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Abstract

The aim of this thesis is to provide a summary of different versions of Zariski’s Main
Theorem, or ZMT for short. In particular, the original statement on birational
correspondences is stated and proven for more general schemes. For the proof we
make use of Peskine’s version of ZMT, which is an algebraic generalization of the
Zariski’s original statement. We will continue by proving the so-called power series
version and discuss the Nagata property. Finally, we present an extended version
of ZMT which shows how the different statements interrelate and gives a geometric
characterization of normal points.

Zusammenfassung

Das Ziel dieser Arbeit ist es, einen Überblick über verschiedene Versionen von
Zariski’s Main Theorem zu geben. Insbesondere wird das ursprüngliche Theorem
über birational Korrespondenzen für allgemeinere Schemata bewiesen. Für den Be-
weis verwenden wir Peskine’s Variante des ZMT, welche eine algebraische Verall-
gemeinerung des Originaltheorems darstellt. Weiters beweisen wir die sogenannte
Potenzreihenversion und behandeln die Nagata-Eigenschaft. Schließlich präsentieren
wir eine erweiterte Version des ZMT, welche aufzeigt, wie die verschiedenen Versio-
nen zusammenhängen. Zusätzlich liefert diese eine geometrische Charakterisierung
normaler Punkte.
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Introduction

There exist many different results in the literature called Zariski’s Main Theorem

(or ZMT for short) and often, there is no immediately apparent relation between

them. Mumford gives a list of five statements he calls Zariski’s Main Theorem in

[Mum99]; but apart from that, there is surprisingly little information on how these

different versions compare. In particular, the reader seldomly finds any reference to

the context in which the theorem initially appeared.

Consider an example: for n > 2, take the blow-up f : Y →An
k of the affine n-space

at the origin. Write U for the open subset An
k−{0}. Then f induces an isomorphism

Y − f−1(U) ' U , i.e., f is birational. Observe that 0 is a point at which f is not

a local isomorphism. Such points are called fundamental. The preimage of 0 under

f is isomorphic to Pn−1k , in particular, the fiber f−1(0) is positive dimensional.

The original statement of Zariski’s Main Theorem is that this property holds for

the fundamental points of any birational morphism X ′→X between k-varieties,

provided that the variety X is normal. More precisely, it says that every irreducible

component of the fiber of a fundamental point on X has positive dimension. Recall

that a variety is called normal if, for every point x of X, the local ring OX,x is an

integrally closed domain.

Our aim here is two-fold: first, to provide the historical context for Zariski’s original

theorem and present the results in a more modern language. Second, we want to

prove an extended version of ZMT, which contains the original version while at the

same time showing its relation to other versions. The precise statement is as follows:

let X be an integral scheme fulfilling some appropriate properties; namely, that X

is of finite type over Spec(A), where A is a Nagata Dedekind domain. For any point

x ∈ X, the following are equivalent:

(1) X is normal at x.

(2) The completion ÔX,x of the local ring OX,x is an integrally closed domain.

(3) For every every birational morphism f : X ′→X such that f is not a local

isomorphism at x, every irreducible component of the fiber f−1(x) is positive

dimensional.

Note that the implication (1) =⇒ (3) is just the statement of the original ZMT.

To prove (1) =⇒ (2) is the main objective of Chapter 3. The converse implications

(2) =⇒ (1) and (3) =⇒ (1) are, in contrast, very easy. This gives us a rather geo-

metric characterization of normal points.

This thesis is structured in such a way as to take into account the historical progress.

We start with Chapter 1, where our main aim is to translate the concepts and re-

sults of Zariski’s original article into the language of schemes. First, we give a precise

definition of birational maps for general integral schemes. Following the approach
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of Zariski, we go on to define birational correspondences using valuations. In par-

ticular, this allows us to prove a weak version of ZMT. The definitions and results

of Chapter 1 are all essentially contained in [Zar43], though stated and proven here

in much more generality.

In Chapter 2, we want to present Peskine’s version, which is a rather natural gen-

eralization of the original ZMT. It roughly states that a finite-type morphism with

finite fibers between affine schemes factors as a composition of an open immersion,

followed by a finite morphism. Most of this chapter is taken up by the proof of

Peskine’s theorem, which is based on Zariski’s original proof. At the end, we prove

some easy corollaries and briefly mention Grothendieck’s version of ZMT, which

generalizes the statement of Peskine’s version to non-affine schemes. Grothendieck

proves his result using different methods from the ones covered here. We will not

give any proof since doing so would go beyond the scope of this thesis.

Chapter 3 is devoted to the power series version of Zariski’s Main Theorem. It

was first proven by Zariski in 1950. The original statement is the following: let

OX,x be the local ring of a point x of a k-variety and assume that (1) OX,x is an

integrally closed domain and (2) the residue field κ(x) of x is separable over k. Then

the completion ÔX,x is again a normal domain. Surprisingly, the original ZMT can

be proven quite easily using the power series version. One of the key steps in the

proof of the power series version is the finiteness of certain integral closures, which

we discuss in detail. The last part of Chapter 3 is proving the power series version

in a more general situation, following Nagata in [Nag62]. Nagata’s proof is almost

exactly the same as Zariski’s, modulo a few modifications for the inseparable case.

Finally, in Chapter 4 we state and prove the extended version of ZMT, which sum-

marizes both the original statement and the power series version. Thus we obtain

the aforementioned characterization of normal points. We finish by providing some

examples illustrating the statement of the extended version.

As a final remark, there exists a result by Zariski known as the “Connectedness Theo-

rem” (see [Zar57]), which is sometimes also called “Zariski’s Main Theorem”. While

it is closely related and can be used to prove a version of ZMT (see Theorem 2.20),

the Connectedness theorem holds under weaker assumptions. In particular, it does

not characterize normal points in the sense of the extended ZMT, so we will not

mention it here.

Prerequisites: As Zariski’s Main Theorem is a result in algebraic geometry whose

proof is almost entirely algebraic, this thesis uses quite a lot of commutative alge-

bra. We assume basic knowledge both of commutative algebra and the theory of

schemes. There is an appendix included which contains the most important results

and definitions. The reader is recommended to use [AM94], [Mat89] and [Har77] as

a general reference.
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1. Zariski’s original version: Birational correspondences

The original version of Zariski’s Main Theorem was first stated and proven in

“Foundations of a general theory of birational correspondences”(1943) by Oscar

Zariski, see [Zar43, p.522]. In this paper, the theorem was stated as follows:

MAIN THEOREM. If W is an irreducible fundamental variety on V

of a birational correspondence T between V and V ′ and if T has no

fundamental elements on V ′, then - under the assumption that V is

locally normal at W - each irreducible component of the transform

T [W ] is of higher dimension than W .

Zariski’s objective was to systematically introduce concepts and results of the

theory of birational correspondences. An important role there belongs to normal

varieties, which were introduced as a class of varieties more general than nonsingular

ones, such that many known properties of birational correspondences still hold true.

Our aim in this chapter is to extend birational correspondences to general schemes.

First, we give a precise definition of rational maps for schemes over an arbitrary

base scheme S. Zariski used the theory of valuations in order to define birational

correspondences for varieties. We will keep this approach while translating the

constructions and results into the language of schemes. This will provide the original

context for Zariski’s Main Theorem. For the proof, we reduce the statement to a

purely algebraic one, see Lemma 1.24. We will not prove Lemma 1.24 in this chapter,

since the proof is essentially the same as Peskine’s one, which we will carry out in

Chapter 2.

1.1. Rational maps and birational transformations

In this section we will define rational maps for integral schemesX, Y as equivalence

classes of morphisms defined on some open subset U ⊂ X. Let us start with the

following topological result.

Lemma 1.1. Let X be an irreducible scheme. Then every open subset of X is either

empty or contains the generic point of X. In particular, every nonempty open of X

is dense and the intersection of any two nonempty opens is nonempty.

Proof. This follows from the fact that every open subset U of X is stable under

generization: if z ∈ U is a point and z′ ∈ X such that z ∈ {z′}, then we have

z′ ∈ U . �

Let X, Y be integral schemes over some base scheme S. Consider the set of all

pairs (U, f) where U ⊂ X is a nonempty open and f : U→Y an S-morphism. Define

an equivalence relation on this set by considering two pairs (U, f), (V, g) equivalent

if there exists a nonempty open W ⊂ U ∩ V such that f |W = g|W . An S-rational

map f : X 99K Y is given by an equivalence class (U, f̃) and denote the set of all
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such maps by RatS(X, Y ). The morphism f̃ : U→X is called a representative for

f . Note that there exists a natural map HomS(X, Y )→RatS(X, Y ). This map is

not injective in general, since two different morphisms might agree on an nonempty

open subset. However, when Y is separated, we have the following result:

Lemma 1.2. Let X, Y be two schemes over a scheme S, with Y separated over S.

Let U ⊂ X be a dense open subset and f, g : X→Y two S-morphisms that agree on

U . Then f |Xred
= g|Xred

. In particular, if X is reduced we have f = g.

We skip the proof here and refer the reader to [GW10, Corollary 9.9].

Let f : X 99K Y be a rational S-map. Denote by domS(f) the set of points x ∈ X
such that there exists a open U ⊂ X with x ∈ U and an S-morphism f̃ : U→Y

which is a representative of f . Clearly domS(f) itself is open. We call it the domain

of definition of f and say that x ∈ X is regular for f if x ∈ domS(f); otherwise we

call x a fundamental point. From the previous lemma we obtain immediately:

Proposition 1.3. Let f : X 99K Y be a rational S-map between integral schemes

and assume that Y is separated over S. Then there exists a unique representative

f̃ : domS(f)→Y for f . In particular, the natural map HomS(X, Y )→RatS(X, Y )

is injective.

Proof. By definition, the open set domS(f) is covered by opens Ui such that there

exists a representative f̃i : Ui→Y for f . By Lemma 1.2 the f̃i agree on the in-

tersections of the Ui, hence we can glue them to obtain a unique representative

f̃ : domS(f)→Y (see [GW10, Proposition 3.5] for details). �

In general it does not make sense to compose rational maps: let f : X 99K

Y and g : Y 99K Z be rational maps, then f(domS(f)) and domS(g) might not

intersect (and hence the composition g ◦ f is defined nowhere). This happens if

f(domS(f)) is not dense anymore. In order to be able to build a category we

restrict to integral schemes and rational maps between them which allow a dominant

representative. We call a rational S-map f : X 99K Y dominant if there exists a

dominant representative f̃ : U→Y of f . Since every nonempty open subset of X

contains the generic point ξ of X, by Lemma C.2, f is dominant if and only if f(ξ) is

the generic point of Y . In particular, every representative of a dominant S-rational

map is dominant.

Now let f : X 99K Y and g : Y 99K Z be rational S-maps between integral schemes

and assume that f is dominant. Choose representatives f̃ : U→Y and g̃ : V →Z

for f and g. Since f is dominant, we have that f̃−1(V ) contains the generic point

of X and hence U ∩ f̃−1(V ) is nonempty. We define the composition g ◦ f to be the

rational map given by the representative g̃ ◦ f̃ : U ∩ f̃−1(V )→Z. It is easy to check

that this definition is independent of the choice of representatives for f and g.

Let f : X 99K Y be a dominant rational S-map. Then f is called birational if f
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is an isomorphism in the category of integral S-schemes together with dominant

rational S-maps as morphisms. The following lemma gives some characterizations

for a rational map to be birational.

Lemma 1.4. Let f : X 99K Y be a dominant S-rational map between integral

S-schemes. The following are equivalent:

(1) f is birational.

(2) For every representative f̃ : U→Y there exists an S-morphism g̃ : V →X

with V ⊂ Y nonempty open such that f̃ ◦ g̃ = id and g̃ ◦ f̃ = id, where they

are defined.

(3) There exists a representative f̃ : U→Y which induces an isomorphism of U

with some open V ⊂ Y .

Proof. If f is birational, then this means that there exists a rational S-map g :

Y 99K X such that g ◦ f = id (where id denotes the rational map represented by

idX : X→X). In order to prove that (1) implies (2), take any representative g̃ :

V →X. Since f is dominant we have that U ∩ f̃−1(V ) is nonempty. By assumption,

there exists a nonempty open U ′⊂U ∩ f̃−1(V ) such that g̃ ◦ f̃ ≡ id on U ′. After

shrinking V we get that g̃ ◦ f̃ = id where the composition is defined. Repeat the

same argument to obtain f̃ ◦ g̃ = id.

Now assume (2). Choose a representative f̃ : U ′→Y , then by assumptions there

exists a morphism g̃ : V ′→X such that g̃ ◦ f̃ = id where they are defined. Set

U = U ′ ∩ f̃−1(V ′) and V = V ′ ∩ g̃−1(U ′), then it is easy to check that f̃ |U : U→V

is an isomorphism and again a representative for f .

Finally, let us prove that (3) implies (1). By assumption there exists a nonempty

open V ⊂Y and a morphism g̃ : V →X such that g̃ ◦ f̃ = id on U , and f̃ ◦ g̃ = id

on V . Hence the S-rational map g given by g̃ is a two-sided inverse for f and we

are done. �

Given any S-rational f : X 99K Y map as above, denote by f ′ the rational map

represented by the morphism g̃ in (2) and call it the inverse of f .

Remark 1.5. Let X, Y be integral separated S-schemes and f : X 99K Y a birational

S-map. Denote by f̃ and f̃ ′ the unique representatives for f and f ′ from Lemma 1.3.

Set

U := {x ∈ X : x is regular for f, f(x) is regular for f ′}.

Then U = domS(f)∩ f̃−1(domS(f ′)) and U is the maximal open set such that there

exists a representative for f with property (3) in Lemma 1.4.

Any birational S-map f : X 99K Y between integral S-schemes induces an iso-

morphism of function fields K(X) ' K(Y ). The converse does not hold true in

general. A necessary condition is that the generic points of X and Y lie over the

same point in S and Spec(K(X))→ Spec(K(Y )) factors over S. However, there
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exist examples where such a morphism does not induce an isomorphism of open

subset. It turns out that a sufficient additional condition for X and Y is to be

locally of finite presentation over S. This result is taken from [GW10, p.257].

Proposition 1.6. Let X, Y be S-schemes and x ∈ X, y ∈ Y points lying over the

same point s ∈ S.

(1) Suppose that Y is locally of finite type over S. Let f, f ′ : X→Y be S-

morphisms with f(x) = f ′(x) = y and such that local ring maps OY,y→OX,x
coincide. Then f and f ′ coincide on an open neighborhood of x.

(2) Suppose that Y is locally of finite presentation over S. Let ϕx : OY,y→OX,x
be a local OS,s-map. Then there exists an open neighborhood U of x and

an S-morphism f : U→Y with f(x) = y and such that the local ring map

OY,y→OX,x induced by f is given by ϕx.

