DIPLOMARBEIT

Titel der Diplomarbeit

„Crúachan Ai“ – Der Königssitz von Rathcroghan –

Vergleich einer altirischen Erzählung mit archäologischen und
gephysikalischen Befunden“

Verfasserin

Tanja Trausmuth

angestrebter akademischer Grad

Magistra (Mag.)

Wien, 2014

Studienkennzahl lt. Studienblatt: A 057 327
Studienrichtung lt. Zulassungsbescheid: Individuelles Diplomstudium Keltologie
Betreuer: Mag.Dr. Raimund Karl, Privatdoz.
Danksagung

An dieser Stelle möchte ich all jenen danken, die durch ihre intensive, persönliche aber auch fachliche Unterstützung zum Gelingen dieser Diplomarbeit beigetragen haben.

Abschließend möchte ich meinem Betreuer Prof. PD Mag. Dr. Raimund KARL FSA FSAscot MifA, der sich stets für meine Anliegen Zeit nahm, für seine außerordentliche Hilfsbereitschaft und Beratung beim Erstellen dieser Arbeit ein ganz großes Dankeschön aussprechen.
Inhaltsverzeichnis

1.) Einleitung .. 6

I.) Die vergangene Landschaft Irlands ... 9
 a.) Irland vor der Ankunft der Menschen ... 10
 b.) Veränderungen seit der Besiedlung durch den Menschen .. 12

II.) Die kulturelle Entwicklung Irlands ab der Spätbronzezeit ... 18
 a.) Die Spätbronzezeit .. 18
 b.) Die Eisenzeit ... 20
 c.) Die Römische Kaiserzeit ... 23
 d.) Das Frühmittelalter ... 23

2.) Rathcrogan - ‘Crúachan Ai’ .. 27

I.) Die literarischen Beschreibungen von ‘Crúachan’ ... 28
 a.) Die ‘Táin Bó Cúailnge’ ... 28
 b.) Die ‘Táin Bó Fraích’ .. 29
 c.) Die Erzählung ‘Fled Bricrenn’ ... 30
 d.) Die Erzählung ‘Fled Bricrenn ocus Loinges mac nDuil Dermait’ 31

II.) Die archäologischen Hinterlassenschaften von Rathcroghan .. 33
 a.) Über Bedeutung & Funktion der ‘königlichen’ Zentren Irlands 33
 b.) Der Fundkomplex ‘Crúachan Ai’ ... 37

III.) Vergleiche mit eisenzeitlichen Anlagen ... 56
 a.) Der Komplex von Tara .. 57
 b.) ‘Emain Macha’ – Navan Fort ... 61
 c.) ‘Dún Ailinne’ – Knockaulin .. 67

3.) Einführung in die archäologische Prospektion ... 74

I.) Geophysikalische Prospektionsmethoden ... 75
 a.) Geomagnetik ... 77
 b.) Elektrischer Widerstand .. 79
 c.) Georadar .. 80

II.) Luftbildarchäologie .. 81

4.) Archäologische & geophysikalische Prospektion in Rathcroghan 84

I.) Monumente & Strukturen rund um, auf und im ‘Rathcroghan Mound’ 86
 a.) Die 360-Meter-Einfriedung ... 86
 b.) Die Östlichen Grabhügel ... 89
 c.) Die Nördliche Struktur .. 91
 d.) Strukturen auf dem ‘Rathcroghan Mound’ ... 93
e.) Strukturen im ‘Rathcroghan Mound’ ... 101
II.) Integrierte Neu-Interpretation der geophysikalischen Prospektionen 107
5.) Alternativer Übersetzungsvorschlag von Teilen der ‘Táin Bó Fraích’ 116
I.) Zur Übersetzungsproblematik .. 117
II.) Besprechung des altirischen Textes & Vergleich mit den geophysikalischen und
archäologischen Befunden .. 119
6.) Zusammenfassung und Schlussfolgerungen ... 127
7.) Abstract ... 130
8.) Bibliographie und Quellenverzeichnis ... 132
9.) Abbildungsverzeichnis ... 143
10.) Curriculum Vitae ... 149
1.) Einleitung

Als dieser mittelalterlich beschriebene, herrschaftliche Wohnsitz wird weitgehend das heute noch sichtbare Bodendenkmal Rathcroghan, nahe der Ortschaft Tulsk im County Roscommon in Irland, angesehen. (Norman & St Joseph 1969, 65; Raftery 1994, 70; Karl 2005, 119; Mallory 2006a, 504)

Die Eisenzeit Irlands währte verglichen mit der am europäischen Kontinent, sehr lange, da sie zwischen 600 und 400 v. Chr. begann und sich dann nahtlos um ca. 400 n. Chr. ins Frühmittelalter eingliederte. (Raftery 1994, 220; Karl 2005, 117) Obwohl die Entwicklung der irischen eisenzeitlichen Materialkultur, ähnlich der britischen verlief, sowie vom Kontinent beeinflusst wurde, zeigte sie doch sehr charakteristische Eigenheiten auf und einheimische Traditionen wurden fortgesetzt. (Raftery 1994, 221; Karl 2005, 123)

So wie diese antiken Quellen über ‘Kelten‘ mit Begebenheiten in mittelalterlichen Erzählungen in Verbindung gebracht werden, möchte ich mich ebenfalls mit den zuvor genannten zwei Sagen aus dem Mittelalter beschäftigen, in denen die von vielen Archäologen als eisenzeitlich eingestufte Fundstelle von Rathcroghan anschaulich dargestellt wird.

Wie bereits Raftery 1994 feststellte, fanden in den letzten Jahren, durch neue Entdeckungen und zeitgemäße Datierungen erhebliche Fortschritte in der Erforschung der Eisenzeit Irlands statt, die zu einem umfangreichereren Verständnis dieser Periode beitragen konnten. (Raftery 1994, 7)

Seit den 1960er Jahren, als sich geophysikalische Prospektionsmethoden, darunter geoelektrische und geomagnetische Methoden etablierten, traten sie immer stärker ins Licht der Archäologie und gehören heute, zusammen mit Bodenradar, zu den Standard-Methoden für die Auffindung im Boden verborgener archäologischer Strukturen (Leckebusch 2003,

Üblicherweise wird die Interpretation von archäologischen Ergebnissen durch Archäologen durchgeführt, deren Fachwissen über die Komplexität der altirischen Sprache für ein umfassendes Verständnis der Inhalte in der Regel meist nicht hinreichend ausgeprägt ist, um mittelalterliche altirische Texte im Original zu lesen und diese zu übersetzen, und die deswegen - sofern sie auf diese Quellen zurückgreifen möchten - größtenteils auf die Verwendung bereits übersetzter Texte angewiesen sind. Deren Studium und Übersetzung wird wiederum jedoch meistens durch Sprachwissenschaftler vollzogen, die normalerweise nur eingeschränkte Einsicht in archäologische Diskussionen haben oder häufig über keine fachspezifische Ausbildung verfügen. Jedoch wäre eine fächerübergreifende Kommunikation und Zusammenarbeit zwischen den verschiedenen Disziplinen für die Erforschung und ein tieferes Verständnis einer vergangenen Situation erstrebenswert, um eine zeitgemäße, integrativ ausgerichtete Interpretation zu ermöglichen.

Deswegen wird die zentrale Forschungsfrage dahingehend charakterisiert sein, ob die Möglichkeit besteht, die mittelalterlichen Schilderungen des Königssitzes von Ailill und Medb mit den Ergebnissen der geophysikalischen Prospektionen von Rathcroghan gleichzusetzen oder zu verbinden, und zu hinterfragen, ob archäologische und geophysikalische Befunde eine zusätzliche Hilfe bei bisher eventuell unscharfen, oder schwierig zu übersetzenden Textstellen der altirischen Erzählungen geben können. Weiters soll erläutert werden, ob durch die detaillierte literarische Beschreibung des herrschaftlichen Hauptgebäudes, für die im archäologischen Befund zumeist nicht erhaltenen Gebäudeteile, wie etwa Bedachung, Fenster, Innenausstattung, etc., weitere Vorschläge oder neue Impulse und Lösungsansätze für zukünftige Gebäuderekonstruktionen gewonnen werden können.

Da die publizierten Ergebnisse der geophysikalischen Prospektionen georeferenziert sind, ist es möglich, sie durch eine zeitgemäße, kombinierte und integrierte Interpretation in einem digitalen Geographischen Informations-System (GIS) zur Visualisierung, Archivierung und Analyse der gewonnen Daten darzustellen, die verschiedenen Attribute der archäologisch

An diese Fragestellungen soll mit Hilfe einer komparativen, kulturwissenschaftlichen, keltologischen Methode herangegangen werden, da Beschreibungen aus literarischen Quellen mit den Interpretationen archäologischer Befunde verglichen werden.

Um sich die Szenerie, in der die mittelalterlichen irischen Erzählungen einst eingebettet waren, besser vorstellen zu können, soll in den folgenden Kapiteln die landschaftliche Umgebung und kulturelle Situation der ehemaligen Bevölkerung Irlands kurz dargestellt werden.

I.) Die vergangene Landschaft Irlands

Irland besteht heutzutage „aus einem an Mooren und Seen reichen schüsselförmigen Tiefland (fast 2,5% der Gesamtfläche bilden Binnengewässer), das die Eiszeit prägte, und das an der Küste Bergland umgibt.“ „Die Feuchtigkeit des Landes und der Niederschlagsreichtum“ ermöglichen die „notorische Grünheit des Landes, die die Bezeichnung „Emerald Isle“ oder „Grüne Insel“ rechtfertigt“, und „etwa 85% der Gesamtfläche werden landwirtschaftlich genutzt, davon sind wieder etwa 17% Ackerland, der Rest Wiesen und Weiden“ (Birkhan 2005, 41, 45).

Seit dem Ende der letzten Eiszeit, ca. 12.000 v. Chr., unterlag Irlands Landschaft einem stetigen Wandel, der sich sowohl durch die Einwirkung natürlicher Kräfte, als auch durch Beeinflussung des Menschen vollzog. (Hall 2011, 2)

a.) Irland vor der Ankunft der Menschen

Während der Eiszeit, die ca. 120.000 Jahre andauerte, bedeckte eine über 1 Kilometer dicke Eisschicht den Norden und die ‘midlands’ von Irland, und nur der Süden war möglicherweise eisfrei und teilweise mit Flecken von roten, braunen, grünen und violetten Algen bedeckt. Nachdem um ca. 19.000 v. Chr. das Wetter am schlimmsten war, erwärmte sich das Klima Irlands, und wo einst Gletscher waren, blieben nach dem Abschmelzen der gewichtigen Eismassen u-förmige Täler mit mehreren lang gestreckten, aus Stein-Lehmgemisch bestehenden Hügeln, sogenannten ‘drumlins’, und der Fluss Shannon fasste zu dieser Zeit Fuß. Durch die Befreiung des Gewichtes hoben sich die Britischen Inseln, und Irland wurde irgendwann zwischen 16.000 und 12.000 v. Chr. zur Insel, wohingegen Großbritannien erst um ca. 6.100 v. Chr. endgültig vom europäischen Kontinent getrennt wurde. Auch der Meeresspiegel stieg zwischen ca. 19.000 und 12.000 v. Chr. kontinuierlich um 55 Meter und es entwickelte sich der Golfstrom, der seither Irlands Klima beeinflusst. (Edwards 1990, 6; Birkhan 2005, 30, 42; Mallory 2006c, 691; Hall 2011, 20-21)

Kurz vor dem Ende der letzten Eiszeit, um 12.000 v. Chr. lebten große Herden von Riesenhirschen (Megaloceros giganteus), und mit Ausnahme des Nordens und Westens bevölkerten auch Rentiere (Taranus rangifer) Irland. Beide dieser einheimischen Säugetiere – um als einheimisch zu gelten muss eine Art bereits vor der Ankunft des Menschen, in Irland um ca. 8.000 v. Chr. gewesen sein - starben um ca. 10.000 v. Chr. aus. (Birkhan 2005, 41; Hall 2011, 13, 28, 34, 37)

