td>
<td>160,00</td>
<td>2,30</td>
<td>2,20</td>
<td>0,10</td>
</tr>
<tr>
<td>47</td>
<td>50,00</td>
<td>9,00</td>
<td>1,70</td>
<td>0,95</td>
<td>0,74</td>
</tr>
<tr>
<td>48</td>
<td>10,00</td>
<td>20,00</td>
<td>1,00</td>
<td>1,30</td>
<td>-0,30</td>
</tr>
<tr>
<td>49</td>
<td>10,00</td>
<td>9,00</td>
<td>1,00</td>
<td>0,95</td>
<td>0,05</td>
</tr>
<tr>
<td>50</td>
<td>4000,00</td>
<td>4000,00</td>
<td>3,60</td>
<td>3,60</td>
<td>0,00</td>
</tr>
<tr>
<td>51</td>
<td>23000,00</td>
<td>2000,00</td>
<td>4,36</td>
<td>3,30</td>
<td>1,06</td>
</tr>
<tr>
<td>52</td>
<td>300,00</td>
<td>100,00</td>
<td>2,48</td>
<td>2,00</td>
<td>0,48</td>
</tr>
<tr>
<td>53</td>
<td>1000,00</td>
<td>800,00</td>
<td>3,00</td>
<td>2,90</td>
<td>0,10</td>
</tr>
</tbody>
</table>

| Median | 2,30 | 2,18 |
| Mittel | 2,27 | 2,16 |

| MW±Sd | 2,41±1,22 | 2,26±0,98|

<p>| P-Wert** | 0,597 |</p>
<table>
<thead>
<tr>
<th>Tag 5</th>
<th>Eb kbE/g</th>
<th>Eb kbE/g</th>
<th>log₁₀</th>
<th>log₁₀</th>
<th>logdiff</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>280,00</td>
<td>360,00</td>
<td>2,45</td>
<td>2,5</td>
<td>-0,11</td>
</tr>
<tr>
<td>55</td>
<td>9,00</td>
<td>10,00</td>
<td>0,95</td>
<td>1,00</td>
<td>-0,05</td>
</tr>
<tr>
<td>56</td>
<td>9,00</td>
<td>10,00</td>
<td>0,95</td>
<td>1,00</td>
<td>-0,05</td>
</tr>
<tr>
<td>57</td>
<td>10,00</td>
<td>10,00</td>
<td>1,00</td>
<td>1,00</td>
<td>0,00</td>
</tr>
<tr>
<td>58</td>
<td>1900,00</td>
<td>3700,00</td>
<td>3,28</td>
<td>3,37</td>
<td>-0,29</td>
</tr>
<tr>
<td>59</td>
<td>770,00</td>
<td>980,00</td>
<td>2,89</td>
<td>2,99</td>
<td>-0,10</td>
</tr>
<tr>
<td>60</td>
<td>10,00</td>
<td>10,00</td>
<td>1,00</td>
<td>1,00</td>
<td>0,00</td>
</tr>
<tr>
<td>61</td>
<td>10,00</td>
<td>10,00</td>
<td>1,00</td>
<td>1,00</td>
<td>0,00</td>
</tr>
<tr>
<td>62</td>
<td>10,00</td>
<td>10,00</td>
<td>1,00</td>
<td>1,00</td>
<td>0,00</td>
</tr>
<tr>
<td>63</td>
<td>9,00</td>
<td>10,00</td>
<td>0,95</td>
<td>1,00</td>
<td>-0,05</td>
</tr>
<tr>
<td>64</td>
<td>130,00</td>
<td>172,00</td>
<td>2,11</td>
<td>2,14</td>
<td>-0,12</td>
</tr>
<tr>
<td>65</td>
<td>10,00</td>
<td>10,00</td>
<td>1,00</td>
<td>1,00</td>
<td>0,00</td>
</tr>
<tr>
<td>66</td>
<td>9,00</td>
<td>10,00</td>
<td>0,95</td>
<td>0,90</td>
<td>-0,05</td>
</tr>
<tr>
<td>67</td>
<td>9,00</td>
<td>10,00</td>
<td>0,95</td>
<td>0,90</td>
<td>-0,05</td>
</tr>
</tbody>
</table>

median	1,00	1,00
mittel	1,46	1,53
MW±Sd	1,52±0,84	1,55±0,87
P-Wert**	0,082	

** P-Wert über dem gewählten Signifikanzniveau (hier α=0,05), d.h. die Nullhypothese auf Gleichheit der Proben kann nicht verworfen werden.
6.3 Vergleichende Untersuchung zur Herstellung von seriellen Verdünnungen

Zur Klärung, ob die mittels Dilucup erhaltenen Verdünnungen jenen der mit der konventionellen Methode erhaltenen Verdünnungen entsprechen, wurden die Proben auf ihre aerobe mesophile Gesamtkolonienzahl hin untersucht.

Die gebildeten Koloniezahlen wurden als dekadische Logarithmen der gewichteten Mittel dargestellt. Der Vergleich der Ergebnisse erfolgte nach den Vorgaben des Schweizer Leitfadens zur Validierung mikrobiologischer Prüfverfahren [BAUMGARTNER et al., 2006].

Die Untersuchungsergebnisse sind in den nachfolgenden Tabellen (Tab. 12, Tab. 13) dargestellt.

Demnach ergab sich bei Verwendung des Dilucup Systems zur Bestimmung der aeroben mesophilen Gesamtkoloniazahl bei Schlachtkörperoberflächen und Faschiertem kein signifikanter Unterschied in den Koloniezahlen. Allerdings zeigte sich eine signifikante Zeitsparnis von durchschnittlich 0,69 Minuten bzw. 41 Sekunden für drei Verdünnungsstufen (Abb. 3, Abb. 4), was gut mit der Firmenangabe von ca. 13 Sekunden je Verdünnungsstufe übereinstimmt (laut Firmenangaben ist eine Zeitsparnis von zumindest 10-13 Sekunden pro Verdünnung möglich).

6.3.1 Analyseergebnisse

Tabelle 13: Bestimmung der aeroben mesophilen Gesamtkoloniazahl (log_{10} kbE/g oder cm²) aus mit verschiedenen Verdünnungsmethoden untersuchten identischen Proben (ges. 62 Proben)

<table>
<thead>
<tr>
<th>Ergebnisse</th>
<th>Minimum</th>
<th>Maximum</th>
<th>MW±Sd*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konventionelles Verfahren</td>
<td>3,88</td>
<td>7,42</td>
<td>5,58±0,79</td>
</tr>
<tr>
<td>Dilucup</td>
<td>3,80</td>
<td>7,39</td>
<td>5,59±0,79</td>
</tr>
<tr>
<td>Differenz der Verfahren</td>
<td>-0,21</td>
<td>+0,32</td>
<td>0,01±0,10</td>
</tr>
</tbody>
</table>
t-Test
$P=0,501^{**}$

Korrelationskoeffizient
0,992

* Mittelwert±Standardabweichung;

** d.h. die Nullhypothese, dass kein Unterschied besteht, kann bei $\alpha=0,05$ nicht abgelehnt werden.

Tabelle 14: Benötigte Arbeitszeit zum Herstellen von 3 Verdünnungsstufen (in min)

<table>
<thead>
<tr>
<th>Ergebnisse</th>
<th>Minimum</th>
<th>Maximum</th>
<th>MW±Sd*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konventionelles Verfahren</td>
<td>3,03</td>
<td>3,39</td>
<td>3,21±0,09</td>
</tr>
<tr>
<td>Dilucup</td>
<td>2,28</td>
<td>3,07</td>
<td>2,52±0,19</td>
</tr>
<tr>
<td>Differenz der Verfahren</td>
<td>0,01</td>
<td>1,03</td>
<td>0,69±0,22</td>
</tr>
<tr>
<td>t-Test</td>
<td></td>
<td></td>
<td>$P=0,000^{**}$</td>
</tr>
</tbody>
</table>

** d.h. die Nullhypothese, dass kein Unterschied besteht, kann bei $\alpha=0,05$ abgelehnt werden.

Abbildung 3: Zeitaufwand des automatisierten Systems zur Herstellung von seriellen Verdünnungen (3 Stufen)
Abbildung 4: Zeitaufwand des konventionellen Systems zur Herstellung serieller Verdünnungen (3 Stufen)
6.4 Modifikation der ISO Bestimmungsmethode für Enterobacteriaceae (ISO 21258-2)

Die Ergebnisse bezogen auf die Gesamtheit der untersuchten Isolate sind in Tab.15 dargestellt. Tab.16 zeigt die Auswirkung auf die Ergebnisse der 56 Proben. Demnach waren bei etwa 9% der Proben Abweichungen zwischen der präsumtiven und der bestätigten Enterobacteriaceenzahl > 0,5 log_{10} Einheiten bzw. bei 24% Abweichungen > 0,25 log_{10} Einheiten feststellbar. Dabei ist zu beachten, dass alle oxidasenegativen Kolonien auch Glucosefermentation aufwiesen (Tab.15). Dies bedeutet, dass der Wegfall der Prüfung auf Glucosefermentation (und damit eine Verkürzung der Untersuchung um 24 Stunden) bei den 56 Proben keinen Einfluss auf das Endergebnis hatte.