(3) If in (2) in addition X is locally of finite type over S, then one can find U

and f such that f is of finite type.

(4) If in (2) in addition X is locally of finite presentation over S and ϕx is an

isomorphism, then one can find U and f such that f is an isomorphism of

U onto an open neighborhood of y.

We will now apply the proposition to the special case of integral schemes which

are locally of finite presentation over an affine scheme S and obtain the following

result:

Proposition 1.7. Let X and Y be integral schemes locally of finite presentation

over an affine base scheme S = Spec(A). Assume the generic points of X and Y lie

over the same base point in S. Then:

(1) Any A-algebra map ϕ : K(X)→K(Y ) induces a rational map f : X 99K Y .

If ϕ is an isomorphism, then f is birational.

(2) Let f : X 99K Y be a birational map and x ∈ X a point. Then x is regular for

f if and only if there exists y ∈ Y such that the local rings OX,x dominates

OY,y, where both are seen as local subrings of K(X) ' K(Y ).

Proof. The first part follows directly from Proposition 1.6. For the second part, we

only have to show that x and y lie over the same point s ∈ S. But this follows

from the fact that, by our assumptions, the structure ring map A→OX,x factors as

A→OY,y→OX,x. �

We now want to extend the definition of birational maps: let X,X ′ be arbitrary

integral schemes over some base scheme S. A birational transformation T : X 99K

X ′ is defined as an S-isomorphism Spec(K(X))→ Spec(K(Y )). We say that a

point x of X is regular for T if there exists a point x′ of X ′ and an S-morphism

Spec(OX,x)→ Spec(OX′,x′). The point x′ is called the image of x. If there does not

exist such an S-morphism we say that x is fundamental for T . If X, X ′ and S fulfill
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the conditions of Proposition 1.7, then any birational transformation T between X

and X ′ induces a birational map f : X 99K X ′ and x ∈ X is regular/fundamental

for T if and only if x is regular/fundamental for f .

Using the above notions, it is possible to give a slightly more general definition of

birational morphisms: if f : X→Y is an S-morphism, then, from now on, we call

f birational if there exists a diagram of S-morphisms

X
f

// Y

Spec(K(X))

OO

' // Spec(K(Y ))

OO

with the vertical arrows given by the canonical maps and the lower horizontal arrow

an isomorphism. In particular, a birational morphism induces a birational transfor-

mation T : X 99K Y which is regular at all x ∈ X and such that the image of x

under T is f(x).

Finally, note that, if X is an integral scheme over S, then the normalization X̃→X

is always birational under the above definition.

1.2. Valuation-theoretic approach to birational correspondences

Zariski’s original definition of birational correspondences was purely valuation-

theoretic and many proofs in [Zar43] made use of this. In particular, a weak form

of the Main theorem can be proven using only the fact that every integrally closed

domain is the intersection of all valuation rings containing it. While we want to keep

Zariski’s approach, there is also a way to define birational correspondences avoiding

valuations entirely, as we will see below.

Let us make a brief remark on the different assumptions made in this section. The

constructions presented at the beginning work for schemes over an arbitrary base

scheme S. However, for later results it will be convenient to assume that our schemes

are of finite type over S, where S is Noetherian affine. We will repeat these assump-

tions at the exact place where they are needed.

We start with a definition made for technical reasons: If S is any scheme and

Spec(K)→S a morphism, then we call a valuation ring R an S-valuation ring if

the natural morphism Spec(K)→ Spec(R) is an S-morphism. We may sometimes

omit S if there is no ambiguity. In [Zar43], Zariski originally considered the case

S = Spec(k), with k a subfield of K. Observe that for S = Spec(k), any valuation

ring of K is an S-valuation ring if and only if its associated valuation is trivial on k.

Let X be an integral scheme over S and denote by K the function field of X. Let

x be any point of X; we say that an S-valuation ring R of K has center x on X if
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there exists a commutative diagram

Spec(K) //

��

X

��
Spec(R)

;;

// S

such that the morphism Spec(R)→X maps the unique closed point of Spec(R) to

x. In particular, by Lemma E.4, any such diagram implies that the valuation ring

R dominates OX,x as a subring of K.

Note that for every point x of X there exists an S-valuation ring of K which has

center x; indeed, by Zorn’s lemma, OX,x is contained in some valuation ring R and

Spec(R) is a scheme over S via the composition OS,s→OX,x ↪→R, where s is the

image of x under X→S.

Let T : X 99K X ′ be a birational transformation over S and denote by K their

common function field; we say that x′ ∈ X corresponds to x ∈ X if there exists an

S-valuation ring R of K with center x′ on X ′ and x on X. In other words, if there

exists a commutative diagram of S-morphisms

Spec(K)

��

{{ $$
X X ′

Spec(R)

dd ::

such that the closed point of Spec(R) gets mapped to x′ respectively x.

Assume that x ∈ X is a regular point for T with image x′. Let R be an S-valuation

ring with center x ∈ X. Note that the morphism Spec(R)→X factors as

Spec(R)→ Spec(OX,x)→X

and composing the first morphism with Spec(OX,x)→ Spec(OX′,x′) yields a diagram

Spec(K)

��

xx ''
Spec(OX,x) Spec(OX′,x′)

Spec(R)

ff 77

Since the closed point of R maps to the unique closed point of Spec(OX′,x′) we see

that R has center x′ on X ′; so in particular the point x′ corresponds to x. Observe

that for a regular point x ∈ X, there might still correspond more than one point of

X ′ to x. This happens when the center of a valuation ring on X ′ is not unique.
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Let us now introduce an alternative way to define birational correspondences: let

T : X 99K X ′ be a birational transformation and consider the canonical morphisms

Spec(K)→X, Spec(K)→X ′ (with K the common function field). These mor-

phisms give rise to a unique morphism Spec(K)→X×SX ′, which identifies a point

ξ on X ×S X ′ with residue field K. Define the graph Γ of T to be the closure of

the singleton {ξ} inside X ×S X ′ with its reduced scheme structure (in [Zar43] this

construction was called the join of T ). Then Γ is again an integral scheme with

function field K. Restricting the projections of X×SX ′ to Γ gives rise to birational

morphisms p : Γ →X and p′ : Γ →X ′. Note that Γ obtains many nice properties

from X and X ′.

Lemma 1.8. Let T : X 99K X ′ be a birational transformation and Γ the graph of

T . If X and X ′ are of finite type over S then so is Γ . If furthermore both X and

X ′ are separated (resp. proper), then Γ is separated (resp. proper).

Proof. Note that Γ becomes a scheme over S via the composition

Γ �
� // X ×S X ′ // S .

Since any closed immersion is proper, it suffices to prove all assertions for X ×S X ′.
Observe that the morphism X×SX ′→S is again obtained by a composition, namely

X ×S X ′ // X ′ // S ,

where the first arrow is just the base change of X→S by X ′→S. The statement

follows since all properties - finite type, separated, proper - are stable under base

change and composition. �

We now want to connect the notion of birational correspondences to the graph Γ .

Lemma 1.9. Let T : X 99K X ′ be a birational transformation and Γ ,p,p′ defined

as above. Then for each x ∈ X the set of all points of X ′ corresponding to x′ equals

p′(p−1(x)).

Proof. Let x′ ∈ X ′ correspond to x and let R be an S-valuation ring with centers

x,x′. By definition this induces a diagram

Spec(R) // X ×X ′

Spec(K)

OO 99

Call z the image of the closed point of Spec(R) in X × X ′. By Lemma E.4 the

element z lies on Γ and it is clear that z gets mapped to x respectively x′.

Conversely, assume z ∈ Γ with p(z) = x and p′(z) = x′. Let R be an S-valuation

ring with center z on Γ . Composing the morphism Spec(R)→Γ with p, p′ we see

that R has center x on X and x′ on X ′. Hence x corresponds to x′. �
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For T : X 99K X ′ we call p′(p−1(x)) the transform of x and denote it by T [x].

Remark 1.10. In [Zar43] the transform T [Z] of an irreducible closed subset Z was

defined as the Zariski closure of p′(p−1(ηz)), where ηz denotes the generic point of Z.

The original statement of Zariski’s Main Theorem concerned the dimension of the

transform for fundamental points. Note that T [Z] can be a proper subset of the total

transform p′(p−1(Z)): consider the blowup X→A2
k of A2

k at the origin (see [Har77,

I.4] for a definition). Let Y be the plane nodal curve defined by y = x2(x+1) in A2
k.

Then the transform T [Y ] does not contain the exceptional divisor E = P1
k, since the

generic point of E gets mapped to 0 ∈ Y .

Lemma 1.11. Let T : X 99K X ′ be a birational transformation and assume that x

is regular for T . Then x is regular for X 99K Γ .

Proof. Choose an affine open neighborhoods U = Spec(B), U ′ = Spec(B′) of x and

the unique point x′ corresponding to x; denote by q, q′ the prime ideals associated

to them. Then U ×S U ′ = Spec(B ⊗A B′) is an open affine of X ×S X ′. Hence we

get that Γ ∩ U × U ′ is an affine open of Γ with

Γ ∩ U × U ′ = Spec((B ⊗B′)/J),

where J is the kernel of the map B ⊗ B′→K, which sends b ⊗ b′ to bb′ ∈ K. By

construction Γ ∩ U × U ′ contains all z ∈ Γ corresponding to both x and x′. Write

C = (B⊗B′)/J and n⊂C for a prime associated to such a point z. Since n lies over

q we get a map Bq→Cn. It is injective since Γ →X is dominant. We are done if we

show that this map is surjective. Note that, by assumption, B′q′ ⊂Bq, and hence,

when considered as subrings of K, the ring C is contained in Bq. This implies that

Bq = Cn. �

Example 1.12. We will now illustrate the constructions above using an example:

Take the quadratic Cremona transformation T : X 99K X ′, with X = X ′ = P2
k,

given by (x0 : x1 : x2) 7→ (x1x2 : x0x2 : x0x1) in homogeneous coordinates. It has

three fundamental points (0 : 0 : 1),(0 : 1 : 0) and (1 : 0 : 0). Denote by x the point

given by (1 : 0 : 0). Its local ring embeds into the function field as

OX,x ' k[X, Y ](X,Y ).

Now consider the two points z,z′ given by (0 : 1 : 0) and (0 : 0 : 1). Via the

isomorphism their local rings embed into the function field as follows:

OX′,z ' k[X,X/Y ](X,X/Y ), OX′,z′ ' k[Y, Y/X](Y,Y/X).

Note that OX,x and OX′,z are dominated by the local ring k[X, Y,X/Y ](X,Y,X/Y ) '
k[X, Y, Z](X,Y,Z)/(ZY −X) inside k(X, Y ); so in particular there exists a k-valuation

ring of k(X, Y ) with center x on X and z on X ′. The same argument works for x

and z′, so both z and z′ correspond to x.
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We will now use the graph Γ of T to find all points of X ′ corresponding to x. Let

U0 be the open affine of X where x0 6= 0 and V1 the open affine of X ′ where y1 6= 0.

Then it is easy to check that U = Γ ∩ (U0 × V1) is an open affine of Γ with

OU = (k[X, Y ]⊗k k[S, T ])/(S −X,TY −X).

Now via the map k[X, Y ]→OU the ideal (X, Y, S) of OU lies over (X, Y ). Trans-

lating back to geometry this implies that the set of all points of X ′ corresponding

to x is the closed set defined by y0 = 0 (in homogeneous coordinates).

From now on, for the sake of convenience, we will tacitly assume that all schemes

are of finite type over S = Spec(A) affine, with A Noetherian. In particular, by

Proposition 1.7, every birational transformation T : X 99K X ′ induces a rational

S-map f : X 99K Y . For example, in the next lemma we need X to be Noetherian

in order to be able to apply Theorem E.5.

Lemma 1.13. Let X be separated over S, then any S-valuation ring R of K has at

most one center on X. If X is proper over S then R has a unique center on X.

Proof. Note that X is Noetherian since it is of finite type over S, which is Noe-

therian affine. Then the lemma is a direct application of the valuative criterion of

separatedness resp. properness, see Theorem E.5. Namely, an S-valuation ring R of

K gives rise to a unique diagram

Spec(K) //

��

X

��
Spec(R) //

;;

S

.

and a diagonal arrow corresponds to a center of R on X. �

Corollary 1.14. X

(1) Let T : X 99K X ′ be a birational transformation and suppose that x is

regular for T , with image x′ ∈ X ′. If X ′ is separated then x′ is the only point

corresponding to x.

(2) Let f : X ′→X be a birational morphism. If both X and X ′ are separated,

then for each x ∈ X the set of all points of X ′ corresponding to x equals

f−1(x).

Proof. Let us prove (1). By assumption, any S-valuation ring R with center x on

X has center x′ on X ′ and using Lemma 1.13 it follows that this x′ is unique.

From (1) it follows that each element of f−1(x) corresponds to x. Now suppose that

x′ corresponds to x and let R be an S-valuation ring with centers x,x′. Then R also

has center f(x′) on X and since X is separated we have x = f(x′). �



12

The following lemma says that for a normal scheme X, all fundamental points

of X have codimension at least 2. The statement follows for the same reason that

normal varieties are nonsingular in codimension 1.

Lemma 1.15. Let T : X 99K X ′ be a birational transformation and assume X is

normal and X ′ is proper. Then any fundamental point of X for T has codimension

≥ 2.

Proof. Let x ∈ X be a point of codimension 1, then OX,x is an integrally closed

domain of dimension 1 and hence a (discrete) valuation ring. Since X ′ is proper, by

Lemma 1.13, there exists a local ring map OX′,x′→OX,x for some (unique) x′. But

this implies that x is regular for T . �

Corollary 1.14 states that, if x was a regular point for a birational transformation

T : X 99K X ′ and under the assumption that X ′ is separated, there corresponds

only one point on X ′ to x. The converse only holds under additional assumptions;

in particular, that x is a normal point of X. We first need the following lemma,

which is the scheme-theoretic version of Corollary E.3.

Lemma 1.16. Let B be a normal local domain with quotient field K such that

Spec(B) is a scheme over S. Let C be a ring such that for all S-valuation rings R

of K dominating B there exists a diagram

Spec(R) // Spec(C)

Spec(K)

ff 88

of S-morphisms. Then there exists a unique S-morphism Spec(B)→ Spec(C) mak-

ing all the diagrams commute.

Proof. Since B is normal, by Corollary E.3 it is equal to the intersection of all

valuation rings of K dominating it. Note that every valuation ring R dominating B

is an S-valuation ring of K and for each such R we have, by assumption, C ⊂ R ⊂ K.

