Evolution – zentral verbindendes Thema oder unterrepräsentierte Komponente des Biologieunterrichts?

Eine qualitative Analyse zweier Schulbuchreihen

verfasst von / submitted by
Simon Rachbauer

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of
Magister der Naturwissenschaften (Mag.rer.nat.)
Danksagung

Bei der Fertigstellung dieser Arbeit waren sehr viele Personen involviert, die mir dabei geholfen haben, diese Arbeit zu vollenden. Einigen möchte ich hier schriftlich ein Danke aussprechen.

Ein weiterer Dank geht an alle Freunde und Bekannte, die mich nicht nur in der Phase des Schreibens, sondern auch durch das Studium hinweg begleitet haben.

Ein riesiges Dankeschön soll auch an meine Familie und hier besonders an meine Eltern ausgesprochen werden. Durch ihre tatkräftige Unterstützung ist das Studium erst ermöglicht worden.

Die größte Unterstützung, die ich erhalten habe, ist die meiner Frau. Ohne ihre Hilfe, Motivation und Unterstützung hätte nicht nur das Abschließen des Studiums und der Diplomarbeit wahrscheinlich sehr viel länger gedauert, sondern wäre wahrscheinlich gar nicht zustande gekommen. Ich kann mich glücklich schätzen, so einen wunderbaren Menschen und Partnerin an meiner Seite zu haben.
Inhaltsverzeichnis

1. Einleitung ... 8
 1.1. Forschungsstand .. 9
 1.2. Forschungsfrage ... 11
2. Theoretische Grundlagen .. 12
 2.1. Fachlicher Hintergrund .. 12
 2.1.1. Geschichte der Evolutionsforschung ... 12
 2.1.2. Fortpflanzung und Vererbung .. 14
 2.1.2.1. Konzept Zufall .. 17
 2.1.2.2. Konzept Zeit .. 17
 2.1.3. Natürliche Selektion .. 19
 2.1.4. Künstliche Selektion .. 23
 2.1.5. Sexuelle Selektion .. 24
 2.1.6. Population .. 26
 2.2. Fachdidaktischer Hintergrund ... 30
 2.2.1. Lehrpläne ... 30
 2.2.2. Schulbuch ... 31
 2.2.3. Lernen durch Learning Progressions .. 35
3. Methode .. 39
 3.1. Schulbuchanalyse ... 39
 3.2. Concept Map .. 41
 3.3. Datengrundlage .. 48
 3.4. Codierregeln ... 49
 3.5. Durchführung ... 51
4. Analyse .. 52
 4.1. Schulbuchreihe bio@school ... 52
 4.1.1. Reihenwerk bio@school 1 ... 52
 4.1.2. Reihenwerk bio@school 2 ... 54
 4.1.3. Reihenwerk bio@school 3 ... 56
 4.1.4. Reihenwerk bio@school 4 ... 58
 4.1.5. Reihenwerk bio@school 5 ... 60
 4.1.6. Reihenwerk bio@school 6 ... 61
 4.1.7. Reihenwerk bio@school 8 ... 64
 4.1.8. Zwischenfazit Schulbuchreihe bio@school .. 68
 4.2. Schulbuchreihe Begegnung mit der Natur (Begegnung) .. 70
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.1. Reihenwerk Begegnung 1</td>
<td>70</td>
</tr>
<tr>
<td>4.2.2. Reihenwerk Begegnung 2</td>
<td>72</td>
</tr>
<tr>
<td>4.2.3. Reihenwerk Begegnung 3</td>
<td>72</td>
</tr>
<tr>
<td>4.2.4. Reihenwerk Begegnung 4</td>
<td>75</td>
</tr>
<tr>
<td>4.2.5. Reihenwerk Begegnung 5</td>
<td>76</td>
</tr>
<tr>
<td>4.2.6. Reihenwerk Begegnung 6</td>
<td>78</td>
</tr>
<tr>
<td>4.2.7. Reihenwerk Begegnung 8</td>
<td>80</td>
</tr>
<tr>
<td>4.2.8. Zwischenfazit Schulbuchreihe Begegnung</td>
<td>84</td>
</tr>
<tr>
<td>5. Zusammenfassung zentraler Ergebnisse und Diskussion</td>
<td>86</td>
</tr>
<tr>
<td>5.1. Wesentliche Analysefunde</td>
<td>86</td>
</tr>
<tr>
<td>5.2. Vergleich der Schulbuchreihen</td>
<td>90</td>
</tr>
<tr>
<td>5.3. Vergleich mit den Ergebnissen von Wäger (2017)</td>
<td>91</td>
</tr>
<tr>
<td>5.4. Beantwortung der Forschungsfragen</td>
<td>91</td>
</tr>
<tr>
<td>5.5. Ausblick</td>
<td>93</td>
</tr>
<tr>
<td>6. Literaturverzeichnis</td>
<td>96</td>
</tr>
<tr>
<td>7. Anhang</td>
<td>101</td>
</tr>
<tr>
<td>7.1. Statistik der häufigsten Biologie Schulbücher nach Schultyp</td>
<td>101</td>
</tr>
<tr>
<td>7.2. Analyse Karte erster Entwurf</td>
<td>102</td>
</tr>
<tr>
<td>7.3. Analyseraster</td>
<td>104</td>
</tr>
<tr>
<td>7.4. Analyse Concept Map bio@school</td>
<td>106</td>
</tr>
<tr>
<td>7.5. Analyse Concept Map Begegnung mit der Natur</td>
<td>108</td>
</tr>
<tr>
<td>7.6. Abbildungsverzeichnis</td>
<td>110</td>
</tr>
<tr>
<td>7.7. Zusammenfassung / Abstract</td>
<td>111</td>
</tr>
</tbody>
</table>
1. Einleitung

Diese Arbeit soll zwei Probleme des Biologieunterrichts, die sowohl abhängig voneinander und miteinander verwoben sind als auch gemeinsam interagieren, ansprechen. Ersteres bezieht sich auf das Verständnis der Evolution. Evolution meint in diesem Sinn die Evolutionstheorie, besser gesagt die synthetische Evolutionstheorie oder auch Evolutionstheorien. Da viele verschiedene Überlegungen, Theorien und Forschungsrichtungen ein großes Lehr- und Forschungsgebiet umschließen, spricht man von der synthetischen Evolutionstheorie. Ein tiefergehendes Verständnis über die Evolution, ihre Prozesse und Auswirkungen zu entwickeln, ist eine der größten Herausforderungen für Schüler/innen im Biologieunterricht, wie auch schon bei Sanders et al. zu lesen ist:

„The existence of misconceptions has serious consequences when evolution is meant to provide an underlying framework for explaining basic processes and phenomena in the biological sciences” (SANDERS et al. 2016: S. 219)

Nicht nur die Lernprobleme sind schwierig, sondern es kommt noch hinzu, dass einmal falsch gelernte Vorstellungen einerseits sehr schwer wieder umzulernen und auszubessern sind, andererseits ist es später auch für die Lernenden schwierig in ein „falsches Rahmenkonstrukt“ neue Inhalte richtig einzuordnen, wie auch bei BISHOP zu lesen ist:

„These explanations are often incompatible with scientific theory, but they may be very difficult to change because they are strongly rooted in students’ prior experience and personal attempts to make sense of the world” (BISHOP et al. 1990: S. 416)

1.1. Forschungsstand

Begriffe im Biologieunterricht über die Analyse der Schülervorstellungen bis hin zu
eben der Schulbuchforschung und dem Textverständnis. Bei der Verwendung von
biologischen und nicht biologischen Begriffen im Biologieunterricht kommt es meistens
ezur Durchmischung und Verwirrung der Konzepte für die Schüler/innen. Einer der
sich mit dieser Problematik des Biologieunterrichts beschäftigt, ist unter anderen
Dittmar Graf. Dieser zeigte schon in den 80er Jahren des vergangenen Jahrhunderts
die Problematik der verschiedenen Verwendungen der Begriffe auf (GRAF 1987).
Dieser bemängelt, dass bei sehr vielen Schulbüchern und auch Lehrplänen mit sehr
vielen Synonymen gearbeitet wird und somit unnötig viele neue Begriffe eingeführt
werden (ebd. 1987: S. 64). Weiter kritisiert er und auch andere, dass es im
Biologieunterricht zu einer Flut von neu zu lernenden Begriffen und Wörtern kommt.
Ein Beispiel zeigt auf, dass in einer deutschen Schulklasse mit einem bestimmten
Schulbuch und drei Wochenstunden, die Schüler/innen im statistischen Durchschnitt
die Unterrichtsstunde 20 neue Begriffe aufnehmen müssen (ebd. 1989: S. 238).
Neuere Forschungen über die teils fachlichen Begriffe beziehen sich ebenfalls auf die
Verständlichkeit und setzen sich ein für eine klarere Definition dieser (GRAF et al.
2008).
Ein weiterer Bereich, der für diese Arbeit wichtig ist, beschäftigt sich mit den
Vorstellungen von Schüler/innen im Biologieunterricht. Ein wichtiger Aspekt im Zuge
des Lernens in einer Naturwissenschaft ist, dass versucht wird, zu verstehen, wie
Lernende verschiedene Vorstellungen über die Phänomene und Konzepte besitzen
und sich die Welt erklären. Schon BISHOP et al. (1990) zeigten auf, dass viele
Personen, die auch teils mit fachlichen Vorerfahrungen ausgestattet sind, denken,
dass sie wichtige Konzepte und Ideen richtig erklären und beschreiben können. Das
dies nicht immer korrekt ist und mit den vorherrschenden Wissenschaftstheorien
übereinstimmt, zeigt ihre Studie auf (ebd. 1990: S. 420). Auch neuere Forschung zeigt,
dass große Missstände zwischen der wissenschaftlichen Theorie und Fakten und den
Da die vorliegende Arbeit auch eine Weiterführung der Forschung von WÄGER (2017)
darstellt, sollte diese daher in Folge kurz beschrieben werden.
In dieser Arbeit wurden insgesamt 63 Schulbücher für die Allgemeinbildende Höhere
Schule (AHS) Unterstufe und AHS Oberstufe durchgesichtet. Diese wurden anhand
eines geschaffenen Kategoriensystems über wichtige Themen der Evolution
(Selektionsformen und Population) quantitativ analysiert. Die wichtigsten Ergebnisse

1.2. Forschungsfrage

In dieser Arbeit soll genauer darauf eingegangen werden, ob die Untersuchungen und gefundenen Ergebnisse von WÄGER (2017) auch bei einer qualitativen Analyse standhalten, sich bestätigen lassen oder verworfen werden müssen. Weiters ist es von Bedeutung, die Schulbücher auch qualitativ zu untersuchen, da eine bloße quantitative Untersuchung nach Schlagworten und deren Verknüpfung für eine nähere Analyse der Schulbuchreihe meist zu wenig aussagt. Ein besonderes Augenmerk wird auf die Konzepte im Bereich Fortpflanzung und Vererbung gelegt, da ohne dieser Basis, es nur sehr schwer wird, die anderen Konzepte zu verstehen. Daher wurden folgende Forschungsfragen formuliert:

➢ In welchem Ausmaß werden die evolutionsrelevanten Konzepte erwähnt, miteinander innerhalb der Schulstufe (horizontal) und über die Schulstufen hinweg (vertikal) in Schulbüchern verbunden?
➢ Welche fachlichen Fehler lassen sich in den Schulbüchern in Bezug auf die formulierten Konzepte finden?
➢ Ist eine Lernkurve, die kumulatives Lernen fördert, durch eine Learning Progression in den Schulbüchern gegeben?
2. Theoretische Grundlagen

In den folgenden Kapiteln sollen sowohl die fachbezogene Basis in der Biologie, als auch die didaktischen Grundlagen näher betrachtet werden.