6.4.1 Analyseergebnisse

<table>
<thead>
<tr>
<th>Ergebnisse</th>
<th>oxidasepos.</th>
<th>oxidaseneg./glucosepos.</th>
<th>oxidaseneg./glucoseneg.</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=</td>
<td>105</td>
<td>222</td>
<td>0</td>
<td>327</td>
</tr>
<tr>
<td>%</td>
<td>32,1</td>
<td>67,9</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Tabelle 16: Korrekturfaktoren für präsumtive Enterobacteriaceen

<table>
<thead>
<tr>
<th>Anteil der Ergebnisse</th>
<th>5%</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
<th>95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anteil bestätiger Kolonien (= Korrekturfaktor)</td>
<td>0,24</td>
<td>0,60</td>
<td>0,80</td>
<td>1,00</td>
<td>1,00</td>
</tr>
<tr>
<td>Korrekturfaktor in log_{10}</td>
<td>-0,62</td>
<td>-0,22</td>
<td>-0,1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
7 Schlussbetrachtung

Im ersten Teil dieser Arbeit wurden die Möglichkeiten zur Anwendung von Alternativmethoden zu den in der Verordnung VO (EG) 2073/2005 vorgesehenen Referenzmethoden erläutert.

Dabei ergeben sich folgende Möglichkeiten:

1. Bei der Untersuchung von in der VO (EG) 2073/2005 vorgeschriebenen Mikroorganismen:

 1.c. Andere Verfahren müssen (vom Anwender) gegen die Referenzverfahren der VO (EG) 2073/2005 validiert werden, anders als in den Fällen 1.a und 1.b, ist eine Genehmigung durch die zuständige Behörde aber immer erforderlich.

2. Bei der Untersuchung auf andere, als in der VO (EG) 2073/2005 angegebene, Mikroorganismen:

 Die Untersuchung auf andere Mikroorganismen ist nur für Prozesshygienekriterien möglich. Dies bedeutet, dass eigene Grenzwerte und
andere Methoden zur Anwendung kommen. Es ist nicht festgelegt, wie eine
Gleichwertigkeit zu den Prozesshygienekriterien bestimmt wird. Es sind aber
zwei Fälle denkbar:

2.a. Bei nach Genus und Spezies festgelegten Mikroorganismen (z.B. *Listeria monocytogenes*, *E. coli*) wird eine weiter gefasste Mikroorganismengruppe
gewählt (z.B. *Listeria* sp. statt *Listeria monocytogenes*; Enterobacteriaceen statt
E. coli). Dies bedeutet, dass die in der VO (EG) 2073/2005 angeführten
Mikroorganismen zwar mit- aber nicht exklusiv erfasst werden, d.h. eine
weniger spezifische Vorgangsweise gewählt wird. Bei der Beibehaltung der
Grenzwerte der VO (EG) 2073/2005 würde sich eine „strengere“ Beurteilung
ergeben. Sinngemäß könnte die Anwendung „abgekürzter“ ISO
Referenzverfahren (d.h. es wird auf Bestätigungsreaktionen mehr oder weniger
vollständig verzichtet) in diese Kategorie fallen.

2.b. Es handelt sich um tatsächlich andere Mikroorganismen (z.B. *Enterococcus* sp.
statt Enterobacteriaceen/*E.coli*). Hier sind sowohl Methode als auch Grenzwerte
unter Berücksichtigung des Ziels der VO (EG) 2073/2005 zu wählen. In wie
weit eine Genehmigung der Behörde erforderlich ist, ist nicht geregelt. Dies
entspricht dem Konzept der sog. „Indikatorkeime“.

3. Bei der Anwendung anderer als mikrobiologischer Untersuchungsverfahren:

Die Untersuchung mit anderen als mikrobiologischen Methoden ist nur für
Prozesshygienekriterien möglich. Dies bedeutet, dass eigene Grenzwerte und
Methoden zur Anwendung kommen. Es ist nicht festgelegt, wie eine
Gleichwertigkeit zu den Prozesshygienekriterien bestimmt wird, es müssen
allerdings die Ziele der VO (EG) 2073/2005 erreicht werden.

4. Es werden Proben bei den zur Lebensmittelherstellung genutzten
Verarbeitungsbereichen und Ausrüstungsgegenständen untersucht:

Dabei ist nach den Vorgaben der Norm ISO 18593 vorzugehen, wonach bei der
Untersuchung auf pathogene Bakterien (bzw. sinngemäß bei bestimmten
Lebensmittelgruppen auch Enterobacteriaceen als Indikator für Enterobacter sakazakii) Tupferproben (Stieltupfer, Schwamm etc.) zu verwenden und Oberflächen nicht unter 100 cm² zu untersuchen sind. Bei der Untersuchung auf nicht-pathogene Bakterien können Kontaktverfahren (mind. 7-10 cm² Probenfläche) oder Tupferverfahren angewendet werden bzw. ist die Verwendung anderer Verfahren (z.B. ATP Nachweis) grundsätzlich möglich.

Die im zweiten Abschnitt dieser Studie durchgeführten praktischen Arbeiten behandeln Aspekte der Probenahme (Kap. 5.1, Kap. 5.2), der Herstellung von seriellen Verdünnungsreihen (Kap. 5.3) sowie der Vereinfachung der ISO Referenzmethode zur Bestimmung der Enterobacteriaceaekonzentrationen (Kap. 5.4) Die Untersuchungen sind als Modifikationen bestehender validierter bzw. normierter Verfahren anzusehen.

Die wesentlichen Ergebnisse der durchgeführten Untersuchungen sind:

I. Die Entnahmestelle von Probenmaterial aus handelsüblichen Packungen von Faschiertem hatte keinen signifikanten Einfluss auf das Ergebnis, d.h. dass das Homogenisieren eines solchen Packungsinhaltes vor der Probenahme nicht nötig erscheint.

II. Bei der Untersuchung von nicht-destruktiv gewonnenen Proben von Schlachtkörperoberflächen mit Schwämmen wurden Ergebnisse erhalten, die jenen der mit der vorgeschriebenen destruktiven Methode gewonnenen Proben entsprachen.

III. Die Anwendung eines teilautomatisierten Verfahrens zur Herstellung serieller Verdünnungen im Vergleich zur manuellen Herstellung von Verdünnungsreihen hatte keinen signifikanten Einfluss auf die erhaltenen Ergebnisse. Die Zeiteinsparung durch das teilautomatisierte Verfahren betrug dabei ca. 13 Sekunden je Verdünnungsstufe.
IV. Der Wegfall der Prüfung auf Glucosefermentation (und damit eine Verkürzung der Analyse um 24 Stunden) bei der Untersuchung auf *Enterobacteriaceae* (Bestimmungsmethode ISO 21258-2) hatte keinen Einfluss auf das Ergebnis.
8 Literaturverzeichnis

KOBURGER, J.A.; OBLINGER, J. L. (1975): Understanding and teaching the Most Probable Number technique. J. Milk Food Technol. 38:540-545

Leitlinie für eine gute Hygienepraxis und die Anwendung der Grundsätze des HACCP bei der Schlachtung und Zerlegung von Rindern, Schweinen, Schafen, Ziegen und

REGENASS-KLOTZ, SM. (2005): Grundzüge der Gentechnik Theorie und Praxis. 3. Auflage, Birkhäuser Verlag AG, Basel

Gesetzestexte:

VO (EG) 1441/2007 DER KOMMISSION vom 5. Dezember 2007 zur Änderung der Verordnung (EG) Nr. 2073/2005 über mikrobiologische Kriterien für Lebensmittel. Online im Internet:

Elektronische Ressourcen:

Lebenslauf

Sabine Mifek
Hernalser Hauptstraße 79/2/47
1170 Wien

Persönliche Daten

Sabine Mifek
Geboren am 13.5.1983 in Wien
Österr. Staatsbürgerin

Studium

WS 2003 – SS 2009 Studium der Ernährungswissenschaften; Universität Wien
Juni 2005 Abschluss des ersten Studienabschnitts
Seit WS 2005 Studium der Lebensmittel- und Biotechnologie

Ausbildung

2001-2003 Kolleg für Tourismus und Freizeitwirtschaft,
 Tourismusschule Modul
 Peter-Jordan-Str. 78; 1190 Wien

1993-2001 8 Klassen AHS,
 Institut Neulandschule
 L.v.Höhnelgasse 17; 1100 Wien
Berufliche Tätigkeiten

10/2007 Laborpraktikum am Institut für Ernährung der Veterinärmedizinischen Universität Wien

07/2007 Praktikum bei der Österreichischen Agentur für Gesundheit und Ernährungssicherheit (AGES) im Bereich Lebensmitteluntersuchung (Nahrungsergänzungsmittel, Novel Food)

03/2007 Praktikum bei der Österreichischen Gesellschaft für Ernährung (ÖGE)

2007 – 2009 organisatorische Tätigkeit und Assistenz bei der Akademie für Ernährung und Lebensmittelqualität (Fortbildungsplattform für KindergartenpädagogInnen, -assistentInnen)

09/2006 Laborpraktikum in der Lebensmitteluntersuchungsanstalt der Stadt Wien, MA 38

2005 – 2009 Ernährungsberatung im Auftrag des Wiener Lebensmittel- und Ernährungsservice (MA 38) bei diversen
<table>
<thead>
<tr>
<th>Veranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>07/2003 Ferialpraktikum bei der Feinkosterzeugung Wojnar im Bereich Lebensmittelproduktion</td>
</tr>
</tbody>
</table>
9 Anhang

9.1 Probeentnahmestellen bei Faschiertem

Tabelle 17: Analyseergebnisse der Gesamtkeimzahl verschiedener Probeentnahmestellen bei Faschiertem