Zu den einstigen einheimischen Säugetieren zählten unter anderem der Wolf (Canis lupus), der Braunbär (Ursus arctos), der Berglemming (Lemus lemus), der Echte Halsbandlemming oder Gabelkrallenlemming, (Dicrostonyx torquatus) und das Hermelin (Mustela erminea). Auch der Dachs (Meles meles) und der Fischotter (Lutra lutra) waren wahrscheinlich einheimisch, und eventuell gehörten auch der Hase, der Baummarder oder Edelmarder (Martes martes), die Zwergsüsselfrau (Sorex minutus), sowie die Waldmaus (Apodemus sylvaticus), und die Kreuzkröte (Bufo calamita), um nur einige zu nennen, zur Gruppe der einheimischen Tiere. (Raftery 1994, 17; Birkhan 2005, 41; Hall 2011, 14, 34, 48-50)

Die Küstengewässer, Flüsse und Seen wurden nach der letzten Eiszeit vom Pollan oder Arktische Maräne (Corgonus autumnalis), dem Atlantischen Lachs (Salmo salar), Forelle (Salmo trutta), See- oder Wandersaibling (Salvelinus alpinus), der Europäischen Auster (Ostrea edulis), und der Miesmuschel (Mytilus edulis) kolonisiert, und die Flüsse müssen vor Fischen gewimmelt haben. (Raftery 1994, 18; Hall 2011, 14, 34)

Irlands Erscheinungsbild ähnelte zu dieser Zeit dem seiner heutigen Brachflächen - einheimische Heidekrautgewächse, wie die Irische Glockenheide (Daboecia cantabrica), Mackay’s Heidekraut (Erica mackiana), und die Dorset Heide (Erica ciliaris), prägten gemeinsam mit dem wahrscheinlich einheimischen Westlichen Erdbeerbaum (Arbutus unedo), Süßgräsern (Gramineae) und Ampfer-Arten (Rumex), der Familie der Korblütler (Asteroidaceae) und dem Jakobskreuzkraut (Senecio Jacobaea) das Erscheinungsbild der Landschaft. (Hall 2011, 24-26) – siehe Abb.1

Die, aus geologischer Sicht, nicht lang andauernde Verschlechterung der Wetterlage, um ca. 10.700 v. Chr., hatte zur Folge, dass die Temperaturen fielen, die Wachstumsperioden kürzer wurden und Bodenerosion eintrat, und somit Pflanzen, wie die Zwerg-Birke und der Sanddorn, als auch Tiere, darunter Riesenhirsch und Rentier, mit dieser Veränderung nicht zurechtkamen und um ca. 10.000 v. Chr. ausstarben. (Hall 2011, 27, 33-34)

Bei der Verbreitung der Bäume, deren Wuchsgebiet sich im Laufe der Zeit um weniger als einen halben Kilometer pro Jahr ausdehnte, halfen Vögel wie Eichelhäherr (*Garrulus glandarius*), Saatkrahe (*Corvus frugilegus*), oder Ringeltaube (*Columbaria palumbus*), die deren Samen verschleppten. (Hall 2011, 42-43)

So waren um ca. 9.000 v. Chr. sowohl massive Gebiete der ‘*lowlands*’, als auch umfangreiche Bereiche am Fuß der Berge mit Birkenwäldern (*Betula*) bedeckt, und einheimische Nadelbäume - Rotföhre (*Pinus sylvestris*), Wacholder (*Juniperus communis*) und Eibe (*Taxus*) - gewannen ebenso an Boden, als auch Eiche (*Quercus*), Ulme (*Ulmus*), Erle (*Alnus*), Esche (*Fraxinus*), Pappel (*Populus*), Haselnussstrauch (*Corylus avellana*) und Weide (*Salix*). (Hall 2011, 42, 44, 46)

b.) Veränderungen seit der Besiedlung durch den Menschen

Obwohl Irland eventuell bereits vor diesem Zeitpunkt von Menschen betreten wurde, bestätigten archäologische Funde die Ankunft der ersten Menschen, die dauerhaft in dieser bewaldeten Landschaft siedelten, an den Küsten im Nordosten Irlands erst zwischen 7.750 und 7.670 v. Chr.. Diese frühen Siedler befuhren möglicherweise mit Booten den Fluss Shannon und erreichten so die ‘*midlands*‘ des Landesinneren. Die frühe irische Population wird auf ca. 8.000 Menschen geschätzt, die halb-nomadisch lebten, sammelten, jagten und Fallen stellten und es ist davon auszugehen, dass Wildschweine (*Sus scrofa*) und zu einem
späteren Zeitpunkt Rothirsche (*Cervus elaphus*) mit den frühen Siedlern nach Irland kamen. (Raftery 1994, 126; Hall 2011, 49, 52, 59-61)

Da sowohl die Landschaft, als auch die Boden- und Wetterbedingungen in den verschiedenen Teilen Irlands sehr unterschiedlich waren - gebirgige Areale entlang der Küste, sanfte Hügel im Osten, eher schroffe Berge, zerklüftete Karstgebiete und große Moore im Westen oder sich windende Flusstäler in den ‘lowlands’, die sich stellenweise zu Seen oder Sumpfen ausweiteten - nahm dies auch Einfluss auf die Ausformungen der unterschiedlichen Siedlungstypen der irischen Bevölkerung. (Edwards 1990, 6, 52)

Um 7.500 v. Chr. begannen viele der umfangreichen Hochmoore in den ‘lowlands’ zu entstehen, trockneten jedoch um 6.300 v. Chr. etwas aus, da das irische Klima einer Periode von weniger Regenfall unterlag, und die Moospirke (*Pinus mugo subsp. rotundata*) konnte zuerst in ihnen Fuß fassen, nachgefolgt von der Eiche, die sich um ca. 5.000 v. Chr. zu den Moor-Wäldern in den ‘lowlands’ gesellte. (Hall 2011, 55, 57-58)

Da es auf den westlichen Hügeln Irlands am nassesten, und die Erde nicht sehr fruchtbär war, entstand dort ein so genanntes ‘Deckenmoor’, eine Art des Regen- oder Hochmoores, wo Krähenbeeren, Riedgrasgewächse und Heidekrautgewächse gut gediehen. Dieses ‘Deckenmoor’ breitete sich im Laufe der Zeit auch in die ‘lowlands’ aus, und um ca. 4.000 v. Chr., als der Meeresspiegel höher als heutzutage war, dehnte es sich auf Kosten der Wälder in den ‘uplands’ aus. (Edwards 1990, 50; Hall 2011, 64, 68-69)

In den ‘lowlands’ spielten die riesigen Seen und mächtigen Flüsse eine bedeutende Rolle in der irischen Landschaft, und es gibt Hinweise, dass die Seen in den Counties Offaly, Tipperary, Galway, Clare, Roscommon, Westmeath und Cork bedeutend größere Ausmaße hatten, als wir heutzutage kennen. (Hall 2011, 59)

Die einheimische Schwarz-Erle (*Alnus glutinosa*) nahm vor allem am Rand von Flüssen oder Seen enorm zu, und die Wälder waren zu dieser Zeit am dichtesten, da zwischen 6.000 v. Chr. und 5.500 v. Chr. eine massive Verbesserung der irischen Wetterlage begann. (Hall 2011, 65)

Artenvielfalt und Dichte der Wälder hing dabei von der Zusammensetzung der Böden ab - so wuchsen zum Beispiel in der kalkhaltigen Erde der ‘midlands’, im County Westmeath, viele Ulmen, einige Haselnusssträucher und wenig Eichen, wohingegen in den eher westlichen Gebieten sich Birke und Föhre stark vermehrten. (Hall 2011, 58-59)

Eine merkliche Veränderung der Landschaft vollzog sich im Neolithikum, als die Land- und Viehwirtschaft um ca. 4.500 v. Chr. nach Irland kam. Die Menschen begannen Wilden Emmer (Triticum dicoccoides), Gerste-Arten (Hordeum), Einkorn (Triticum monococcum) und Weich- oder Brotweizen (Triticum aestivum) anzubauen, und mit den Getreidesorten kamen nicht nur Unkräuter, wie der einheimische Spitzwegerich (Plantago lanceolata), sondern auch die Hausmaus (Mus domesticus) auf die neu angelegten Felder, auf denen sich Klee-Arten (Trifolium), Butterblumen, Ampfer und Löwenzahn, ähnlich dem Erscheinungsbild einer heutigen rauen Weide, ausbreiteten. (Hall 2011, 77-78, 83)

Obwohl der Getreideanbau möglicherweise eher auf höheren Lagen oder auch innerhalb des Waldes stattfand, wurden um ca. 4.000 v. Chr. die Menschen in den ‘lowlands’ etwas sesshafter, und begannen einzelne Landstriche, teilweise eventuell mit Feuer, zu roden. (Hall 2011, 69, 80)

Durch das Grasen der Rinder blieben Lichtungen offen, und es ist vorstellbar, dass die Rinder im Sommer in den ‘uplands’ auf den Sommerweiden grasten und erst nach der Getreideernte in die ‘lowlands’ zurückkehrten, um dort im Herbst und Winter, die nicht mehr durch Getreide beschatteten und nun gut wachsenden Gräser und Unkräuter zu fressen, und mit ihren Ausscheidungen, die sie in den Untergrund trampelten, den Boden für die Bewirtschaftung im nächsten Jahr zu düngen, da Heu in der Prähistorie nicht als Winterfutter für die Tiere geerntet wurde. (Edwards 1990, 57; Hall 2011, 72, 76, 84, 111) – siehe Abb.3

Nachdem es um ca. 3.840 v. Chr. zu einer intensiven Viehwirtschaft im Westen kam, die ca. 500 Jahre andauerte, und sich der Bestand der Ulmen reduzierte, geriet um ca. 3.200 v. Chr. diese intensive Landwirtschaft ins Stocken, und Ulmen, vor allem aber Haselnusssträucher und Eichen vermehrten sich wieder, und neben Weiden und Föhren, wuchsen im Süden und Westen vor allem Eschen und Eiben, und auch im County Roscommon entstanden kleine Eiben-Wälder. (Hall 2011, 80, 82, 84)

Abb.3: Rinder beim Grasen

Obwohl zu Beginn der Spätbronzezeit keine Funde von Pflügen, die die Erdkrume wendeten, aus Irland bekannt sind, ist anzunehmen, dass die irische Bevölkerung für die Bewirtschaftung ihrer Felder einen hölzernen Haken-Pflug (‘*ard*’) verwendete, der möglicherweise von zwei Ochsen gezogen wurde. Das mit einer bronzenen oder eisernen Sichel geerntete Getreide wurde im Anschluss auf einem Mahlstein, oder zu einem späteren Zeitpunkt mit einer rotierenden Handmühle zu Mehl gemahlen – beide Techniken blieben in Irland bis ins 20. Jahrhundert erhalten. (Edwards 1990, 52, 60, 63; Raftery 1994, 21, 123-124; Birkhan 1999, 1100, 1104)

Auf kleinen angelegten Feldern, die mit Unkräutern wie Acker-Senf (*Sinapis arvensis*), Floh-Knöterich (*Polygonum persicaria*), Weißer Gänsefuß (*Chenopodium album*) oder Acker-

Wegen dem Mangel an archäologischen Fundstellen der Eisenzeit ist ein Datensatz über Knochen von domestizierten Tieren zwischen 100 v. Chr. und 600 n. Chr. nicht existent und auch das Protokoll für die dendrochronologische Datierung von Holz ist zwischen 40 v. Chr. und 310 n.Chr. eher dürftig. (Hall 2011, 113)