2.1. Fachlicher Hintergrund

Um sich in der Analyse und in den Ergebnissen zu Recht zu finden, müssen zuvor die fachlichen Termini abgeklärt werden. Deswegen soll auf den nächsten Seiten zunächst ein kurzer Abriss der verschiedenen Evolutionstheorien in der Wissenschaftsgeschichte stattfinden und danach die Klärung einzelner ausgewählter wichtiger biologischer Prinzipien zu finden sein.

2.1.1. Geschichte der Evolutionsforschung

Es gab zahlreiche Personen, die teils Wissenschaftler/innen waren, die schon vor Charles Darwin ähnliche Gedanken äußerten und gleiche Überlegungen anstellten. Alle aufzuzählen würde hier den Rahmen sprengen, aber es sollte doch auf einige kurz eingegangen werden, die sowohl Wegbereiter Darwins waren als auch jene Wissenschaftler/innen, die die Evolutionstheorie zu jenem Forschungsgebiet gemacht haben, welche sie heute ist.

Einer der frühesten Wegbereiter der Evolutionstheorie, besser gesagt der Biologie als Wissenschaft, war Carl von Linné (1707–1778), ein Forscher aus Schweden, der mit seinem Werk „Systema Naturae“ ein Ordnungssystem in die Vielfalt des Pflanzen- und Tierreiches eingeführt hatte. Neben der Benennung (Nomenklatur) der Tier- und Pflanzenarten durch Binome führte er auch eine Einteilung der verschiedenen Arten (Taxonomie) ein.

Lamarckismus genannte Theorie, ist einer der größten Missverständnisse im Lehr-/Lernbereich (KATTMANN 2015: 40f).

Eines der Probleme, die Charles Darwin nicht lösen konnte, war den Ursprung der Variationen innerhalb der Spezies zu finden. Es dauerte noch bis in das 20. Jahrhundert hinein, um die Komponente der Vererbung und der quantitativen Genetik mit den evolutionären Konzepten zu vereinen. Einer dieser Forscher, der einen

Dieses Kapitel soll mit den Worten von Futuyma beschlossen werden:

„Modern evolutionary biology does not equal Darwinism, and any antievolutionary critiques of Darwin that do not take into account modern research are irrelevant to our understanding of evolution today.”
(FUTUYMA et al. 2017: 17f)

Nichtdestotrotz ist die Darwin’sche Evolutionstheorie ein wesentlicher Baustein und eine Hauptkomponente auch im Lernen über Evolution.

2.1.2. Fortpflanzung und Vererbung

In diesem Kapitel sollen die wichtigsten Grundlagen in diesem Themenbereich kurz angeführt werden, um somit eine Verständnisbasis für die späteren Konzepte in der Analyse zu haben.

Eine der wichtigsten Voraussetzungen für die natürliche Selektion aber auch für die Evolution und das Leben an sich, ist Variation besser gesagt die Variabilität eines Merkmals/ eines Gens. Jeder Organismus, außer eineiigen Zwillingen und Klone, besitzt eine einzigartige DNA und können deshalb genetisch klar von anderen Individuen (=genotypische Variabilität) unterschieden werden. Man unterscheidet
zwischen der genotypischen Variabilität und der phänotypischen Variabilität, zweitere bezeichnet die unterschiedlichen Eigenschaften und Merkmale des Phänotyps (=äußeres Erscheinungsbild des Organismus).

unterschiedlichen DNA, wird es bei der Rekombination und Entstehung der Zygote zu unzähligen Möglichkeiten kommen. Manche DNA - Abschnitte und somit auch Gene werden ohne jegliche Veränderung an die Nachkommen weitergegeben und diese teilen sie somit mit diesen. Deshalb lässt sich zwischen diese eine gewisse phänotypische Ähnlichkeit ableiten. Dies bedeutet aber nicht, dass diese die gleiche DNA haben. Denn die Nachkommen bekommen die andere Hälfte ihres Erbgutes von dem zweiten Elternteil, es findet auch Crossing – over statt und die DNA ist bei jedem einzigartig kombiniert (ausgenommen Klone, Zwillinge, etc.).

Ein weiterer Punkt der in diesem Bereich angeführt werden soll, sind die Genmutationen. Ein Gen ist die Grundeinheit der biologischen Vererbung und ein spezifischer codierender Abschnitt auf der DNA.

2.1.2.1. Konzept Zufall

Als weiterer Punkt werden hier auch die Mutationen angeführt, die ebenfalls zufällig auftreten. Ob und wann eine Mutation stattfindet und durch was sie ausgelöst wird, ist sehr vom Zufall bedingt. Wenn man gewissen Einflüssen ausgesetzt ist, erhöht dies natürlich die Wahrscheinlichkeit und die Mutationsraten können erhöht werden. Das Risiko eine Mutation und Lungenkrebs zu bekommen erhöht sich beim Rauchen, aber ob, wo und in welcher Form die Mutationen auftreten ist zufällig.

Bei all diesen Vorgängen spielt der Zufall eine große Rolle und sollte daher beim Evolutionsunterricht nicht außer Acht gelassen werden (CAMPBELL et al. 2015: S. 638).

2.1.2.2. Konzept Zeit

Ein weiterer Faktor, der nicht nur für die Selektion, sondern auch für evolutionäre Prozesse an sich sehr wichtig ist, sollte hier angesprochen werden und dies ist der

2.1.3. Natürliche Selektion

“This preservation of favourable individual differences and variations, and the destruction of those which are injurious, I have called Natural Selection, or the Survival of the Fittest” (DARWIN 1873: S. 63).

Dieser meint damit, dass es Eigenschaften oder Merkmale gibt, die einen Vorteil gegenüber anderen Variationen desselben Merkmals ermöglichen. Diese Unterschiede in den Merkmalen, und sind sie noch so klein, führen über lange Zeit dazu, dass sich die vorteilhaftere Variation durchsetzt und stärker auftreten wird. Eine sehr umfassende dafür aber sehr allgemeine und vage Definition gibt Stephen Stearns im „Princeton Guide to Evolution“:

“Natural selection is a process of sorting by reproductive success that occurs in populations of replicating units, whether those units are molecules, cells, organisms, or larger units” (STEARNS 2017: S. 193).

Der Autor bezeichnet den Prozess der natürlichen Selektion eher als Sortieren und zwar nach dem reproduktiven Erfolg. Er fügt hinzu, dass die natürliche Selektion nur funktionieren kann, wenn jene Variationen auch vererbar sind und dies zu unterschiedlichem reproduktiven Erfolg führt. Weiters fügt er auch weitere Ebenen ein, denn die Selektion tritt nicht nur auf der Individuenebene sondern auch bei anderen wie der Zelle oder sogar bei Genen auf. Er vereinfacht seine Ausdrucksweise mit der
Die Definition von CAMPBELL et al. (2015) ist ähnlich der oben angeführten Definition, hier wird aber auch schon auf eine der Auswirkungen der natürlichen Selektion eingegangen:

„Die natürliche Selektion führt dazu, dass Allele in einer anderen Häufigkeit an die nächste Generation weitergegeben werden, als sie in der gegenwärtigen Generation auftreten“ (ebd. 2015: S. 638)

Die Definition, die für diese Arbeit verwendet wird ist sehr allgemein und eher komplex, doch sie beinhaltet alle wesentlichen Merkmale der vorigen gegebenen Definitionen und vereint diese in einem kompakten Satz:

„[…] natural selection is any consistent difference in fitness among different classes of biological entities“ (FUTUYMA et al. 2017: S. 60).

Es schließt mit dem biologischen Konzept der Fitness sowohl die unterscheidbaren Variationen und den reproduktiven Erfolg mit ein als auch dass diese erhalten bleiben müssen. Weiters spricht er von biologischen Entitäten, die sowohl Populationen als auch Gene beinhalten können.

abhängig, denn der Organismus, der für eine bestimmte Nische die besten adaptiven Eigenschaften besitzt, wird eine höhere Fitness besitzen als andere Individuen. (ZRZAVÝ et al. 2010: S. 12).

Als Schluss dieses Kapitels sollen noch die verschiedenen Ebenen der Selektion angesprochen werden. Denn die natürliche Selektion findet nicht nur auf der Individuenebene statt, sondern auch auf anderen biologischen Ebenen. Auf der Ebene der Gene kann hier wieder die ungleiche Verteilung während der Meiose angeführt werden, die schon bei der Fortpflanzung angeführt worden ist. Auch hier findet eine Selektion statt, in der gewisse Gene anscheinend einen Vorteil gegenüber anderen haben, also Variation vorhanden ist und somit ist auch natürliche Selektion möglich. Ein weiteres Beispiel sind sogenannte „selfish genetic elements“. Zu diesen gehören unter anderen auch die Transposons, welche Abschnitte auf der DNA darstellen, die in der Lage sind, sich zu kopieren und ausschneiden und an einer anderen Stelle des Genoms wieder einzufügen (LOSOS et al. 2017: S. 348).

die das Aussterben besser vermeiden und/oder weitere Arten hervorbringen (ebd. 2017: S. 200).

Schlussendlich gehen die meisten Forscher/innen zurzeit davon aus, dass das Individuum mit seinen Genen die entscheidende Einheit der natürlichen Selektion ist. Doch auch hier sollte nicht vergessen werden, dass die heute angesprochenen Individuen nicht immer als solche gekennzeichnet waren und ebenfalls erst entstanden sind. Weiters weist auch Okasha darauf hin:

„What we call an ‘individual organism’ is itself a highly cooperative group of cells, each specialized in a different task. Moreover, a eukaryotic cell is itself a multispecies assemblage […] and in addition contains numerous organelles with their own genes, whose evolutionary interests are not always fully aligned with those of their host“ (ebd. 2017: S. 204).

In diesem Bereich müssen sich erst feste Konventionen herauskristallisieren, nachdem man den Prozess und die Interaktion der natürlichen Selektion auf den unterschiedlichen Ebenen besser verstanden hat. Als Letztes sollen hier noch kurz die Unterschiede der stabilisierenden, gerichteten und disruptiven Selektion erläutert werden.