Hence C ⊂ B ⊂ K and this induces an S-morphism Spec(B)→ Spec(C) with the

desired properties. �

Lemma 1.17. Let T : X 99K X ′ be a birational transformation and assume that X ′

is proper and X is normal. If to x ∈ X there corresponds only one x′ ∈ X ′ then x

is regular for T .

Proof. Let R be a valuation ring with center x. Since X ′ is proper R has center x′ on

X ′, which means we can apply Lemma 1.16 with B = OX′,x′ and we are done. �

Remark 1.18. Note that the lemma is false if we drop the assumption that x is a

normal point: Let X be the projectivized cusp in P2
k defined by x0x

2
2 − x31 = 0.
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Consider the birational morphism P1
k→X induced by the usual parametrization of

the cusp; in homogeneous coordinates, it can be written as

P1
k→X; (t0 : t1) 7→ (t30 : t0t

2
1 : t31).

By considering its inverse we get a birational transformation T : X 99K P1
k with

one fundamental point z = (1 : 0 : 0) ∈ X. It is easy to check that to z there

corresponds only z′ = (1 : 0) ∈ P1
k, but z is not regular for T since OX′,z′ 6⊂ OX,z.

In the case where X ′ is not only proper but projective, we can prove the stronger

statement that a point x ∈ X is regular for X 99K X ′ if and only if there correspond

only finitely many points of X ′ to x. Let us briefly recall the definition of a projective

scheme: for any base scheme S, define projective n-space over S as PnS = PnZ ×Z S,

where PnZ = Proj(Z[X0, . . . , Xn]). Note that if S = Spec(A) is affine, then PnS is

just Proj(A[X0, . . . , Xn]). An S-scheme X is said to be projective if the structure

morphism X→S factors through a closed immersion X→PnS for some n. Note that

any projective scheme is proper, see for example [Har77, Theorem II.4.9]. The only

property that we need from projective schemes is the following result.

Lemma 1.19. Let X be a projective scheme over S and let z1, . . . , zs be a finite num-

ber of points in X. Then there exists an affine open U = Spec(R) of X containing

all the zi’s.

Proof. It is sufficient to prove the statement for X = Proj(A), where A is any graded

ring. Let p1, . . . , ps be the homogeneous primes of S corresponding to z1, . . . , zs and

denote by S+ the ideal
⊕

d>0 Sd, where Sd are the homogeneous elements of S of

degree d. Since S+ 6⊂ pi for all i and by the Prime avoidance lemma (see A.3) there

exists f ∈ S+ such that f /∈ pi for all i. We can assume f to be homogeneous; then

D+(f) = {q ∈ Proj(S) : f /∈ q} is an affine open of X containing all the zi (for

details see [Har77, II.2.5]). �

Compare the next theorem with [Zar43, Theorem 10].

Theorem 1.20. Let T : X 99K X ′ be a birational transformation and assume that

X ′ is projective (over S). Let x ∈ X be a normal point such that there correspond

only finitely many x′ ∈ X ′ to x. Then x is regular for T (in particular, to x there

corresponds a unique x′ ∈ X ′).

Proof. By Lemma 1.19 we find an affine open U ′ = Spec(B) containing all points

x′ ∈ X ′ corresponding to x. Since X ′ is proper, the center (on X ′) of each S-

valuation ring R with center x is contained in U ′, so for each such R we get a

diagram

Spec(R) //

��

Spec(B)

Spec(OX,x) Spec(K)oo

OO
.
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Using Lemma 1.16 we get an S-morphism Spec(OX,x)→ Spec(B), which implies

that x is regular for the birational transformation. �

The following corollary is a weaker form of Zariski’s Main Theorem. It states

roughly that the transform of a fundamental point has to have at least one positive

dimensional component.

Corollary 1.21. Let f : X ′→X be a birational morphism and assume that X ′ is

projective and X is separated. If x ∈ X is a normal point and x fundamental for f ′

then dim f−1(x) ≥ 1, i.e. there exists at least one component of f−1(x) of positive

dimension.

Proof. Note that, since f is of finite type, the scheme-theoretic fiber X ′ ×X κ(x) is

of finite type over the field κ(x); so f−1(x) is zero-dimensional if and only if it is

finite as a set. So the statement follows by applying Theorem 1.20 to the birational

transformation f ′ : X 99K X ′. �

If we assume that the normalization X̃→X is finite - which is fulfilled if X is a

Japanese scheme, see Chapter 3 - then we can prove the next result. Compare this

with [Gro66, (8.11.1)], which says that any proper, quasi-finite morphism locally of

finite presentation is finite.

Corollary 1.22. Let f : X ′→X be a birational morphism with X ′ projective and

X separated. Assume that the normalization X̃→X is a finite morphism and that,

for every x ∈ X, the fiber f−1(x) is finite. Then the morphism f is finite.

Proof. Consider the normalization X̃→X, which induces a birational transforma-

tion X̃ 99K X ′. Let x̃ ∈ X̃ and x the image of x̃. Any valuation ring with center x̃

on X̃ has center x on X. Hence, by assumption, there correspond only finitely many

x′ ∈ X ′ to x̃. Now apply Theorem 1.20 to get that x̃ is regular for X̃ 99K X ′. This

holds for any x̃ ∈ X̃, hence we get a factorization X̃→X ′→X. But this implies

that X ′→X is finite. �

Now we come to the original formulation of Zariski’s Main Theorem, which first

appeared in [Zar43, p.522]. It says that, for any birational morphism X ′→X and

under the assumption that X is normal, every component of the transform of a

fundamental point x ∈ X is positive-dimensional.

Theorem 1.23 (Main theorem). Let f : X ′→X be a birational morphism and

assume that X is normal. Then, if x ∈ X is fundamental for f ′, each irreducible

component of f−1(x) has positive dimension.

Assume the contrary, i.e. that f−1(x) has an irreducible component Z of dimen-

sion 0. Then Z consists of a single point z and we identify z with the corresponding

point x′ ∈ X ′ mapping to x. Note that, by assumption, Z is both open and closed

in f−1(x). Thus we have arrived quite naturally at the notion of isolated points,
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which are defined as points of a topological space whose corresponding singleton is

open as a topological subspace. We will provide algebraic characterizations for this

topological definition in the next chapter. What we have to prove is that x is regular

for f ′. Choose affine open subsets U ′ = Spec(B′) of x′ and U = Spec(B) of x such

that f(U ′)⊂U . Since X and X ′ are integral the rings B and B′ are domains, which

are of finite type over a Noetherian ring A. The morphism f induces an extension

B⊂B′ such that Quot(B) = Quot(B′), and since X is normal, we have that B is

integrally closed. Let q denote the prime of B′ corresponding to x′, and similarly

for p⊂B and x. Our assumptions say that q ∩ B = p and that the image of q in

the fiber ring B′ ⊗B Bp/pBp is isolated; we say that q is isolated in its fiber. Hence

it is sufficient to prove the following lemma (compare to [Zar43, Theorem 14]):

Lemma 1.24. Let B⊂B′ be an extension of domains which are of finite type over a

Noetherian ring A and such that Quot(B) = Quot(B′). Assume that B is integrally

closed. Let q be a prime of B′ with p = q∩B and such that q is isolated in its fiber.

Then Bp = B′q.

We will not prove this result here, but show in the next chapter that it is a direct

consequence of Peskine’s theorem (see Theorem 2.8). In fact, the proof of the lemma

is more or less exactly the same as the proof given by Peskine. The main observation

is that, along with the assumption that q is isolated in its fiber, the crucial conditions

here are:

(1) The extension B⊂B′ is of finite type since both B,B′ are of finite type over

A.

(2) B is integrally closed in B′, since B is integrally closed in Quot(B) and

Quot(B) = Quot(B′).

Instead of assuming that B is integrally closed, Peskine considers the relative integral

closure of B in B′. Furthermore, by assuming that B→B′ is of finite type, it is

possible to prove the result while omitting all Noetherianity conditions on B and

B′.

As a final comment, if we want to extend Corollary 1.21 and Theorem 1.23 to the

more general case of a birational transformation, we obtain results on the dimension

of the components of p−1(x), where p : Γ →X is the projection of the graph of the

birational transformation X 99K X ′.
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2. Peskine’s version: A structure theorem for quasi-finite

morphisms

In this chapter, we will formulate and prove a variant of Zariski’s main theorem,

originally introduced by Christian Peskine in [Pes66]. His main observation was

that the original proof of Zariski could be generalized to arbitrary rings by adding

a few minor arguments. Peskine’s statement and proof can be found, with slight

differences, in various books, see for example [Pes96, Chapter 13], [Ive73, IV.2],

[Ray70, IV, Proposition 1] or [GW10, Proposition 12.76].

Since it avoids any Noetherianity assumption, the proof of Peskine lends itself to a

constructive version. See [ACL14] for a proof in the case where a whole fiber of a

ring map is finite.

First, we will define the notion of isolated primes and its geometric counterpart,

quasi-finite morphisms. Then, we will state and prove Peskine’s theorem. The

proof itself is completely algebraic in nature and uses only elementary commutative

algebra. Finally, we will briefly discuss the Grothendieck version of Zariski’s Main

Theorem, which can be seen as a natural generalization of Peskine’s result. It

appeared first in its weakest form in [Gro61, (4.4.3)]. We will not give a proof here

since this would go beyond the scope of this thesis.

2.1. Isolated primes and quasi-finite morphisms

Fix some notation first: let R→S be any ring map and p a prime of R. Then we

denote by S[p] the ring S ⊗R κ(p) and call it the fiber ring of p. Note that, if R→S

is of finite type, then so is κ(p)→S[p]. In particular, S[p] is Noetherian, even if R

and S are not.

We start with the definition of an isolated point: if X is any topological space, a

point x ∈ X is called isolated if the singleton {x} is open as a topological subspace

of X. If R is a ring and p a prime of R, then p is called isolated if the corresponding

point in Spec(R) is isolated. Now let R→S be any ring map, q a prime of S and

write p = q ∩ R. Then we say that q is isolated in its fiber (or alternatively: q is

isolated over p) if the image of q in S[p] is an isolated point. With the next lemma

we obtain an algebraic characterization of this definition:

Lemma 2.1. Let R→S be a ring map of finite type and q ⊂ S a prime lying over

p ⊂ R. Write q for the image of q in S[p]. Then the following are equivalent:

(1) q is isolated over p.

(2) q is maximal and minimal among all primes of S lying over p, or equivalently,

q is maximal and minimal in the fiber ring S[p].

(3) (S[p])q is a finite κ(p)-algebra.

(4) The extension of residue fields κ(p)⊂κ(q) is finite and dim(S[p])q = 0.
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Proof. Write F = S[p] and observe that Fq = Sq/pSq. Let us first prove that (2)

implies (1), so assume q is maximal and minimal in F . Note that F is Noetherian and

denote by q = q1, . . . , qr the minimal primes of F . It follows that Spec(F )− {q} =

V (q2 ∩ . . . ∩ qr), hence {q} is an open subset of Spec(F ).

Assume (1). Since the principal opens form a basis for the Zariski topology there

exists a nonzero g ∈ F with Spec(Fg) = {q}. Observe that Fg is local with maximal

ideal qFg, hence Fg = Fq. Since Fg is of finite type over κ(p) we obtain (3) by

Lemma A.2.

The implication (3) =⇒ (4) is clear since κ(q) = κ(q). Let us finish by proving that

(4) implies (2). That q is minimal in F follows immediately from dimFq = 0. Note

that we have a chain of inclusions κ(p)⊂F/q⊂κ(q). But any intermediate ring of

an algebraic field extension is a field itself (see Lemma B.6), so in particular q is

maximal in F . �

Lemma 2.2. Let R→S be a ring map of finite type such that every prime q of S is

isolated in its fiber. Then for each prime p ⊂ R the fiber ring S[p] is zero-dimensional,

or equivalently, Spec(S[p]) is finite and discrete.

Proof. By Lemma 2.1 each prime q of S[p] is maximal and minimal, hence dimS[p] =

0. The other assertions follow from Lemma A.2. �

Let us now define the analogue of isolated primes for schemes. Recall that for

a morphism f : X→Y the scheme-theoretic fiber of a point y ∈ Y is defined as

Xy = X ×Y κ(y). Its underlying topological space is homeomorphic to f−1(y). If

X = Spec(S) and Y = Spec(R) are affine and p is the prime of R corresponding to

y, then Xy = Spec(S[p]).

Lemma 2.3. Let f : X→Y be a morphism locally of finite type and x ∈ X a point.

Write y = f(x). Then the following are equivalent:

(1) x is an isolated point of f−1(y).

(2) The image x of x in Xy is a closed point and no point x′ ∈ Xy specializes to

x.

(3) For all affine opens U = Spec(S)⊂X, V = Spec(R)⊂Y with f(U)⊂V and

x ∈ U the prime q of S corresponding to x is isolated in its fiber with respect

to the ring map R→S.

(4) There exist affine opens U = Spec(S)⊂X, V = Spec(R)⊂Y with f(U)⊂V
and x ∈ U such that the prime q⊂S corresponding to x is isolated in its

fiber with respect to the ring map R→S.

Proof. By the above remark (1) is equivalent to say that {x} is open in Xy. We

want to prove that (1) implies (2). Any open subset is closed under generiza-

tion, so no point x′ ∈ Xy can specialize to x. For the second assertion, note that

Xy→ Spec(κ(y)) is a base change of X→Y and hence Xy is locally of finite type
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over κ(y). But by C.1 every open subset of Xy contains a closed point, so we are

done.

Now assume (2) and let U = Spec(S)⊂X, V = Spec(R)⊂Y be affine opens with

f(U)⊂V and x ∈ U . By assumption the ring map R→S is of finite type. De-

note by q⊂S the prime corresponding to x and by p the contraction of q to R.

Note that p corresponds to the point y ∈ Y and we have κ(y) = κ(p). Then

U ×V κ(y) = Spec(S[p]) is an affine open of Xy containing the point x. In particular,

x is an isolated point of U ⊗V κ(y), hence q is isolated over p.

Condition (3) trivially implies (4), so to finish the proof all that is left to show is

that (4) implies (1). Assume (4), then we have to prove that {x} is open in Xy.

Note that it is sufficient to prove that there exists an open subset U of Xy con-

taining x such that {x} is open in U . But this follows again from the fact that

U ×V κ(y) = Spec(S[p]) is affine open in Xy. �

If any of the equivalent conditions in Lemma 2.3 is satisfied we say that f is

quasi-finite at x. A morphism f : X→Y is called locally quasi-finite if it is locally

of finite type and quasi-finite at all x ∈ X. If in addition f is quasi-compact, we say

that f is quasi-finite.

Corollary 2.4. Let f : X→Y be a morphism locally of finite type.

(1) f is locally quasi-finite if and only if, for all y ∈ Y , the fiber Xy is discrete

(as a topological space).