<table>
<thead>
<tr>
<th>Probenr.: 1</th>
<th>GZ Verdünnung 10^3</th>
<th>GZ Verdünnung 10^4</th>
<th>GZ Verdünnung 10^5</th>
<th>kbE/g</th>
<th>log</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probestelle A</td>
<td>96</td>
<td>9</td>
<td>0</td>
<td>95455</td>
<td>4,98</td>
</tr>
<tr>
<td>Probestelle B</td>
<td>117</td>
<td>14</td>
<td>1</td>
<td>119091</td>
<td>5,08</td>
</tr>
<tr>
<td>Probestelle C</td>
<td>123</td>
<td>13</td>
<td>2</td>
<td>123636</td>
<td>5,09</td>
</tr>
<tr>
<td>Probestelle D</td>
<td>98</td>
<td>8</td>
<td>2</td>
<td>96364</td>
<td>4,98</td>
</tr>
<tr>
<td>Probestelle E</td>
<td>125</td>
<td>11</td>
<td>1</td>
<td>123636</td>
<td>5,09</td>
</tr>
<tr>
<td>Probestelle F</td>
<td>113</td>
<td>10</td>
<td>1</td>
<td>111818</td>
<td>5,05</td>
</tr>
<tr>
<td>Probestelle G</td>
<td>110</td>
<td>8</td>
<td>1</td>
<td>107273</td>
<td>5,03</td>
</tr>
<tr>
<td>Probestelle H</td>
<td>112</td>
<td>13</td>
<td>1</td>
<td>113636</td>
<td>5,06</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Probenr.: 2</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Probestelle A</td>
<td>> 300</td>
<td>> 300</td>
<td>126</td>
<td>12600000</td>
<td>7,10</td>
</tr>
<tr>
<td>Probestelle B</td>
<td>> 300</td>
<td>> 300</td>
<td>144</td>
<td>14400000</td>
<td>7,16</td>
</tr>
<tr>
<td>Probestelle C</td>
<td>> 300</td>
<td>> 300</td>
<td>143</td>
<td>14300000</td>
<td>7,16</td>
</tr>
<tr>
<td>Probestelle D</td>
<td>> 300</td>
<td>> 300</td>
<td>153</td>
<td>15300000</td>
<td>7,18</td>
</tr>
<tr>
<td>Probestelle E</td>
<td>> 300</td>
<td>> 300</td>
<td>157</td>
<td>15700000</td>
<td>7,20</td>
</tr>
<tr>
<td>Probestelle F</td>
<td>> 300</td>
<td>> 300</td>
<td>135</td>
<td>13500000</td>
<td>7,13</td>
</tr>
<tr>
<td>Probestelle G</td>
<td>> 300</td>
<td>> 300</td>
<td>149</td>
<td>14900000</td>
<td>7,17</td>
</tr>
<tr>
<td>Probestelle H</td>
<td>> 300</td>
<td>> 300</td>
<td>144</td>
<td>14400000</td>
<td>7,16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Probenr.: 3</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Probestelle A</td>
<td>123</td>
<td>15</td>
<td>2</td>
<td>125455</td>
<td>5,10</td>
</tr>
<tr>
<td>Probestelle B</td>
<td>76</td>
<td>14</td>
<td>1</td>
<td>81818</td>
<td>4,91</td>
</tr>
<tr>
<td>Probestelle C</td>
<td>89</td>
<td>10</td>
<td>1</td>
<td>90000</td>
<td>4,95</td>
</tr>
<tr>
<td>Probestelle D</td>
<td>113</td>
<td>14</td>
<td>1</td>
<td>115455</td>
<td>5,06</td>
</tr>
<tr>
<td>Probestelle E</td>
<td>83</td>
<td>15</td>
<td>2</td>
<td>89091</td>
<td>4,95</td>
</tr>
<tr>
<td>Probestelle F</td>
<td>86</td>
<td>8</td>
<td>0</td>
<td>85455</td>
<td>4,93</td>
</tr>
<tr>
<td>Probestelle G</td>
<td>99</td>
<td>10</td>
<td>1</td>
<td>99091</td>
<td>5,00</td>
</tr>
<tr>
<td>Probestelle H</td>
<td>96</td>
<td>7</td>
<td>0</td>
<td>93636</td>
<td>4,97</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Probenr.: 4</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Probestelle A</td>
<td>> 300</td>
<td>> 300</td>
<td>191</td>
<td>19100000</td>
<td>7,28</td>
</tr>
<tr>
<td>Probestelle B</td>
<td>> 300</td>
<td>> 300</td>
<td>200</td>
<td>20000000</td>
<td>7,30</td>
</tr>
<tr>
<td>Probestelle C</td>
<td>> 300</td>
<td>> 300</td>
<td>150</td>
<td>15000000</td>
<td>7,18</td>
</tr>
<tr>
<td>Probestelle D</td>
<td>> 300</td>
<td>> 300</td>
<td>160</td>
<td>16000000</td>
<td>7,20</td>
</tr>
<tr>
<td>Probestelle E</td>
<td>> 300</td>
<td>> 300</td>
<td>280</td>
<td>28000000</td>
<td>7,45</td>
</tr>
<tr>
<td>Probestelle F</td>
<td>> 300</td>
<td>> 300</td>
<td>131</td>
<td>13100000</td>
<td>7,12</td>
</tr>
<tr>
<td>Probestelle G</td>
<td>> 300</td>
<td>> 300</td>
<td>260</td>
<td>26000000</td>
<td>7,41</td>
</tr>
<tr>
<td>Probestelle H</td>
<td>> 300</td>
<td>> 300</td>
<td>180</td>
<td>18000000</td>
<td>7,26</td>
</tr>
</tbody>
</table>

Probenr.: 5

Probestelle A	156	18	3	158182	5,20
Probestelle B	143	15	1	143636	5,16
Probestelle C	175	19	2	176364	5,25
Probestelle D	165	13	2	161818	5,21
Probestelle E	135	12	2	133636	5,13
Probestelle F	142	15	1	142727	5,15
Probestelle G	153	12	1	150000	5,18
Probestelle H	163	15	1	161818	5,21

Probenr.: 6

Probestelle A	> 300	165	19	1672727	6,22
Probestelle B	> 300	185	16	1827273	6,26
Probestelle C	> 300	95	13	981818	5,99
Probestelle D	> 300	135	19	1400000	6,15
Probestelle E	> 300	213	25	2163636	6,34
Probestelle F	> 300	198	26	2036364	6,31
Probestelle G	> 300	165	23	1709091	6,23
Probestelle H	> 300	195	21	1963636	6,29

Probenr.: 7

Probestelle A	> 300	58	4	563636	5,75
Probestelle B	> 300	75	8	754545	5,88
Probestelle C	> 300	82	11	845455	5,93
Probestelle D	> 300	65	9	672727	5,83
Probestelle E	> 300	86	11	881818	5,95
Probestelle F	> 300	97	7	945455	5,98
Probestelle G	> 300	78	5	754545	5,88
Probestelle H	> 300	109	15	1127273	6,05

Probenr.: 8

Probestelle A	> 300	53	7	545455	5,74
Probestelle B	> 300	44	3	427273	5,63
Probestelle C	> 300	88	11	900000	5,95
Probestelle D	> 300	57	4	554545	5,74
Probestelle E	> 300	75	8	754545	5,88
Probestelle F	> 300	81	7	800000	5,90
Probestelle G	> 300	68	5	663636	5,82
Probestelle H	> 300	51	4	500000	5,70
Tabelle 18: Analyseergebnisse von *E. coli* verschiedener Probentnahmestellen bei Faschiertem

Probenr.: 9					
Probestelle A	> 300	> 300	30	3000000	6,48
Probestelle B	> 300	> 300	36	3600000	6,56
Probestelle C	> 300	> 300	17	1700000	6,23
Probestelle D	> 300	> 300	31	3100000	6,49
Probestelle E	> 300	> 300	27	2700000	6,43
Probestelle F	> 300	> 300	41	4100000	6,61
Probestelle G	> 300	> 300	49	4900000	6,69
Probestelle H	> 300	219	15	2127273	6,33

Probenr.: 10					
Probestelle A	> 300	85	12	881818	5,95
Probestelle B	> 300	65	11	690909	5,84
Probestelle C	> 300	102	4	963636	5,98
Probestelle D	> 300	57	7	581818	5,76
Probestelle E	> 300	> 300	16	1600000	6,20
Probestelle F	> 300	78	6	763636	5,88
Probestelle G	> 300	132	17	1354545	6,13
Probestelle H	> 300	96	10	963636	5,98

| Probenr.: 1 | | | | |
|-------------|-----------|----------------|--------------|
| Probestelle A | 210 | 2100 | 3,32 |
| Probestelle B | 110 | 1100 | 3,04 |
| Probestelle C | 330 | 3300 | 3,52 |
| Probestelle D | 170 | 1700 | 3,23 |
| Probestelle E | 120 | 1200 | 3,08 |
| Probestelle F | 110 | 1100 | 3,04 |
| Probestelle G | 160 | 1600 | 3,20 |
| Probestelle H | 150 | 1500 | 3,18 |

| Probenr.: 2 | | | | |
|-------------|-----------|----------------|--------------|
| Probestelle A | 50 | 500 | 2,70 |
| Probestelle B | 40 | 400 | 2,60 |
| Probestelle C | 30 | 300 | 2,48 |
| Probestelle D | 40 | 400 | 2,60 |
| Probestelle E | 30 | 300 | 2,48 |
| Probestelle F | 30 | 300 | 2,48 |
| Probestelle G | 50 | 500 | 2,70 |
| Probestelle H | 35 | 350 | 2,54 |