In großen, wenn auch nicht in allen Teilen Irlands vereinnahmten neu entstandene Wälder in der Zeit zwischen 100 v. Chr. und 350 n. Chr. die früheren Lichtungen - im Norden wuchsen vorzugsweise Haselnusssträucher, Birken und Stechpalmen, im Südwesten setzten sich die Wälder neben den genannten noch zusätzlich aus Weiden und Erlen zusammen, und im Westen dominierten Eiben die jüngst aufgekommenen Wälder. (Raftery 1994, 121-122; Hall 2011, 114) – siehe Abb.4

Zu Beginn des Frühmittelalters kam es zu einem Rückgang von Waldland und einem deutlichen Anstieg der Landwirtschaft, der während der gesamten Periode andauerte. Auch die ab dem Frühmittelalter belegte, in Irland ab dem 7./8. Jahrhundert n. Chr. rasch Fuß

Dendrochronologische Untersuchungen zeigten, dass die Bevölkerung Irlands im Zeitraum von 536 bis 541 n. Chr. eine durch äußerst schlechtes Wetter geprägte Zeit durchlebte, da nicht nur sämtliche Bäume Irlands, sondern die der gesamten nördlichen Hemisphäre extrem in ihrem Wachstum behindert wurden - ob dies eventuell durch einen zeitgleichen Ausbruch von zwei Vulkanen oder durch andere Ereignisse im Weltraum verursacht wurde, konnte bis heute nicht geklärt werden. (Hall 2011, 116)

II.) Die kulturelle Entwicklung Irlands ab der Spätbronzezeit

a.) Die Spätbronzezeit

Die Spätbronzezeit Irlands, das zu dieser Zeit ziemlich gut besiedelt war und dessen Bevölkerung anstieg, lässt sich in drei Phasen gliedern, nämlich Roscommon von ca. 1.000 bis 900 v. Chr., Dowris von ca. 900 bis 600 v. Chr. und Dowris C/Athlone von ca. 600 bis 400 v. Chr.. (Raftery 1994, 18; Karl 2005, 109)

„Größere befestigte Höhensiedlungen“ waren, im Gegensatz zu „stärker befestigten Hofanlagen, mit zentralem Rundhaus und einigen kleineren Nebengebäuden“, darunter einige mit reicherem Fundmaterial, eher selten. Eine bemerkenswerte kulturelle Komponente dieser Zeit „ist auch die zunehmende Eingrenzung kleinerer Feldflächen in Form sogenannter

Es ist anzunehmen, dass „die Grundlagen zur Entwicklung sozialer Systeme, wie sie in späteisenzeitlichen historischen Nachrichten und späteren Texten erscheinen“, bereits vorhanden waren, wie sich aus der zunehmenden Abgrenzung von Besitz, der daraus resultierenden „Ausbildung einer landlosen Bevölkerungsgruppe“, dem Anstieg von Luxusgütern zur (wahrscheinlichen) Status-Repräsentation der sozialen Eliten und die „verstärkte Sicherung von Hofanlagen“ schließen lässt. Während des Überganges von der Spätbronzezeit zur Eisenzeit dürften sich also, aus den bereits in der Spätbronzezeit entwickelten Kommunikations-Infrastrukturen, „erste Ansätze jener politischen Gruppen
gebildet haben, die in späteren historischen Berichten als ethnische Gruppen auftreten und politisch handeln“, und sich während der Eisenzeit zu „relativ stabilen Identitätsgruppen“ formten (Karl 2005, 113-114).

Die letzte der Spätbronzezeit-Phasen, die sogenannte Dowris C/Athlone Phase, die sich von ca. 600 bis 400 v. Chr. erstreckte, lässt sich als Übergangsphase zwischen der Spätbronze- und der Eisenzeit, die in Irland wie bereits erwähnt bis ungefähr 400 n. Chr. andauerte, charakterisieren. (Karl 2005, 117)

„Im Gegensatz zu den früheren Modellen, die einen drastischen Wandel am Übergang von Spätbronze- zu Eisenzeit sahen, wird heute dieser Übergang als konstanter, langsam ablaufender, lokaler evolutionärer Prozess verstanden, während dem Eisentechnologie langsam in die verschiedenen Regionalkulturen der britischen Inseln einsickerte, ohne zu drastischeren Brüchen oder Veränderungen in den jeweiligen betroffenen Gesellschaften zu führen“ (Karl 2005, 115).

b.) Die Eisenzeit

In der Eisenzeit Irlands, deren Anfang und Ende nicht klar festgelegt werden kann und deren Zeitspanne wohl ca. ein Jahrtausend umfasst, wurden einfach und mehrfach umwallte befestigte Höhensiedlungen, von denen es ungefähr zwischen 60 und 80 in verschiedenen Größen gab, und die teilweise in der Mittel- oder Spätbronzezeit schon bestanden, zum Teil ausgebaut, obwohl es jedoch aufgrund fehlender Siedlungsbe funde bei einigen so scheint, als ob niemand darin gewohnt hätte, und eine Reihe anderer Höhensiedlungen wiesen oftmals Wälle auf, die keinen militärtechnischen Sinn hatten, da sie sehr weit auseinander lagen. (Raftery 1994, 38-63, 220; Karl 2005, 118-120; Ó Faoláin 2006b, 769-770)

Als ebenso gigantisch muss die Bautätigkeit an den linearen Erdwällen, deren Länge mit einigen Unterbrechungen insgesamt bis zu 10 Kilometer betrug und deren Verbreitungsgebiet sich hauptsächlich im Süden der Provinz Ulster und den nördlichen ‘midlands’ befand, eingeschätzt werden. Obwohl ihr Zweck heutzutage nicht mehr gesichert zu erkennen ist, liegen die Vermutungen nahe, dass sie wahrscheinlich angelegt wurden, um Reisende oder etwaige Bewegungen entlang von Hauptverkehrs wegen zu kontrollieren, oder um groß angelegten Rinderraub zu be- oder verhindern. (Raftery 1994, 83-97) – siehe Abb.10

c.) Die Römische Kaiserzeit

d.) Das Frühmittelalter

Abb.8: Die 4 Haupttypen der irischen ‘ringforts’

Da sich das Bestattungsbrauchtum bereits „während der Späteisenzeit und römischen Kaiserzeit schon nicht besonders gut archäologisch“ fassen lässt, ist auch ein eventuelles Nachleben vorchristlicher Bestattungspraktiken archäologisch nicht zu definieren und es muss davon ausgegangen werden, dass „bereits früh im Frühmittelalter in allen Gebieten der „keltischen“ Welt christliches Bestattungsbrauchtum“, mit wenig bis keinen Grabbeigaben bestand (Karl 2005, 137).

2.) Rathcrogan - ‘Crúachan Aí’

Wie bereits im Kapitel ‘Einleitung’ beschrieben, stimmt die wissenschaftliche Welt weitgehend mit der Lokalisierung des altirischen ‘Crúachan’ als heutiges Rathcroghan überein. (Raftery 1994, 70; Karl 2005, 119; Breathnach 2006a, 477; Mallory 2006a, 504)

Rathcroghan liegt - und lag auch schon vor dem 5. Jahrhundert n. Chr. – westlich des Flusses Shannon in der Mitte der Ebene ‘Mag nAí’ der Provinz Connacht, im heutigen County Roscommon, nordwestlich der Ortschaft Tulsk (Raftery 1994, 70; Breathnach 2006a, 477; Mallory 2006a, 504) – siehe Abb.10
I.) Die literarischen Beschreibungen von ‘Crúachan’

a.) Die ‘Táin Bó Cúailnge’

b.) Die ‘Táin Bó Fraích‘

Dies mag aus dem Umstand der Verschriftlichung der (vorerst) mündlichen Erzählungen entstanden sein, die „zu einer Erweiterung der Rahmen, zu einer Ausdehnung der Geschichten“ führten, da „einfach verschiedene Erzählungen, die sich auf ein Ereignis oder auf einen Helden bezogen, in einander“ gearbeitet wurden (Thurneysen 1901, IX).

c.) Die Erzählung ‘Fled Bricrenn’

Nicht zu den ‘rémscéla’ gezählt, jedoch ebenso zum Ulstersagenkreis gehörend und der TBC verwandt, wenngleich auch nicht unbedingt zum Verständnis nötig, ist eine weitere Gruppe

d.) Die Erzählung ‘Fled Bricenn ocus Loinges mac nDuil Dermait‘

Einzig im ‘Yellow Book of Lecan‘ überliefert, kann die Erzählung zu dem Genre der abenteuerlichen Reisen, altirisch ‘eachtraí‘ genannt, gezählt werden. (Windisch 1884, 164; Hollo 2005, 1; Remmer & Stifter 2005, 287)

Die mittelalterliche irische Literatur erweckt, wie bereits Raftery feststellte, im Gegensatz zu den Berichten der antiken Autoren, nicht den Anschein, dass sie historische Personen oder Ereignisse festhält, sondern präsentiert uns eine Quellenlage, in der sich Fakten, Phantasien, Mythen, Legenden, Überlieferungen, vorchristliche Fabeln, mittelalterliche Volkstraditionen und Interpolationen überschneiden, und obwohl diese Literatur bewusst abgefasste Erzählungen darstellt und maßgeblich von der bestehenden literarischen Kultur beeinflusst wurde, basiert sie, zumindest zum Teil, auf mündlichen Traditionen und gewährt uns interessante Einsichten in die zeitgenössische Denkweise und Vorstellungswelt der Erzähler und Zuhörer. (Raftery 1994, 13, 15)

So hatte zum Beispiel Sir Samuel Ferguson im Jahre 1864 keine Zweifel daran und schrieb: „That she [Anm.: Medb] lived at Rathcroghan at a period before the introduction of Christianity into Ireland is a fact which no one, in the present state of historical knowledge, will be disposed to deny“ (Ferguson 1864, 161).

Jedoch schrieb Raftery 1994, dass archäologisch betrachtet keine detaillierte Übereinstimmung zwischen den Latène-Objekten Irlands und den Beschreibungen aus den Erzählungen gefunden werden kann, und es daher vermutet werden muss, dass die Beschreibungen aus der frühmittelalterlichen Welt abgeleitet wurden und somit keine Widerspiegelung der archäologischen Realität der irischen Eisenzeit sind. (Raftery 1994, 16)

Wie dem auch sei, fügen die schriftlichen Quellen unserer Rekonstruktion des eisenzeitlichen Irlands Farbe hinzu (Raftery 1994, 16), oder wie Simon James es ausdrückte: „Nevertheless, the surviving Irish tales are as close to the ancient Celtic world as we can get.“ (James 2005, 158).

II.) Die archäologischen Hinterlassenschaften von Rathcroghan

a.) Über Bedeutung & Funktion der ‘königlichen‘ Zentren Irlands

„The great settlement of Tara has died with the loss of its princes; great Armagh lives on with its choirs of scholars...
The fortress of Cruachain has vanished with Ailill, victory’s child; a fair dignity greater than kingdoms is the city of Clonmacnoise...
The proud settlement of Ailenn has died with its boasting hosts; great is victorious Brigit and lovely her thronged sanctuary.
The fort of Emain Macha has melted away, all but its stones; thronged Glendalough is the sanctuary of the western world...
Old cities of the pagans to which length of occupation has been refused are deserts without worship like Lugaid’s place...
Paganism has been destroyed though it was splendid and far flung...
The great hills of evil have been cut down with spearpoints...

OENGUS THE CULDEE (c.AD 800)” (Raftery 1994, 64).