(2) Assume that f is in addition quasi-compact. Then f is quasi-finite if and

only if, for all y ∈ Y , the fiber Xy is finite (as a set).

Proof. The first part follows immediately from the definitions. For (2), note that,

since f is quasi-compact, each fiber Xy is quasi-compact. Hence Xy is discrete if

and only if it is finite. �

A prime q ⊂ S being isolated over p does not mean that the fiber of p is finite, as

the following example shows:

Example 2.5. Consider the algebraic set X = V (y, z) ∪ V (y − 1) ⊂ A3
R, which

corresponds to the union of a hyperplane and a line, and the morphism X → A1
R

induced by (x, y, z) 7→ x. Clearly the fiber of each point a ∈ A1
R consists of the

union of a line and a point. Algebraically, we have a ring extension R = k[X] ⊂
S = k[X, Y, Z]/(Y, Z) ∩ (Y − 1) and a prime q = (X, Y, Z) ⊂ S which is isolated

over p = q ∩ k[X] = (X). However, the fiber ring S[p] is not zero-dimensional (i.e.

Spec(S[p]) is not finite) since (X, Y − 1) is not isolated over p. The same argument

also works for the (localized) extension U−1R ⊂ U−1S with U := k[X] − (X). In

this case Spec(U−1S) can be interpreted as the set of all affine varieties contained

in X which have nonempty intersection with the hyperplane x = 0.

Any composition of locally quasi-finite morphisms is again locally quasi-finite.
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Lemma 2.6. Let f : X→Y and g : Y →Z be two morphisms locally of finite type

and assume that f is quasi-finite at x ∈ X and g is quasi-finite at y = f(x). Then

g ◦ f is quasi-finite at x.

Proof. Write z = g(y). Since g is quasi-finite at y, the subset f−1(y) is open as a

subspace of (g ◦ f)−1(z). By assumption, {x} is open in f−1(y), therefore {x} is

open in (g ◦ f)−1(z). �

Conversely, we have the following result:

Remark 2.7. Assume we have the following situation:

R // S // T

p q n

with n isolated over p. Then n is isolated over q; however, in general, q will not be

isolated over p.

For the geometric analogue, assume we have

X
f
// Y

g
// Z, x � // y � // z

with g ◦ f quasi-finite at x. Then f is quasi-finite at x, but, in general, g need not

be quasi-finite at y.

Let us give some examples for quasi-finite morphisms:

• An open immersion is locally quasi-finite, since it is locally an isomorphism.

A closed immersion is clearly quasi-finite. Hence, any immersion is locally

quasi-finite.

• A finite morphism is quasi-finite. This follows directly from Corollary B.4.

These two examples are in some sense exhaustive: Grothendieck’s version of ZMT

says that, under some reasonable assumptions on Y and f , any quasi-finite morphism

factors as a composition of an open immersion followed by a finite morphism, see

Theorem 2.21.

2.2. Peskine’s proof

Let us now go back to algebra. The following is the orginal formulation of Peskine’s

theorem, see [Pes66, p.1].

Theorem 2.8 (Zariski’s Main Theorem, Peskine’s version). Let ϕ : R→S be a ring

map of finite type and q be a prime in S isolated over p = ϕ−1(q). Denote by R′

the integral closure of R in S. Then there exists an element t ∈ R′, t /∈ q such that

R′t = St.
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Remark 2.9. Note that under the assumptions of the theorem, the statement is

equivalent to finding a finite R-subalgebra C ⊂S and t ∈ C, t /∈ q with Ct = St.

For assume we have such a C, then, since C ⊂R′⊂S, it follows immediately that

R′t = St. Conversely, write S = R[s1, . . . , sm]. Since R′t = St there exists d > 0 such

that tdsi ∈ R′. Set C = R[tds1, . . . , t
dsm], then C is finite over R and Ct = St.

Let us start with the proof. As a first observation, note that we can replace the

ring R by its image under ϕ and assume R is a subring of S. For ϕ(R)⊂S is of

finite type and q is isolated over ϕ(p), which is a prime ideal of ϕ(R) ' R/ ker(ϕ).

Following an idea first introduced in [EGE70], we actually prove a slightly stronger

statement:

Theorem 2.10. Let R⊂S be a ring extension and assume there exist x1, . . . , xn ∈ S
such that S is integral over R[x1, . . . , xn]. Denote by R′ the integral closure of R in

S. If q is a prime of S isolated over p = q ∩ R, then there t ∈ R′, t /∈ q such that

R′t = St.

The proof of Theorem 2.10 will be done by induction on the number of elements

x1, . . . , xn. Let us start with the induction step and finish by proving the case n = 1.

Induction step: Assume the statement is true for k < n and let R⊂S be a ring

extension with S finite over R[x1, . . . , xn]. Let q be a prime of S which is isolated

over p = q ∩ S. Consider the ring extensions

R[x1, . . . , xn−1]⊂R[x1, . . . , xn−1][xn]⊂S

and observe that, by Remark 2.7, the prime q is isolated over q ∩ R[x1, . . . , xn−1].

Denote by R′′ the integral closure of R[x1, . . . , xn−1] in S. Then apply the case n = 1

to obtain t1 ∈ R′′, t1 /∈ q with R′′t1 = St1 . We want to use induction on

R⊂R[x1, . . . , xn−1]⊂R′′,

but first we have to prove that q′′ = q∩R′′ is isolated over p. We have the following

situation:

R // R′′ // S

p q′′ q

Any prime of R′′ contained in q′′ appears in the localization R′′t1 = St1 . Since q is

isolated over p, we get that q′′ is minimal among all primes of R′′ lying over p.

By localizing R, R′′ and S with regard to U = R− p, we may assume that p, q are

maximal. What is left to prove is that q′′ is maximal too. Set K = R/p, A = R′′/q′′

and L = S/q. Then A is a subring of the field extension K ⊂L. If we prove that L

is algebraic over K, then A is a field by Lemma B.6 and we are done. For this last

step we want to use Theorem A.1, which is a variant of Hilbert’s Nullstellensatz.
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Observe that it cannot be directly applied to L, since it is not of finite type over K.

However, L is integral over K[x1, . . . , xn] and the latter is a field, for example by

the Lying-Over property. Then Theorem A.1 says that K[x1, . . . , xn] is finite over

K and hence L is algebraic over K.

Going back, note that R′ is the integral closure of R inside R′′. Hence we can apply

our induction hypothesis to get t2 ∈ R′, t2 /∈ q with R′t2 = R′′t2 . Now all that remains

to prove is the following lemma.

Lemma 2.11. Given ring extensions R ⊂ S ⊂ T , a prime q of T and elements

t1 ∈ R, t2 ∈ S; t1, t2 /∈ q with Rt1 = St1 and St2 = Tt2. Then there exists a t ∈ R,

t /∈ q with Rt = Tt.

Proof. Since Rt1 = St1 we can write t2 = ξ
td1

for some ξ ∈ R. Since ξ = t2t
d
1 it follows

that ξ /∈ q. Setting t = ξt1 /∈ q we get that Rt = Tt. �

The case n=1: This is the difficult part. Suppose we have

R // R[x] // S

p p′ q

with S finite over R[x] and q isolated over p. The idea now is to define the conductor

ideal J = (R[x] : S) = {t ∈ R[x], t · S⊂R[x]}. Observe that J is both an ideal of

R[x] and S; in fact, J is maximal with this property. We now consider two cases,

namely whether J is contained in q or not.

Let us first assume that J 6⊂ q. Then there exists t ∈ R[x], t /∈ q such that tS⊂R[x].

In particular, R[x]t = St. Using Lemma 2.11 and a similar argument to the one we

used in the induction step, we reduce to the case S = R[x].

Lemma 2.12. Let R ⊂ S = R[x] and q a prime in S isolated over p = q∩R. Then

there exists an element s ∈ S − q such that s, sx are integral over R.

Proof. Consider the fiber ring S[p], which is finitely generated as an κ(p)-algebra by

the image of x. Denote by q the image of q in S[p]. Since q is isolated, the ring

S[p] cannot be a polynomial ring. Hence we have a monic equation for x ∈ S[p]

with coefficients in κ(p). By multiplying with denominators we get an expression

arx
r + . . . + a0 ∈ pR[x] with ar /∈ p. Since pR[x] = p[x], we obtain an equation

bdx
d+. . .+b0 = 0 with coefficients in R and bi /∈ p for some i. Note that bdx is integral

over R. If bd /∈ q then the statement follows. Otherwise, set b′d−1 = bdx+bd−1, which

is integral over R. Furthermore, we have

b′d−1x
d−1 + bd−2x

d−2 + . . .+ b1x+ b0 = 0

and hence b′d−1x is integral over R. If bd−1 /∈ p then b′d−1 /∈ q and we are done.

Otherwise, set b′d−2 = b′d−1x+ bd−2 and proceed inductively. �
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Finally, assume that q contains J . The goal is to obtain a contradiction to the

assumption that q isolated over p. Choose a prime n with J ⊂ n⊂ q and such that

n is minimal with this property. Write m = n ∩ R. We proceed now in two steps:

first, we show that the element x of S/n must be transcendental over R/m. Second,

we prove that x being transcendental implies that no prime of S/n can be isolated

over its image in R/n ∩R. Since n⊂ q, this finishes the proof.

For technical reasons, we may replace R by R′, the integral closure of R in S. This

follows from Remark 2.7, as any prime of S/n isolated over its image in R/m is

isolated over its image in R′/n ∩ R′. Therefore we can assume that R is integrally

closed in S.

For the first part, write U = R − m. Observe that it is sufficient to prove that x

(as an element of U−1S/nU−1S) is transcendental over Rm/mRm. Furthermore, we

have

U−1J = U−1(R[x] : S) = (U−1R[x] : U−1S)

and U−1n is minimal over U−1J . By Lemma B.1, U−1R is integrally closed in U−1S.

Hence we can assume that R is local with maximal ideal m.

Suppose that x ∈ S/n is algebraic over R/m. Let f(X) ∈ R[X] be a monic poly-

nomial with f(x) ∈ n. By Lemma A.4, there exists u ∈ S, u /∈ n and d > 0 with

uf(x)d ∈ J . Applying the following lemma finishes the first step (this is also the

reason why we needed the additional condition that R is integrally closed).

Lemma 2.13. Let R⊂S be a ring extension such that S is integral over R[x]

for some x. Set J = (R[x] : S). Assume that there exists a monic polynomial

f(X) ∈ R[X] and an element u ∈ S such that uf(x) ∈ J . Then u ∈ J .

Proof. We prove the statement by induction on deg(f). If deg(f) = 0, then f = 1

and we are done. So suppose deg(f) > 0. Let s be any element of S. By assumption,

there exists a polynomial g(X) ∈ R[X] such that suf(x) = g(x). Since f(X) is

monic, we can divide g(X) by f(X) and obtain g(X) = h(X)f(X) − g′(X) with

deg(g′) < deg(f). Write t = su−h(x), then t is an element of S with tf(x) = g′(x).

This gives us an integral equation for x as an element of St over R[t−1]. Since t is

integral over R[x] we obtain an integral equation for t over R[t−1]. Multiplying by

a suitable power of t yields an integral equation for t over R. But then, since R is

integrally closed in S, we have t ∈ R and hence su ∈ R[x]. Therefore u ∈ J . �

As for the second and last step, it is sufficient to prove the next lemma.

Lemma 2.14. Let A ⊂ B be a extension of domains such that B is integral over

A[x], with x transcendental over A. Then no prime of B is isolated in its fiber.

Proof. By assumption the ring A[x] is a polynomial ring over A. Hence, if p is a

prime of A, we have pA[x] and (p, x)A[x] which are both primes of A[x] lying over

p. Now assume that A is normal, which implies that A[x] is normal as well. Since
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A[x] ⊂ B is an integral extension it satisfies both the Going-Up and the Going-Down

property. Therefore, a chain of primes in A[x] can be extended to a chain of primes

in B in any direction. So if q is a prime of B lying over p⊂A, then q lies over pA[x]

or (p, x)A[x]. Either way, we see that q is not isolated over p.

In the general case where A is not normal, replace A and B by their respective

integral closure A′ and B′. Then x is still transcendental over A′ and A′[x] ⊂ B′

finite. Now take a prime q of B and write p = q∩A. Since B ⊂ B′ is integral we can

find a prime q′ of B′ lying over q. By the above, q′ is not isolated over p′ = q′ ∩ A′

and hence not isolated over p as well. Without loss of generality, assume n′ ⊂ q′

with n′ lying over p. Setting n = n′ ∩ B we get n ⊂ q and, again since B ⊂ B′ is

integral, the inclusion is strict. So q is not isolated over p. �

This finishes the proof of Theorem 2.10.

Remark 2.15. We want to give a geometric interpretation of the conductor ideal J

appearing in the proof. Namely, let X = Spec(R) be a integral affine scheme and

suppose the integral closure R′ of R is finite over R. Let Z be the closed subset

defined by the conductor (R : R′). Then Z consists of those points which are not

normal, or equivalently, all points of X fundamental for X 99K X̃ = Spec(R′).

Compare with [Zar43, Corollary 4, p.512].

2.3. Consequences and Grothendieck’s version of Zariski’s Main

Theorem

First, let us see that Peskine’s theorem immediately implies Lemma 1.24. Let

R⊂S be a ring extension of finite type with R normal and Quot(R) = Quot(S) and

assume that q is a prime of S isolated over p = q ∩ S. Since R is integrally closed

in S, there exists a t ∈ R, t /∈ q with Rt = St. But then, in particular Rp = Sq and

we are done.

The following two results are consequences of Theorem 2.8 and more geometric in

nature (see [Ray70, p.42]):

Corollary 2.16. Let R→S be a ring map of finite type. Then the set of all primes

of S isolated in their fiber form an open subset of Spec(S).

Proof. Let q be a prime of S isolated over p = q∩R. By Theorem 2.8 and Remark 2.9

there exists a finite R-algebra C and an element t ∈ C, t /∈ q such that Ct = St.

Since every prime of C is isolated in its fiber over R, we obtain the same statement

for Ct and hence for St as well. Hence the principal open D(t) = Spec(St) is a

neighborhood of q and contains only primes which are isolated in their fiber. This

proves the claim. �

Corollary 2.17. Let R→S be a ring map of finite type such that every prime of S is

isolated in its fiber. Then there exists a factorization R→C→S with C finite over

R and such that the induced morphism Spec(S)→ Spec(C) is an open immersion.
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Proof. By assumption, for every prime q of S we can find find a pair (C, t) with C

a finite R-subalgebra of S, t an element of C with t /∈ q and such that Ct = St.