Bei der stabilisierenden Selektion haben jene Individuen einen Vorteil, die sich nahe dem Mittelwert der Variabilität innerhalb einer Population befinden, da meist konstante

2.1.4. Künstliche Selektion

In neuerer Zeit ist die Zucht nicht nur eine Auswahl von besseren oder schlechteren Organismen und bei der Kreuzung eine Chance auf ein vielleicht besseres Individuum,

2.1.5. Sexuelle Selektion

wissenschaftlichen Untersuchung der Hodengröße und dem Vergleich mit dem vorherrschenden Paarungsverhalten bei den *Hominiden*. Sind die Hoden und Spermienproduktion groß, wie etwa bei der Gattung *Pan* (Schimpansen), hängt dies direkt mit der dort herrschenden Konkurrenz der Männchen bei der Reproduktion zusammen. Sieht man sich nun die Verhältnisse bei *Gorilla* (Gorillas) an, so findet man dort ein komplett anderes Modell. Da die Männchen durch ihre Stärke, Muskeln, Körperbau etc. konkurrieren und danach alleiniges Recht auf Fortpflanzung mit dem gesamten Harem haben, sind bei diesen die Hoden relativ klein ausgebildet. Denn hier spielt die Spermienkonkurrenz kaum eine Rolle. Sexuelle Selektion kann als ein wichtiger Teilaspekt der Evolution angesehen werden und ist auch gut zu untersuchen, da die sekundären Geschlechtsmerkmale zu den am schnellsten verändernden phänotypischen Merkmalen zählen (ebd. 2017: S. 251).

2.1.6. Population

Zuallererst sollte geklärt werden, was unter einer Population eigentlich verstanden wird. Auch hier sind wieder viele verschiedene Definitionen vorhanden, je nachdem welche Forschungsfrage gewählt wird und aus welchem Forschungsgebiet diese kommt.

Zuerst, da es für die nachfolgende Analyse ein entscheidender Faktor ist, soll hier kurz der Begriff der Population nach der Wissenschaftsdisziplin der Demographie definiert werden:

> „Bevölkerung bezeichnet aus statistischer Perspektive diejenigen Menschen, die in einem Territorium leben, etwa in einem Staat, einer Stadt oder einem Bezirk, unabhängig von den einzelnen Merkmalen, die sie aufweisen“ (Freytag et al.: S. 40)

Problem, wenn die Abgrenzung zu den Verwechslungsmöglichkeiten klar gegeben ist und nicht innerhalb eines Werkes für denselben Begriff dasselbe Wort verwendet wird. In der Biologie gibt es ebenfalls den Begriff der Population, der in den verschiedenen Fachgebieten überall ein wenig anders definiert wird. In der Botanik werden Populationen als:

Abb. 2: verschiedene Populationen; verändert nach: (CAMPBELL et al. 2015: S. 634)
Das Gegenteil, dass sich verschiedene Arten in einem Lebensraum aufhalten, nennt man Gemeinschaft oder auch Biozönose. Eine Definition, die alles miteinbezieht findet man einmal mehr bei Futuyma:

„A group of conspecific organisms that occupy a more or less well defined geographic region and exhibit reproductive continuity from generation to generation; ecological and reproductive interactions are more frequent among these individuals than with members of other populations of the same species“ (FUTUYMA et al. 2017: G-13).

Nun da dieser Begriff geklärt ist, sollte noch kurz darauf eingegangen werden, warum dieser so wichtig für die Selektionsformen und auch die Evolution ist. Obwohl im Kapitel 2.1.3 gesagt worden ist, dass die Selektion jeweils am Individuum und seiner Fitness ansetzt, geschehen die eigentlichen Auswirkungen der natürlichen Selektion und der evolutionären Prozesse auf der Ebene der Populationen.

Die Populationsebene ist eben deshalb so wichtig, da klar unterschieden werden muss, dass Individuen selektiert, werden aber Populationen evolviert. Dass sich Organismen individuell anpassen, damit sie der Selektion entsprechen, ist ein falsches Bild und sollte durch die Verwendung der Populationsebene nicht mehr auftreten.

Diese fachlichen Hintergründe und Theorien sind die Ausgangsbasis für diese Arbeit und die Erstellung der Konzepte für den Analyseraster. Außerdem sind diese biologischen Theorien Teile des größeren Forschungsfeldes der Evolution und somit eine der wichtigsten Träger in der gesamten Biologie:

„Evolution and its underlying genetic mechanisms of inheritance and variability are key to understanding both the unity and the diversity of life on Earth“ (COUNCIL 2012: S. 141)
2.2. Fachdidaktischer Hintergrund

Die fachlichen Aspekte sind durch das vorige Kapitel abgeklärt worden, doch das beste Wissenskonstrukt bzw. die beste Wissenstheorie hat einen geringen Lerneffekt, wenn diese/s nicht didaktisch und pädagogisch aufgearbeitet ist, damit die Wissensinhalte auch richtig vermittelt werden können.

Deshalb soll der zweite Teil des theoretischen Hintergrundes die didaktischen beziehungsweise die fachdidaktischen Hintergründe behandeln. Auch die gesetzlichen Grundlagen sollen kurz angesprochen werden und die Lernschwierigkeiten, die in Bezug auf Evolution auftreten können, werden adressiert.

2.2.1. Lehrpläne

Die gesetzliche Grundlage, welche Inhalte in der Schule in dem jeweiligen Fach unterrichtet werden, werden von den Lehrplänen festgelegt. Es liegt jeweils ein getrennter Lehrplan für die AHS Unterstufe als auch für die AHS Oberstufe vor.

2.2.2. Schulbuch

Das Schulbuch ist nicht nur eine hilfreiche Lernunterlage für den/die Schüler/in, sondern auch meistens eine sehr gern gesehene Unterstützung der Lehrperson. Viele Lehrer/innen verwenden die Schulbücher als eigene Vertiefung und Lernunterlage für ihre Vorbereitung des Unterrichts. Es bestätigt auch die Masterarbeit von HOESLI, dass sich sehr viele Lehr/innen (über 40%) im Volksschulbereich aber auch im Sekundarbereich das Schulbuch zunutze machen, um selbst Lerninhalte zu erlernen (HOESLI 2012: S. 48). Es sollte außerdem darauf kurz hingewiesen werden, dass viele Lehrpersonen diese Materialien zur Fortbildung und Vertiefung dringend brauchen, da

Auch eine zweite Funktion erfüllen Schulbücher für die Lehrperson, denn sie sind eine sehr gute Basis, was und wie im Unterricht gelehrt werden soll. Nicht umsonst schreibt auch Patricia Urban in ihrem Artikel, dass die Schulbücher der einzelnen Fächern der geheime Lehrplan in der Schule sind (URBAN 2014). Da die Inhalte, die im Schulbuch stehen, dann auch von den Lehrer/innen unterrichtet werden, liegt dem Schulbuch eine zentrale Rolle im Schulwesen inne und sollte daher auch in der fachdidaktischen Forschung nicht vernachlässigt werden.

Eine Definition für das Schulbuch an sich, ist schwieriger zu geben als gedacht, da ein Schulbuch keiner klaren Zuordnung folgt, wie bei Bölsenerli vermerkt ist:

„Es besteht somit eine gewisse Uneinigkeit, ob der Begriff Schulbuch sich auf Drucksachen beschränkt oder alle mit dem Schülerbuch mitgelieferten Medien beinhaltet“ (BÖLSTERLI et al. 2015: S. 4).

In dieser Arbeit soll das Schulbuch als nur das Medium definiert werden, das die Schüler/innen in gedruckter Form zur Verfügung haben. Das schließt jegliches E-Learning, weitere Online - Inhalte der Schulbuchverlage oder auch Lehrer/innen Begleithefte aus. Eine weitere etwas andere und ältere Definition des Schulbuches findet man bei McMurray et al.:

„A textbook was a simplified version of an organised body of knowledge matched to the limitations of a targeted immature learner. It was arranged as a course of study, so that the chapters would be studied in sequence, later ones presuming understanding of earlier“ (MCMURRAY et al. 1955: 17f).

Hier wird auch schon darauf eingegangen, dass die Schulbücher die Funktion der aufeinander aufbauenden Kapitel und des Lehrstoffes haben sollten. Eine klare Definition des Schulbuches wird am ehesten dadurch gegeben, wenn das Schulbuch über dessen Aufgaben, welche es zu erfüllen hat, definiert wird.

Jene Aufgaben, die ein Schulbuch erfüllen soll, sind zahlreiche und vielschichtige Funktionen, wie Drumm angibt:

„Das Schulbuch soll den Unterricht unterstützen und strukturieren, Fachwissen aktualisieren, methodische Anregungen, Aufgaben und
Übungen, Grafiken und Bilder bieten, den Kompetenzerwerb der Schülerinnen und Schüler mit zentralen Inhalten verknüpfen […]" (DRUMM 2013: S. 389)

In Österreich kommt seit dem Schuljahr 2017/18 noch die Semestrierung der Jahre und seit dem Jahr 2018/19 die Implementierung der Basiskonzepte im Fach Biologie hinzu. Das bedeutet, dass die Schulsbücher alles in zwei Semester und nach Lerninhalten unterteilen sollen, aber gleichzeitig die Lerninhalte miteinander und mit den Basiskonzepten verknüpft werden sollten. All jene genannten Forderungen sind für ein Schulbuch fast nicht zu erfüllen, es scheint eher unmöglich all diese zugleich zu meistern. Dennoch gibt es unter den Schulbüchern große Unterschiede in der Qualität und in der Erreichung der Ziele. Obwohl alle Schulbücher durch eine staatliche Approbation geprüft werden, so heißt dies nicht automatisch, dass es unbedenklich zu übernehmen ist und man sich keine Gedanken über die fachlich korrekten Informationen, die Themenauswahl oder die Aufbereitung machen sollte.

Das Schulbuch sollte eben nicht nur mehr Wissensvermittlung betreiben, sondern vielmehr die Konzepte und Basisideen der jeweiligen Fächer näherbringen und miteinander verknüpfen. Einzelne Wissenselemente sind mit dem Aufkommen des Internets nicht mehr die höchste Priorität, da sie überall nachgelesen werden können, doch die Verknüpfung dieser einzelnen Wissenselemente untereinander und die Einbettung in ein größeres Wissenskonstrukt wären die neuen Aufgaben des Schulbuches. Solche Entwicklungen in den Schulbüchern wären möglich, wenn mit der Einführung der neuen Basiskonzepte für die Sekundarstufe II begonnen wird. Für die österreichischen Schulbücher würde sich weiters auch das Kompetenzmodell der Naturwissenschaften eignen. Dieses könnte in die Schulbücher eingegliedert werden, um so eine bessere Kohärenz innerhalb und zwischen den Schulbüchern zu schaffen.