Zu einer ähnlichen Auffassung kam unter anderen auch Lisa M. Bitel 1990, indem sie speziell für die Hinterlassenschaften in Tara veranschlagte, dass die Anlage eines innenliegenden Grabens wohl nur zum Schutz vor nicht menschlichen Eindringlingen, also Kräften aus der Anderswelt angelegt worden sein kann, und die einstige Könige innerhalb der Monumente die Fruchtbarkeit des Landes und den Wohlstand ihrer Herrschaft bei den altirisch so genannten ’feis Temra‘ Festen – was laut Bitel übersetzt „das Schlafen mit Tara“ oder ‘die Nacht in Tara verbringen‘ bedeutet, zelebrierten. (Bitel 1990, 49; Birkhan 1999, 663, 791) Auch Raftery sieht die Darstellung eines Fruchtbarkeits-Kultes zur rituellen und symbolischen Verkörperung des Stammesbewusstseins als eine der Hauptaktivitäten dieser zeremoniellen ‘Königszentren‘. In Verbindung mit einem sakralen Königstum, stellte der gottähnliche König, mit ehrfurchtgebietenden religiösen Tabus und beschwerlichen gesellschaftlichen Verpflichtungen behaftet, als Personifikation des Stammes und für das

Obwohl das 1964 n. Chr. von Jackson postulierte ‘window on the Iron Age’ eine zweifelsohne zu vereinfachte und romantisierte Sicht auf die irische Eisenzeit darstellt, sollte die Möglichkeit der Existenz – zumindest im Falle von Rathcroghan – eines eventuell etwas mehr opaken Fensters nicht völlig von der Hand gewiesen werden, oder wie Waddell es ausdrückte, sollte bedacht werden, dass „the recognition of a noteworthy continuum on many levels implies that the narratives and themes of this written corpus are worth studying, not just for what they might reveal about a pre-literate past … but also for what they might tell us about the survival of pagan practices in Christian times“ (Waddell 2011, 192, 201 vgl. Birkhan 1999, 465-466; Johnston 2006, 57).

b.) Der Fundkomplex ‘Crúachan Aí’

Als eine der drei wichtigsten Ebenen, Königspalast, Stätte von Einweihung, Ritual, Festen und Märkten, königliche Begräbnisstätte und Eingang in die Anderswelt beschrieben, lässt sich aus den frühen Schriftquellen die tatsächliche Ausdehnung sowie ein genauer Charakter des damaligen ‘Crúachans’ nur sehr vage fassen. (Raftery 1994, 70; Mallory 2006a, 504)

Somit scheint von ebenbürtiger Wichtigkeit zu den archäologischen Hinterlassenschaften von Rathcroghan die Fülle an pseudo-historischen, frühen historischen, mythischen und legendenhaften Hinweisen zu stehen, da sie wiederholt die Wahrnehmung und Vorstellung ‘Crúachans’ mit königlichen und sakralen Assoziationen vor der Ankunft des Christentums und seine grundlegende Rolle als politisches und symbolisches Machtzentrum der Provinz Connacht unterstreichen. (Knox 1914, 50; Waddell 1983, 21; Barton & Fenwick 2005, 3-4)

Pseudohistorische Quellen

Obwohl für den heutigen Leser durchaus irrational, streichen diese zahlreichen Nennungen ‘Crúachans’ die einstige magisch-religiöse Wichtigkeit von Rathcroghan, seinen scheinbar

Frühe antiquarische Beschäftigung mit Rathcroghan

Mit dem Auftrag irische Antiquitäten zu dokumentieren und zu zeichnen, nahm, neben anderen, Gabriel Beranger 1779 n. Chr. in Anwesenheit des Gastgebers O’Conor an einer Exkursion nach Rathcroghan teil, und beschrieb das ‘ràth’ von ‘Crúachan’ als künstlich errichteten Hügel mit einem Durchmesser von 400 Fuß (Anm.: ca. 122 Meter) am höchsten Punkt, bei dem die einstigen Könige Irlands eingeweiht wurden und ihre Provinzversammlungen abhielten. Beranger fertigte mehrere leicht voneinander abweichende Zeichnungen des Hügels an, von denen zwei fast identische Aquarelle in der ‘Royal Irish Academy’ aufbewahrt werden. Das größere der beiden zeigt eine Bildüberschrift mit den Worten „Rath Cruaghan or Croghan, County of Roscommon, on which the ancient Kings of
Connaught, were inaugurated, and on which, they Kept their Provincial assemblies, it is an artificial mount made of Earth of a circular form, all covered with grass, and in very good order, it Stands in a Large field, and has a gentle Slope of an easy ascent all round it. The diameter at the Top is 400 feet, and at bottom 450 being 1350 in Circumference. The Slope is 33 feet, it has in the Center of the Top, a small mount whose Top has only 6 feet diameter, on which (it is supposed) The King had his station. There is no Sign of remains of any stone buildings on the whole spot of ground”. – siehe Abb.13

Abb.13: Gabriel Berangers Aquarell von Rathcroghan

ihre Bezeichnungen, die sie auch heutzutage noch tragen. (Ferguson 1848, 368-369; Herity 1983, 121, 126; Waddell 1983, 25)

Im August 1852 n. Chr. untersuchten Richard Rolt Brash und John Windele Rathcroghans Hinterlassenschaften. Obwohl Brash der Erste war, der in der Höhle ‘Oweynagat’ die in den Fels geritzte Ogham-Inschrift entdeckte und dokumentierte, wurden seine Aufzeichnungen erst nach seinem Tod 1879 n. Chr. publiziert, und somit kam ihm Ferguson 1864 n. Chr. zuvor, als er mit seiner Frau die von Brash zuvor entdeckte Ogham-Inschrift an einem der Decksteine sowie eine zweite in unmittelbarer Nähe erkundete und der ‘Royal Irish Academy’ präsentierte. (Ferguson 1864, 160-170; Herity 1983, 126; Waddell 1983, 25-26)

Einen der ausführlichsten Berichte seiner Zeit über ‘Crúachans’ Monumente lieferte Hubert Thomas Knox, der wohl durch seine späteren Schilderungen über die Ergebnisse seiner Forschungen in Rathcroghan an die ‘Royal Society of Antiquaries of Ireland’ in Dublin im September 1913 n. Chr. für die nachfolgenden archäologischen Untersuchungen einiger Interessierter Anstoß gab. (Herity 1983, 121; Waddell 1983, 26)

Rathcroghans archäologische Zeugnisse

„The Royal sites grouped here were all sites of major royal inauguration, ceremony and assembly, representing each of the four Irish provinces: Ulster, Leinster, Munster and Connaught, as well as the region of Meath. Navan Fort* is portrayed as the royal site for the kings of Ulster; Dún Ailinne for the kings of Leinster; Cashel for the kings of Munster and Rathcroghan for the kings of Connaught. Tara was the seat of the kings of Meath and the seat of the Irish high kings. In addition the Hill of Uisneach is traditionally the epicenter (navel) of Ireland, where the five provinces met. The sites are strongly linked to myth and legend and are associated with the transformation of Ireland from paganism to Christianity and Saint Patrick.

*Navan Fort (Eamain Macha, County Armagh is located in Ulster within the jurisdiction of the United Kingdom of Great Britain and Northern Ireland).

Justification of Outstanding Universal Value

The ensembles of monuments of the Royal Sites are universally unique through their well-preserved cultural continuity and large-scale Iron Age complexes. The Royal Sites were sacred sites and places of royal inauguration and bear exceptional testimony to Iron Age civilisation. Historically, their roots go back to the Neolithic period and they illustrate significant stages in human history through the large array of monuments ranging from Bronze Age tumuli to Iron Age ring forts and to early Christian architecture. All of the Royal Sites form part of larger archaeological landscapes characterised by a large concentration of ritual monuments. Situated on strategic and elevated locations, the Royal Sites are organically evolved relic cultural landscapes where the pre-Christian kingship in Ireland evolved and ended. The Royal sites are directly associated with Irish mythology and traditional beliefs and continue to represent spiritual and symbolic centers of Irish culture and identity, which have influenced approaches to life in many countries of the world.”

(http://whc.unesco.org/en/tentativelists/5528/ am 06.11.2013)

Die über 60 heute noch sichtbaren Monumente verschiedenen Typs und Alters des ca. 10 Quadratkilometer großen Fundkomplexes von Rathcroghan, der zusammen mit der Anlage von Tara zu den größten Komplexen der ‘königlichen’ Zentren zählt, befinden sich am östlichen Ende eines breiten, erhöhten Plateaus und repräsentieren durch neolithische

Abb.17: Reliefkarte von Rathcroghan mit Höhenschichtlinien & wichtigen Monumenten

Wie bereits erwähnt, beinhaltet die Fundstelle, die in den sechs ‘townlands’ Glenballythomas, Toberrory, Moneylea, Grallagh, Kilnanooan und Ballyconboy liegt und eine Fläche zwischen, laut Mallory ca. 800 Hektar und laut Barton & Fenwick ungefähr 10 Quadratkilometer umfasst, über 60 Monuments, von denen hier jedoch nur einige kurz vorgestellt werden sollen. (Herity 1983, 130; Barton & Fenwick 2005, 3-4; Mallory 2006a, 504; Waddell et al 2009, 1)

Abb.18: Übersichtskarte der Monumente des Rathcroghan Komplexes

‘Rathcroghan Mound’
Annähernd im Zentrum des Komplexes liegt am höchsten Punkt der Umgebung im ‘townland’ Toberrory ‘Rathcroghan Mound’ (siehe Abb.18), den Herity im Gegensatz zu Waddell zu den ‘ringbarrows’ zählen möchte. Mit einem Basisdurchmesser von ungefähr 85 bis ca. 90 Meter, relativ steilen Hängen und einer abgeflachten zwischen 4 und 7 Meter hohen Kuppe, lässt seine Entstehung in prähistorischer Zeit einige Fragen offen – ob sich die Erbauer des natürlich geformten Hügels bedienten oder die Kuppe künstlich abgeflacht haben ist umstritten. Als zumindest teilweise künstlich überformt, muss der Hügel jedoch angesehen

‘Reilig na Rígh’

‘Reilig na Rígh’, oder auch ‘Relignaree’ geschrieben, eine ca. 100 Meter große, einfach umwallte, runde Einfriedung im ‘townland’ Glenballythomas im Süden des ‘Rathcroghan Mounds’ wurde von den Antiquaren einst für den königlichen Friedhof, wie der irische Name bereits ausdrückt, gehalten, wobei ein großer Stein in einer Karte von 1838 n. Chr. das Grab markierte. Ein außenliegender, 6 Meter breiter, jedoch nur 0,50 Meter tiefer Graben ist ausschließlich im Nordwesten zu sehen und der 2,60 Meter breite, 1 Meter hohe Wall scheint aus großen Steinen und Erde hergestellt worden zu sein, wobei er über ein Dutzend Lücken enthält, von denen laut Waddell jedoch keine als Eingang erkennbar wäre, sondern eher aufgrund der Rinder entstand. Ausgrabungen in ‘Reilig na Rígh’ förderten keine Hinweise für die Funktion eines königlichen Friedhofs zutage, sondern lassen laut Norman & St Joseph eher auf die Nutzung als ein großes Rinder-Gehege mit Unterteilungen zur Trennung von verschiedenen Herden schließen, wobei Herity die Struktur als ‘ringfort’, eventuell für rituelle Zwecke klassifizieren möchte. Innerhalb des ‘Reilig na Rígh’ befindet sich eine, mit der äußeren Umwallung konzentrische, kleinere, runde Struktur mit einer Wallhöhe zwischen 0,50 Meter und 1 Meter, einem Durchmesser von ca. 48 Metern und Spuren eines außenliegenden Grabens im Osten. Einige Feldeingrenzungen unterteilen die Struktur des

Abb.20: Luftbild von ‘Reilig na Righ’ (vom Nordwesten aus fotografiert)

‘Dáithí’s Mound’

Abb.21: Luftbild von ‘Dáithí’s Mound’ (vom Süden aus fotografiert)
‘Mucklaghs’

Abb.22: Luftbild der ‘Mucklaghs’ (vom Norden aus fotografiert)
‘Oweynagat’

Abb.23: Eingang zu ‘Oweynagat’

‘Rath na dTarbh’