<p>| Probenr.: 3 | | | | |
|-------------|-----------|----------------|--------------|</p>
<table>
<thead>
<tr>
<th>Probestelle</th>
<th>Probenr.</th>
<th>Masse</th>
<th>Menge</th>
<th>Ergebnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Probenr.: 4</td>
<td>120</td>
<td>1200</td>
<td>3,08</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>90</td>
<td>900</td>
<td>2,95</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>90</td>
<td>900</td>
<td>2,95</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>120</td>
<td>1200</td>
<td>3,08</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>140</td>
<td>1400</td>
<td>3,15</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>130</td>
<td>1300</td>
<td>3,11</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>90</td>
<td>900</td>
<td>2,95</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>70</td>
<td>700</td>
<td>2,85</td>
</tr>
<tr>
<td>A</td>
<td>Probenr.: 5</td>
<td>60</td>
<td>600</td>
<td>2,78</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>80</td>
<td>800</td>
<td>2,90</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>60</td>
<td>600</td>
<td>2,78</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>40</td>
<td>400</td>
<td>2,60</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>70</td>
<td>700</td>
<td>2,85</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>40</td>
<td>400</td>
<td>2,60</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>50</td>
<td>500</td>
<td>2,70</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>40</td>
<td>400</td>
<td>2,60</td>
</tr>
<tr>
<td>A</td>
<td>Probenr.: 6</td>
<td>< 10</td>
<td>< 10</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>< 10</td>
<td>< 10</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>< 10</td>
<td>< 10</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>< 10</td>
<td>< 10</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>< 10</td>
<td>< 10</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>< 10</td>
<td>< 10</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>< 10</td>
<td>< 10</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>< 10</td>
<td>< 10</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Probenr.: 7</td>
<td>< 10</td>
<td>< 10</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>< 10</td>
<td>< 10</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>< 10</td>
<td>< 10</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>< 10</td>
<td>< 10</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>< 10</td>
<td>< 10</td>
<td></td>
</tr>
<tr>
<td>Probenr.</td>
<td>Probestelle A</td>
<td>Probestelle B</td>
<td>Probestelle C</td>
<td>Probestelle D</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>8</td>
<td>< 10</td>
<td>< 10</td>
<td>< 10</td>
<td>< 10</td>
</tr>
<tr>
<td>9</td>
<td>< 10</td>
<td>< 10</td>
<td>< 10</td>
<td>< 10</td>
</tr>
<tr>
<td>10</td>
<td>< 10</td>
<td>< 10</td>
<td>< 10</td>
<td>< 10</td>
</tr>
</tbody>
</table>
9.2 Vergleichende Untersuchung zur Herstellung von seriellen Verdünnungen

Tabelle 19: Analysenergebnisse der Referenzmethode zur Herstellung von seriellen Verdünnungen

<table>
<thead>
<tr>
<th>Probenummer</th>
<th>Koloniezahl bei V 10^{-3}</th>
<th>Koloniezahl bei V 10^{-4}</th>
<th>Koloniezahl bei V 10^{-5}</th>
<th>gewichtetes Mittel</th>
<th>log$_{10}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10738</td>
<td>34</td>
<td>3</td>
<td>0</td>
<td>33636,3636</td>
<td>4,53</td>
</tr>
<tr>
<td>10650</td>
<td>36</td>
<td>7</td>
<td>0</td>
<td>39090,9091</td>
<td>4,59</td>
</tr>
<tr>
<td>10710</td>
<td>43</td>
<td>5</td>
<td>0</td>
<td>43636,3636</td>
<td>4,64</td>
</tr>
<tr>
<td>10735</td>
<td>52</td>
<td>5</td>
<td>0</td>
<td>51818,1818</td>
<td>4,71</td>
</tr>
<tr>
<td>10736</td>
<td>53</td>
<td>4</td>
<td>0</td>
<td>51818,1818</td>
<td>4,71</td>
</tr>
<tr>
<td>10724</td>
<td>54</td>
<td>6</td>
<td>1</td>
<td>54545,4545</td>
<td>4,74</td>
</tr>
<tr>
<td>10737</td>
<td>71</td>
<td>6</td>
<td>0</td>
<td>70000</td>
<td>4,85</td>
</tr>
<tr>
<td>10734</td>
<td>87</td>
<td>9</td>
<td>1</td>
<td>87272,7273</td>
<td>4,94</td>
</tr>
<tr>
<td>10645</td>
<td>90</td>
<td>11</td>
<td>1</td>
<td>91818,1818</td>
<td>4,96</td>
</tr>
<tr>
<td>10725</td>
<td>96</td>
<td>13</td>
<td>3</td>
<td>99090,9090</td>
<td>5,00</td>
</tr>
<tr>
<td>10712</td>
<td>98</td>
<td>10</td>
<td>1</td>
<td>98181,8182</td>
<td>4,99</td>
</tr>
<tr>
<td>10747</td>
<td>110</td>
<td>10</td>
<td>2</td>
<td>109090,909</td>
<td>5,04</td>
</tr>
<tr>
<td>10728</td>
<td>135</td>
<td>14</td>
<td>2</td>
<td>135454,545</td>
<td>5,13</td>
</tr>
<tr>
<td>10746</td>
<td>143</td>
<td>10</td>
<td>2</td>
<td>139090,909</td>
<td>5,14</td>
</tr>
<tr>
<td>10727</td>
<td>162</td>
<td>14</td>
<td>2</td>
<td>160000</td>
<td>5,20</td>
</tr>
<tr>
<td>10740</td>
<td>165</td>
<td>19</td>
<td>1</td>
<td>167272,727</td>
<td>5,22</td>
</tr>
<tr>
<td>10702</td>
<td>167</td>
<td>15</td>
<td>2</td>
<td>165454,545</td>
<td>5,22</td>
</tr>
<tr>
<td>10652</td>
<td>170</td>
<td>18</td>
<td>0</td>
<td>170909,091</td>
<td>5,23</td>
</tr>
<tr>
<td>10701</td>
<td>213</td>
<td>24</td>
<td>3</td>
<td>215454,545</td>
<td>5,33</td>
</tr>
<tr>
<td>10743</td>
<td>216</td>
<td>23</td>
<td>2</td>
<td>217272,727</td>
<td>5,34</td>
</tr>
<tr>
<td>10651</td>
<td>220</td>
<td>19</td>
<td>2</td>
<td>217272,727</td>
<td>5,34</td>
</tr>
<tr>
<td>10714</td>
<td>273</td>
<td>28</td>
<td>3</td>
<td>273636,364</td>
<td>5,44</td>
</tr>
<tr>
<td>10726</td>
<td>282</td>
<td>29</td>
<td>3</td>
<td>282727,273</td>
<td>5,45</td>
</tr>
<tr>
<td>10739</td>
<td>286</td>
<td>26</td>
<td>3</td>
<td>283636,364</td>
<td>5,45</td>
</tr>
<tr>
<td>10703</td>
<td>291</td>
<td>28</td>
<td>3</td>
<td>290000</td>
<td>5,46</td>
</tr>
<tr>
<td>10699</td>
<td>309</td>
<td>29</td>
<td>4</td>
<td>307272,727</td>
<td>5,49</td>
</tr>
<tr>
<td>10700</td>
<td>313</td>
<td>25</td>
<td>3</td>
<td>307272,727</td>
<td>5,49</td>
</tr>
<tr>
<td>10744</td>
<td>> 300</td>
<td>32</td>
<td>3</td>
<td>327272,727</td>
<td>5,51</td>
</tr>
<tr>
<td>10745</td>
<td>> 300</td>
<td>34</td>
<td>3</td>
<td>33636,3636</td>
<td>5,53</td>
</tr>
<tr>
<td>10721</td>
<td>> 300</td>
<td>38</td>
<td>4</td>
<td>381818,182</td>
<td>5,58</td>
</tr>
<tr>
<td>10742</td>
<td>> 300</td>
<td>42</td>
<td>5</td>
<td>427272,727</td>
<td>5,63</td>
</tr>
<tr>
<td>10709</td>
<td>> 300</td>
<td>43</td>
<td>4</td>
<td>427272,727</td>
<td>5,63</td>
</tr>
<tr>
<td>Probenummer</td>
<td>Koloniezahl bei V 10^3</td>
<td>Koloniezahl bei V 10^4</td>
<td>Koloniezahl bei V 10^5</td>
<td>gewichtetes Mittel</td>
<td>log10</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>-------------------</td>
<td>------</td>
</tr>
<tr>
<td>10738</td>
<td>41</td>
<td>3</td>
<td>0</td>
<td>40000</td>
<td>4,60</td>
</tr>
<tr>
<td>10650</td>
<td>29</td>
<td>2</td>
<td>1</td>
<td>28181,8182</td>
<td>4,45</td>
</tr>
<tr>
<td>10710</td>
<td>89</td>
<td>12</td>
<td>1</td>
<td>9181,8181</td>
<td>4,96</td>
</tr>
<tr>
<td>10735</td>
<td>46</td>
<td>4</td>
<td>0</td>
<td>45454,5455</td>
<td>4,66</td>
</tr>
<tr>
<td>10736</td>
<td>57</td>
<td>4</td>
<td>0</td>
<td>55454,5455</td>
<td>4,74</td>
</tr>
<tr>
<td>10724</td>
<td>41</td>
<td>5</td>
<td>1</td>
<td>4181,8181</td>
<td>4,62</td>
</tr>
</tbody>
</table>