In particular, we obtain an open covering of Spec(S) by the sets Spec(St) and

since every affine scheme is quasi-compact there exists a finite subcovering given by

(C1, t1), . . . , (Cr, tr). Write C for the R-subalgebra generated by the Ci. Note that

C is finitely generated as an R-subalgebra and hence finite over R. Furthermore, we

have that Cti = Sti for all i. Therefore Spec(S)→ Spec(C) is an open immersion. �

Remark 2.18. Let f : X→Y be a quasi-finite morphism between affine schemes.

Then Corollary 2.17 says that there exists an affine scheme Y ′ and a diagram

X ′

f

  

f
// Y

Y ′

u
>>

with f ′ an open immersion and u a finite morphism. In other words, every quasi-

finite morphism between affine schemes is obtained by restricting a finite morphism

to an open subset.

As the next step we want to generalize Corollary 2.16 to arbitrary, not necessarily

affine, schemes:

Corollary 2.19. Let f : X→Y be a morphism locally of finite type between schemes

X, Y . Then the set of all x ∈ X such that f is quasi-finite at x is open in X.

Proof. Let x ∈ X be an isolated point of f−1(f(x)). We have to show that there

exists an open neighborhood U of x such that f is quasi-finite at every x′ ∈ U .

By Lemma 2.3 there exist U = Spec(S)⊂X, V = Spec(R)⊂Y open affines with

f(U)⊂V and x ∈ U such that the prime q⊂S corresponding to x is isolated in its

fibre with respect to R→S. Now use Corollary 2.16 to see that the set of all points

x′ ∈ U such that f is quasi-finite at x′ is open in U and hence in X as well. �

It turns out that it is much harder to extend the statement of Corollary 2.17 in

the same way. In fact, additional techniques are needed in order to deduce such a

statement from Theorem 2.8. The desired result was proven by Grothendieck and

is stated in various levels of generality in EGAIII and EGAIV. The first version can

be found in [Gro61, (4.4.3)] and says the following:

Theorem 2.20. Let Y be a Noetherian scheme and f : X→Y a quasi-projective

morphism. Denote by X ′ the set of all x ∈ X such that f is quasi-finite at x. Then

X ′ is open and isomorphic to an open subset of a scheme Y ′ which is finite over Y .

Grothendieck’s proof uses completely different methods from those used in the

original proof of Zariski. The main ingredient is the Theorem on Formal Functions,

see [Har77, III.11] or [Gro61, §4], which is a result on the cohomologies of sheaves.

In [Gro66, (8.12.6)] Grothendieck gave the following, more general version:
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Theorem 2.21. Let Y be a quasi-separated, quasi-compact scheme and f : X→Y

a quasi-finite, separated morphism locally of finite presentation. Then there exists a

factorization

X ′

f

  

f
// Y

Y ′

u
>>

with f ′ an open immersion and u a finite morphism.

The proof is different from both Theorem 2.8 and Theorem 2.20, avoiding the

machinery of cohomology entirely. Instead, it uses similar arguments to the proof

of Theorem 3.16.

Finally, the statement of Theorem 2.21 was generalized in [Gro67, (18.12.13)] to the

case where f need not be locally of finite presentation. This last step uses étale

localization, see [Gro67, (18.12.1)].
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3. Zariski’s power series version: Formal normality

In this chapter we shall present the power series version of Zariski’s Main Theo-

rem, which roughly states that, for a normal point x of an algebraic variety X over

a perfect field k, the completion of the local ring OX,x is a normal local ring (so in

particular a domain). This theorem was proven by Oscar Zariski in the course of

various papers: First, he proved that the completion of OX,x is a domain in [Zar48].

In [Zar49] he used this result to prove the original Main theorem. Finally, the the-

orem in the above form was first proven in [Zar50]. A summary of all results and

arguments can be found in [ZS60, Chapter VIII, §13].

Zariski also asked the question whether it is true that, for every normal local Noe-

therian ring R, the completion R̂ is normal. This question was answered in the

negative by Nagata: he published two counterexamples, the first in [Nag55] and the

second in [Nag58]. It turns out that the problem is closely related to the question if,

for a domain A with quotient field K and a finite field extension L/K, the integral

closure of A in L is finite over A. By turning this property into an assumption, Na-

gata then generalized the Power series version to a bigger class of rings in [Nag62,

Chapter V.37]. The proof there is more or less exactly the same as in [ZS60] and

we will reproduce it here.

In this chapter we will tacitly assume from the beginning that all rings which appear

are Noetherian. This was the original situation in all the cited sources and ensures

that taking completions is well-behaved.

Note that for any regular local ring R, its completion R̂ is easily seen to be regular

again: choose a minimal generating set for the maximal ideal m of R, then the chosen

elements will generate mR̂ which is the maximal ideal of R̂. Since dim(R) = dim(R̂)

our assertion follows. In particular, the completion of a regular local ring is a normal

domain. The main idea behind the proof of Theorem 3.16 is reducing to the case of

a regular ring via a strong normalization-type result.

3.1. Formally unramified local rings and the Nagata property

In some results and proofs we will consider finite extensions of local rings, which

in general will not be local anymore. However, by the Going-Up theorem, any such

extension will only have finitely many maximal ideals. Rings with finitely many

maximal ideals are called semi-local. Recall that the Jacobson radical is defined

to be the intersection of all maximal ideals of a ring. We will write (R,m) for a

semi-local ring R with Jacobson radical m. Note that this notation is consistent

with that of local rings.

For a semi-local ring (R,m) consider the completion R̂ with respect to the ideal m.

The next result tells us that R̂ is just a direct sum of completions of local rings.
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Lemma 3.1. Let (R,m) be a semi-local ring and let R̂ be the m-adic completion of

R. Denote by m1, . . . ,mr the maximal ideals of R. Then R̂ =
∏r

i=1 R̂i, where R̂i is

the completion of the local ring (Rmi
,mi).

Proof. See [Nag62, Theorem 17.7]. �

Finite extensions behave very well under completion, as the following lemma

shows.

Lemma 3.2. Let (R,m) be a semi-local ring and R⊂S a finite ring extension.

Then S is again semi-local. If Ŝ is the completion of S with respect to its Jacobson

radical then we have Ŝ = S ⊗R R̂ and R̂ is a topological subspace of Ŝ.

Proof. Each maximal ideal of S necessarily lies over a maximal ideal of R and since

S is finite over R, there can only be finitely many primes of S lying over a particular

prime of R. Hence S is semi-local. For the second assertion see [Nag62, Theorem

17.8]. �

Corollary 3.3. Let (R,m) be a semi-local domain and R⊂S a finite extension

of domains such that Quot(R) = Quot(S). Assume R̂ is a subring of Ŝ. Then

Frac(R̂) = Frac(Ŝ). In particular, each minimal prime of Ŝ is of the form qŜ,

where q is a minimal prime of R̂.

Proof. Let s1, . . . , st ∈ Quot(R) be generators for S as an R-module and denote by

r ∈ R the product of the denominators of the si. By Lemma 3.2 we have Ŝ =
∑

i R̂si.

Let us prove that each x ∈ R̂ which is not a zero divisor in R̂ is also not one in Ŝ.

Assume that there exists y ∈ Ŝ such that xy = 0. Then, since ry ∈ R̂, we have that

ry = 0. But, since Ŝ is faithfully flat over S , the element r is not a zero divisor in

Ŝ, so y = 0. Therefore, there exists an injective ring map Frac(R̂)→Frac(Ŝ) which

is also surjective since each si ∈ Frac(R̂).

If q1, . . . , qr denote the minimal primes of R̂, then Frac(R̂) = Rq1 × . . . × Rqr and

each minimal prime of Ŝ is the preimage of Rq1 × . . .× qi× . . .×Rqr for some i. �

Lemma 3.4. Let (R,m), (S, n) be semi-local rings and let R→S be a local ring

map. If S/mS is finite over R/m then Ŝ is finite over R̂.

Proof. Let s1, . . . , sr be elements of S such that their residue classes generate S/mS.

We prove the following: let n ≥ 0, then for every x ∈ mnS we can find elements

a1, . . . , ar ∈ mn such that x−
∑

i aisi ∈ mn+1S. The case n = 0 follows by assump-

tion. Now assume the statement has been proven for n− 1 and let x ∈ mnS. Then

we can write x =
∑

j a
′
jx
′
j with aj ∈ m and x′j ∈ mn−1S. By induction, we find a′′ij

such that x′j −
∑

i a
′′
ijsi ∈ mnS. Hence x−

∑
i

∑
j a
′
ja
′′
ijsi ∈ mn+1S and we are done.

We have just shown that the associated graded ring gr(S) is finitely generated over

gr(R). Note that gr(R) ' gr(R̂) and gr(S) ' gr(Ŝ) (see [AM94, Proposition 10.22]).



28

Since Ŝ is Noetherian and the induced ring map R̂→ Ŝ is local, Krull’s intersection

theorem yields ⋂
mnŜ⊂

⋂
(mŜ)n⊂

⋂
nnŜ = (0).

Hence we can apply [AM94, Proposition 10.24] to get the statement. �

We say that a domain R is Japanese if, for every finite extension L of Quot(R),

the integral closure of R in L is a finite R-module. Note that, since taking integral

closure and localization commutes (see Lemma B.1), any localization of a Japanese

domain is again Japanese.

A ring R is called Nagata if it is Noetherian and R/p is Japanese for every prime p

of R. If R is a Nagata ring, then the following rings are again Nagata:

• Any φ(R), where φ : R→S is a ring homomorphism. Note that φ(R) ∼= R/I

for some ideal I ⊂R.

• Any localization U−1R, where U ⊂R is a multiplicative subset. This follows

from the fact that every localization of a Japanese domain is Japanese..

• Any R-algebra S which is finite over R. If q is any prime of S and p = q∩R,

then R′ = R/p→S/q = S ′ is finite with Quot(R′)⊂Quot(S ′) a finite field

extension. Hence the integral closure of S ′ in some L is the same as the

integral closure of R′ in L.

Now apply these notions to schemes: We say that an integral scheme X is Japanese

if for every point x ∈ X there exists an affine open neighborhood U = Spec(R) of

x with R a Japanese domain. A scheme X is called Nagata if for every point x we

can find an affine open neighborhood U = Spec(R) of x with R a Nagata ring. By

definition, a Nagata scheme is locally Noetherian. For the normalization X̃→X we

get the following result:

Lemma 3.5. Let X be a scheme.

(1) If X is integral and Japanese then the normalization X̃→X is a finite mor-

phism.

(2) If X is Nagata (not necessarily integral) then X̃→X is finite.

Let (R,m) be any semi-local ring, then we say that R is formally unramified if

the completion R̂ is a reduced ring. If p is any prime of R, we say that p is formally

unramified if the quotient R/p is formally unramified. Note that, if R is formally

unramified, then in particular R itself is reduced. Moreover, applying Lemma 3.1

to a semi-normal ring gives us the following easy corollary.

Corollary 3.6. Let (R,m) be a semi-local ring and denote by m1, . . . ,mr its maximal

ideals. Then R is formally unramified if and only if each local ring Rmi
is formally

unramified.

For the next theorem we need the following short lemma.
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Lemma 3.7. Let R be a domain and let p be a prime of R with Rp a discrete

valuation ring. Let R⊂S be a flat ring extension and assume that pS is radical.

Then, for every minimal prime q of pS, the local ring Sq is a discrete valuation ring.

Proof. Take t ∈ p a generator for pRp. We have tSq = pSq = qSq, where the last

equality holds because q appears in the primary decomposition of pS. Since R is a

domain and S is flat over R, we have that t is not a zero divisor in S and so not in

Sq as well. Hence dim(Sq) > 0 and by Proposition E.1 we are done. �

The following result was, in the case of R being a local ring of an algebraic variety,

originally conjectured by Zariski and first proven by Chevalley in [Che45]. The more

general version presented here was taken from [Nag62].

Theorem 3.8 (Chevalley). Let (R,m) be a semi-local Nagata domain. Then R is

formally unramified.

Proof. Denote by R′ the integral closure of R, then R′ is finite over R by assumption.

Using Lemma 3.2 we see that R′ is a semi-local Nagata domain whose completion

contains R̂, so it is sufficient to prove that R′ is formally unramified. Hence we can

assume R is normal.

We will prove the statement by induction on n = dimR. If n = 0, then R is a field

and the assertion is trivial. Assume that n ≥ 1. Take any element x 6= 0 of m and

denote by pi the associated primes of xR. Since R is normal we have ht(pi) = 1 and

Rpi is a DVR. Using induction we see that piR̂ is radical. Then, if we denote by pij

the associated primes of piR̂, Lemma 3.7 says that R̂pij is a DVR as well. Note that

flatness of the completion implies that xR̂ =
⋂

pij. Denote by qij the kernel of the

canonical map R̂→ R̂pij ; then qij is a minimal prime of R̂ which is contained in pij

and with x /∈ qij. Write q for the intersection of all qij; it is clear that q contains

the nilradical of R̂. Since q is contained in any pij-primary ideal it is is contained

in xR̂. Furthermore, we have

(q : x) = (
⋂

qij : x) =
⋂

(qij : x) =
⋂

qij = q,

so we get xq = q. Applying Nakayama’s lemma yields q = 0 and hence R̂ has no

nilpotent elements. �

Note that there is a kind of converse to Chevalley’s theorem: if R is semi-local

and formally unramified, then the integral closure of R in Frac(R) is finite over R.

This follows from the fact that a complete local ring is Nagata, which itself can

be proven by using Cohen’s structure theorem to reduce to the case of a regular

complete local ring.

Chevalley’s theorem is used in the proof of the following result, which we will provide

for completeness’ sake. We omit the proof here since it is rather involved and not

needed in order to prove the main theorem of this chapter. See [Nag62, Theorem

(36.5)] for more details.
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Theorem 3.9. Let R be a Nagata ring, then every ring S of finite type over R is

Nagata again.

3.2. Formal irreducibility and normality

We call a local ring (R,m) formally irreducible if its completion R̂ is a domain

and formally normal if R̂ is in addition normal. As before, we say that a prime p of

R is formally irreducible resp. formally normal if this holds for the local ring R/p.

The first result of this section is one of the key ingredients in the proof of The-

orem 3.16. The element of d in the statement is sometimes called an universal

denominator. Compare with Zariski’s “Condition D”

Lemma 3.10. Let R be an integrally closed domain and S = R[X]/(f(X)), with

f(X) ∈ R[X] monic. Let d ∈ R be the discriminant of f(X). If S ′ is the integral

closure of S in Q = Frac(S) then dS ′⊂S.

Proof. If d = 0 then we are done, so assume d 6= 0. Denote by x the residue class of X

in S. Write K = Quot(R), then clearly K is contained in Q and we have Q = K[x].