Abb.24: Luftbild von ‘Rath na dTarbh‘ (vom Westen aus fotografiert)

‘Rathbeg‘
Hügel mit einem Durchmesser von ca. 15 Meter mit flachen Steinen umrundet und durch zwei innenliegende Gräben, sowie zwei, durch die Steigung des Hügels übereinander liegenden Wällen umfasst wird. (Herity 1983, 130; 1984, 131; Waddell 1983, 35; Waddell et al 2009, 7, 104) – siehe Abb.25

Abb.25: Luftbild von ‘Rathbeg’ (vom Osten aus fotografiert)

Herity hingegen möchte die spät prähistorischen Monumente des Rathcroghan Komplexes, denen neolithische und früh- sowie mittelbronzezeitliche Grabanlagen vorausgehen, in sechs

III.) Vergleiche mit eisenzeitlichen Anlagen

Nicht nur durchgehend durch die mittelalterlichen irischen Schriften, sondern ebenfalls in der rezenten wissenschaftlichen Literatur wird ‘Criúchan’ beinahe unentwegt mit den anderen ‘königlichen’ Zentren wie Tara im County Meath, ‘Emain Macha’, heutiges Navan Fort im County Armagh, oder ‘Dún Ailinne’, heutzutage als Knockaulin im County Kildare bekannt, erwähnt und verglichen, da Rathcroghan in seinem Erscheinungsbild dem der anderen architektonischen Strukturen durchwegs ähnelt. (Edwards 1990, 1; Raftery 1994, 64) Oder wie Conor Newman es ausdrückte: „[there] is confirmation that real connections existed between these places, that they are largely coeval and that they share a suite of iconic
monument forms, drawn from the same evolving religious pattern-book. Indeed, what ties the royal sites together is far more ancient and elemental than the bindings of the medieval manuscripts wherein their names are recorded, for these places were created to embrace the most profound philosophical questions of life and death, to mediate man’s place in the cosmos.” (Newman inWaddell et al 2009, ix)

a.) Der Komplex von Tara

Durch neuere Grabungen an Wall, Graben und Palisade des ‘Ráth na Ríg’ konnten handwerkliche Aktivitäten in der Metallverarbeitung, in Form von Eisen- und Bronzeschmieden, sowie möglicherweise in der Herstellung von Glasobjekten, nachgewiesen werden, welche in die Zeitspanne vor der Errichtung des Walles fielen. Die zutage geförderten Funde, sowie weitere Funde aus den unteren Schichten des innenliegenden Grabens datierten größtenteils in die Eisenzeit und ergaben eine kalibrierte 14C-Datierung des Metallverarbeitungsofens von 370 v. Chr. bis 406 n. Chr. (Johnston 2006, 54, 57)

Im Norden der Einfriedung ‘Ráth na Ríg’ befindet sich ein spämeolithisches Ganggrab mit etlichen Brandbestattungen und Funden, das als Bestattungsart in der frühen und mittleren...

Abb.27: Luftbild vom 'ringfort Tech Cormaic' mit angeschlossenem 'ringbarrow Forrad' (vom Norden aus fotografiert)

Vergleichbar mit den südlichen ‘Mucklaghs’ des Rathcroghan Komplexes handelt es sich bei der 75 Meter nördlich des ‘Rath of the Synods’ liegenden ‘Banqueting Hall’ oder irisch ‘Tech

b.) ‘Emain Macha‘ – Navan Fort

Die heutzutage namenstiftende, also für das gesamte Gebiet als Bezeichnung verwendete, Struktur Navan Fort liegt ebenfalls innerhalb eines großräumigen Komplexes von über 40 Monumenten, dessen Siedlungsspuren von der neolithischen bis in die frühmittelalterliche Periode reichen. (Lynn et al 2002,1; Mallory 2006c, 691) – siehe Abb.29

einen runden Wall eingefriedet war und Deponierungen von vollständigen Tieren - oder zumindest großen Teilen davon – sowie den vorderen Teil des Schädels eines jungen Mannes aufwies. Beide Anlagen, welche Elemente von Besiedlung sowie ritueller Nutzung zeigten, datieren ungefähr um 1000 v. Chr. und es wurde spekuliert, ob dieser kleine Komplex das führende Stammeszentrum der Spätbronzezeit dargestellt haben könnte, da nach der Aufgabe dieser Anlage um ca. 900 v. Chr. eine deutliche Aktivitätssteigerung und eventuelle Verlegung des Zentrums im nahe gelegenen Navan Fort zu beobachten ist. (Mallory 2006c, 691-693)

Abb.29: Übersichtsplan vom Navan Komplex (adaptiert nach Mallory 2006c, 692)

Das große Erdwerk Navan Fort liegt ca. 5 Kilometer westlich von Armagh City auf einem nicht allzu hoch gelegenen Hügel und umfasst eine Fläche von ungefähr 4,9 Hektar, die von einem runden, ca. 2,50 Meter hohen und 9 Meter breiten Wall mit einem Durchmesser von ungefähr 286 Metern und einem innenliegenden 16 Meter breiten, ca. 3 Meter tiefen Graben umfasst wird. Vor den Grabungen im Jahre 1963 n. Chr. waren bereits zwei Strukturen auf der Kuppe erkennbar, von denen sich die erste, normalerweise als ‘Site A’ bezeichnet, als übergießte Struktur mit einem Durchmesser von ungefähr 50 Metern sowie einem seichten Graben und einem außenliegenden Wall darstellte. Durch die Grabungen konnten zwei unterscheidbare Phasen erkannt werden, von denen die erste eine Serie einer mehrmals

Abb.30: Rekonstruktion einer bronzezeitlichen Besiedlungsphase

Abb. 31: Die 40-Meter-Struktur der ‘Site B’ in Navan Fort

Abb. 32: Rekonstruktionsversuch der 40-Meter-Struktur der ‘Site B’ in Navan Fort
gepflasterte, an der Basis ca. 2 Meter breite und sich an der Böschung bis zu einer Breite von annähernd 6 Metern ausdehnende Oberfläche freigelegt werden, welche Lynn jedoch nicht für einen wahrscheinlichen Eingang hält, da sie sich nicht im Inneren der Anlage fortsetzte, obwohl auffällig erscheint, dass der Graben in diesem Abschnitt etwas schmäler erscheint als im übrigen Bereich des Monuments. (Lynn et al 2002,1-3, 10-11; excavations.ie)

Zweifelsfrei stellte der Komplex von Navan zu allen Zeiten seines Bestehens eine außergewöhnliche Stätte dar und beeindruckte nicht nur durch Größe und Form – sondern sicherlich auch durch die Komplexität der damit verbundenen Mythen, Legenden und Ritualen die einstigen Bewohner und Besucher dieses Zentrums.

3.) ‘Dún Ailinne‘ – Knockaulin

‘Dún Ailinne‘ – legendärer Königssitz der antiken Provinz Leinster – wurde bereits um 728 n. Chr. und nochmals um 800 n. Chr. als Schauplatz der Schlacht um die Königswürde von Leinster erwähnt und mit den Beschreibungen von O’Donovan im Jahre 1837 n. Chr. als heutiges Knockaulin im County Kildare identifiziert. (Raftery 1994, 71; Mallory 2006b, 621-622;)

Abb.34: Übersichtsplan von ‘Dún Ailinne’
Durch geophysikalische Untersuchungen, darunter Widerstandskartierungen und Geomagnetik-Untersuchungen, der Jahre 2006 bis 2008 n. Chr. konnten weitreichende, neue Erkenntnisse zum Inneren, sowie zum äußeren Eingangsbereich der Anlage, deren ergrabene Flächen bis dahin nur ca. 10 Prozent des monumental Denkmals erforscht hatten, gewonnen werden (siehe Abb.36), von denen hier einige in Kürze vorgestellt werden sollen. Im gesamten Bereich der Anlage konnten Ackerfurchen, die durch oftmaliges Pflügen der bis 1950 n. Chr. landwirtschaftlich genutzten Fläche entstanden, sowie einstige Feldgrenzen (siehe Nr.1 – 4 der Abb.36) erkannt werden. (Johnston et al 2009, 385-387, 390-391, 395)
Ob es sich bei der im nördlichen Teil des Hügels heute noch sichtbaren Vertiefung namens ‘St. John’s Well’ (siehe Abb.36), welche sich als annähernd viereckige, oftmals wassergefüllte Grube darstellte, deren Seitenwände, mit Ausnahme der nordwestlichen, äußerst steil abfallen, um eine natürliche oder künstlich angelegte Struktur handelt, konnte durch die geophysikalischen Untersuchungen nicht völlig geklärt werden, jedoch könnte die magnetische Anomalie im Zentrum von ‘St. John’s Well’ eine möglicherweise eisenzeitliche Nutzung dieser Struktur als Opferplatz für rituelle Deponierungen, ähnlich des künstlich angelegten Teiches ‘King’s Stables’ im Navan Komplex nahelegen. Als definitiv eisenzeitlich ist eine oval bis runde Einfriedung (siehe Nr.6 der Abb.36) mit einer ungefähren Größe von 240 mal 200 Metern, deren Eingang im Osten an einer etwas zugespitzten Stelle der Struktur liegt, einzustufen, da zwei angeschlossene parallele Linien von vermutlich Holzpfosten (siehe Nr.7 der Abb.36) mit dem trichterförmigen Zugangsweg der eisenzeitlichen ‘8er-Figur’ zusammenstoßen und mit dem östlichen Eingang zur Anlage durch Wall und Graben in einer
Linie verlaufen – eine Lücke im nördlichen Bereich dieser Einfriedung könnte einen möglichen Durchgang zur ‘St. John’s Well’ darstellen. Eine weitere Einfriedung des Hügels zeigte sich als unterschiedlich orientierte ovale Einfriedung mit einem maximalen Durchmesser von ca. 390 Meter (siehe Nr.9 der Abb.36), wobei ihr Entstehungsdatum vor der Eisenzeit liegen muss, da der östliche Teil dieser Struktur unterhalb des eisenzeitlichen Wall-Grabens-Systems verläuft – teilweise überlappend damit stellten sich zwei runde Strukturen mit einem Durchmesser zwischen 6 und 15 Metern dar (siehe Nr.16 & 17 der Abb.36). Nicht zu datieren war der Konstruktionszeitraum einer weiteren, vermutlichen Holzpfostenstruktur mit einem Durchmesser von ca. 20 Meter und einer zentralen, annähernd runden 4 Meter großen magnetischen Anomalie, welche bereits bei den Grabungen im westlichen Teil der Grabungsfläche vorgefunden wurde (siehe Nr.8 der Abb.36), sowie der etwas nördlich der Hügelkuppe gelegenen runden ca. 20 Meter im Durchmesser messenden Struktur mit einem innenliegendem Bogen (siehe Nr.13 der Abb.36). Von den runden zwischen 5 und 10 Meter großen Strukturen im Süden der Anlage, welche wahrscheinlich Hügelgräber darstellen (siehe Nr.15 der Abb.36), scheinen manche unterhalb der eisenzeitlichen Einfriedung zu liegen und ihr zeitlich vorzugehen. Direkt außerhalb des Eingangs vom eisenzeitlichen Wall-Grabensystem konnten die geophysikalischen Untersuchungen ein Paar paralleler, ca. 6 Meter voneinander entfernten Linien identifizieren (siehe Nr.18 der Abb.36), welche sich gleich des trichterförmigen Zugangsweges orientieren und sich bis an die Grenze des geophysikalisch untersuchten Bereiches erstrecken. (Johnston et al 2009, 387, 391, 394, 396-401)