2.2.3. Lernen durch Learning Progressions

Es ist schon viel erforscht worden, wie das Lernen bei Schüler/innen funktioniert und wie dies verbessert werden kann. Es weisen einige Studien darauf hin, dass viele Lernende Schwierigkeiten haben, die verschiedenen Konzepte miteinander zu verknüpfen (ROSEMAN et al. 2010: S. 48). Dies liegt auch daran, dass schon in frühen Jahren angefangen wird, Konzepte zu lernen und zu entdecken. Schon Kleinkinder, bevor sie in Berührung mit wissenschaftlichem Lernen im Kindergarten oder später in der Schule kommen, haben schon ihre Erfahrungen und Vorstellungen gemacht (NRC

„Learning progressions are descriptions of the successively more sophisticated ways of thinking about a topic that can follow one another as children learn about and investigate a topic over a broad span of time“ (ebd. 2007: S. 214).

Die Vorstellungen beziehungsweise Konzepte können durch die Wissenschaft vorgegeben sein, doch diese meisten Konzepte werden nicht von den Lernenden sofort akzeptiert, da diese erst ihre alten Vorstellungen und eigens entwickelte Konzepte ablegen müssen.

„Simple, linear and causal models are certainly necessary to introduce genetic concepts. But secondary school textbooks cannot limit themselves to such simple examples and mechanisms“ (ebd. 2008: S. 59).

Diese Learning Progressions sind meistens so aufgebaut, dass sie über einen längeren Zeitrahmen (mehrere Semester oder Jahre) andauern. Bei der Entwicklung dieser wird ein unterer Anker (lower anchor) und ein oberer Anker (upper anchor) eingesetzt (DUSCHL et al. 2011: 150f). Die untere Abgrenzung soll einen leichten Einstieg in die Thematik bieten und auf Alltagsvorstellungen und Vorstellungen der Lernenden eingehen. Eine wichtige Komponente, die bei Kleinkindern nicht außer Acht gelassen werden sollte, ist hier die Berücksichtigung der „theory of mind“:

„A theory of mind affords the understanding that knowledge can be subjective and people may have different interpretations of natural phenomena“ (ebd. 2011: 130f).

Neben den unteren Begrenzungen, die einen guten Anknüpfungspunkt setzen sollen, sind die oberen Begrenzungen die Ziele der jeweiligen Learning Progression. Diese sind sehr unterschiedlich, je nachdem welche Schulstufe/ welches Alter die letzte Stufe ist. Das Ziel einer Learning Progression sollte immer in ein tieferes Verständnis der Wissenschaft und deren Praktika resultieren.
Wenn diese LP richtig in die Schulbücher, den Unterricht etc. eingegliedert sind, können diese folgenden Effekt haben:

„[…] are conceived as strategically developed cycles and sequences of instructional activities that guide learning pathways. The instructional agenda is to engage learners in successively more sophisticated ways of knowing and thinking about ideas, evidence, claims and/or practices that deepen and broaden as the students moves [sic!] through learning progressions“ (ebd. 2011: S. 131).

Dieses Kapitel beschließend ist zu sagen, dass eine, auf die im Lehrplan vorkommenden sieben Basiskonzepte beruhende, Learning Progression sehr hilfreich für den Unterricht, das (Er-) Lernen und auch für die Biologiebücher wäre.
3. Methode

In diesem Kapitel soll geklärt werden, wie die Schulbücher analysiert und welche Herangehensweise gewählt wurde. Der Schwerpunkt der Analyse liegt bei einer qualitativ-Untersuchung des Vorhandenseins der unter Punkt 3.2. beschriebenen Konzepte.

3.1. Schulbuchanalyse

Die gewählte Analysemethode, die diese schrittweise und stufige Vermittlung und Prozessbegleitung der Lernenden ermöglicht, ist mit einer „Concept Map“ für diese Arbeit verwirklicht worden. Diese Form wird immer häufiger in verschiedenen Studien angewendet (vgl. WALLACE et al. 1990: S. 1034; MARTÍNEZ-GRACIA et al.;
Da eine Concept Map für das Thema der Arbeit nur teilweise und noch nicht komplett vorlag, wurde im Zuge dieser Arbeit eine erstellt. Diese Concept Map ist der Ausgangspunkt der Analyse und anhand dieser wurden die beiden Schulbuchreihen untersucht.

3.2. Concept Map

Die auf der nachfolgenden Seite zu findende finale Concept Map beinhaltet insgesamt fünf verschiedene Themenbereiche, die auch farblich so gekennzeichnet wurden. Es handelt sich um die Themen: Population (blau), natürliche Selektion (dunkelgrün), künstliche Selektion (gelb), sexuelle Selektion (lila) und Fortpflanzung und Vererbung (grau). Weiters gibt es dann noch zwei weitere Farben, einerseits das Konzept des

Die beiden Rahmen um die Selektionsarten beziehen sich sowohl auf den Populations- als auch auf den Zeitaspekt. Der blaue strichlierte Rahmen soll den Populationsgedanken darstellen. Dieser soll bei allen Konzepten, die dieser Rahmen
einschließt, angewendet werden. Bei der Analyse werden dann nur jene Konzepte blau umrahmt, die auch die Populationsebene miteinbeziehen. Alle drei Selektionsformen stehen also im Bezug zu der Populationseinheit und dies sollte sowohl in den Schulbüchern als auch bei den Schüler/innen immer präsent sein. Ebenfalls sollte die Zeitkomponente, wie im Kapitel 2.1.2.2. ausführlicher beschrieben ist, immer bei den Konzepten angewendet werden. Deshalb befindet sich rund um die drei verschiedenen Selektionsformen auch der schwarz-strichlierte Rahmen.

Nun werden die einzelnen Konzepte der verschiedenen Themenkomplexe genauer erklärt.

Als erster Komplex mit seinen zugehörigen Konzepten wird der Themenbereich Fortpflanzung und Vererbung beschrieben. Bezüglich der Einfachheit wird auch das Konzept des Zufalls hier mitbeschrieben.

(1) Alle Arten von Tieren haben Nachkommen, meist mit zwei Elternteilen

Dies soll einen leichten Einstieg darstellen und als Basis dienen, um die später folgenden Konzepte besser verstehen zu können. Auch wenn es natürlich klar ist, dass es sehr wohl auch asexuelle Vermehrung bei Lebewesen gibt. Ein Beispiel wäre die Sprossung bei Hefe oder die Querteilung bei Paramecium sp..

(2) In Organismen, die zwei Geschlechter haben, kommt typischerweise die Hälfte der Gene/ Chromosomen von je einem Elternteil

(3) Die Rekombination von Genen bei der geschlechtlichen Fortpflanzung führt zu einer großen Vielfalt möglicher Genkombinationen bei den Nachkommen von zwei beliebigen Eltern

Bei der Rekombination von Genen können zwei Arten unterschieden werden, einerseits die zufällige Verteilung der Chromosomen bei der Meiose (Bildung der haploiden Gameten) und andererseits die zufällige Rekombination bei der Befruchtung (Crossing-over). Als Beispiel der Mensch: Beim Menschen gilt 2n = 23, das bedeutet, dass es 2^{23} Möglichkeiten pro Keimzelle gibt. Dies heißt für einen Nachkommen zwei beliebiger Eltern gibt es $2^{23} \times 2^{23} = 2^{46}$ Möglichkeiten (über 70 Billionen Möglichkeiten) alleine durch die Rekombination.

(4) Gen - Mutation

(5) **Neue vererbbare Merkmale können Ergebnisse von neuen Kombination existierender Gene oder von Mutationen der Gene in den reproduktiven Zellen sein**

Dies ist die Kombination der beiden vorherigen Konzepte. Es können sich unzählige neue Merkmale durch die Mutationsraten plus die Rekombinationsmöglichkeiten ergeben.

(6) **Nachkommen sind ähnlich, aber nicht genau gleich, wie ihre Eltern und Geschwister**

Dies ist die logische Schlussfolgerung aus den vorangegangenen Konzepten, dass jedes Individuum einzigartig ist und sich genetisch als auch phänotypisch voneinander unterscheidet, dass es aber auch manche Merkmale/ Gene mit seinen Verwandten teilt.

(7) **Einige dieser Ähnlichkeiten (Merkmale) zwischen Eltern und Nachkommen sind vererbt**

Damit jeglicher selektive Prozess ablaufen kann, müssen die unterschiedlichen Merkmale auf die darauffolgende Generation weitergegeben werden können.

(8) **Zufall**

Die Bedeutung des Zufalls wird immer wieder im Biologieunterricht unterschätzt und nicht klar ausgedrückt. Aber gerade, weil in der Biologie häufig etwas vom Zufall abhängig ist, sollte dieser nicht außer Acht gelassen werden und deshalb ist dieser als eigenes Konzept (eigene Farbe) angeführt.

All diese Konzepte befinden sich im Bereich Fortpflanzung und Vererbung, der relativ früh in der Schule gelernt werden und gefestigt sein sollte, damit spätere Lernprozesse ermöglicht werden können. Dies muss nicht in den ersten Klassen der Sekundarstufe I vonstattengehen, es sollten auch viele Konzepte schon früher z.B. ab dem Kindergarten gelernt und gefestigt werden.

1 Eine Art ist eine Gruppe von Populationen, deren Mitglieder sich untereinander sexuell fortpflanzen können und fruchtbare Nachkommen haben
Dies ist die Definition einer Art über das biologische Artkonzept und für populationsbezogene Thematiken in der Biologie sicherlich die bevorzugteste Herangehensweise. Dies sollte die Ausgangsbasis sein und deshalb den SchülerInnen relativ früh klar vermittelt werden.

2 Es gibt Variation innerhalb Individuen einer Art innerhalb einer Population
Wie in Kapitel 2.1.2. genauer beschrieben, ist die Variabilität der Ansatzpunkt der Selektionsprozesse. Dieses Konzept geht näher darauf ein, dass sich nicht nur Nachkommen und Eltern, wie bei den Konzepten der Fortpflanzung und Vererbung beschrieben wird, unterscheiden, sondern alle Organismen unterschiedlich sind. Es sollte klar werden, dass es große Unterschiede innerhalb von Populationen gibt.

3 Population ist die Menge aller Individuen, die sich miteinander fortpflanzen können
Hier sollte als Zwischenschritt nochmals der Populationsgedanke mit dem Artbegriff und der Reproduktion verknüpft werden.

Der dritte eigenständige Themenkomplex ist die sexuelle Selektion, die parallel zu den anderen Konzepten zu finden ist, wie auf der Concept Map deutlich zu sehen ist.

1 Einige dieser Merkmale werden von Geschlechtspartnern als besonders gut eingestuft
Dieses Konzept steht an der Basis zum weiteren Verständnis der sexuellen Selektion. Es sollte den Lernenden klar sein, dass verschiedene meist phänotypische Merkmale bei Organismen unterschiedliche Attraktivität bei dem anderen Geschlecht bedeuten.

2 Diese Merkmale können zu einem Geschlechtsdimorphismus führen
Werden jene Individuen mit den bestimmten Merkmalen immer bevorzugt, kann es zu einer Selektion dieser Merkmale kommen und andere Ausprägungen
jener Merkmale verschwinden. Passiert dies nur bei einem Geschlecht, so spricht man von einem Sexualdimorphismus (=Geschlechtsdimorphismus). Ein Beispiel wären die vergrößerten Mandibeln bei *Lucanus cervus* (Hirschkäfer).