Let L be a splitting field of f(X) over K and denote by a1, . . . , am the roots of f(X)

in L. For each i we get an inclusion K[X]/f(X) ↪→ L via x 7→ ai, which extends

to an inclusion φi : Q ↪→ L. Let b ∈ S ′, then there exist y0, . . . , yn−1 ∈ K such that

b =
∑n−1

j=0 yjx
j, hence φi(b) =

∑
j yja

j
i . Written differently, we get

1 a1 . . . an−11

1 a2 . . . an−12
...

...
...

1 am . . . an−1m

 ·

y1

y2
...

yn

 =


φ1(b)

φ2(b)
...

φm(b)


with the matrix A = (aji ) a Vandermonde matrix. Hence the determinant of A is

given by D =
∏

i<k(ak− ai) and we have D2 = d. Note that all ai, φi(b) are integral

over R. By multiplying the equation with the adjoint matrix we see that dyj is

integral over R. But dyj is in K, so, since R is integrally closed, we have dyj ∈ R
and hence db ∈ S. �

Corollary 3.11. Let R be an integrally closed domain and L be a finite separable

extension of K = Quot(R). Then the integral closure R′ of R in L is finite over R.

Proof. By the primitive element theorem write L = K(a′) for some a′ ∈ L. The

element a′ satisfies a monic equation over K, hence there exists a b ∈ R such that

a = ba′ satisfies a monic equation over R. Then L = K(a) and R′ is the integral

closure of R[a]. Let d ∈ R be the discriminant of the minimal polynomial of a

over R. By assumption d 6= 0. Using Lemma 3.10 we have dR′ ⊂ R[a], so R′ is a

submodule of the finite module
∑n−1

j
aj

d
R, where n is the degree of L over K. Since

R is Noetherian, this implies that R′ is finite over R. �
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Let us now consider an application of these results to the case of polynomial rings

over Japanese domains.

Theorem 3.12. Let R be a Japanese domain and let x1, . . . , xm be elements which

are algebraically independent over R. Then R[x] = R[x1, . . . , xm] is again Japanese.

Proof. Write k = Quot(R), K = Quot(R[x]) and let L be a finite field extension of

K. We prove the result in three steps:

Step 1: By assumption, the integral closure R′ of R (in k) is finite over R. Hence

R′[x] is finite over R[x] and the integral closure of R′[x] in L coincides with that

of R[x]. Therefore we may assume that R is integrally closed. In particular, by

Corollary 3.11, we obtain the result in the case where L is separable over K.

Step 2: Now assume that L is inseparable over K. We prove that we can take L

to be purely inseparable over K. First, note that we may always replace L by a

finite extension L′: if the integral closure of R[x] in L′ is finite, then the integral

closure of R[x] in L is a submodule of the former and hence finite as well, since

R[x] is Noetherian. Thus we replace L by the normal closure L′ of the extension

L/K. Consider the subfield F of L which consists of all elements fixed by the K-

automorphisms of L. Then F/K is purely inseparable and L/F is Galois. By the

transitivity of integral extension, it is enough to prove that the integral closure of

R in F is finite.

Step 3: Finally, assume that L is finite purely inseparable over K. Then there

exists a power q of the characteristic p of K such that L is obtained by adjoining

finitely many q-th roots of elements fi ∈ R[x] to K. Let a1, . . . , ar ∈ R be all the

coefficients of the elements fi and set k′ = k(a
1/q
1 , . . . , a

1/q
r ), which is finite over k.

Replace L with the finite field extension L′ = k′(x
1/q
1 , . . . , x

1/q
n ). Write R′ for the

integral closure of R[a
1/q
1 , . . . , a

1/q
r ] (inside its quotient field k′). By assumption R′ is

finite over R, hence R′[x
1/q
1 , . . . , x

1/q
n ] is finite over R[x]. Observe that the elements

x
1/q
i are algebraically independent over R′. Hence R′[x

1/q
1 , . . . , x

1/q
n ] is normal; in

particular, it is the integral closure of R[x] in L′ and we are done. �

Remark 3.13. Note that Theorem 3.12 in particular implies that any domain A

finitely generated over a field k is Japanese. Namely, by Noether normalization, A

is finite over a polynomial ring k[x1, . . . , xn], which is Japanese by the above.

Before we come to the proof of the power series version, we need the following

two results.

Lemma 3.14. Let (R,m) be a normal semi-local domain and denote by R̂ its com-

pletion. Let t ∈ R be nonzero and not a unit and assume that, for every associated

prime p of tR, the extension pR̂ is radical. If z ∈ Frac(R̂) is integral over R̂ and

such that tz ∈ R̂ then z ∈ R̂.

Proof. Denote by p1, . . . , pr the associated primes of tR. Since R is normal, each pi

is of height 1 and Rpi is a DVR. Set S =
⋂
i(R−pi), then RS = S−1R is a semi-local
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Dedekind domain with maximal ideals given by the images of the pi. Note that

a semi-local Dedekind domain is already a PID and hence all piRS are principal;

choose for example for each i an element ti ∈ pi with ti /∈
⋂
j 6=i pj, then ti generates

piRS. In particular, each pi-primary ideal is generated by a power of ti, so write

tRS = tα1
1 . . . tαr

r RS. Note that tα1
1 . . . tαr

r ∈ tR, since tR =
⋂
i p

(αi)
i , where p

(αi)
i

denotes the αi-th symbolic power of pi.

Let z ∈ Frac(R̂) be integral over R̂, then we claim it is enough to show that there

exists s ∈ S such that stz ∈ tα1
1 . . . tαr

r R̂. Then stz ∈ tR̂. By the definition of S the

element s is not a zero divisor in R/tR, so by flatness also not in R̂/tR̂. Hence tz

must be zero modulo tR̂, so we can write tz = tz′ for some z ∈ R̂. Since t is not a

zero divisor in R̂ we have z = z′ in Frac(R̂) and we are done.

Consider the following set

{(ξ1, . . . , ξr) ∈ Zr≥0| ∃s ∈ S : stz ∈ tξ11 . . . tξrr R̂}

and take a maximal element (β1, . . . , βr) with respect to the degree partial ordering

on Zr≥0. It is sufficient to prove that βi ≥ αi for all i. Assume without loss of

generality that β1 < α1. Let s ∈ S,y ∈ R̂ with stz = tβ11 . . . tβrr y. Denote by

q1, . . . , qm the associated primes of p1R̂. Then, by Lemma 3.7, each R̂qj is a DVR;

let wj be its associated valuation with wj(t1) = 1 and write φj for the canonical

ring map Frac(R̂)→Quot(R̂qj). Since z is integral over R̂ the element φj(z) is

integral over R̂qj . But the latter is a DVR, hence in particular integrally closed, so

φj(z) ∈ R̂qj and wj(φj(z)) ≥ 0. Therefore we obtain the inequality

β1 + wj(φj(y)) = wj(φj(t
β1
1 . . . tβrr y)) = wj(φj(stz)) ≥ wj(φj(t)) = wj(t

α1
1 ) = α1

and, by using our assumption β1 < α1, we see that wj(φj(y)) ≥ 1 and hence φj(y) ∈
qjR̂qj . But this implies that y ∈ qj for all j. Since p1R̂ is radical it is the intersection

of its associated primes and we see that y ∈ p1R̂. Localizing R̂ with respect to S

gives us y ∈ p1R̂S = t1R̂S, so there exists s′ ∈ S such that s′y ∈ t1R̂. Set s′′ =

ss′ ∈ S, then s′′tz ∈ tβ1+1
1 . . . tβrr R̂, which gives a contradiction to the maximality of

(β1, . . . , βr). �

Lemma 3.15. Let (R,m) be a normal local domain and assume that R is formally

normal. Let L be a finite separable extension of K = Quot(R) and denote by S the

integral closure of R in L. Assume furthermore that every prime q⊂S with ht(q) = 1

is formally unramified. Then the completion Ŝ of S is reduced and integrally closed

(in its total ring of fractions).

Proof. Using the same arguments as in the proof of Corollary 3.11, we may assume

that there exists an element a ∈ L such that L = K(a), S is the integral closure of

R[a] (in L = Quot(R[a])) and S is finite over R. Now apply Lemma 3.2 and 3.3 to

get that R̂[a] is a subring of Ŝ such that Frac(R̂[a]) = Frac(Ŝ). Let (Ŝ)′ denote the

integral closure of Ŝ inside its total ring of fractions and d be the discriminant of the
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monic irreducible polynomial over R which has a as a root. Then by Lemma 3.10

we have d(Ŝ)′⊂ R̂[a]. Apply Lemma 3.14 to see that Ŝ = (Ŝ)′. In order to see that

Ŝ is reduced, let s ∈ Ŝ be a nilpotent element. By faithful flatness, every nonzero

x ∈ S is not a zero divisor in Ŝ, so s
x

is an element of Frac(Ŝ) which is integral over

Ŝ. Hence s ∈ xŜ for every x ∈ S, x 6= 0. In particular, s is contained in arbitrarily

high powers of the Jacobson radical of Ŝ. By Krull’s intersection theorem, we have

s = 0. �

Now we come to the proof of the power series version of Zariski’s Main Theorem,

which we will prove for local rings essentially of finite type either over field or over a

Nagata Dedekind domain. Note that for any domain of dimension 1, being Nagata

is equivalent to Japanese. Hence, by Corollary 3.11, every Dedekind domain of

characteristic 0 is Nagata, for example Z.

Theorem 3.16 (Power series version). Let A be either a field or a Nagata Dedekind

domain and (R,m) a local domain containing A such that R is essentially of finite

type over A. If R is normal then R is formally normal.

Proof. We will only prove the theorem in the case where Quot(A)⊂Quot(R) is sep-

arable. For the inseparable case, we would need an additional argument at the end

of the proof, see [Nag62, p.139].

For the proof of the theorem we need to show that the hypothesis of Lemma 3.15

holds, namely that any local ring essentially of finite type over A is formally unrami-

fied. For this we could use Theorem 3.8 in combination with Theorem 3.9; however,

since we skipped the proof of the latter, we provide another proof in our special

case. In fact, we will prove the following slightly stronger statement:

If (R,m) is a local domain essentially of finite type over A, then R is formally un-

ramified and the integral closure R′ of R is finite over R. If in addition R is normal,

then R is formally normal.

As a first step we show that we can assume that A is a field or a DVR with maxi-

mal ideal n such that the extension of residue fields A/n⊂R/m is algebraic. Write

n = m ∩ A, then An is either a field or a DVR and Nagata again. Hence we can

assume A = An. Let a1, . . . , ar be elements of R such that their images in R/m

form a transcendence basis over A/n. We want to prove that the xi are algebraically

independent over A. Let P (a1, . . . , ar) = 0 be a polynomial relation with coefficients

in A. Modulo m all the coefficients of P have to be zero, so they must be elements

of n. If A is a field then we are done, so consider the case where A is a DVR. Then

n is principal, for example n = (t), so we can write every coefficient as a product of

a unit and a power of t. If one of the coefficients of P is nonzero, then divide P = 0

by suitable power of t to obtain a polynomial relation P̃ (a1, . . . , ar) = 0 with one

coefficient not in n, which gives a contradiction. Hence a1, . . . , ar are algebraic over

A. Consider the ring B = A(a1, . . . , ar). If A was a field, then B is again a field and
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R/m is algebraic over B. If A is a DVR, then B is again a DVR and what is left

to prove is that B is Nagata. Note that it is sufficient to show that B is Japanese,

which follows from Corollary 3.12. Finally, since Quot(B) is an intermediate field

of Quot(A)⊂Quot(R), the field extension Quot(B)⊂Quot(R) is separable and we

can assume A = B.

Let us prove the statement by induction on the dimension of R. If dim(R) = 0,

then R is a field and the assertion is trivial. Otherwise let x1, . . . , xm be a system

of parameters of R, i.e. x1, . . . , xm generate an m-primary ideal of R and they are

minimal with this property. By the definition of the xi we have that m = dim(R).

If A is a DVR, we can assume without loss of generality that x1 ∈ n. Note that

there exists a chain of primes

(0)⊂ q1⊂ q2⊂ . . . qm = m

such that xi ∈ qj only if j ≤ i. Write A[x] = A[x1, . . . , xm] and set A′ = A[x](x),

where (x) = (x1, . . . , xm) is a maximal ideal of A[x]; note that if A is a DVR, the

ideal n is contained in (x). Intersecting the above chain with A′ yields that A′ has

at least dimension m. But the maximal ideal of A′ is generated by x1, . . . , xm, so A′

is a regular local ring of dimension m. Since A is either a field or a DVR and hence

universally catenary we have that A′ is universally catenary again. Hence, we can

use the dimension formula for A′⊂R

dim(R)︸ ︷︷ ︸
=m

+ trdegA/nR/m︸ ︷︷ ︸
=0

= dim(A[x])︸ ︷︷ ︸
=m

+ trdegQuot(A′) Quot(R)

and we obtain that Quot(A′)⊂Quot(R) is a finite extension. Note that, by Corol-

lary 3.12 again, the ring A′ is Japanese. Write L = Quot(R) and consider the

integral closure C of A′ in L which is semi-local and finite over A′. Since A′ is

regular local, its completion is regular again and hence in particular normal. By our

induction assumption and Corollary 3.6, every quotient C/q, with q a nonzero prime

of C, is formally unramified. Hence the hypotheses of Lemma 3.15 are fulfilled and

we get that Ĉ is reduced and integrally closed in its total ring of fractions. Write

R′ for the subring of L generated by R and C. Since C is finite over A′ we have

that R′ is finite over R and hence semi-local. Let m′ be any maximal ideal of R′,

then q = m′ ∩ C is a maximal ideal of C and Cq is formally normal. If we show

that R′m′ = Cq then it follows that R′ is normal and formally normal. Hence R is

formally unramified and R′ is the integral closure of R (and finite over R). If R is

normal then R = R′ and we have proven our assertion.

So for the final step, let us prove that R′m′ = Cq. Since Cq→R′m′ is local we get

a local ring map between the completions φ : Ĉq→ R̂′m′ . Moreover, since R/(x) is

finite over A/n the same holds for R′/qR′ over C/q. So by Lemma 3.4 we get that
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R̂′m′ is finite over φ(Ĉq). Hence we have the equality

dim(Ĉq) = dim(Cq) = dim(R′m′) = dim(R̂′m′) = dim(φ(Ĉq)).

Since Ĉq is a domain, it follows from the above equality that φ is injective. Hence R̂′m′

and in particular R′m′ are integral over Ĉq. Observe that, since L is finite separable

over Quot(A′), we have that Quot(C) = L. To finish the proof, it is sufficient to

prove the next lemma. �

Lemma 3.17. Let R be a domain and S a faithfully flat extension of R. Then

x ∈ Quot(R) is integral over R if and only if x⊗ 1 ∈ Quot(R)⊗R S is integral over

S.