Tabelle 20: Analyseergebnisse der alternativen Methode zur Herstellung serieller Verdünnungen
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10737</td>
<td>66</td>
<td>5</td>
<td>0</td>
<td>64545,4545</td>
</tr>
<tr>
<td>10734</td>
<td>91</td>
<td>8</td>
<td>1</td>
<td>90000</td>
</tr>
<tr>
<td>10645</td>
<td>88</td>
<td>9</td>
<td>1</td>
<td>88181,8182</td>
</tr>
<tr>
<td>10725</td>
<td>122</td>
<td>17</td>
<td>2</td>
<td>126363,636</td>
</tr>
<tr>
<td>10712</td>
<td>82</td>
<td>10</td>
<td>0</td>
<td>83636,3636</td>
</tr>
<tr>
<td>10747</td>
<td>97</td>
<td>11</td>
<td>1</td>
<td>98181,8182</td>
</tr>
<tr>
<td>10728</td>
<td>132</td>
<td>16</td>
<td>1</td>
<td>134545,455</td>
</tr>
<tr>
<td>10746</td>
<td>140</td>
<td>22</td>
<td>1</td>
<td>147272,727</td>
</tr>
<tr>
<td>10727</td>
<td>156</td>
<td>13</td>
<td>2</td>
<td>153636,364</td>
</tr>
<tr>
<td>10740</td>
<td>139</td>
<td>16</td>
<td>2</td>
<td>140909,091</td>
</tr>
<tr>
<td>10702</td>
<td>202</td>
<td>33</td>
<td>3</td>
<td>213636,364</td>
</tr>
<tr>
<td>10652</td>
<td>246</td>
<td>12</td>
<td>3</td>
<td>234545,455</td>
</tr>
<tr>
<td>10701</td>
<td>> 300</td>
<td>41</td>
<td>5</td>
<td>418181,818</td>
</tr>
<tr>
<td>10743</td>
<td>192</td>
<td>18</td>
<td>1</td>
<td>190909,091</td>
</tr>
<tr>
<td>10651</td>
<td>164</td>
<td>25</td>
<td>4</td>
<td>171818,182</td>
</tr>
<tr>
<td>10714</td>
<td>> 300</td>
<td>31</td>
<td>6</td>
<td>336363,636</td>
</tr>
<tr>
<td>10726</td>
<td>234</td>
<td>21</td>
<td>3</td>
<td>231818,182</td>
</tr>
<tr>
<td>10739</td>
<td>> 300</td>
<td>28</td>
<td>3</td>
<td>281818,182</td>
</tr>
<tr>
<td>10703</td>
<td>> 300</td>
<td>37</td>
<td>4</td>
<td>372727,273</td>
</tr>
<tr>
<td>10699</td>
<td>> 300</td>
<td>45</td>
<td>6</td>
<td>463636,364</td>
</tr>
<tr>
<td>10700</td>
<td>298</td>
<td>31</td>
<td>3</td>
<td>290909,090</td>
</tr>
<tr>
<td>10744</td>
<td>> 300</td>
<td>31</td>
<td>3</td>
<td>309090,090</td>
</tr>
<tr>
<td>10745</td>
<td>283</td>
<td>26</td>
<td>2</td>
<td>280909,091</td>
</tr>
<tr>
<td>10721</td>
<td>> 300</td>
<td>43</td>
<td>3</td>
<td>418181,818</td>
</tr>
<tr>
<td>10742</td>
<td>> 300</td>
<td>43</td>
<td>4</td>
<td>427272,727</td>
</tr>
<tr>
<td>10709</td>
<td>> 300</td>
<td>65</td>
<td>4</td>
<td>627272,727</td>
</tr>
<tr>
<td>10732</td>
<td>> 300</td>
<td>66</td>
<td>7</td>
<td>663636,364</td>
</tr>
<tr>
<td>10723</td>
<td>> 300</td>
<td>37</td>
<td>4</td>
<td>372727,273</td>
</tr>
<tr>
<td>10715</td>
<td>> 300</td>
<td>41</td>
<td>3</td>
<td>400000</td>
</tr>
<tr>
<td>10718</td>
<td>> 300</td>
<td>54</td>
<td>7</td>
<td>554545,455</td>
</tr>
<tr>
<td>10722</td>
<td>> 300</td>
<td>59</td>
<td>4</td>
<td>572727,273</td>
</tr>
<tr>
<td>10750</td>
<td>> 300</td>
<td>51</td>
<td>3</td>
<td>490909,091</td>
</tr>
<tr>
<td>10717</td>
<td>> 300</td>
<td>49</td>
<td>4</td>
<td>481818,182</td>
</tr>
<tr>
<td>10704</td>
<td>> 300</td>
<td>59</td>
<td>7</td>
<td>600000</td>
</tr>
<tr>
<td>10716</td>
<td>> 300</td>
<td>65</td>
<td>6</td>
<td>645454,545</td>
</tr>
<tr>
<td>10751</td>
<td>> 300</td>
<td>115</td>
<td>10</td>
<td>1136363,636</td>
</tr>
<tr>
<td>10729</td>
<td>> 300</td>
<td>113</td>
<td>15</td>
<td>1163636,36</td>
</tr>
<tr>
<td>10730</td>
<td>> 300</td>
<td>110</td>
<td>9</td>
<td>108181,818</td>
</tr>
<tr>
<td>10741</td>
<td>> 300</td>
<td>98</td>
<td>13</td>
<td>1009090,91</td>
</tr>
<tr>
<td>10646</td>
<td>> 300</td>
<td>117</td>
<td>10</td>
<td>1154545,45</td>
</tr>
<tr>
<td>10711</td>
<td>> 300</td>
<td>103</td>
<td>13</td>
<td>1054545,45</td>
</tr>
</tbody>
</table>
Tabelle 21: Zeitsmessergebnisse der zu vergleichenden Methoden zur Herstellung von seriellen Verdünnungen

<table>
<thead>
<tr>
<th>konventionelle Methode</th>
<th>automatisierte Methode</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,36 min</td>
<td>2,36 min</td>
</tr>
<tr>
<td>3,35 min</td>
<td>2,5 min</td>
</tr>
<tr>
<td>3,31 min</td>
<td>2,48 min</td>
</tr>
<tr>
<td>3,21 min</td>
<td>2,56 min</td>
</tr>
<tr>
<td>3,29 min</td>
<td>2,49 min</td>
</tr>
<tr>
<td>3,23 min</td>
<td>2,55 min</td>
</tr>
<tr>
<td>3,36 min</td>
<td>2,35 min</td>
</tr>
<tr>
<td>3,24 min</td>
<td>2,41 min</td>
</tr>
<tr>
<td>3,09 min</td>
<td>2,43 min</td>
</tr>
<tr>
<td>3,17 min</td>
<td>2,49 min</td>
</tr>
<tr>
<td>3,27 min</td>
<td>2,55 min</td>
</tr>
<tr>
<td>3,10 min</td>
<td>2,57 min</td>
</tr>
<tr>
<td>3,13 min</td>
<td>2,41 min</td>
</tr>
<tr>
<td>3,21 min</td>
<td>2,56 min</td>
</tr>
<tr>
<td>3,05 min</td>
<td>3,04 min</td>
</tr>
<tr>
<td>3,21 min</td>
<td>2,49 min</td>
</tr>
<tr>
<td>3,13 min</td>
<td>2,5 min</td>
</tr>
<tr>
<td>3,19 min</td>
<td>2,39 min</td>
</tr>
<tr>
<td>3,25 min</td>
<td>2,57 min</td>
</tr>
<tr>
<td>3,09 min</td>
<td>2,48 min</td>
</tr>
<tr>
<td>3,17 min</td>
<td>2,28 min</td>
</tr>
<tr>
<td>3,11 min</td>
<td>2,41 min</td>
</tr>
<tr>
<td>3,19 min</td>
<td>2,5 min</td>
</tr>
<tr>
<td>3,22 min</td>
<td>2,47 min</td>
</tr>
<tr>
<td>3,17 min</td>
<td>2,43 min</td>
</tr>
<tr>
<td>3,29 min</td>
<td>3,07 min</td>
</tr>
<tr>
<td>3,15 min</td>
<td>2,55 min</td>
</tr>
<tr>
<td>3,39 min</td>
<td>2,36 min</td>
</tr>
<tr>
<td>3,19 min</td>
<td>2,35 min</td>
</tr>
<tr>
<td>3,13 min</td>
<td>3,01 min</td>
</tr>
<tr>
<td>3,29 min</td>
<td>2,42 min</td>
</tr>
<tr>
<td>3,10 min</td>
<td>2,55 min</td>
</tr>
</tbody>
</table>
9.3 Liste validierter und zertifizierter Methoden.