(3) **Allelhäufigkeit der bevorzugten Merkmale erhöht sich**

Der vierte Themenkomplex ist die künstliche Selektion in der Farbe Gelb. Auch dieser ist parallel zu den anderen Themen zu finden, wobei dieser Teil der selektiven Prozesse und deren Konzepte sicherlich früher angesprochen werden könnte als z.B. die natürliche Selektion.

(1) **Einige Pflanzensorten und Tierrassen haben wünschenswertere Merkmale als andere**

Dies ist das erste Konzept in diesem Themenbereich und es soll den Lernenden einen einfachen Start ermöglichen. Es ist eines der leichter zu verstehenden Konzepte in der gesamten Concept Map und ist eigentlich selbstklärend.

(2) **Menschen versuchen jene gewünschte Merkmale von Pflanzen und Tieren durch selektive Züchtungen zu erhalten**

Dies ist das aufbauende Konzept und besagt, dass jene Eigenschaften, die von den Menschen genutzt werden, bevorzugt werden und durch eine zielgerichtete Selektion auf diese Merkmale hin aussortiert werden.

(3) **Kleine Unterschiede zwischen Eltern und Nachkommen können sich in aufeinanderfolgenden Generationen (durch selektive Züchtungen) akkumulieren, so dass Nachkommen sich sehr von ihren Vorfahren unterscheiden**

Dies soll den Lernenden dabei helfen, später die natürliche Selektion und die Artentstehung zu verstehen. Durch diesen Zwischenschritt, kann den SchülerInnen gezeigt werden, dass die Entwicklung kontinuierlich abläuft.

Der fünfte Themenkomplex behandelt die natürliche Selektion. In diesem Themenbereich könnten und müssten sehr viel mehr Konzepte vorhanden sein, aber auch hier wurde aufgrund der besseren Übersichtlichkeit und Analysefähigkeit auf
weitere Konzepte verzichtet. Die drei genannten Konzepte dienen als wichtige kognitive Zwischenschritte und sollten für das angestrebte Ziel ausreichend sein.

(1) **Einzelne Organismen mit bestimmten Merkmalen haben bessere Chancen zu überleben und Nachkommen zu haben als andere**
Hier wird wieder das vorhergegangene Konzept des Merkmales mit der individuellen Überlebenschance und dem Fortpflanzungserfolg des Individuums verknüpft. Man könnte dieses Konzept auch dem Begriff der biologischen Fitness zuordnen.

(2) **Einige Variationen erblicher Eigenschaften geben Individuen einen Vorteil gegenüber anderen beim Überleben und bei der Reproduktion; und die begünstigten Nachkommen überleben wiederum wahrscheinlicher als andere und können sich weiter fortpflanzen. Infolgedessen wird der Anteil der Individuen mit vorteilhaften Eigenschaften zunehmen.**
Hier wird das Konzept um zwei Gedankengänge erweitert. Einerseits wird hier der Gedanke des Vorteils weitergesponnen, dass die Nachkommen sehr wahrscheinlich wiederum einen Vorteil haben und andererseits, dass somit der Anteil in der Population wächst, der diese(s) vorteilhafte(n) Gen(e) trägt.

(3) **Natürliche Selektion führt zu Organismen, die in bestimmten Lebensräumen gut zum Überleben geeignet sind**
Dieser Gedanke sollte als Abschluss der natürlichen Selektion dienen und den Schritt zum Ergebnis ebnen. Es sollte den Lernenden klargemacht werden, dass die Organismen meist für bestimmte Nischen selektiert sind. Falls sich die Lebensräume ändern, ändern sich auch die zu selektierenden Merkmale und somit auch die Population.

Die letzten drei beschriebenen Themenbereiche werden auch im Folgenden als „Säulen“ bezeichnet, da sie in ihrer Form daran erinnern. Alle Bereiche und Themenkomplexe sollen nun auf das Ergebnis (orange Konzepte) hinzielen, die einen wichtigen Teilspektrum der Evolution bilden. Neben den selektiven Prozessen an sich, die durch die drei Säulen abgedeckt werden sollten, sollte den Lernenden vor allem dann der Einfluss der Selektion auf die Entwicklung, Veränderung und Entstehung neuer Arten bekannt sein und somit ein tieferes Verständnis ermöglichen.
3.3. Datengrundlage

Als drittes Auswahlkriterium wurde versucht, Schulbuchreihen auszuwählen, die für jede Schulstufe vorhanden sind. Viele Schulbuchreihen werden nur für 4 Schulstufen konzipiert, entweder für die Unterstufe oder für die Oberstufe. Insgesamt gibt es für die AHS nur diese beiden ausgewählten Schulbuchreihen, die für alle Schulstufen zur Verfügung stehen. Dieses Kriterium ist wichtig, da hier bei den Büchern innerhalb einer Schulbuchreihe immer die gleichen Autor/innen mitwirken und somit eine höhere Chance vermutet werden kann, dass die Bücher aufeinander aufbauend geschrieben sind und eine Lernprogression mitbedenken.

3.4. Codierregeln

3.5. Durchführung

<table>
<thead>
<tr>
<th>Farbe</th>
<th>Codierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>☂</td>
<td>6. Schulstufe</td>
</tr>
<tr>
<td>☁</td>
<td>5. Schulstufe</td>
</tr>
<tr>
<td>☁</td>
<td>7. Schulstufe</td>
</tr>
<tr>
<td>☁</td>
<td>8. Schulstufe</td>
</tr>
<tr>
<td>☁</td>
<td>9. Schulstufe</td>
</tr>
<tr>
<td>☁</td>
<td>10. Schulstufe</td>
</tr>
<tr>
<td>☁</td>
<td>12. Schulstufe</td>
</tr>
</tbody>
</table>

Abb. 5: Farbcodes Schulstufen

Weiters wurde mit der Funktion für Anmerkungen, bei jedem Konzept eine hinzugefügt, bei der die jeweiligen Buchseiten als Zusatzinfo beiliegen.

deskriptiven Analyse wurden einzelne Verbesserungsvorschläge, die bei dem genannten Beispiel vorzunehmen wären, in der Fußzeile angeführt.

4. Analyse

4.1. Schulbuchreihe bio@school

4.1.1. Reihenwerk bio@school 1

Die angefertigte Concept Map ist auf der nachfolgenden Seite zu finden. Das Erste, was sofort ins Auge fällt, ist die gute Repräsentation der künstlichen Selektion. Aus dieser Säule werden alle drei Konzepte in diesem Schulbuch mindestens einmal behandelt und auch miteinander verknüpft.
Ein ausschlaggebendes Beispiel ist in diesem Buch auf Seite 20 zu finden. Hier werden unter der Rubrik „Genauer betrachtet“ ausgiebig alle drei Konzepte behandelt und da sie sich auf einer Seite befinden, sind diese auch durch Pfeile verknüpft.

Herausstechend bei diesem Beispiel ist, dass auch in diesem Absatz auf das Konzept der Zeit eingegangen wird und gesagt wird, dass vor 10.000 Jahren die Zähmung beziehungsweise Zucht begonnen wurde und dass es durch diesen Eingriff zu der Entstehung von Haustieren und Nutztieren gekommen ist. Die weitere Formulierung
ist aber ein wenig unpräzise mit der Beschreibung: „haben […] im Lauf der Zeit Haustiere und Nutztiere gezüchtet“ (SCHERMAIER et al. 2015b: S. 20).

Das zentrale Konzept, dass Merkmale an die Nachkommen vererbt werden, wird leider nur einmal im Zuge der menschlichen Fortpflanzung angesprochen. Es wird zwar klar ausgedrückt, dass die Anlagen von Mutter und Vater kommen, daher sind auch zwei der Konzepte Fortpflanzung & Vererbung vorhanden, aber als Beispiele werden nur die Form der Nase oder auch die Haarfarbe genannt (SCHERMAIER et al. 2015: S. 116). Beide beziehen sich nur auf den Menschen, es kommt weder die Erwähnung vor, dass auch Tiere und Pflanzen ihre Merkmale an die nächste Generation weitergeben können, noch, dass es sich bei diesen beiden Merkmalen um eher ungünstige Beispiele handelt.¹

4.1.2. Reihenwerk bio@school 2

Dieses Schulbuch zeigt auf, dass in dieser Schulstufe sehr wenig bis kaum eine Implementierung der geforderten Konzepte erfolgt. Wie auf der Concept Map zu sehen ist, werden lediglich zwei Konzepte in diesem Werk erwähnt. Die künstliche Selektion wird auf einer Seite erwähnt, dieses Mal beziehen sich die Autoren aber auf Kulturpflanzen und nicht auf Tiere, was den Lernenden eine weitere Perspektive schenkt.

Es bleibt aber bei einer kurzen Anführung und wird nicht genauer ausgeführt, da es sich im Kapitel um das Ökosystem Wald handelt. Hier müsste die Lehrperson sehr viel weiteres Wissen und Anknüpfungspunkte bieten, um eine richtige Einsortierung zu ermöglichen.

4.1.3. Reihenwerk bio@school 3

Dieses Schulbuch behandelt nun die Schulstufe, in der evolutionäre Themen auch im Lehrplan niedergeschrieben sind und somit auch behandelt werden müssen. In der Concept Map zeigt sich auch, dass diese in einer gewissen Weise auch umgesetzt werden.

Als konkretes Exempel soll hier der „Überlebenstriek Nr. 2“ angeführt werden, der zuerst eine Anpassung im evolutionären Sinne erläutert:

Weiters kommt bei dem Beispiel erschwerend hinzu, dass hier die Formulierung auf die Einzahl, sprich ein Alpenschneehuhn und einen Schneehasen, abzielt und keine Mehrzahl, geschweige denn, der Populationsansatz hier vorkommt. Dies kann zu einer weiteren Vertiefung der Vorstellung von Anpassung des Individuums führen. Danach wird aber im selben Absatz über eine Anpassung als Reaktion auf die Umwelt weitergeschrieben:

In diesem Schulbuch kommt die natürliche Selektion in der Form der verschiedenen Anpassungen das erste Mal vor. Die Implementierung jener Konzepte ist teilweise wie oben beschrieben nicht konsistent.

4.1.4. Reihenwerk bio@school 4

4.1.5. Reihenwerk bio@school 5

Concept Map 6: Analyse bio@school 5

Es muss aufgezeigt werden, dass der Begriff der Population nicht klar definiert wird und auch nicht richtig eingeführt wird. Im selben Kapitel ein paar Seiten weiter findet man wiederum die Bezeichnung Population. Dieses Mal aber entspricht es dem

² Dies kann das Begriffslernen der Schüler/innen fördern, doch die Lehrperson muss diese drei Begrifflichkeiten wieder klar formulieren.