Proof. Let x ⊗ 1 be integral over S, which means that there exist s0, . . . , sd−1 ∈ S
such that

xd ⊗ 1 + xd−1 ⊗ sd−1 + . . .+ 1⊗ s0 = 0

Write x = a
b

with a, b ∈ R. By multiplying the equation with bd, and since

S→Quot(R)⊗ S is injective, we get

ad + ad−1bsd−1 + . . .+ bds0 = 0

in S. Hence ad lies in the ideal (ad−1b, ad−2b2, . . . , bd)S. Since S is faithfully flat

over R we have (ad−1b, . . . , bd)S ∩ R = (ad−1b, . . . , bd)R (see [Mat89, Theorem 7.5]

for example) and hence we obtain an integral equation for a over R. �

The following is an immediate consequence of the theorem. It states roughly that

“normalization separates formal branches”.

Corollary 3.18. Let (R,m) be a local domain essentially of finite type over A, where

A is either a field or a Nagata Dedekind domain. Let R′ be the integral closure of

R. Then the set of maximal ideals of R′ is in bijection to the set of minimal primes

of R̂.

Proof. From the proof of Theorem 3.16 we see that R′ is finite over R. So R′ is in

particular semi-local; denote its maximal ideals by m′1, . . . ,m
′
r. Lemma 3.1 and 3.2

show that R̂ is a subring of R̂′ ' R̂′m′1
× . . .× R̂′m′r . By Theorem 3.16 each R̂′mi

is a

normal domain. Using Corollary 3.3 we see that

m′i 7→ (R̂′m′1
× . . .× R̂′m′i−1

× (0)× R̂′m′i+1
× . . .× R̂′m′r) ∩ R̂

yields the desired bijection. �
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4. Conclusion: An extended version of ZMT

In this last chapter we want to put together previous results in order to prove

a geometric characterization of normal points. The main ideas and arguments are

taken from unpublished lectures notes by David Mumford and Tadao Oda, which

can be found at http://www.dam.brown.edu/people/mumford/alg_geom/papers/

AGII.pdf.

4.1. A characterization of normal points

First, fix the category for which we will prove the statement: let A be either a

field or a Nagata Dedekind domain and set S = Spec(A). Every scheme that will be

considered is assumed to be integral and of finite type over S. In particular, every

scheme will be Noetherian. These are the minimum assumptions such that we can

use both Theorem 1.23 and 3.16.

Theorem 4.1 (Extended ZMT). Let X be a scheme as above and let x ∈ X be a

point. The following are equivalent:

(1) X is normal at x.

(2) X is formally normal at x.

(3) For every scheme X ′ and every birational morphism f : X ′→X such that x

is fundamental for X 99K X ′, every component of the fiber f−1(x) is positive

dimensional.

Proof. Let mx,mx′ be the maximal ideals of the local rings OX,x and OX′,x′ .
(1) =⇒ (2): This is the power series version, Theorem 3.16.

(2) =⇒ (1): Suppose ÔX,x is a normal domain. The local ring OX,x is a subring

of ÔX,x and observe that, by faithful flatness, we have ÔX,x ∩ Quot(OX,x) = OX,x.
Hence OX,x is a normal domain.

(1) =⇒ (3): This is the original version, Theorem 1.23.

(3) =⇒ (1): Consider the normalization X̃→X. By our assumptions, this is a finite

and birational morphism, in particular it has finite fibers. Hence x is regular for f ′

with image x̃ ∈ X̃, which implies that OX,x ' OX̃,x̃.
(2) =⇒ (3): We will give here an additional proof without using Theorem 1.23,

following an idea in [Mum99, p.212]. Let f : X ′→X be birational, x′ a point of

X ′ with f(x′) = x and assume that x′ is isolated in its fiber. We have to show

that the local ring map ϕ : OX,x→OX′,x′ is an isomorphism. Denote by ϕ̂ be the

induced map on the completions. Note that by assumption OX′,x′/mxOX′,x′ is finite

over κ(x). We can repeat the argument at the end of the proof of Theorem 3.16:

Lemma 3.4 yields that ÔX′,x′ is finite over ϕ̂(ÔX,x). Note that OX,x is universally

http://www.dam.brown.edu/people/mumford/alg_geom/papers/AGII.pdf
http://www.dam.brown.edu/people/mumford/alg_geom/papers/AGII.pdf
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catenary and hence the dimension formula yields

dim(OX′,x′) + trdegκ(x) κ(x′)︸ ︷︷ ︸
=0

= dim(OX,x) + trdegK(X)K(X ′)︸ ︷︷ ︸
=0

.

Therefore we have dim(ÔX,x) = dim(ϕ̂(ÔX,x)). But ÔX,x is a domain, so ϕ̂ is

injective. Then using Lemma 3.17 finishes the proof. �

A straightforward application of Corollary 3.18 yields the following result.

Theorem 4.2. Let X be scheme as above and let x ∈ X be a point. The following

are equivalent:

(1) X is formally irreducible at x.

(2) X is unibranch at x, i.e., the preimage of x under the normalization π :

X̃→X is a single point.

Moreover, any of the equivalent conditions of Theorem 4.1 implies the above prop-

erties.

Proof. Choose an affine open U = Spec(R) of X which contains x. Denote by U ′

the preimage of U under π; then U ′ = Spec(R′) with R′ the integral closure of R.

Write p for the prime of R corresponding to x and T = R − p. Lemma B.1 says

that T−1R′ is the integral closure of Rp. Note that the maximal ideals of T−1R′ are

just the primes of R′ lying over R. Hence, applying Lemma 3.18 yields a bijection

between the set of irreducible components of Spec(ÔX,x) and π−1(x).

For the last part, a formally normal domain is by definition formally irreducible. �

4.2. Examples

Let us finish this chapter by presenting three examples which will illustrate the

statements of Theorem 4.1 and 4.2. The first two are singular curves which serve as

(partial) counterexamples to the theorem in the non-normal case. The third one is

an isolated surface singularity which is normal.

Example 4.3. Let X = V (y2−x3) be the cubic cusp in A3
k. Then 0 ∈ X is a singular

point of X and hence not normal. For example, the element y/x ∈ K(X) is inte-

gral over the local ring OX,0 = k[x, y](x,y)/(y
2 − x3). Consider the parametrization

A1
k→X given by t 7→ (t2, t3). By Remark 1.18 we see that statement (3) in Theo-

rem 4.1 does not hold for A1
k→X. Consider the completion ÔX,0, which is a domain.

This can be checked by a calculation. Alternatively, note that our parametrization

A1
k→X is the normalization of X and the preimage of 0 ∈ X is a single point.

Hence X is unibranch at 0 and we can apply Theorem 4.2 to see that X is formally

irreducible at 0. On the other hand, ÔX,0 is not normal; for example, it does not

contain the element y/x.
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Example 4.4. Consider the cubic node X = V (y2− x2(x+ 1)) in A3
k. Then X is not

normal at 0; again, the element y/x is integral over OX,0. As before, we consider

a parametrization f : A1
k→X given by t 7→ (t2 − 1, t(t2 − 1)). The morphism f is

birational and 0 is fundamental for the rational inverse of f . But f−1(0) consists of

the two points −1,+1 ∈ A1
k. In particular, statement (3) of Theorem 4.1 fails. It is

easy to check that f is the normalization of X. Hence X is not unibranch at x.

We want to see explicitly that the normalization separates the formal branches of

X at x. Consider first the local ring map OX,0→OA1
k,−1. The induced ring map on

the completions is given by

ϕ : k[[X, Y ]]/(Y 2 −X2(X + 1)) −→ k[[T ]],

X 7→ (T − 1)2 − 1, Y 7→ (T − 1)((T − 1)2 − 1).

We want to compute the kernel of ϕ. Consider the power series F (X) in X given

by the Taylor expansion of
√

1 +X. Then, a computation shows that

ϕ(F (X)) = ϕ(F (T 2 − 2T )) = 1− T.

Hence, we have

ϕ(Y +XF (X)) = (T − 1)(T 2 − 2T ) + (T 2 − 2T )(1− T ) = 0,

and since the ideal (Y +XF (X)) is a minimal prime of ÔX,0 we get ker(ϕ) = (Y +

XF (X)). Observe that the other minimal prime of ÔX,0 is given by (Y −XF (X)),

and, by the same argument as above, it is the kernel of the local ring map

ÔX,0 −→ ÔA1
k,+1.

Hence we see that, on the level of completed local rings, the normalization of X

identifies the formal components of X at 0.

Example 4.5. Let X = V (x2 + y2 − z2) be the double cone in A3
k. It is regular

outside the origin 0 ∈ X. The inverse of the usual stereographic projection induces

a morphism f : A2
k→X, given by

(s, t) 7→ (2st, s(1− t2), s(1 + t2)).

Algebraically, this embeds OX into k[S, T ] as the subring k[S, ST, ST 2]. Hence

f is birational and an isomorphism outside of the closed subset Z = {s = 0}.
Furthermore, 0 ∈ X is the only point fundamental for X 99K A2

k and f−1(0) = Z,

which is closed irreducible of dimension 1. So the statement of the original version

of ZMT holds for f . In fact, one can prove that X is normal at 0.
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Appendix A. General results of commutative algebra

In this section we want to recall some results from commutative algebra. Let us

start with the following version of the Hilbert’s Nullstellensatz.

Theorem A.1. Let k be a field and K ⊃ k a field extension which is finitely

generated as a k-algebra. Then K is finite over k.

The following gives a characterization of Artinian rings.

Lemma A.2. Let R be a Noetherian ring. Then the following are equivalent:

(1) R is Artinian.

(2) dim(R) = 0.

(3) Spec(R) is finite and discrete.

(4) Spec(R) is finite.

If R is finitely generated over a field k, then any of the conditions above is equivalent

to

(5) R is finite over k.

Lemma A.3 (Prime avoidance). Let R be a ring and I1, . . . , Is be ideals of R such

that Ik are prime for k > 2. Let J ⊂R be any subset; if J is not contained in any

of the Ik, then J is not contained in
⋃
Ik.

Proof. Prove the statement by induction on s. The case s = 1 is trivial; use the

induction hypothesis to choose for each j an element zj in J −
⋃
k 6=j Ik. If zj /∈ Ij

then we are done, so assume zj ∈ Ij. Set z =
∏s−1

j=1 zj + zs ∈ J . If z ∈ Ij for some

j < s then zs is in Ij, a contradiction. Assume that z ∈ Is, then
∏s−1

j=1 zj is in Is. If

s = 2, then this gives a contradiction to the choice of z1. If s > 2 then, since Is is

prime, zj ∈ Is for some j < s, which is again a contradiction. �

In rings which are not Noetherian, there might not exist a primary decomposition

any more. Nonetheless, we have the following result.

Lemma A.4. Let R be a ring, I an ideal of R and n a prime containing I which is

minimal with this property. Then, for every element x ∈ n, there exists t ∈ R, t /∈ n

and d > 0 such that txd ∈ I.

Proof. We pass to the ring R/I and assume that I = 0. Consider the localization

Rn. By assumption, the nilradical of this ring equals nRn. Therefore, the image of

x in Rn is nilpotent. This in turn implies that there exist t /∈ n and d > 0 such that

txd = 0. �

Finally, we want to introduce universally catenary rings: Let R be a ring and

p1⊂ p2⊂ . . .⊂ pr a chain of primes of R, then this chain is said to have length r.

A chain of primes of R is called saturated if there does not exist a prime of R
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contained inbetween two consecutive terms. The ring R is called catenary if for any

two primes p, p′ of R with p⊂ p′, there exists a saturated chain starting with p and

ending with p′ and all such chains have equal length. Notice that any localization

and any quotient of a catenary ring is again catenary.

We say that a ring R is universally catenary if R is Noetherian and all rings which

are finitely generated over R are catenary. In particular, for any finite type ring

map R→S with R universally catenary we have that S is universally catenary as

well. Almost all Noetherian rings encountered in algebraic geometry are universally

catenary; for example, by [Mat89, Theorem 17.9], we have that a Cohen-Macaulay

ring (and any quotient of it) is universally catenary. Note that a regular local ring is

Cohen-Macaulay local. In particular, a Dedekind domain and any algebra of finite

type over it are universally catenary. We will use this fact in Chapter 3 and 4.

The main property we need from universally catenary rings is the following: Let

R be a Noetherian domain and R⊂S an extension of domains; we say that the

dimension formula holds between R and S if, for every prime q of S with p = q∩R,

we have that

ht(q) + trdegκ(p) κ(q) = ht(p) + trdegQuot(R) Quot(S).

The dimension formula relates to universally catenary rings as follows.

Theorem A.5. Let R be a Noetherian ring. Then R is universally catenary if and

only if for every prime p of R and every finite type ring map R/p→S with S a

domain the dimension formula holds between R/p and S.

See [Mat89, Theorem 15.6].

Appendix B. Integral closure and normal rings

We assume that the reader is familiar with the definition of integral extensions

and integral closure. Let us just fix the terminology: If R is a domain, then by

Quot(R) we denote the quotient field of R. We say that R is integrally closed if R

is integrally closed in Quot(R). The first result is that integral closure behaves well

under localization.

Lemma B.1. Let R→S be a ring map and U any multiplicatively closed subset of

R. Denote by R′ the integral closure of R in S; then U−1R′ is the integral closure

of U−1R in U−1S.

Recall that a ring R is called normal if all localizations Rp for p⊂R a prime are

integrally closed domains. Note that a normal ring is by definition reduced.

If R is any ring, we consider the multiplicatively closed set U consisting of all

elements of R which are not zero divisors. We call U−1R the total ring of fractions
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of R and denote it by Frac(R). Note the natural map R→Frac(R) is injective. If

R is a domain, then clearly Frac(R) = Quot(R).

Lemma B.2. Let R be a reduced ring. Then the following are equivalent:

(1) R is normal.

(2) R is integrally closed in Frac(R).

With the next result we want to recall the Going-Up resp. Going-Down properties:

Theorem B.3. Let R⊂S be an integral extension of rings. Then R⊂S satisfies

the following properties:

Lying Over: For every prime p of R there exists a prime q of S with

q ∩R = p.

Incomparability: If q, q′ are two primes of S lying over the same prime p

of R, then q 6⊂ q′ and q′ 6⊂ q.

Going-Up: Let p⊂ p′ be two primes of R and q a prime of S with q∩R = p.

Then there exists a prime q′ of S containing q and such that q′ ∩R = p′.

If in addition S is a domain (which implies that R is domain) and R is integrally

closed, then the following holds:

Going-Down: Let p⊂ p′ be two two primes of R and q′ a prime of S with

q′ ∩R = p′. Then there exists a prime q of S, contained in q′, and such that

q ∩R = p.