9.3.1 Salmonella

<table>
<thead>
<tr>
<th>Art</th>
<th>Marke</th>
<th>Anbieter</th>
<th>AFNOR</th>
<th>AOAC perf.tested</th>
<th>Nat. Norm (DIN oder Methodensamm lung)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immun-Enzym Test</td>
<td>Rapidyme Salmonella</td>
<td>BIO ART SA</td>
<td>LM***, FM****</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transia Plate Salmonella Gold</td>
<td>BioControl Systems</td>
<td>LM, FM, UP****</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TAG 24 Salmonella</td>
<td>BioControl Systems</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bioline Salmonella Elisa Test Selecta</td>
<td>BIOLINE</td>
<td></td>
<td>LM, FM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bioline Salmonella Elisa Test Optima</td>
<td>BIOLINE</td>
<td></td>
<td>LM, FM</td>
<td>LM, FM</td>
<td></td>
</tr>
<tr>
<td>Vidas Salmonella Dual selective enrichment protocol</td>
<td>bioMérieux</td>
<td></td>
<td>LM, FM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vidas Salmonella Simple selective enrichment protocol</td>
<td>bioMérieux</td>
<td></td>
<td>LM, FM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td>Hersteller</td>
<td>Methoden</td>
<td>Anmerkungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>----------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vidas ICS2-SLM</td>
<td>bioMérieux</td>
<td>LM, FM (außer Rohmilch)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vidas ICS2-Plate</td>
<td>bioMérieux</td>
<td>LM, FM (außer Rohmilch)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vidas Easy</td>
<td>bioMérieux</td>
<td>LM, FM, UP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salmonella OPTIMA</td>
<td>RAYAL</td>
<td>LM, FM, UP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salmonella SELECTA</td>
<td>RAYAL</td>
<td>LM, FM, UP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RIDASCREEN</td>
<td>R-Biopharm</td>
<td>LM, FM, UP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tecra Ultima</td>
<td>TECRA INTERNATIONAL Pty Ltd</td>
<td>LM, FM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tecra Unique</td>
<td>TECRA INTERNATIONAL Pty Ltd</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reveal Salmonella Test System</td>
<td>Neogen Corporation</td>
<td>LM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Impedanzverfahren

- DIN 10121
- oder.: §64 LFGB Nr. 00.00-66
- DIN 10120
<table>
<thead>
<tr>
<th>PCR</th>
<th>TAQMAN Salmonella</th>
<th>Applied Biosystems S.A.</th>
<th>LM, FM</th>
<th>Rinderfaschiertes, Hühnerflügel, Cheddar, trockenes Haustierfutter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Assurance GDS Salmonella</td>
<td>BioControl Systems</td>
<td>X</td>
<td>rohes Rindfleisch, Schweinefleisch, Truthahnfaschiertes, Hühnerspülwasser, rohe Shrimps, Milch, Eier, UP (Gummi, Stahl, Beton)</td>
</tr>
<tr>
<td></td>
<td>iQ-Check Salmonella II</td>
<td>BIO-RAD</td>
<td>LM, FM, UP</td>
<td>rohes Rindfleisch, rohes Hühnerfleisch, Melonen, Eier</td>
</tr>
<tr>
<td></td>
<td>GeneDisc Salmonella spp.</td>
<td>GENESYSTEMS</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Systeme BAX Salmonella automatised</td>
<td>DuPont Qualicon</td>
<td>LM, FM, UP</td>
<td>Vielzahl an LM</td>
</tr>
<tr>
<td></td>
<td>ADIAFOOD Rapid Pathogen Detection System</td>
<td>AES Chemunex</td>
<td></td>
<td>Vielzahl an LM</td>
</tr>
<tr>
<td>Method</td>
<td>Company</td>
<td>Detection Kit</td>
<td>Sample</td>
<td>Regulation</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>---------------</td>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>Anhang</td>
<td>LightCycler® foodproof Detection Kit</td>
<td>BIOTECON Diagnostics GmbH</td>
<td>Vielzahl an LM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R.A.P.I.D. LT Food Security System</td>
<td>Idaho Technology, Inc</td>
<td>rohes Hühnerfleisch, gekochter Schinken, Schokolade</td>
<td>DIN 10135 oder: §64 LFGB Nr. 00.00-52</td>
</tr>
<tr>
<td></td>
<td>Lumiprobe 24 Salmonella</td>
<td>EUROPROBE SA</td>
<td>LM, FM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GENE TRAK Salmonella DLP Assay</td>
<td>Neogen Corporation</td>
<td>LM, FM, UP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GeneQuence Salmonella Microwell assay</td>
<td>Neogen Corporation</td>
<td>Vielzahl an Lebensmittel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Simple Method For Salmonella</td>
<td>AES Chemunex</td>
<td>LM, FM, UP (außer breeding samples)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Testname</td>
<td>Hersteller</td>
<td>Methodik</td>
<td>Produkte</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------------------------</td>
<td>------------</td>
<td>-------------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td></td>
<td>Rapid’S Salmonella</td>
<td>BIO-RAD</td>
<td>LM, FM</td>
<td>rohe Hühnerbrust, Eier, Melonen</td>
</tr>
<tr>
<td>Salmonella Inhibigen</td>
<td>OXOID Thermofisher Scientific</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SESAME Salmonella Test</td>
<td>SOLABIA BIKAR</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>BBLTM CHROMagarTM</td>
<td>BD Diagnostics</td>
<td></td>
<td>Vielzahl an LM</td>
<td></td>
</tr>
<tr>
<td>Rapid Culture Methode using one Broth</td>
<td>Remel and OXOID</td>
<td></td>
<td>Rinderfaschiertes, Hühnerfaschiertes, Salat, Shrimps, Eierschale</td>
<td></td>
</tr>
<tr>
<td>Immunologischer Test</td>
<td>Oxoid Sallmonella rapid test</td>
<td>OXOID Thermofisher Scientific</td>
<td>LM, FM</td>
<td>LM, FM, UP</td>
</tr>
<tr>
<td>ULTRA System for Salmonella species</td>
<td>Matrix MicroScience Ltd</td>
<td></td>
<td>Vielzahl an LM</td>
<td></td>
</tr>
<tr>
<td>ULTRA Salmonella Species Pooling test system</td>
<td>Matrix MicroScience Ltd</td>
<td></td>
<td>gekochtes Huhn, rohes Vollei, Schokolade, Milchpulver, gefrorene Garnelen</td>
<td></td>
</tr>
<tr>
<td>ULTRA Salmonella “10” Pooling</td>
<td>Matrix MicroScience Ltd</td>
<td></td>
<td>gekochter Schinken, Schokolade, Tomaten</td>
<td></td>
</tr>
<tr>
<td>Testkit</td>
<td>Hersteller</td>
<td>Anwendungsfelder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DuPont Lateral Flow System Test Kit</td>
<td>DuPont Qualicon</td>
<td>Vielzahl an LM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RapidChek Salmonella Assay</td>
<td>Strategic Diagnostics Inc</td>
<td>Vielzahl an LM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RapidChek SELECT</td>
<td>Strategic Diagnostics Inc</td>
<td>Vielzahl an LM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Singlepath® Lateral Flow Assay</td>
<td>Merck KGaA / EMD Chemicals, Inc.</td>
<td>Vielzahl an LM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transia Card</td>
<td>Raisio Diagnostics AB</td>
<td>Vielzahl an LM und FM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* [http://www.afnor-validation.com/afnor-validation-validated-methods/validated-methods.html]

** [http://www.aoac.org/testkits/testedmethods.html]

*** LM: alle Lebensmittel, die für den menschlichen Verzehr vorgesehen sind

**** FM: Futtermittel

***** UP: Umweltproben
9.3.2 Listeria spp.

<table>
<thead>
<tr>
<th>Art</th>
<th>Marke</th>
<th>Anbieter</th>
<th>AFNOR</th>
<th>AOAC perf. tested</th>
<th>Nat. Norm (DIN oder Methodensammlung)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immun-Enzym Test</td>
<td>Transia Plate Listeria</td>
<td>BioControl Systems</td>
<td>LM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vidas Listeria</td>
<td>bioMérieux</td>
<td>LM, UP</td>
<td></td>
<td>rohes Fleisch, Geflügel, Meeresfrüchte, Gemüse, Fleisch-, Milchprodukte, UP</td>
</tr>
<tr>
<td></td>
<td>Vidas Listeria Species Xpress</td>
<td>bioMérieux</td>
<td>Fleischprodukte, Milchprodukte, UP</td>
<td>Fleisch, Milch, UP</td>
<td></td>
</tr>
<tr>
<td>Vidas Listeria DUO</td>
<td>bioMérieux</td>
<td>LM, UP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>------------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rohes Schweinefleisch, Hühnerfaschiertes, Frankfurter, tiefgekühltes Rinderfaschiertes, Schinken, Rinderbraten, Cheddar, Camembert, past. Milch, Joghurt, grüne Bohnen, Kabeljau, Shrimps, Krabbenfleisch, Blumenkohl, Vanilleeis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tecra Ultima Listeria</th>
<th>TECRA INTERNATIONAL Pty Ltd</th>
<th>LM, UP</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>PCR</th>
<th>iQ Check Listeria spp</th>
<th>BIO-RAD</th>
<th>LM, UP</th>
</tr>
</thead>
<tbody>
<tr>
<td>UP (Stahl, Plastik, Keramik, Beton)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BAX® Listeria spp</th>
<th>DuPont Qualicon</th>
<th>X</th>
<th>UP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADIAFOOD Rapid Pathogen Detection System</td>
<td>AES Chemunex</td>
<td>Vielzahl an LM</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>Assurance GDS</td>
<td>BioControl Systems</td>
<td>past. Milch, Weichkäse, Frankfurter, essfertiger Truthahn, grüne Bohnen, roher Fisch, UP (Gummi, Beton, Stahl, Plastik)</td>
<td></td>
</tr>
<tr>
<td>R.A.P.I.D. LT Food Security System</td>
<td>Idaho Technology, Inc</td>
<td>Truthahn, Weichkäse, UP (Stahl, Keramik)</td>
<td></td>
</tr>
<tr>
<td>Hybridisierung GENE TRACK Listeria DPL Assay</td>
<td>Neogen Corporation</td>
<td>Milchprodukte, Fleisch, Meeresfrüchte, UP</td>
<td></td>
</tr>
<tr>
<td>GeneQuence Listeria Microwell test</td>
<td>Neogen Corporation</td>
<td>Fleisch, Meeresfrüchte, Milchprodukte, Gemüse, UP</td>
<td></td>
</tr>
<tr>
<td>Kultur Ottaviani Agosti Agar</td>
<td>bioMérieux</td>
<td>LM, UP</td>
<td></td>
</tr>
<tr>
<td>Rapid’Listeria spp.</td>
<td>BIO-RAD</td>
<td>LM, UP</td>
<td></td>
</tr>
</tbody>
</table>