Ein hervorzuhebendes Charakteristikum dieser sogenannten ‘königlichen’ Zentren der irischen Eisenzeit stellt hierbei die herausragende Lage einer auf einer Geländekuppe mit Überblick und prominenter Sicht der umgebenden Landschaft von rituellen Stätten aus verschiedenen

dort abgehaltenen Ritualen gezogen werden, welche wohl in unterschiedlicher Weise und mit
variierenden Details ausgeführt wurden, jedoch eventuell einige Kerniten, die alle
‘königlichen‘ Zentren auf gleiche oder ähnliche Weise zelebrierten, beinhalteten. Die
Tatsache, dass die historischen Schriften diese Stätten als gleichwertig betrachteten, mag nach
Johnston also nicht nur durch den Umstand zustande gekommen sein, dass sie gleich
aussahen sondern ebenfalls, dass der Gebrauch dieser ‘königlichen‘ Zentren im kulturellen
und sozialen Kontext der selbe war. Ob die regional und lokal bevorzugten Strukturen die

Falls diese monumentalen Stätten Orte politischer Aktivitäten und Zeremonien waren, so
wäre wohl die Erwartung eines einstigen Bewohner Irlands gewesen, dass nicht nur die
generelle Irland umfassende Bedeutung der ‘königlichen‘ Zentren, sondern auch ihre Rolle
auf lokaler Ebene symbolisch in ihnen zum Ausdruck gebracht wurde. So konnte zwar, wie
Johnston 2006 festhielt, ein ‘königliches‘ Zentrum die Stätte sein, an dem die Inthronisierung
eines Königs erfolgte, jedoch nur ‘Dún Ailinne‘ konnte den Ort darstellen, an dem der König
von Leinster geschaffen wurde. (Johnston 2006, 57-58)

3.) Einführung in die archäologische Prospektion

Die archäologische Prospektion „dient dazu, vor einer Ausgrabung, ... zerstörungsfrei, rasch

Beim Vorhaben „die Erforschung der materiellen Hinterlassenschaften des Menschen“ zu
erkunden, „sollen [bei der archäologischen Prospektion] sichtbare und interpretierbare Veränderungen im Untergrund dokumentiert werden“, wobei hierbei „neben dem Studium von Literatur zu Altfunden und der Aufsammlung und Auswertung von Oberflächenfunden ...
vor allem die Luftbildarchäologie und die geophysikalischen Prospektionsmethoden die geeignetsten Mittel zum Erreichen des gesteckten Ziels [sind]“ (Neubauer 2001, 178).

Das Ziel der Archäologie, als auch der archäologischen Prospektion stellt die Dokumentation und die Analyse aller relevanten Fakten, die eine Fundstelle betreffen, dar. Somit ist für eine Zusammenarbeit zwischen ‘ausgrabenden’ Archäologen und ‘prospektierenden’ Archäologen die Kenntnis der jeweiligen anderen Methoden unerlässlich, und alle verwendeten Daten der archäologischen Prospektion sollten in einem Informationssystem kombiniert werden, das fähig ist zu speichern, zu visualisieren und zu analysieren. (Neubauer 2004, 159-160)

I.) Geophysikalische Prospektionsmethoden

Wie bereits erwähnt gehören geophysikalische Prospektionsmethoden heute zu den Standard-Methoden für die Auffindung im Boden verborgener archäologischer Strukturen, da sie sich

„Die Prospektion beschränkt sich dabei nicht auf eine Methode, sondern besteht aus einer Kombination verschiedener Techniken und archäologischem Wissens“, wobei „die Wahl der Prospektionsmethoden und die Form der Anwendung ... von der archäologischen Fragestellung, den natürlichen Bodenbedingungen, vorhandenen Geräten, bestehender Infrastruktur und auch der Organisationsform der archäologischen Forschung [abhängen]“ (Neubauer 2011, 19).

a.) Geomagnetik

„Die in der archäologischen Anwendung bedeutendste geophysikalische Prospektionsmethode ist zweifelsfrei die Geomagnetik“, bei der in einem Raster hochauflösende Messungen „archäologischer Strukturen“, die „kleinste Veränderungen im Erdmagnetfeld verursachen“ durchgeführt werden. (Neubauer 2001, 20, 227)

![Abbildung 38: Thermoremanente Magnetisierung von Ton](image)

![Abbildung 39: Elektronenmikroskopaufnahme einer magnetischen Bodenbakterie](image)

b.) Elektrischer Widerstand

Neben der Geomagnetik stellt auch die Messung des elektrischen Widerstandes, oder auch Widerstandskartierung genannt, eine der erfolgreichsten Methoden der archäologischen Prospektion dar, und scheint als aktive Methode der geophysikalischen Prospektionen zum archäologischen Standard zu gehören. (Neubauer & Eder-Hinterleitner 1997b, 179; Neubauer et al 2002, 135)

Der Erdboden ist „aufgrund der im Wasser gelösten Ionen, ... mit einem elektrolytischen Leiter“ vergleichbar, und mit geeigneten Bodenwiderstandsmessgeräten ist es möglich eine Widerstandskartierung in einem Raster durchzuführen, wobei zwei in den Boden eingebrachte, stromführende Elektroden (I₁, I₂) ein elektrisches Feld erzeugen und zwei weitere Elektroden (P₁, P₂) den scheinbaren spezifischen Widerstand messen (Neubauer 2001, 183-184). Bei der Twin-Anordnung, die „speziell für die archäologische Anwendung entwickelt“ wurde, wird ein Elektrodenpaar (I₁, P₁) bewegt und das zweite Elektrodenpaar

c.) Georadar

Die Wahl der Antennenfrequenz hängt von der gewünschten Eindringtiefe und der zu erforschenden archäologischen Struktur ab, da höhere Frequenzen kleinere Objekte im Untergrund erfassen können, jedoch ihre Eindringtiefe geringer ist als bei niedrigeren Frequenzen, die jedoch wiederum kleine Strukturen oder Objekte ‘übersehen’ können. (David 1995, 24-25; Neubauer et al 2002, 139; David 2008, 30)

Untersuchungen mit einem Georadar stellen in der archäologischen Prospektion hervorragende Möglichkeiten zur Abschätzung der Tiefe, Größe und Form der im Boden

Um die nachfolgende Interpretation und dem Archäologen die Vorstellung eines mentalen dreidimensionalen Bildes der relevanten Strukturen zu erleichtern kann eine animierte Bildabfolge der horizontalen Zeit- oder Tiefen-Scheiben in gewünschter Geschwindigkeit vor- & rückwärts abgespielt werden. (Neubauer et al 2002, 143-144, 155; Leckebusch 2003, 222)

II.) Luftbildarchäologie

„Die Techniken der Fernerkundung [, zu denen auch die Luftbildarchäologie gezählt wird.] erlauben es, Informationen über Art und Eigenschaft von entfernten Objekten durch indirekte Beobachtung berührungsarm zu erhalten“ (Doneus 2008, 177).
„Unter einem Luftbild versteht man allgemein eine fotografisch erzeugte Aufnahme, welche von einem Luftfahrzeug aus gemacht wurde und einen Ausschnitt der Erdoberfläche abbildet“, somit stellt sie „eine archäologische Prospektionsmethode, welche durch direkte Beobachtung aus Luftfahrzeugen oder aufgrund von vorhandenen Luftbildern zerstörungsfrei großflächig Informationen zur materiellen Hinterlassenschaft und ihrer Umwelt gewinnt, dokumentiert und archäologisch interpretiert“, dar. (Doneus 2008, 187)

Die archäologisch relevanten Strukturen können „sich an der Erdoberfläche je nach Erhaltungszustand mehr oder weniger deutlich abzeichnen“. Diese ‘Sichtbarkeitsmerkmale’, oder englisch ‘marks’ genannt, können entweder direkt aus der Luft beobachtet werden oder indirekt über Kontraste, welche sich „je nach gegebener physischer Struktur der Landschaft sowie Bildungsprozessen an Funden und Strukturen“ ausformten, erkannt, dokumentiert, kartiert und interpretiert werden. (Doneus 2008, 188)

Bei „archäologischen Strukturen, welche sich im heutigen Relief als Erhebung oder Vertiefung abzeichnen, wie z.B. Gräben, Wälle, Straßen und Wege, Pingen, Halden, Steinbrüche oder Hügelgräber“ besteht die Möglichkeit Schatten-, Flut- und Schneemerkmale zu erkennen. (Doneus 2008, 188-196)

Schattenmerkmale sind zu beobachten, wenn „an der Oberfläche erhaltene Bodendenkmäler bei entsprechendem Sonnenstand einen Schatten“ werfen, wobei die „erhaltene Höhe des Objektes, seine Ausrichtung zur Sonneneinstrahlung, Oberflächenfarbe, Bewuchs, Datum und Uhrzeit der Aufnahme, sowie Flughöhe und Betrachtungswinkel“ eine große Rolle bei der Qualität der Sichtbarkeit spielen. (Doneus 2008, 189)

Flutmerkmale bilden sich in überschwemmten Gebieten als entweder noch sichtbare Strukturen, da sie erhöhte Zonen im Geländerelief darstellen, oder zeigen sich als zuerst überschwemmte Gebiete, wenn es sich um Vertiefungen in der Geländestruktur handelt. (Doneus 2008, 195-196)

Eingeebnete Bodendenkmäler, die vom heutigen Geländerelief nicht mehr unterschieden werden können, sind in der Luftbildarchäologie als Boden-, Feuchtigkeits- Frost- oder Bewuchsmerkmale zu erkennen. Für ihre Ausbildung sind physikalische und chemische Eigenschaften von Böden, wie zum Beispiel das Verhältnis der Bodenbestandteile, Korngrößenverteilung der mineralischen Bestandteile, die Bindung von Bodenfeuchte, die
mineralogische Zusammensetzung, der pH-Wert oder die Wärmeleitfähigkeit verantwortlich.

(Boneus 2008, 188, 196-197)

Da Wasser eine sehr hohe Wärmekapazität besitzt, ist eine Ausformung von Frostmerkmalen möglich. Zu Winterbeginn, wenn der ungestörte Boden bereits friert, zeigt sich zum Beispiel eine Grabenverfüllung, die noch eine höhere Temperatur besitzt, als noch nicht gefrorener Bereich und Mauerfundamente oder Straßen können als zuerst gefrorene Bereiche erkannt werden. „Am Ende des Winters stellt sich dieses Phänomen um“, und Gruben oder Gräben, die nun die Kälte speichern, sind als Bereiche zu erkennen, in denen der Schnee länger liegen bleibt, wohingegen der Schnee über Steinsetzungen oder ähnlichem früher abtaut. (Boneus 2008, 201-202)

„Auf ehemalige menschliche Hinterlassenschaften“ kann man auch aufgrund von Bewuchsmustern, oder englisch ‘cropmarks’, schließen. „Je nach Pflanzenart ergeben sich zum Teil erhebliche Unterschiede, was den Zeitpunkt, die Detailliertheit und die Deutlichkeit des Bewuchsmusters betrifft“ – so weist ein Getreidefeld eine wesentlich bessere ‘Zeigegenauigkeit’ als etwa ein Mais- oder Rübenfeld auf, da die Bepflanzung dichter ist. (Boneus 2008, 204-205)

Umstand, dass „positive Merkmale aufgrund ihrer längeren Stängel und schweren Ähren leicht durch Wind oder Regen umgeknickt“ werden während die Pflanzen der Umgebung noch stehen, wohingegen Pflanzen mit negativen Bewuchsmerkmalen, kleinere Ähren und einen kürzeren und stämmigeren Wuchs aufweisen nicht so leicht umknicken. (Doneus 2008, 212) – siehe Abb.40

Abb.40: Ausbildung von Bewuchsmerkmalen (a = positive; b = negative)

Um die Befunde aus den Luftbildaufnahmen in einen archäologischen Interpretationsplan einzupassen, ist es vorerst notwendig die Fotos mit Hilfe von Passpunkten zu entzerren. Hierbei werden die angefertigten Aufnahmen mittels digitaler Photogrammetrie georeferenziert und können anschließend in ein GIS-Projekt übernommen werden, wobei die entzerrten Orthophotos wiederum in ein digitales Geländemodell (DGM) eingepasst werden. Auf diese Weise lassen sich die Daten der Luftbildarchäologie hervorragend in „die archäologische Interpretation der geophysikalischen Prospektion einbinden“. (Neubauer 2001, 180-182)