Corollary B.4. Let R⊂S be an extension of rings with S finite over R. Then over

each prime p of R there exist only finitely many primes of S lying over p.

All the above statements are proven in [Mat89, Ch.9].

There exist several characterizations of normal rings, for example Serre’s criterion,

which uses the ring-theoretic notion of depth. See [Mat89, Theorem 23.8] for a refer-

ence. Another result characterizes integrally closed domains which are Noetherian:

Theorem B.5. Let R be a Noetherian domain. Then R is integrally closed iff R is

a Krull ring, i.e. if the following properties hold:

(1) R =
⋂

ht(p)=1

Rp.

(2) Each Rp with ht(p) = 1 is a discrete valuation ring.

A complete proof is contained in [Mat89, Ch. 11 and 12].

We want to add a useful lemma here. It says that in particular, every ring R which

is an intermediate ring of an algebraic field extension k⊂K is a field itself.

Lemma B.6. Let R⊂S be an extension of domains. Let x ∈ R and assume that

x−1 ∈ S and x−1 is integral over R. Then x−1 ∈ R.
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Proof. By assumption we have an integral equation

x−d + ad−1x
−d+1 + . . .+ a1x

−1 + a0 = 0

with ai ∈ R. Multiplying with xd−1 yields

x−1 = −ad−1 − . . .− a1xd−2 − a0xd−1 ∈ R.

�

Appendix C. Schemes

We assume that the reader is familiar with the definition of an abstract scheme

and proceed by recalling the basic definitions and results needed here. Let us first

fix some notation: if X is a scheme, write OX for the structure sheaf on X. If U

is an open subset of X, we write Γ(U,OX) for the ring of sections associated to U .

For any point x of X denote by OX,x the stalk of OX at x and by κ(x) the residue

field of OX,x.
Let X be a scheme. We say that X is reduced if for every affine open U of X the

ring Γ(U,OX) is reduced. X is called integral if it is reduced and irreducible (more

precisely, if its underlying topological space is irreducible). It is easy to show that

if X is integral, then Γ(U,OX) is a domain for every open affine U of X. Note that

any integral scheme X has a unique generic point ξ ∈ X and the stalk OX,ξ is a

field. We write K(X) = OX,ξ and call it the function field of X.

A scheme X is called locally Noetherian if, for every affine open U of X, the ring

Γ(U,OX) is Noetherian. If in addition X is quasi-compact (i.e. every open covering

of X admits a finite subcovering) we say that X is Noetherian. Note that for any

Noetherian scheme X its underlying topological space is Noetherian as well, in par-

ticular X has only finitely many irreducible components.

Let f : X→Y be a morphism of schemes. We say that f is locally of finite

type if for every affine open U of X and V of Y with f(U)⊂V , the ring map

Γ(V,OY )→Γ(U,OX) is of finite type. Again, if f is in addition quasi-compact then

f is said to be of finite type. We can define locally of finite presentation and of finite

presentation in a completely analogous way. Note that if S is locally Noetherian,

then for any morphism X→S being locally of finite type is equivalent to being

locally of finite presentation. Furthermore, if a scheme X is of finite type over a

Noetherian base scheme S, then X is Noetherian itself.

We say that a scheme X is of finite type over a field k if there exists a morphism

X→ Spec(k) which is of finite type. The next result is just a variant of Hilbert’s

Nullstellensatz:

Theorem C.1. Let X be of finite type over a field k, then the underlying topological

space of X is Jacobson, i.e. every nonempty locally closed subset contains a closed

point of X.
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A morphism f : X→Y is called affine if the preimage of any affine open of Y

under f is an affine open of X. We say that f is integral if f is affine and for every

affine open V = Spec(R) of Y with preimage f−1(V ) = Spec(S) such that the ring

map R→S is integral. The morphism f is called finite if it is affine and for every

V = Spec(R), f−1(V ) = Spec(S) as above the ring map R→S is finite. By the

definitions it is clear that f finite is equivalent to f integral and locally of finite

type.

Let f : X→Y be a morphism and consider the diagonal morphism ∆ : X→X×Y X
given by the diagram

X
id //

id
��

X

f
��

X
f
// Y

Then f is called separated if ∆ is a closed immersion.

Recall that a map between topological spaces is called closed if the image of any

closed subset is closed. If f : X→Y is a morphism, then we say that f is universally

closed if f is closed (as a map between the underlying topological spaces of X and

Y ) and for every morphism Y ′→Y , the base change f ′ : X×Y Y ′→Y ′ of f is closed

again.

Finally, a morphism f : X→Y is called proper if it is separated, of finite type

and universally closed. Both separatedness and properness are properties closely

related to topological notions, see more in [Har77, II.4]. The main result on sepa-

rated/proper morphisms we will need is the valuative criterion, see Chapter E.

Let X be a locally Noetherian scheme. Then X is called universally catenary if

for every affine open U = Spec(R) of X the ring R is universally catenary, which is

equivalent to OX,x universally catenary for all x ∈ X. From the results of Chapter A

we get that every scheme X of finite type over Spec(A), where A is a Dedekind do-

main, is universally catenary. Furthermore, if X→Y is a morphism between integral

and universally catenary schemes, the dimension formula says that

dim(OX,x) + trdegκ(f(x)) κ(x) = dim(OY,f(x)) + trdegK(Y )K(X).

Finally, recall that a morphism f : X→Y is said to be dominant if f(X) is dense in

Y . In the case where X has only finitely many irreducible components (for example,

if X is Noetherian) there is the following result:

Lemma C.2. Let f : X→Y be a morphism of schemes and assume X has only

finitely many irreducible components. Then f is dominant if and only if for every

component of Y its generic point is contained in f(X). In this case Y has only

finitely many irreducible components as well.

Proof. Every point z of Y lies in an irreducible component Z. Denote by ξZ the

generic point of Z; if ξZ ∈ f(X) then y ∈ Z ⊂ f(X).
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Conversely, assume f is dominant. Decompose X = X1∪. . .∪Xr into its components

and denote by ηi the generic point of Xi. We have Y =
⋃
f(Xi) with each f(Xi)

irreducible and such that its generic point f(ηi) is contained in f(X). �

Let us finish by showing that, for a dominant morphism between integral schemes,

all ring maps between the rings associated to affine opens are injective.

Lemma C.3. Let ϕ : R→S be a ring map with corresponding morphism f :

Spec(S)→ Spec(R). Then f(Spec(S)) = {p ∈ Spec(R) : ker(ϕ)⊂ p}. In partic-

ular, f is dominant if and only if ϕ is injective.

Corollary C.4. Let f : X→Y be a dominant morphism between integral schemes.

Then, for affine opens U ⊂X, V ⊂Y such that f(U)⊂V the induced ring homomor-

phism Γ(V,OY )→Γ(U,OX) is injective. In particular, for every point x ∈ X the

local homomorphism OY,f(x)→OX,x is injective.

Proof. Denote by η the generic point of X and by ξ the generic point of Y . Since f

is dominant it maps η to ξ. Furthermore, since X is integral, we get that every affine

open U ⊂X must contain η. So taking an affine open V ⊂Y with f(U)⊂V we get

that the morphism res(f) : U→V maps the generic point of U to the generic point

of V . Hence it is dominant and the corresponding map of rings is injective. �

Appendix D. Normal schemes and normalization

Let X be any scheme and x ∈ X a point. We say that x is a normal point of X

(or alternatively, that X is normal at x) if the local ring OX,x is an integrally closed

domain. The scheme X is called normal if X is normal at all points x ∈ X. By

definition, a normal scheme is necessarily reduced.

Let us now define the normalization of an integral scheme X. First assume that

X = Spec(R) is affine. Consider the integral closure R′ of R inside Quot(R). Set

X̃ = Spec(R′). Then the inclusion R⊂R′ induces a morphism X̃→X and we will

call this the normalization of X. In the case where X is not affine, we can globalize

this construction. This process is rather technical and makes use of a few results

and definitions not covered here. We will only need the properties listed below, so

any proofs are omitted. As a general reference, see for example [GW10, (12.10)].

Let X be an integral scheme with function field K = K(X). Then K induces a

quasi-coherent sheaf KX on X via Γ (U,KX) = K for all opens U of X. We define

a pre-sheaf A on X by

Γ (U,A) = {z ∈ K : z is integral over Γ(U,OX)}.

One can prove that A is a quasi-coherent OX-algebra. Hence A defines an X-scheme

X̃ = Spec(A). We call the natural morphism π : X̃→X the normalization of X.
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By definition π is affine. Furthermore, from the affine case we obtain the following

properties:

• The scheme X̃ is integral and normal.

• The morphism π is integral, surjective and we have that dim(X̃) = dim(X).

• The induced map between function fields K(X)→K(X̃) is an isomorphism.

It is possible to extend the definition of the normalization to more general schemes,

for example to reduced schemes with finitely many irreducible components. How-

ever, we will only need to consider the normalization of integral schemes here.

Appendix E. Valuations

We start with the definition of a valuation. Let Γ be a abelian group, written

additively, and ≥ a total order on Γ which is compatible with the group operation.

Introduce a new symbol∞ and extend both operation and order to Γ ∪{∞} via the

rules a+∞ =∞+ a =∞ and ∞ ≥ a for all a ∈ Γ . Let K be a field. A valuation

of K is a map v : K→Γ ∪ {∞} satisfying the following properties for all x, y ∈ K:

(1) v(x) =∞ if and only if x = 0.

(2) v(xy) = v(x) + v(y).

(3) v(x+ y) ≥ min(v(x), v(y)).

The subgroup v(K∗) of Γ is called the valuation group of v. Set Rv = {x ∈ K :

v(x) ≥ 0} and mv = {x ∈ K : v(x) > 0}. It is easy to check that Rv is a local ring

with maximal ideal mv, we say that Rv is the valuation ring of v.

Conversely, assume that R is a subring of a field K. We have that the following

properties are equivalent:

(1) For every x ∈ K, we have that x ∈ R or x−1 ∈ R.

(2) R is local, the quotient field of R is K and R is maximal among the set of

local subrings of K together with the partial order given by domination, i.e.

(R,m) ≤ (R′,m) if R⊂R′ and m′ ∩R = m.

(3) There exists an abelian group Γ and a valuation v : K→Γ ∪{∞} such that

R = Rv.

If R satisfies any of these properties we say that R is a valuation ring and call v of

(3) its associated valuation.

We say that a subring R of K is a discrete valuation ring, or DVR for short, if there

exists a valuation v : K→Z ∪ {∞} such that Rv = R. There are many equivalent

definition for a DVR and we want to list those that will be used here.

Proposition E.1. Let (R,m) be a local domain. Then the following are equivalent:

(1) R is a DVR.

(2) R is a Noetherian valuation ring.

(3) R is Noetherian, integrally closed and dim(R) = 1.
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(4) R is Noetherian, m is principal and dim(R) > 0.

For a proof see Theorem 11.1 and 11.2 in [Mat89].

Let us now proceed with an important lemma connecting valuation rings to normal

local rings. In fact, Corollary E.3 is the main result behind Theorem 1.20.

Lemma E.2. Let A be a normal domain with quotient field K. For every x ∈ K,

x /∈ A there exists a valuation ring A⊂R⊂K of K such that x /∈ R.

Proof. Suppose x ∈ K not contained in A. Set B = A[x−1], then x /∈ B; since

otherwise x = x−d + . . . + a0, ai ∈ A, and multiplying this equation with xd yields

an integral equation for x over A. So x−1 is not a unit in B and hence is contained

in a maximal ideal m of B. Consider Bm and take any valuation ring R dominating

it. Then x /∈ R since x−1 is contained in the maximal ideal of R. �

Note that if in the above statement we suppose that A is local then for each

x the chosen valuation ring R will dominate A. Hence we get the following easy

consequence:

Corollary E.3. Let A be a normal local domain. Then A is the intersection of all

valuation rings of K = Quot(A) which dominate A inside K.

Lemma E.4. Let R be a valuation ring of a field K. Let X be any scheme. To

give a morphism Spec(K)→X is equivalent to giving a point x1 ∈ X and a field

extension κ(x1)⊂K. To give a morphism Spec(R)→X is equivalent to giving two

points x0, x1 ∈ X with x0 ∈ {x1} and a field extension κ(x1)⊂K such that R

dominates the local ring OZ,x0 on the subscheme Z = {x1}⊂X with its reduced

scheme structure.

For a proof see [Har77, Lemma II.4.4].

Theorem E.5 (Valuative criterion of separatedness/properness). Let f : X→Y be

a morphism of schemes and assume that X is Noetherian.

(1) The morphism f is separated if and only if, for every valuation ring R with

quotient field K and every commutative diagram

Spec(K) //

��

X

��
Spec(R) // Y

with Spec(K)→ Spec(R) induced by the inclusion R⊂K, there exists at most

one diagonal morphism Spec(R)→X making the diagram commute.

(2) Assume furthermore that f is of finite type. Then f is proper if and only if for

every valuation ring R with K = Quot(R) and every diagram as above, there

exists exactly one diagonal morphism Spec(R)→X such that the diagram

commutes.
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This is Theorem II.4.3 and Theorem II.4.7 in [Har77].

Appendix F. Completion and flatness

We refer the reader to [AM94, Chapter 10] and [Mat89, Chapter 8] for the def-

inition of the completion of a ring with respect to one of its ideals. Our aim here

is to repeat the properties of the completion which we will make use of in Chap-

ter 3. From now on, let R be any ring, I an ideal of R and denote by R̂ the I-adic

completion of R. Assume that R is Noetherian, then we have the following:

• The completion R̂ is flat over R (see [Mat89, Theorem 8.8]). Furthermore, if

I is contained in the Jacobson radical of R, then R̂ is faithfully flat over R.

• The associated graded rings of R and R̂ are isomorphic. In particular, R̂ is

Noetherian again (see [AM94, Theorem 10.26]).

• If (R,m) is local, then R̂ is local again with maximal ideal m̂ = mR̂ and we

have dim(R) = dim(R̂) (see [AM94, Corollary 11.19]).

The following version of Krull’s intersection theorem can be found in [AM94, Corol-

lary 10.19].

Theorem F.1 (Krull’s intersection theorem). If A is Noetherian and I is contained

in the Jacobson radical of R, then
⋂
n I

n = (0). In particular, the canonical map

A→ Â is injective.

To finish, let us recall some basic properties of flat resp. faithfully flat extensions.

Lemma F.2. Let R→S be a flat ring map.

(1) If t ∈ R is not a zero divisor in R then it is not one in S as well.

(2) If I,J are ideals of R, then IS ∩ JS = (I ∩ J)S.

(3) Assume that R⊂S is faithfully flat. Then, for every ideal I of R, we have

IS ∩R = I.
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