UP: Universal Probe
LM: Labeler Microplate
<table>
<thead>
<tr>
<th>Immunologischer Test</th>
<th>TRANSIA STRIP Listeria</th>
<th>BioControl Systems</th>
<th>X</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxoid Listeria rapid test</td>
<td>OXOID Thermofisher Scientific</td>
<td>LM</td>
<td>LM, UP</td>
<td></td>
</tr>
<tr>
<td>ULTRA Listeria species test system</td>
<td>Matrix MicroScience Ltd</td>
<td>Vielzahl an LM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ULTRA Listeria species pooling test system</td>
<td>Matrix MicroScience Ltd</td>
<td>gekochtes Huhn, rohes Vollei, Schokolade, Milchpulver, gefrorene Garnelen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DuPont Lateral Flow System Test Kit</td>
<td>DuPont Qualicon</td>
<td>Vielzahl an LM, UP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RapidChek Listeria species Test</td>
<td>Strategic Diagnostics Inc</td>
<td>Vielzahl an LM, UP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RapidChek Listeria species Media</td>
<td>Strategic Diagnostics Inc</td>
<td>Vielzahl an LM, UP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reveal® One-Step Listeria Environmental</td>
<td>Neogen Corporation</td>
<td>Vielzahl an LM, UP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>biochemischer Test</td>
<td>MicrogenTM Listeria-ID</td>
<td>Microgen Bioproducts Limited</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------------------</td>
<td>-----------------------------</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
9.3.3 Listeria monocytogenes

<table>
<thead>
<tr>
<th>Art</th>
<th>Marke</th>
<th>Anbieter</th>
<th>AFNOR</th>
<th>AOAC perf.tested</th>
<th>Nat. Norm (DIN oder Methodensammlung)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immun-Enzym Test</td>
<td>Transia Plate Listeria monocytogenes</td>
<td>BioControl</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vidas Listeria monocytogenes 2 (30 °C)</td>
<td>bioMérieux</td>
<td>LM</td>
<td>(außer rohe Produkte), UP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vidas Listeria monocytogenes 2</td>
<td>bioMérieux</td>
<td>LM</td>
<td>UP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vidas Listeria DUO</td>
<td>bioMérieux</td>
<td>LM</td>
<td>UP</td>
<td></td>
</tr>
<tr>
<td>PCR</td>
<td>iQ Check Listeria monocytogenes</td>
<td>BIO-RAD</td>
<td>LM</td>
<td>UP</td>
<td>geräucherter Lachs, Hüttencäse, Hotdogs, Truthahn</td>
</tr>
<tr>
<td></td>
<td>GeneDisc Cycler Listeria monocytogenes</td>
<td>GENESYSTEMS</td>
<td>LM</td>
<td>(außer Milchprodukte)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BAX® Listeria genus</td>
<td>DuPont Qualicon</td>
<td>X</td>
<td>Vielzahl an LM, UP</td>
<td></td>
</tr>
<tr>
<td>ADIAFOOD Rapid Pathogen Detection System</td>
<td>AES Chemunex</td>
<td>Vielzahl an LM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LightCycler® Detection Kit</td>
<td>BIOTECON Diagnostics GmbH</td>
<td>Vielzahl an LM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assurance GDS</td>
<td>BioControl Systems</td>
<td>past. Milch, Weichkäse, Frankfurter, essfertiger Truthahn, grüne Bohnen, roher Fisch, UP (Gummi, Beton, Stahl, Plastik)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R.A.P.I.D. LT Food Security System</td>
<td>Idaho Technology, Inc</td>
<td>Truthahn, Weichkäse, UP (Stahl, Keramik)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hybridisierung</td>
<td></td>
<td>§64 LFGB Nr. 00.00-95 (V)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lumiprobe 24 Listeria monocytogenes</td>
<td>EUROPROBE SA</td>
<td>LM (außer Käse der Sorte „cantal“, „salers“), UP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accuprobe Listeria monocytogenes</td>
<td>GEN-PROBE Inc</td>
<td>LM, UP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kultur</td>
<td>ALOA One Day</td>
<td>AES Chemunex</td>
<td>LM, UP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>---------------</td>
<td>--------------</td>
<td>--------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ottoviani Agosti Agar (Detection)</td>
<td>bioMérieux</td>
<td>LM, UP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ottoviani Agosti Agar (Enumeration)</td>
<td>bioMérieux</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALOA Count™</td>
<td>AES Chemunex</td>
<td>LM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rapid L’Mono (Detection)</td>
<td>BIO-RAD</td>
<td>LM, UP</td>
<td>Brie, Surimi, gemischter Salat, Pute</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rapid L’Mono (Enumeration)</td>
<td>BIO-RAD</td>
<td>LM, UP</td>
<td>Brie, Surimi, gemischter Salat, Pute</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL Recherche</td>
<td>BIO-RAD</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL Dénombrement</td>
<td>BIO-RAD</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHROMagar™</td>
<td>CHROMagar</td>
<td>LM, UP</td>
<td>rohes Rinderfaschiertes, geräucherter Lachs, Salat, Brie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHROMagar™</td>
<td>OXOID</td>
<td>rohes Rinderfaschiertes, geräucherter Lachs, Salat, Brie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Listeria Precis™</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Detection)</td>
<td>OXOID</td>
<td>LM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermofisher Scientific</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Enumeration)</td>
<td>OXOID</td>
<td>LM, UP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermofisher Scientific</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPASS Listeria Agar</td>
<td>SOLABIA / Division BIOKAR</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Detection)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPASS Listeria Agar</td>
<td>SOLABIA / Division BIOKAR</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Enumeration)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immunologischer Test</td>
<td>VIP®</td>
<td>past. Milch, Weichkäse, rohes Rindfleisch, essfertiger Truthahn, grüne Bohnen, roher Fisch, UP (Gummi, Stahl, Plastik)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9.3.4 Enterobacteriaceae

<table>
<thead>
<tr>
<th>Art</th>
<th>Marke</th>
<th>Anbieter</th>
<th>AFNOR</th>
<th>MICROVAL*</th>
<th>AOAC perf.tested</th>
<th>Nat. Norm (DIN oder Methodensammlung)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impedanzverfahren</td>
<td>BACTRAC detection of Enterobacteriaceae</td>
<td>SY-LAB</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kultur</td>
<td>3MTM Petrifilm Enterobacteriaceae Count Plate</td>
<td>3M Health Care</td>
<td>LM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>REBECCA BASE</td>
<td>AES Chemunex</td>
<td>LM, FM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tempo EB</td>
<td>bioMérieux</td>
<td></td>
<td></td>
<td></td>
<td>LM (außer Getränke, Rindfutter)</td>
</tr>
<tr>
<td>chromogener Test</td>
<td>Compact Dry ETB</td>
<td>Nissui Pharmaceutical Co. Ltd.</td>
<td></td>
<td></td>
<td></td>
<td>LM</td>
</tr>
</tbody>
</table>

* [http://www.microval.org/validated-methods.html]
9.3.5 Coliforme Bakterien

<table>
<thead>
<tr>
<th>Art</th>
<th>Marke</th>
<th>Anbieter</th>
<th>AFNOR</th>
<th>MICROVAL</th>
<th>AOAC perf.tested</th>
<th>Nat. Norm (DIN oder Methodensammlung)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kultur</td>
<td>3MTM Petrifilm™ Coliform Count Plate (alle Kolonien)</td>
<td>3M Health Care</td>
<td>LM (außer rohe Muscheln)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3MTM Petrifilm™ Coliform Count Plate (Gas produzierende Kolonien)</td>
<td>3M Health Care</td>
<td>LM (außer rohe Muscheln)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3MTM Petrifilm™ Coliform Count Plate (thermostabile Kolonien)</td>
<td>3M Health Care</td>
<td>LM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3MTM Petrifilm™ Rapid Coliform Count Plate (14 h)</td>
<td>3M Health Care</td>
<td>LM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3M™ Petrifilm™ Rapid Coliform Count Plate (24 h)</td>
<td>3M Health Care</td>
<td>LM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>----</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3M™ Petrifilm™ Rapid Coliform Count Plate (Gas produzierende Kolonien)</td>
<td>3M Health Care</td>
<td>LM (außer Fleischwaren)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3M™ Petrifilm™ High-Sensitivity Coliform Count Plate</td>
<td>3M Health Care</td>
<td>LM (nur Studie, kein Zertifikat)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tempo CC</td>
<td>bioMérieux</td>
<td>LM, FM (außer Rohmilch, Getränke, Rindfutter)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coli ID – Medium (Agar)</td>
<td>bioMérieux</td>
<td>LM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vielzahl an LM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chromogener Test</td>
<td>Compact Dry CF</td>
<td>Nissui Pharmaceutical Co. Ltd.</td>
<td>LM</td>
<td>Faschiertes, Schweinefleisch ohne Knochen, Würste, Schinken, Truthahn, Hüttenkäse, Ricotta, Rohmilch, Trockenformeln für Säuglinge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>----------------</td>
<td>---------------------------------</td>
<td>----</td>
<td>----------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>colorimetrischer Test</td>
<td>Soleris / MicroFoss</td>
<td>Neogen Corporation / FOSS</td>
<td>Vielzahl an LM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxygen Elektrode</td>
<td>DOX 60F/30F</td>
<td>Bio- Theta, Ltd</td>
<td>Rohes Rindfleisch, Rinderfaschiertes, Hühnerkarkasse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoreszenzoptisches Verfahren</td>
<td>DIN 10183 (Teil 3) oder.: §64 LFGB Nr. 01.00-54</td>
<td>§64 LFGB Nr. 02.00-22</td>
<td>§64 LFGB Nr. 02.07-10</td>
<td>§64 LFGB Nr. 03.00-22</td>
<td>§64 LFGB Nr. 04.00-18</td>
<td></td>
</tr>
<tr>
<td>§64 LFGB Nr. 42.00-15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>§64 LFGB Nr. 48.01-23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9.3.6 E.coli