Dies sind nach der Analyse alle gefunden Konzepte und Verknüpfungen. Es fehlen viele Verbindungen, die eine kumulative Lernprogression ermöglichen könnten, da es weder Beziehungen in die Unterstufe noch einen Ausblick auf die weiteren Schulstufen gibt. Das Schulbuch ist daher thematisch kaum in die restlichen Schulbuchwerke und Thematiken eingegliedert.

4.1.6. Reihenwerk bio@school 6

Populationsdichte und -verteilung (SCHERMAIER et al. 2015c: S. 164). Diese haben ganz klar eine demographische Auslegung und Wirkung. Es sollte hier besser der Begriff der Bevölkerung gewählt werden, um so eine klare Trennung der Begriffe und eine mögliche Verwirrung auszuschließen.

Die sexuelle Selektion wird ebenfalls zum ersten Mal genauer behandelt. Erstmalig werden der Geschlechtsdimorphismus angesprochen und genauer beschrieben als auch die sexuelle Selektion an sich (ebd. 2015c: S. 143). Dieser war zuvor nur leicht in Aussicht gestellt worden und nun wird dieser erklärt und auch der natürlichen Selektionsform gegenübergestellt.

Die Konzepte der natürlichen Selektion werden ebenfalls zum ersten Mal in einem gerechten Ausmaß erklärt und in mehreren Kapiteln ausgeführt. Die vorteilhaften Merkmale gewisser Organismen, um zu Überleben und Nachkommen zu bekommen werden aber meistens mit dem Beispiel über Verhalten oder Lernen (auch eine Form des Verhaltens) erklärt (ebd. 2015c: S. 80). Es gibt außerdem wieder sehr viele Formulierungen, Definitionen und Sätze, die zum Teil oder ganz falsch sind oder falsch
interpretierbar sind, wenn diese nicht von dem/r Lehrer/in richtig gestellt werden, wie folgende Beispiele zeigen.

Trotz aller kritischer Punkte, muss gesagt werden, dass sowohl die Anzahl der evolutionären Verknüpfungen der Themen als auch die Verbindung der einzelnen Konzepte untereinander sehr gut in diesem Schulbuch vorliegen. In diesem Schulbuch wird kein einziges Mal ein Verweis auf die schon gelernte und angeführte künstliche Selektion beziehungsweise Zucht angeführt.

4.1.7. Reihenwerk bio@school 8
gut eingebunden. Dort wird auf das andere Kapitel verwiesen, in dem die genauere Erläuterung, was Mutationen sind, steht. Durch solche und andere Verweise entstehen diese vielen vorhandenen Verknüpfungen auf der Concept Map.

Der dritte Bereich, der natürlichen Selektion, wird auf der Seite 113 ganz klar und ausgiebig erläutert. Dort werden sowohl die Grundlagen und Voraussetzungen geklärt, um das Konzept „natürliche Selektion“ anwenden zu können, als auch die Folgen und die Wichtigkeit dieser Komponente für die Evolution. Es ist ebenfalls immer die Denkweise der Population als Grundeinheit und der Zeitaspekt vorhanden.

Eine Art ist eine Gruppe von Populationen, deren Mitglieder sich untereinander sexuell fortpflanzen können und fruchtbare Nachkommen haben.

Es gibt Variation innerhalb von Individuen einer Art innerhalb einer Population.

Population ist die Menge aller Individuen, die sich miteinander fortpflanzen.

Population ist die biologische Organisationseinheit, wo Fortpflanzung sowie die selektiven Prozesse ablaufen (blauer Rahmen).

Selektive Prozesse

Zeit

Historische Selektion

Naturliche Selektion

Künstliche Selektion

Sexuelle Selektion

Der fortschreitende Prozess der Selektion auf Eigenschaften und in verschiedenen und sich verändernden Lebensräumen über Millionen von Jahren hat eine Fülle von verschiedenen neuen Arten hervorgebracht.

Kleine Unterschiede zwischen Eltern und Nachkommen können sich in nachfolgenden Generationen durch selektive Züchtung ausbilden, so dass Nachkommen sich sehr von ihren Vorfahren unterscheiden.

Einige Variationen erbtlicher Eigenschaften geben Individuen einen Vorteil gegenüber anderen beim Überleben und bei der Reproduktion und die begünstigten Nachkommen überleben wiederum wahrscheinlich als andere, und können sich weiter fortsetzen. Im Zeitverlauf nimmt die Anzahl der Individuen mit vorteilhaften Eigenschaften zu.

Menschen versuchen neue gewünschte Merkmale von Pflanzen und Tieren durch selektive Züchtung zu erhalten.

Alleinigkeit der bevorzugten Merkmale erhöht sich.
4.1.8. Zwischenfazit Schulbuchreihe bio@school

Diese Schulbuchreihe legt in den Büchern für die Unterstufe (bio@school 1-4) einen sehr starken Fokus auf die künstliche Selektion. In jeder dieser Schulstufen wird die künstliche Selektion mindestens einmal erwähnt und somit kann von einer guten vertikalen Verknüpfung für diesen Bereich über die Klassen hinweg die Rede sein. Die anderen beiden Säulen natürliche und künstliche Selektion werden jeweils in den 3. und 4. Klassen einmal behandelt. Hier kann von keiner ordentlichen Implementierung gesprochen werden, da hier die Bereiche nicht akkurat erläutert wurden.

Concept Map 9: Konzepte der schulpflichtigen Schulstufen
4.2. Schulbuchreihe Begegnung mit der Natur (Begegnung)

4.2.1. Reihenwerk Begegnung 1

Concept Map 10: Analyse Begegnung 1

Dies wird ebenfalls in diesem Schulbuch mitberücksichtigt und anhand des Beispiels eines Hundes erläutert (ebd. 2011: S. 50f). Die Bezeichnung „für diese Hunderasse typische Merkmale“ ist aber irreleitend, da weder erklärt wird, welche dies sind, noch
eine klare Abgrenzung zu anderen Hunderassen gegeben wird. Es könnte der Eindruck einer gewissen Unveränderlichkeit entstehen, die aber im nächsten Absatz schon wieder widerlegt wird, denn da heißt es, dass der Golden Retriever früher anders genützt worden ist als heute.

In diesem Schulbuch kommen ansonsten keine weiteren codierbaren Konzepte von den anderen Bereichen vor.

4.2.2. Reihenwerk Begegnung 2
Da es keine vorhandenen Konzepte gibt, wird auf eine Abbildung der leeren Concept Map an dieser Stelle verzichtet.

4.2.3. Reihenwerk Begegnung 3

Concept Map 11: Analyse Begegnung 3

Die künstliche Selektion wird überdies auch noch einmal bei der Nutztierzucht (Schwein, Rind, Schaf, Huhn, etc.) erwähnt und auch hier wird der Zeitaspekt mit

![Abb. 6: Spalteninformation verändert nach (ebd. 2012a: S. 109)](image)

4.2.4. Reihenwerk Begegnung 4
Auf der nächsten Seite zu finden ist die Concept Map des Schulbuches für die Schulstufe 8. Klar ersichtlich ist abermals die vorhandene Säule der künstlichen Selektion und die vielen Konzepte im Bereich Fortpflanzung und Vererbung.

4.2.5. Reihenwerk Begegnung 5

Concept Map 13: Analyse Begegnung 5

In dieser Schulstufe, wie oben schon erwähnt, konnten ansonsten keine weiteren Konzepte mehr codiert werden. Es werden zwar hin und wieder einzelne andere Konzepte erwähnt, wie zum Beispiel die Zucht (ebd. 2013: S. 52), aber richtig implementiert sind diese nicht und daher auch nicht codiert.
4.2.6. Reihenwerk Begegnung 6

Viele Konzepte des Bereiches Fortpflanzung und Vererbung sind auf den ersten Seiten des Schulbuches angegeben und befinden sich im Kapitel „Zellbiologie“ oder auch im Kapitel „Fortpflanzung und Entwicklung“. Kritisch anzumerken ist, dass die meiotische Zellteilung als wichtige Voraussetzung für die sexuelle Reproduktion zwar angeführt wird, aber dann eine wichtige Komponente, die zufällige Rekombination der homologen Chromosomen (Crossing - over), nicht erläutert wird und auch nicht in der Abbildung wiedergefunden werden kann (ebd. 2014: S. 15). Bei dieser Concept Map fällt die Querverbindung von dem Konzept „Nachkommen sind ähnlich“ bis hin zu dem ersten Konzept der natürlichen Selektion auf. Dies ist gegeben, da sich alle drei

4 Die Population wird mithilfe des Artbegriffes erläutert, hier wäre ein Verweis auf Seite 10 oder eine weitere Erklärung angebracht.
Konzepte innerhalb eines Buchkapitels befinden und auch aufeinander Bezug nehmen.

auch eine kurze Definition gegeben, die nicht über den Theorieansatz der „female choice“ innerhalb des Verhaltens hinausgeht.
Dieses Schulbuch ist bisher jenes mit den meisten Konzepten innerhalb dieser Schulbuchreihe und ist in vielen Bereichen der Concept Map vertreten.

4.2.7. Reihenwerk Begegnung 8
Diese Concept Map ist wie auch schon bei der anderen Schulbuchreihe die komplexeste und ausgiebigste der Reihe. Es sind bis auf zwei Konzepte der sexuellen Selektion alle mindestens einmal in diesem Schulbuch als erfüllt codiert worden.
Das angesprochene Kapitel beinhaltet auch weitere Konzepte, nämlich die der künstlichen Selektion. Es wird nochmals die Domestikation bei Nutztieren angeführt, dann auf die weiteren Zuchtmethoden und schließlich auch modernere Formen der künstlichen Selektion eingegangen, die durch gentechnische Möglichkeiten gegeben ist (ebd. 2015: 74ff). Das Konzept der Zeit ist immer angegeben, daher werden die Konzepte auch mit einem schwarzen Rahmen umrandet.
Das letzte Konzept in bei der künstlichen Selektion ist hier in diesem Kapitel zum ersten Mal in der Schulbuchreihe explizit durch ein Beispiel vertreten. Es wird auf die gesteigerte Legeleistung bei Hühnern hingewiesen, die durch künstliche Selektion der am stärksten eierlegenden Exemplare heute auf eine Legeleistung von mehreren hundert Eiern pro Jahr kommen.