4.) Archäologische & geophysikalische Prospektion in Rathcroghan

Für die topographischen Aufnahmen der dafür ausgewählten Monumente wurde eine 'Sokkia Set500E total station' verwendet, um die horizontalen und vertikalen Winkel sowie die Distanzmessungen elektronisch aufzuzeichnen und digitale dreidimensionale Geländemodelle anfertigen zu können. Dafür wurden die aufzunehmenden Höhenpunkte relativ gleichmäßig mit einem räumlichen Abstand von durchschnittlich 2 bis 4 Metern auf der Geländeoberfläche ausgewählt, wobei bei komplexen oder im Gelände weniger erhabenen Strukturen mehrere Punkte in systematischer Weise aufgezeichnet wurden. So wurden zum Beispiel die Höhenpunkte auf der Kuppe des 'Rathcroghan Mounds' mit einem Abstand von 1 Meter in parallel angelegten, 1 Meter voneinander entfernten Linien aufgenommen. Ebenfalls die zwei östlich des 'Rathcroghan Mounds' liegenden Grabhügel, sowie Teile der 360-Meter-Einfriedung wurden in detaillierterer Weise aufgenommen. (Waddell et al 2009, 16-17, 137)

Zur Messung der magnetischen Suszeptibilität kam ein 'Bartington MS2' Kappameter zum Einsatz, wobei zur Identifizierung archäologischer Verdachtsflächen vorerst mit einer relativ geringen Aufnahmedichte von ca. 1 mal 1 Metern beziehungsweise 2 mal 2 Metern begonnen wurde, und spezifische archäologische Strukturen, wie zum Beispiel die Oberfläche des 'Rathcroghan Mounds' mit einer räumlich höheren Aufnahmedichte in einem Raster von 0,50 Metern untersucht wurden. (Waddell et al 2009, 18, 20-21, 139, 142, 160)

Die Geomagnetik-Prospektionen wurden mit Fluxgate Gradiometern, darunter 'Geoscan FM36', dessen Sensoren 0,50 Meter auseinander liegen, und 'Bartington 601' mit 1 Meter voneinander entfernten Sensoren in einem Raster von 0,50 mal 0,50 Meter oder 0,50 mal 1

Die Aufzeichnung und Auswertung der produzierten Aufnahmedaten erfolgte digital mit unterschiedlichen Software-Programmen, um die gewonnenen Ergebnisse schlussendlich in passende Formate zu editieren und zum Zweck der Illustration, Interpretation und Präsentation miteinander zu kombinieren und integrativ auszuwerten. (Waddell et al 2009, 25-26)

I.) Monumente & Strukturen rund um, auf und im ‘Rathcroghan Mound‘

Abgesehen von einigen kleineren Strukturen, welche sich rund um den großen Hügel gesellen, scheint ‘Rathcroghan Mound‘ bei oberflächlicher Betrachtung ein nicht bebauter, eher unscheinbarer und wenig interessanter Erdhügel zu sein, von dem manche Wissenschaftler bislang sogar glaubten, dass er nicht viel mehr als ein abschüssiger und teilweise künstlich geformter glazialer Höhenrücken sei. Durch die neuen Ergebnisse der geophysikalischen Forschungen kamen jedoch besonders spannende und unerwartet bereichernde, neue Resultate zum Vorschein und es zeigte sich, dass genau das Gegenteil der Fall zu sein scheint und ‘Rathcroghan Mound‘ sowie seine direkte Umgebung archäologische Monumente von außergewöhnlicher Komplexität und Faszination darstellen. (Fenwick et al 1996, 20; Fenwick et al 2006, 26)

a.) Die 360-Meter-Einfriedung

Aus verschiedenen Luftbildern vergangener Jahre konnte bereits im Vorfeld der geophysikalischen Untersuchungen, wie bereits im Kapitel ‘Der Fundkomplex ‘Cruachan

86
nahelegt, dass die 360-Meter-Einfriedung eine maßgebliche Markierung bei der Landeinteilung während dieser vergangenen Bewirtschaftungsperiode darstellte. Als mit sehr niedrigen magnetischen Suszeptibilitätswerten ausgestattet – also keiner landwirtschaftlichen Nutzung unterlegen, zeigt sich ‘Rathcroghan Mound’ selbst (siehe S3 in Abb.41), wobei auf die erhöhten Werte in der Mitte seiner Kuppe (siehe S8 in Abb.41) später noch näher eingegangen werden soll. (Waddell et al 2009, 141-142, 145-148)

Ebenfalls in der näheren Umgebung des zentralen Hügels in den Luftbildern zu erkennen, zeigt sich eine runde, 45 Meter im Durchmesser messende Struktur eines seichten Grabens, welche ca. 100 Meter im Südosten des ‘Rathcroghan Mounds’ liegt und durch die 360-Meter-Einfriedung geschnitten wird. Da dieses Monument in den geomagnetischen Aufnahmen

Abb.41: Magnetische Suszeptibilität rund um ‘Rathcroghan Mound’ (adaptiert nach Waddell et al 2009, 141)
keinen Niederschlag fand, vermutete Waddell, dass es sich bei der Verfüllung der beiden Gräben um unterschiedliche Materialien handeln muss. (Waddell et al 2009, 137, 148)

Abb. 42: Visualisierung der Geomagnetik rund um ‘Rathcroghan Mound’ (adaptiert nach Waddell et al 2009, 143)

b.) Die Östlichen Grabhügel

Ringe weisen jeweils rundherum negative magnetische Anomalien (siehe G21 & G22 in Abb.43) und hohe Widerstandswerte auf, welche die einst umgebundenen Wälle zeigen. In der Mitte des südlichen 'ringbarrows' lassen die geophysikalischen Ergebnisse eine zentrale ca. 4 Meter große Grube (siehe G23 in Abb.43) vermuten, welche jedoch auf der Visualisierung der Widerstandsmessungen, bei der die sich gegenüberliegenden Lücken im Nordwesten und Südosten des inneren Grabens (siehe R8 & R9 in Abb.44) deutlich hervortreten, keinerlei Spuren hinterließ. Der im Norden angrenzende, kleinere Grabthügel ließ sich in den geophysikalischen Untersuchungen als zwischen 7,50 und 8 Meter großer Ring einer magnetisch positiven Anomalie (siehe G17 in Abb.43) mit niedrigen Widerstandswerten (siehe R2 in Abb.44) erkennen, der wiederum den mit einem Wall (siehe G18 in Abb.43 & R4 in Abb.44) umgebenen inneren Graben mit einer Lücke im Westen (siehe R3 in Abb.44) repräsentiert. Nach Waddell könnte der südliche, größere der beiden zusammenhängenden 'ringbarrows' den jüngeren Grabthügel darstellen, da seine nördliche Seite etwas abgeflacht erscheint. (Waddell et al 2009, 137, 149-152)

Abb.43: Visualisierung der Geomagnetik der Östlichen
Grabhügel
(adaptiert nach Waddell et al 2009, 149)

Abb.44: Visualisierung der Widerstandsmessung der
Östlichen Grabhügel
(adaptiert nach Waddell et al 2009, 152)

Wie auf Abbildung 42 deutlich auszunehmen, liegen die zusammenhängenden östlichen 'ringbarrows' eingeschlossen in einem Areal, das durch zwei lineare, positiv magnetische Anomalien (siehe G15 & G16 in Abb.42), welche einst wahrscheinlich Gräben, Pfostengruben oder Palisadengräben darstellten, begrenzt wird. Mit einer Länge von ungefähr 100 Metern bilden sie, ausgehend vom 'Rathcroghan Mound' nach Osten verlaufend und bis über die 360-Meter-Einfriedung reichend, einen deutlich abgegrenzten, trapezförmigen Eingangsbereich ins Innere der Anlage. (Waddell et al 2009, 152, 154)

Weitere wahrscheinlich archäologisch relevante Strukturen sind in der Visualisierung der geomagnetischen Untersuchungen sowohl im östlichen als auch im westlichen Bereich des ‘Rathcroghan Mounds’ vorzufinden, wobei diese annähernd runden, positiv magnetischen Anomalien (siehe G38 in Abb.42) vermutlich die Überreste kreisförmiger Gräben darstellen und die Ausdehnung des Bereiches vorhandener Grabhügel sich somit innerhalb der 360-Meter-Einfriedung auf größere Gebiete erstreckte. (Waddell et al 2009, 156)

c.) Die Nördliche Struktur

Abb.45: Visualisierung der Geomagnetik der Nördlichen Struktur
d.) Strukturen auf dem ‘Rathcroghan Mound’

In Bestätigung der im Vorfeld getätigten Annahmen aus den Luftbildern scheint eine weitere, äußerst interessante Beobachtung der topographischen Aufnahmen die Tatsache zu sein, dass ebenfalls wie im Fall der bereits im Kapitel ‘Emain Macha’ – Navan Fort beschriebenen Oberfläche der 40-Meter-Struktur der ‘Site B’ in Navan Fort die Oberfläche des ‘Rathcroghan Mounds’ durch mehrere strahlenförmige beziehungsweise radförmig angeordnete seichte Vertiefungen in irreguläre radiale Segmente unterteilt ist (siehe T32 in Abb.46). (Waddell et al 2009, 158-159)

Abb.47: Magnetische Suszeptibilität auf dem ‘Rathcroghan Mound‘
Wie auf Abbildung 48 deutlich auszunehmen, brachten besonders die Ergebnisse der geomagnetischen Prospektionen bislang völlig unbekannte und unerwartete Resultate zu Tage. So zeigen sich am Fuße des 'Rathcroghan Mounds' in einer etwas erhöhten Lage als einst vermutlich die Reste einer einstigen hölzernen Verkleidungsmauer durch einen annähernd runden Kreis positiv magnetischer Werte (siehe G1 in Abb.48), wobei zu bemerken ist, dass diese Struktur im Norden eine unübersehbare Abflachung zur Nördlichen Struktur hin aufweist und der Eingang im Osten durch versetzt angeordnete Endstellen am Fuße der östlichen Aufgangsrampe zu erkennen ist (siehe G39 in Abb.48). Im östlichen Bereich direkt daran angeschlossen liegen die beiden im Kapitel 'Die Östlichen Grabhügel' bereits beschriebenen Arme der trapezförmigen 'avenue' (siehe G15 & G16 in Abb.48), welche ebenfalls zur östlichen Aufgangsrampe führt. (Waddell et al 2009, 156, 162-164)