<table>
<thead>
<tr>
<th>Art</th>
<th>Marke</th>
<th>Anbieter</th>
<th>AFNOR</th>
<th>MICROVAL</th>
<th>AOAC perf.tested</th>
<th>Nat. Norm (DIN oder Methodensammlung)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kultur</td>
<td>Test 3M™</td>
<td>3M Health Care</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Petrifilm™</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select E. Coli Count Plate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>REBECCA BASE</td>
<td>AES Chemunex</td>
<td></td>
<td>LM, FM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coli ID – Medium (37 °C)</td>
<td>bioMérieux</td>
<td></td>
<td>LM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coli ID – Medium (44 °C)</td>
<td>bioMérieux</td>
<td></td>
<td>LM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tempo EC</td>
<td>bioMérieux</td>
<td></td>
<td>LM, FM (außer Rohmilch, Getränke, Rindfutter)</td>
<td>Vielzahl an LM</td>
<td></td>
</tr>
<tr>
<td>chromogener Test</td>
<td>Rapid’E. coli</td>
<td>BIO-RAD</td>
<td>LM</td>
<td>Faschiertes, Schweinefleisch ohne Knochen, Würste, Schinken, Truthahn, Spinat, Hüttenkäse, Ricotta, Rohmilch, Trockenformel für Säuglinge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>----------------</td>
<td>---------</td>
<td>----</td>
<td>-----------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxygen Elektrode</td>
<td>Compact Dry EC</td>
<td>Nissui Pharmaceutical Co. Ltd.</td>
<td>LM</td>
<td>rohes Rindfleisch, Rinderfaschiertes, Hühnerkarkasse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoreszenzoptisches Verfahren</td>
<td>DOX 60F/30F</td>
<td>Bio- Theta, Ltd</td>
<td></td>
<td>DIN 10183 (Teil 3) oder.: §64 LFGB Nr. 01.00-54</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>§64 LFGB Nr. 02.00-22</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>§64 LFGB Nr. 02.07-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>§64 LFGB Nr. 03.00-22</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>§64 LFGB Nr. 04.00-18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>§64 LFGB Nr. 42.00-15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>§64 LFGB Nr. 48.01-23</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9.3.7 E.coli O157

<table>
<thead>
<tr>
<th>Art</th>
<th>Marke</th>
<th>Anbieter</th>
<th>AFNOR¹</th>
<th>AOAC perf.tested</th>
<th>Nat. Norm (DIN oder Methodensammlung)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immun-Enzym Test</td>
<td>Vidas ECO ICE</td>
<td>bioMérieux</td>
<td>LM</td>
<td>X</td>
<td>rohes Faschiertes</td>
</tr>
<tr>
<td></td>
<td>Vidas E.coli O157</td>
<td>bioMérieux</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TECRA E.coli O157 Visual Immunoassay und Immunocapture</td>
<td>TECRA INTERNATIONAL Pty Ltd</td>
<td></td>
<td>rohes, gekochtes Rinder-, Hühnerfaschiertes</td>
<td></td>
</tr>
<tr>
<td>PCR</td>
<td>iQ-Check E.coli O157:H7</td>
<td>BIO-RAD</td>
<td>X</td>
<td></td>
<td>Rinderfaschiertes, Cider, Spinat</td>
</tr>
<tr>
<td></td>
<td>ADIAFOOD Rapid Pathogen Detection System</td>
<td>AES Chemunex</td>
<td></td>
<td></td>
<td>Rinderfaschiertes</td>
</tr>
<tr>
<td></td>
<td>BAX® E.coli O157:H7 MP</td>
<td>DuPont Qualicon</td>
<td>rohes Rind-, Schweine-, Hühner-, Schaffleisch, Rohmilch, Obst, Gemüse, Fertiggerichte</td>
<td>Apfelcider, Orangensaft, Rinderfaschiertes, Rindfleisch</td>
<td></td>
</tr>
<tr>
<td>Kultur</td>
<td>RAPID E.coli O157:H7</td>
<td>BIO-RAD</td>
<td>X</td>
<td>rohes Rinderfaschiertes, Cider</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHROMagar</td>
<td>BD Diagnostics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immunologischer Test</td>
<td>ULTRA E.coli O157 Test System</td>
<td>Matrix MicroScience Ltd</td>
<td></td>
<td>Rinderfaschiertes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DuPont Lateral Flow System Test Kit</td>
<td>DuPont Qualicon</td>
<td></td>
<td>Rinderfleisch ohne Knochen, Rinderfaschiertes, Cider</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RapidChek Lateral Flow Assay</td>
<td>Strategic Diagnostics Inc.</td>
<td></td>
<td>rohes Fleisch ohne Knochen, Rinderfaschiertes, Cider</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RapidChek SELECT</td>
<td>Strategic Diagnostics Inc.</td>
<td></td>
<td>rohes Rinderfaschiertes, Rindfleisch ohne Knochen</td>
<td></td>
</tr>
<tr>
<td>Singlepath® Lateral Flow Assay</td>
<td>Merck KGaA / EMD Chemicals, Inc.</td>
<td>rohes Rinderfaschiertes, past. Milch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----------------------------------</td>
<td>----------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transia Card</td>
<td>Raisio Diagnostics AB</td>
<td>rohes Rinderfaschiertes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9.3.8 Gesamtkeimzahl

<table>
<thead>
<tr>
<th>Art</th>
<th>Marke</th>
<th>Anbieter</th>
<th>AFNOR</th>
<th>MICROVAL</th>
<th>AOAC perf.tested</th>
<th>Nat. Norm (DIN oder Methodensammlung)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impedanzverfahren</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DIN 10122 oder: §64 LFGB Nr. 00.00-99</td>
</tr>
<tr>
<td>Kultur</td>
<td>3M™ Petrifilm™ Aerobic Count Plate</td>
<td>3M Health Care</td>
<td></td>
<td>LM</td>
<td></td>
<td>Vielzahl an LM</td>
</tr>
<tr>
<td></td>
<td>Tempo TVC</td>
<td>bioMérieux</td>
<td></td>
<td>LM, FM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(außer Rohmilch, Getränke, Rinderfutter)</td>
<td>Vielzahl an LM</td>
<td></td>
</tr>
<tr>
<td>chromogener Test</td>
<td>Compact Dry TC</td>
<td>Nissui Pharmaceutical Co. Ltd.</td>
<td></td>
<td>LM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxygen Elektrode</td>
<td>DOX 60F/30F</td>
<td>Bio- Theta, Ltd.</td>
<td></td>
<td></td>
<td></td>
<td>rohes Rindfleisch, Rinderfaschiertes, Hühnerkarkasse</td>
</tr>
</tbody>
</table>
9.3.9 Staphylococcus

<table>
<thead>
<tr>
<th>Art</th>
<th>Marke</th>
<th>Anbieter</th>
<th>AFNOR</th>
<th>AOAC perf.tested</th>
<th>Nat. Norm (DIN oder Methodensammlung)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immun-Enzym Test</td>
<td>VIDAS® Staph enterotoxin II (SET2)</td>
<td>bioMérieux</td>
<td></td>
<td></td>
<td>Vielzahl an LM</td>
</tr>
<tr>
<td>PCR</td>
<td>BAX® System Real time PCR Assay</td>
<td>DuPont Qualicon</td>
<td></td>
<td></td>
<td>Rinderfaschertes, Sojaprotein, Soja- und Milchbasierte Säuglingsformula</td>
</tr>
<tr>
<td>Kultur</td>
<td>3M™ Petrifilm™ Staph Express Count System</td>
<td>3M Health Care</td>
<td>LM, FM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test 3M™ Petrifilm™ Staph Express Count System</td>
<td>3M Health Care</td>
<td>LM, FM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rapid‘Staph</td>
<td>BIO-RAD</td>
<td>LM, FM, UP</td>
<td></td>
<td>past. Vollmilch, Schinken, geräucherter Lachs, Eierkuchen</td>
<td></td>
</tr>
<tr>
<td>CHROMagar</td>
<td>BD Diagnostics</td>
<td>Rinderbraten, geräucherter Lachs, Eierschale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