Die Synthese aller selektiven Prozesse und die Wichtigkeit der verschiedenen anderen Prozesse (genetischer Drift, Genfluss, etc.) für die Evolution sind auf den Seiten 106 und 107 nochmals zusammengefasst und ermöglichen, falls alle davorliegenden Konzepte von den Schüler/innen verstanden und gelernt wurden, ein tieferes Verständnis von der Evolution (oranges Konzept).
Population
ist die biologische Organisationseinheit, wo Fortpflanzung sowie die selektiven Prozesse ablaufen (blauer Rahmen)

Selektive Prozesse

Naturliche Selektion
Naturliche Selektion führt zu Organismen, die in bestimmten Lebensräumen gut zum Überleben geeignet sind

Künstliche Selektion
Kleine Unterschiede zwischen Eltern und Nachkommen können sich in weiteren Generationen stärker auswirken, so dass Nachkommen sich sehr von ihren Vorfahren unterscheiden

Einteilung engerer Eigenschaften gleich Individuen einen Vorteil gegenüber anderen beim Überleben und bei der Reproduktion, und die begünstigten Nachkommen überleben wiederum Wahrscheinlicher als andere, und können sich weiter fortpflanzen. Mitgliedern wird der Antrieb der Individuen mit vermittelter Eigenschaften zunehmen

Menschen versuchen eine gewünschte Merkmale von Pflanzen und Tieren durch selektive Züchtung zu erhalten

Alle Häufigkeit der bevorzugten Merkmale erhöht sich

Es gibt Variation innerhalb von Individuen einer Art innerhalb einer Population
Population ist die Menge aller Individuen, die sich interspezifisch fortpflanzen

Eine Art ist eine Gruppe von Populationen, deren Mitglieder sich unterschiedlicher Art weiter fortpflanzen können und funktionale Nachkommen haben
4.2.8. Zwischenfazit Schulbuchreihe Begegnung

Die künstliche Selektion zeigt generell die stärkste vertikale Verknüpfung in dieser Schulbuchreihe. Es fehlt im Pflichtschulbereich auch die genaue Definition des Konzeptes Population, da dieses selbst nicht angeführt wird, aber bei der natürlichen Selektion als selbstverständlich miteinbezogen wird.

Concept Map 16: Konzepte der schulpflichtigen Schulstufen
5. Zusammenfassung zentraler Ergebnisse und Diskussion

In diesem Abschnitt sollen die wichtigsten Ergebnisse der Analyse der beiden Schulbuchreihen besprochen, ein Vergleich dieser beiden angestellt, mit den Ergebnissen von WÄGER (2017) abgeglichen und schlussendlich die Forschungsfragen beantwortet werden.

5.1. Wesentliche Analysefunde

![natürliche Selektion](image)

Eine dritte Erkenntnis, die hier angeführt werden sollte, sind die fehlenden Konzepte aus dem Bereich Fortpflanzung und Vererbung. Diese werden als Konzepte der Basis angesehen und sind für das Verständnis der späteren Konzepte der Selektionsformen elementar. Deswegen sollten diese eigentlich schon davor behandelt worden sein.

<table>
<thead>
<tr>
<th>Schulbuch</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>bio@school 1</td>
<td>[…] durch Bevölkerungszunahme wurde der Lebensraum des Wolfes […] (Schermaier et al. 2015b: S. 31)</td>
</tr>
<tr>
<td>bio@school 3</td>
<td>[…] überwiegende Mehrheit der Bevölkerung konsumiert Fleisch […] (ebd. 2016b: S. 102)</td>
</tr>
<tr>
<td>bio@school 4</td>
<td>[…] müssen mehr als 90% der Bevölkerung geimpft sein […] (Miksche et al. 2016: S. 107)</td>
</tr>
<tr>
<td>bio@school 5</td>
<td>[…] menschliche Bevölkerung im Jahr 2050 […] (Schermaier et al. 2015a: S. 20)</td>
</tr>
<tr>
<td>bio@school 6</td>
<td>[…] universelle Prävention an große Bevölkerungsgruppen […] (Schermaier et al. 2015c: S. 21)</td>
</tr>
<tr>
<td>bio@school 8</td>
<td>[…] Diabetes mellitus betrifft ca. 2,5-6% der Bevölkerung […] (Schermaier et al. 2016c: S. 45)</td>
</tr>
</tbody>
</table>

Abb. 8: Beispiele für demographische Bevölkerung

Die Bevölkerung in der Wissenschaftsdisziplin der Demographie als Population zu bezeichnen wird von den meisten Forscher/innen als veraltet angesehen und auch die
umgekehrte Weise sollte vermieden werden und in der Biologie nur der Begriff der Population verwendet werden.

5.2. Vergleich der Schulbuchreihen

⁵ z.B.: Kapitel „Wirbeltiere und Wirbellose“ bio@school 2 oder auch in der 4. Klasse bei dem Thema Sexualität
5.3. Vergleich mit den Ergebnissen von WÄGER (2017)

5.4. Beantwortung der Forschungsfragen

In diesem Kapitel sollen die Forschungsfragen eine Beantwortung erfahren und die Ergebnisse mit diesen in Verbindung gebracht werden.

1. Welche fachlichen Fehler lassen sich in den Schulbüchern in Bezug auf die formulierten Konzepte finden?

Häufig auftretende Fehler sind Begriffsschwierigkeiten, da diese entweder nicht ordentlich definiert werden oder eine nicht richtige Verwendung finden. Einige

2. In welchem Ausmaß werden die evolutionsrelevanten Konzepte erwähnt, miteinander innerhalb der Schulstufe (horizontal) und über die Schulstufen hinweg (vertikal) in Schulbüchern verbunden?

3. Ist eine Lernkurve, die kumulatives Lernen fördert, durch eine Learning Progression in den Schulbüchern gegeben?

Eine Learning Progression wie in den Strandmaps (AAAS 2016) ist nur zum Teil gegeben. Ähnlich ungleich wie die Konzepte auf die Schulstufen verteilt sind, so ergibt sich auch eine lückenhafte Lernkurve bzw. Learning Progression daraus. Diese ist in der Oberstufe eher vollständig und in der Unterstufe nur sehr schwach ausgeprägt. Die, wie weiter oben beschrieben, wichtigen Zwischenschritte (Stepping Stones) sind teilweise gegeben und durch Verbindungen in den Schulbuchreihen auch leicht zu
erlernen, aber diese kommen meist eben nur in einer Schulstufe vor. Dass sich die Learning Progression über mehrere Jahre hinweg zieht ist somit nicht der Fall und liegt eher kompakt für einige Jahre, die mit dem Lehrplan konform sind, vor.

5.5. Ausblick

Weiters wäre zu überlegen, die Erforschung nicht nur auf die Evolution zu beschränken, sondern auch andere wichtige durchgehende Themen der Biologie zu analysieren. Die sieben Basiskonzepte würden sich als Ausgangspunkt perfekt für solche Analysen eignen.

Schlussendlich ist zu sagen, dass alle Schulbuchanalysen nicht sehr viel Sinn haben, wenn mit diesen dann nicht weitergearbeitet wird. Es sollten Learning Progressions (die Basiskonzepte wären solche Ausgangspunkte) für jegliche Fächer erstellt werden und darauf beruhend können dann die Schulbuchanalysen durchgeführt werden. Dadurch wird eine empirische Qualitätssicherung ermöglicht und eine Weiterentwicklung und Verbesserung des Lehrmediums Schulbuch denkbar. Dieser Aussage bestätigen auch BÖLSTERLI et al. (2015), die sagen:

„Er nennt wissenschaftliche Publikationen als die einfachste, aber ineffektivste Variante, weil sie weder von Lehrkräften, Schülerinnen und
Schülern noch von Eltern gelesen würden. Einen größeren Einfluss hätten Schulbuchempfehlungen oder Schulbuchraster” (ebd. 2015: S. 12).

Als Beispiel für die institutionelle Anwendung solcher Raster, Concept Maps und Empfehlungen, kann neben der American Association for the Advancement of Science der Bundesstaat Victoria, Australien angeführt werden, die eine Modifikation der Strandmaps in ihre Bildungsstandards aufgenommen haben (State Government of Victoria o.J.).

Insgesamt soll noch einmal ausdrücklich darauf hingewiesen werden, dass sich die Bewertung und Interpretation nur auf die Verwendung und Arbeit mit der Concept Map und auf das Thema der Evolution beschränkt. Etwaige Rückschlüsse auf die Qualität der einzelnen Biologieschulbücher zu ziehen wäre unzulässig, da diesbezüglich eine mehrdimensionalere Analyse über viele weitere Faktoren notwendig wäre.
6. Literaturverzeichnis

Claes, Peter; Roosenboom, Jasmien; White, Julie D.; Swigut, Tomek; Sero, Dzemila; Li, Jiarui et al. (2018): Genome-wide mapping of global-to-local genetic effects on human facial shape 50 (3). S. 414–423. DOI: 10.1038/s41588-018-0057-4.

Hysi, Pirro G.; Valdes, Ana M.; Liu, Fan; Furlotte, Nicholas A.; Evans, David M.; Bataille, Veronique et al. (2018): Genome-wide association meta-analysis of individuals of European ancestry identifies new loci explaining a substantial fraction of hair color variation and heritability 50 (5). S. 652–656. DOI: 10.1038/s41588-018-0100-5.

Miksche, Dagmar; Schermaier, Andreas; Weisl, Herbert (2016): bio@school 4. 4. Auflage. Veritas-Verlag.

Roseman, Jo Ellen; Stern, Luli; Koppal, Mary (2010): A method for analyzing the coherence of high school biology textbooks 47 (1). S. 47–70.

Schermaier, Andreas; Taferner, Franz; Weisl, Herbert (2015a): bio@school 5. 2. Auflage. Veritas-Verlag.

Schermaier, Andreas; Weisl, Herbert (2015b): bio@school 1. 6. Auflage. Veritas-Verlag.

Schermaier, Andreas; Weisl, Herbert (2016a): bio@school 2. 6. Auflage. Veritas-Verlag.

Schermaier, Andreas; Weisl, Herbert (2016b): bio@school 3. 5. Auflage. Veritas-Verlag.

Schermaier, Andreas; Weisl, Herbert (2016c): bio@school 8. 1. Auflage. Veritas-Verlag.

7. Anhang

7.1. Statistik der häufigsten Biologie Schulbücher nach Schultyp

NMS

Serie Basic Biology / Verlag Leykam

Serie bio@school / Verlag Veritas

Serie Biologie für alle / Verlag Olympe

Serie Das BioTOP / Verlag öbv

Serie Mehrfach Biologie / Verlag Veritas

AHS Unterstufe

Serie Begegnungen mit der Natur / Verlag öbv

Serie BIO LOGISCH / Verlag E. Dorner

Serie bio@school / Verlag Veritas

Serie Expedition Biologie / Verlag E. Dorner

Serie Mehrfach Biologie / Verlag Veritas

AHS Oberstufe

Serie Kernbereich Biologie / Verlag E. Dorner

Serie Begegnungen mit der Natur / Verlag öbv

Serie bio@school / Verlag Veritas

Serie Biologie (Hofer u.a.) / Verlag E. Dorner

Serie Linder Biologie / Verlag E. Dorner

Quelle: (Renner 2018)
7.2. Analyse Karte erster Entwurf

Eine Art ist eine Gruppe von Populationen, deren Mitglieder sich untereinander sexuell fortpflanzen können und fruchtbare Nachkommen haben.

Zufall ist ein zentrales Konzept und Einflussgröße.

Nachkommen 1 aber nicht ge wie ihre Eltern und

In Organismen, die zwei Geschlechter haben, kommt typischerweise die Hälfte der Gene von je einem Elternteil.

Alle Arten von Tieren haben Nachkommen, meist mit zwei Elternteilen.

Rekombination.

Gen-Mutation

Es gibt Variation innerhalb Individuen einer Art innerhalb einer Population.

Einige wünscht

Einzelne Organismen in haben bessere Chancen und Nachkommen

Es gibt Variation innerhalb Individuen einer Art innerhalb einer Population.

Einige Variationen erbrachten Eigenschaften gegenüber anderen beim Überleben und die begünstigten Nachkommen sind in der Lage, sich zu vermehren.

Infolgedessen wird der Anteil der Individuen mit solchen Eigenschaften zunehmen.

Population ist die Menge aller Individuen die sich miteinander fortpflanzen

Population ist die biologische Organisationseinheit wo Fortpflanzung sowie die selektiven Prozesse ablaufen (Farben gelb, rot, grün).

Natürliche Selektion führt zu, die in bestimmten Lebensumständen günstig zum Überleben geeignet sind.

Natürliche Selektion

Einzelne Organismen in haben bessere Chancen und Nachkommen
7.3. Analyseraster

Population

ist die biologische Organisationseinheit, wo Fortpflanzung sowie die selektiven Prozesse ablaufen (blauer Rahmen)

Selektive Prozesse

Künstliche Selektion

Sexuelle Selektion

Kleine Unterschiede zwischen Eltern und Nachkommen können sich in weiterer Entwicklung dadurch selektiver Züchtung anpassen, so dass Nachkommen sich sehr von ihren Vorfahren unterscheiden.

Naturliche Selektion

Naturliche Selektion führt zu Organismen, die in bestimmten Lebensräumen gut zum Überleben geeignet sind.

Einige Variationen erblicher Eigenschaften geben Individuen einen Vorteil gegenüber anderen beim Überleben und bei der Reproduktion; und die begünstigten Nachkommen überleben wiederum wahrscheinlicher als andere und können sich weiter fortpflanzen, Individuen mit vorteilhaften Eigenschaften zunehmen.

Menschen versuchen jene gewünschte Merkmale von Pflanzen und Tieren durch selektive Züchtung zu erhalten.

Alleinigkeit der bevorzugten Merkmale erhöht sich.

Eine Art ist eine Gruppe von Populationen, deren Mitglieder sich unterschiedlich bewußt fortpflanzen können und fruchtbare Nachkommen haben.

Es gibt Variation innerhalb von Individuen einer Art, innerhalb einer Population.

Population ist die Menge aller Individuen, die zum miteinander fortpflanzen.
Eine Art von Tieren, die zwei Geschlechter haben, kommen typischerweise die Hälfte der Gene (Chromosomen) von je einem Elternteil.

Alle Arten von Tieren haben Nachkommen, meist mit zwei Elternteilen.

In Organismen, die zwei Geschlechter haben, kommt typischerweise die Hälfte der Gene (Chromosomen) von je einem Elternteil.

Nicht alle Merkmale, die von Geschlechterpartner abhängig sind, sind gleich gut ausgeprägt.

Nicht alle Merkmale, die von Geschlechterpartner abhängig sind, sind gleich gut ausgeprägt.

Die Merkmale können zu einem Geschlechtsdysmorphismus innerhalb der Art führen.

Einige dieser Merkmale werden von Geschlechterpartnern auf unterschiedliche Weise eingeschätzt.

Einige dieser Merkmale werden von Geschlechterpartnern auf unterschiedliche Weise eingeschätzt.

Einige Pflanzenarten und Tierarten haben unterschiedliche Merkmale als andere ArtCCC.
7.4. Analyse Concept Map bio@school

Population
ist die biologische Organisationsinheit, wo Fortpflanzung sowie die selektiven Prozesse ablaufen (klares Rahmen)

Selektive Prozesse

Naturliche Selektion

Künstliche Selektion

Sexuelle Selektion

Menschen veranschlagen jeweils gewünschte Merkmale von Pflanzen und Tieren durch selektive Züchtung zu erhalten.

Allhäufigkeit der bevorzugten Merkmale nimmt sich

Küken unterscheiden zwischen Eltern und Nachkommen können sich in einer oder mehreren Generationen (durch selektive Züchtung) akkumulieren, so dass Nachkommen sich sehr von ihren Vorfahren unterscheiden.

Der fortwährende Prozess der Selektion auf Eigenschaften und verschiedene Lebensräume über Millionen von Jahren, hat eine Viel von verschiedenen neuen Arten hervorgebracht.

Zeit
Alle Arten von Tieren haben Nachkommen, meist mit zwei Elternpaaren.

In Organismen, die zwei Geschlechter haben, kommt typischerweise die Hälfte der Gene/Chromosomen von je einem Elternpaar.

Einige Pflanzenarten und Tierarten haben menschenermale Merkmale als andere.

Einige dieser Merkmale werden von Geschlechtsorganen als besonders gut eingeschätzt.

Diese Merkmale können zu einem Geschlechtsorganismus innerhalb der Art führen.

Einige dieser Ähnlichkeiten (Merkmale) zwischen Eltern und Nachkommen sind vererbt.

Eine Art ist eine Gruppe von Populationen, deren Mitglieder sich untereinander zweckentsprechend kreuzen und fruchtbare Nachkommen bilden.

Es gibt Variation innerhalb von Individuen einer Art innerhalb einer Population.

Population ist die Menge aller Individuen, die sich miteinander fortpflanzen.

Population ist die biologische Organisationseinheit, wo Fortpflanzung sowie die selektiven Prozesse ablaufen (blauer Rahmen).

Selektive Prozesse

Natürliche Selektion

Künstliche Selektion

Natürliche Selektion führt zu Organismen, die in bestimmten Lebensräumen fitter als andere sind.

Kleine Unterschiede zwischen Eltern und Nachkommen können sich in aufeinanderfolgenden Generationen durch selektive Züchtung akkumulieren, so dass Nachkommen sich von ihren Vorfahren unterscheiden.

Einige Variationen ertlicher Eigenschaften geben Individuen einen Vorteil gegenüber anderen beim Überleben und bei der Reproduktion, und die begünstigten Nachkommen überleben selektiv währenderster als andere und können sich weiter fortpflanzen. Individuen, welche die Art der Individuen mit vorteilhaften Eigenschaften aufweisen, mehr Kinder haben und ihre Eigenschaften weitergeben.

Menschen versuchen jene gewünschte Merkmale von Pflanzen und Tieren durch selektive Züchtung zu erhalten.

Alleinigkeit der bevorzugten Merkmale erhöht sich.

Dar entstehende Prozess der Selektion auf Eigenschaften und in verschiedenen und sich verändernden Lebensräumen über Millionen von Jahren hat eine Folge von verschiedenen neuen Arten hervorgebracht.
7.6. Abbildungsverzeichnis

<table>
<thead>
<tr>
<th>Abbildung</th>
<th>Beschreibung</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abb. 1</td>
<td>Selektionsformen Quelle: (Kingsolver et al. 2017: S. 240)</td>
<td>22</td>
</tr>
<tr>
<td>Abb. 2</td>
<td>verschiedene Populationen; verändert nach: (Campbell et al. 2015: S. 634)</td>
<td>27</td>
</tr>
<tr>
<td>Abb. 3</td>
<td>Strandmaps Quelle: http://strandmaps.dls.ucar.edu/index.html?id=SMS-MAP-1405</td>
<td>40</td>
</tr>
<tr>
<td>Abb. 4</td>
<td>Codierhäufigkeiten der Population Quelle: verändert nach (ebd. 2017)</td>
<td>49</td>
</tr>
<tr>
<td>Abb. 5</td>
<td>Farbcodes Schulstufen</td>
<td>51</td>
</tr>
<tr>
<td>Abb. 6</td>
<td>Spalteninformation verändert nach (ebd. 2012a: S. 109)</td>
<td>74</td>
</tr>
<tr>
<td>Abb. 7</td>
<td>Definition Begegnung 8 Quelle: (ebd. 2015: S. 137)</td>
<td>87</td>
</tr>
<tr>
<td>Abb. 8</td>
<td>Beispiele für demographische Bevölkerung</td>
<td>89</td>
</tr>
<tr>
<td>Concept Map 1</td>
<td>Analyseraster, höhere Auflösung im Anhang 7.3</td>
<td>42</td>
</tr>
<tr>
<td>Concept Map 2</td>
<td>Analyse bio@school 1</td>
<td>53</td>
</tr>
<tr>
<td>Concept Map 3</td>
<td>Analyse bio@school 2</td>
<td>55</td>
</tr>
<tr>
<td>Concept Map 4</td>
<td>Analyse bio@school 3</td>
<td>57</td>
</tr>
<tr>
<td>Concept Map 5</td>
<td>Analyse bio@school 4</td>
<td>59</td>
</tr>
<tr>
<td>Concept Map 6</td>
<td>Analyse bio@school 5</td>
<td>60</td>
</tr>
<tr>
<td>Concept Map 7</td>
<td>Analyse bio@school 6</td>
<td>63</td>
</tr>
<tr>
<td>Concept Map 8</td>
<td>Analyse bio@school 8</td>
<td>67</td>
</tr>
<tr>
<td>Concept Map 9</td>
<td>Konzepte der schulpflichtigen Schulstufen</td>
<td>69</td>
</tr>
<tr>
<td>Concept Map 10</td>
<td>Analyse Begegnung 1</td>
<td>71</td>
</tr>
<tr>
<td>Concept Map 11</td>
<td>Analyse Begegnung 3</td>
<td>73</td>
</tr>
<tr>
<td>Concept Map 12</td>
<td>Analyse Begegnung 4</td>
<td>75</td>
</tr>
<tr>
<td>Concept Map 13</td>
<td>Analyse Begegnung 5</td>
<td>77</td>
</tr>
<tr>
<td>Concept Map 14</td>
<td>Analyse Begegnung 6</td>
<td>79</td>
</tr>
<tr>
<td>Concept Map 15</td>
<td>Analyse Begegnung 8</td>
<td>82</td>
</tr>
<tr>
<td>Concept Map 16</td>
<td>Konzepte der schulpflichtigen Schulstufen</td>
<td>85</td>
</tr>
</tbody>
</table>
7.7. Zusammenfassung / Abstract

This paper presents a qualitative analysis of schoolbooks of two different schoolbook series with regard to the horizontal (within an age group) and vertical (throughout all age groups) implementation of the subject evolution. This study aims to be a continuation and verification of a preceded quantitative analysis of schoolbooks. This objective will be achieved by reviewing each school book by means of an “analysis concept map”, which includes central evolutionary concepts. The concepts and their connections with each other, as for example: different types of selection, population and others, are central subject areas which are essential for an evolutionary understanding.

On the basis of the results of this thesis, it can be concluded that the finished concept maps of the individual school levels show a highly differential image in terms of the concepts’ inclusion both between the lower and upper secondary classes as well as between the school book series. These data support the view that it is preferable to strive for an improvement with respect to the integration of the concepts within the school books and through the establishment of a consistent learning progression and its implementation in the school books.