Abb.48: Visualisierung der Geomagnetik am 'Rathcroghan Mound' (adaptiert nach Waddell et al 2009, 163)
Die bereits bekannten seichten Vertiefungen in radialer Anordnung können in der Visualisierung der Geomagnetik als irreguläre magnetische Anomalien (siehe G42 in Abb.48) ebenso erkannt werden, als auch die Anomalie nördlich des Zentrums, welche die Position eines 1993 n. Chr. erneuerten trigonometrischen Punktes (‘Ordinance Survey trigonometric station’) markiert (siehe G45 in Abb.48 & in Abb. 49). Im Nordosten kann eine dipolare Anomalie beobachtet werden, welche sich durch das Vorhandensein eines mit Eisen versehenen ‘National Monument’-Schildes (siehe G44 in Abb.48) erklären lässt und laut Waddell von einem kleinen Kreis einer positiv magnetischen Anomalie (siehe G43 in Abb.48) umgeben ist. Augenscheinlich auffällig erscheint die intensive Bebauung im Zentrum des ‘Rathcroghan Mounds’, welche ein kompliziertes Muster von mehreren sich teilweise überlappenden, großen, runden Strukturen aufweist. Eine ca. 32 Meter sowie eine 28 Meter im Durchmesser messende Anordnung zeigt sich hierbei als runder, unterbrochener, konzentrischer Doppelkreis von einzelnen, magnetisch positiven, ca. 1,50 Meter voneinander entfernten Anomalie-Paaren (siehe G40 in Abb.48 & in Abb. 49 & G46 in Abb.49), welcher exakt mit der Zone der deutlich erhöhten magnetischen Suszeptibilitätswerten (siehe S8 in Abb.47) korreliert und wahrscheinlich einst die Pfostengruben einer runden, doppelten Holzpfeostenkonstruktion darstellte. Ein weiteres Gefüge mit einem Durchmesser von ungefähr 22 Metern, das mit dem Areal von hohen magnetischen Suszeptibilitätswerten übereinstimmt (siehe S9 & S10 in Abb.47) sowie die große runde, leicht erhöhte Plattform (siehe T30 in Abb.46) einkreist, kann leicht östlich der Mitte liegend als annähernd runder Kreis negativ-positiv-negativ magnetischer Anomalien (siehe G41 in Abb.48 & in Abb.49) erkannt werden, welcher mit massiven, knollenförmigen Endpunkten einen Eingang im Westen (siehe G47 in Abb.49) und eine nicht näher bestimmte, irreguläre Lücke im Osten (siehe G48 in Abb.49) aufweist. Zwischen dieser Struktur G41, in der sich möglicherweise die bogenförmigen Spuren eines weiteren runden Gebildes (siehe G51 in Abb.49) befinden, und der doppelten Holzpfeostenkonstruktion lassen die magnetischen Anomalien einen weiteren, großen Kreis (siehe G50 in Abb.49) vermuten und laut Waddel könnte die positiv magnetische Anomalie mit einem Durchmesser von ca. 12 Metern im Nordosten der doppelten Holzpfeostenkonstruktion (siehe G43 in Abb.49) ebenfalls eine kreisförmiges Denkmal repräsentieren und womöglich einst mit einem der vorhandenen Kreise eine ‘8er-Figur’ gebildet haben. Einen möglichen Eingang mit einem einstigen ungefähr 3 Meter voneinander entfernten Palisadenpaar zu einem – wahrscheinlich der doppelten Holzpfeostenkonstruktion – oder mehreren, zentral am Hügel platzierten Kreisen könnten die kurzen, linearen Anomalien im östlichen Bereich (siehe G49 in Abb.49) darstellen. (Waddell et al 2009, 142, 160, 163-167, 175)
Anhand der durchgeführten elektrischen Widerstandsmessungen (siehe Abb.50, Abb.51, Abb.52) konnten nicht nur viele der bereits erkannten und beschriebenen Strukturen bestätigt, sondern auch neue, bislang unentdeckte Monumente erkannt werden. (Waddell et al 2009, 168)

So zeigt sich ‘Rathcroghan Mound’ mit einem generell relativ hohen elektrischen Widerstand (siehe R10 in Abb.50) im Vergleich zu den Feldern seiner Umgebung, welche allgemein niedrige Widerstandswerte aufweisen (siehe R11 in Abb.50), wobei im Südosten ca. 10 Meter von seiner Basis entfernt eine bogenförmige Anomalie mit sehr hohem elektrischen Widerstand auf einer Länge von 34 Metern zu entdecken ist, welche scheinbar konzentrisch mit dem Hügel seinen Umfang nachahmt (siehe R12 in Abb.50) und laut Waddell möglicherweise einst einen Graben oder Palisadengraben darstellte, jedoch in den Geomagnetik-Untersuchungen nicht aufzufinden ist. Mit ebenfalls relativ hohen elektrischen
Widerstandswerten ausgestattet, stellt sich eine Anomalie eines breiten Bandes dar (siehe R13 in Abb.50), das gleich der in derGeomagnetik entdeckten, den Hügel umschließenden Struktur (G1 in Abb.48), die Basiskante des Hügels umrundet und auf das Vorhandensein einer größeren Menge an Steinen hinweisen könnte. (Waddell et al 2009, 168-169, 172-174)

Als äußerst interessante Beobachtung zeigt sich, dass sowohl die östliche Aufgangsrampe (siehe T21 in Abb.46 & R14 in Abb.50) als auch der nördliche Aufgang (siehe T23 in Abb.46 & R16 in Abb.50) im Gegensatz zur westlichen Aufgangsrampe, welche einen hohen Widerstand aufweist (siehe T25 in Abb.46 & R15 in Abb.50), mit niedrigen elektrischen Widerstandswerten ausgestattet sind, wobei dies laut Waddell als Hinweis auf unterschiedliche Phasen der Errichtung gesehen werden könnte und somit vermutlich die östliche und nördliche Aufgangsrampe die ursprünglichen Aufgänge zur Hügelkuppe darstellten. Neben einigen anderen nur vage zu vermutenden Strukturen sind ausschließlich in

Abb.50: Visualisierung der Widerstandsmessung am ‘Rathcroghan Mound’ (adaptiert nach Waddell et al 2009, 169)
den Ergebnissen der Widerstandsmessungen relativ klar die ca. 4 Meter voneinander entfernten, parallel verlaufenden Paare mit niedrig elektrischem Widerstand zu erkennen, welche in einer leichten Bogenform jeweils nordwestlich und südöstlich der Mitte des Hügels verlaufen (siehe R26 & R27 in Abb.50). (Waddell et al 2009, 168-169, 174)

Besonders das Zentrum des ‘Rathcroghan Mounds‘ stellte sich als Areal komplexer, sich teilweise überlappende Anomalien dar. So ließ sich die größte, mit niedrigen elektrischen Widerstandswerten ausgestattete, halbkreisförmige Anomalie mit einem ungefähren Durchmesser von 33 Metern (siehe R17 in Abb.51) als Zone mit den erhöhten magnetischen Suszeptibilitäts- werten (siehe S8 in Abb.47) und der damit korrespondierenden, doppelten Holzpfeifenkonstruktion in den geomagnetischen Prospektionen (siehe G40 in Abb. 49 & G46 in Abb.49) gleichsetzen. Etwas östlich davon lässt sich ein weiterer ungefähr 30 Meter im Durchmesser messender Kreis – vermutlich ein verfüllter Graben – mit niedrigen Widerstandswerten (siehe R19 in Abb.51 & R28 in Abb.52) und einer östlichen Lücke (siehe R20 in Abb.51) – wahrscheinlich ein ehemaliger Eingang, da sie mit den linearen magnetischen Anomalien G49 übereinstimmt – ausnehmen, wobei es scheint, als ob die

Etwas südlich der Mitte liegend, kann ein weiterer Halbkreis einer Anomalie mit niedrigem Widerstand entdeckt werden (siehe R21 in Abb.51 & R29 in Abb.52), der mit der runden, leicht erhöhten Plattform (siehe T30 in Abb.46) der topographischen Aufnahmen, welche vermutlich aus Erde oder Rasenziegel bestand, und den Zonen mit deutlich erhöhten Suszeptibilitätswerten (siehe S9 & S10 in Abb.47) korrespondiert, sowie von der in der Geomagnetik sichtbaren Struktur G41 (siehe G41 in Abb.49) und der damit gleichzusetzenden Anomalie mit höherem Widerstand (siehe R30 in Abb.52) eingeschlossen wird. Im westlichen Bereich der Anomalie R21 kann durch die Widerstandsmessungen ein annähernd rundes Areal mit niedrigem Widerstand beobachtet werden (siehe R22 in Abb.51), das sich mit dem in den topographischen Aufnahmen sichtbaren, kleinen Erdhügel (siehe T26 in Abb.46) deckt. (Waddell et al 2009, 168, 170-171, 173, 175)

Abb.52: Visualisierung der Widerstandsmessung Nr.2 im Zentrum des 'Rathcroghan Mounds'
e.) Strukturen im ‘Rathcroghan Mound’

Somit konnten die Resultate dieser anfänglichen Prospektionen bestätigen, dass es sich bei ‘Rathcroghan Mound’ nicht einfach um einen überformten glazialen Höhenrücken, sondern vielmehr um eine zu großen Teilen künstliche Konstruktion mit komplexem inneren Aufbau handelt, welche absichtlich und mit Vorsatz auf einer natürlich erhöhten Lage in der umgebenden Landschaft errichtet wurde. (Waddell et al 2009, 13, 178)

Abb.55: Visualisierung der elektrischen Widerstands-Tomographie
Im Zentrum des Hügels konnte ebenso wie in den Voruntersuchungen in allen neu durchgeführten Widerstands-Tomographien die klar abgegrenzte Zone mit sehr hohen Widerstandswerten ausgenommen werden (siehe ERT1 in Abb.53 & ERT3 in Abb.55), die als harter steiniger Bereich im Kern des ‘Rathcroghan Mounds‘ interpretiert wurde. (Waddell et al 2009, 182)

Aus den Daten der elektrischen Widerstands-Tomographie konnten auch drei planimetrische Visualisierungen, also horizontal geschnittene Scheiben (0,50 Meter, 1,50 Meter & 2,50 Meter) angefertigt werden, welche die Erdschichten von der heutigen Oberfläche der Hügelsmitte bis zu einer Tiefe von 2,50 Metern darstellen und unerwartete Ergebnisse zeigten (siehe Abb.56 & Abb.57). (Waddell et al 2009, 182-185)

So konnte die bereits bekannte Struktur in der Nähe der westlichen Aufgangsrampe (ERT2 in Abb.53, ERT8 in Abb.55 & GPR1 in Abb.54), die sich hier als steiniger und annähernd rechteckiger Bereich (siehe ERT2 in Abb.56 & in Abb.57) zeigte, sowie im Zentrum des Hügels eine runde, 22 Meter im Durchmesser messende Anomalie mit hohem Widerstand (siehe ERT7 in Abb.56 & in Abb.57) in allen drei planimetrischen Visualisierungen bis zu einer Tiefe von 2,50 Meter lokalisiert werden. Ein weiterer, jedoch 34 Meter im Durchmesser messender, konzentrischer Kreis mit hohen elektrischen Widerstandswerten (siehe ERT8 in Abb.56 & in Abb.57) konnte ebenfalls bereits knapp unter der heutigen Oberfläche erkannt werden. Interpretiert wurden diese beiden konzentrischen Kreise als steinige Ablagerungen beziehungsweise verborgene Mauern oder Wälle im Kern des Hügels, wobei eine direkte Korrelation zwischen dem inneren, im Erdreich verborgenen Kreis (ERT7 in Abb.57) und der sich an der Oberfläche befindenden runden Struktur (G41 in Abb.49) zu bestehen scheint.
Laut Waddell entspricht der äußere Kreis (siehe ERT8 in Abb.57) keiner bisher bekannten Struktur in Oberflächennähe. (Waddell et al 2009, 182-185, 189)

Dabei konnte erkannt werden, dass scheinbar der äußere (ERT8 in Abb.57) der beiden im Erdreich verborgenen Kreise etwas tiefer zu liegen scheint und in einer Tiefe von 1,50 bis 2,50 Meter in den prozessierten Daten als stark reflektierende Anomalie zu erkennen ist (siehe GPR14 in Abb.58), wohingegen sich die innere, ebenfalls stark reflektierende, kreisrunde Struktur (ERT7 in Abb.57) schon auf den Tiefenscheiben von 1 bis 2 Metern zeigt (siehe GPR13 in Abb.58). Auch die bekannte westliche Struktur in der Nähe der Aufgangsrampe (ERT2 in Abb.53, Abb.56 & in Abb.57, ERT8 in Abb.55 & GPR1 in Abb.54) ist in einer Tiefe zwischen 1,50 und 2,50 Meter deutlich als annähernd rechteckige, reflektierende Anomalie (siehe GPR15 in Abb.58) auszunehmen, und wurde als an der Oberfläche abgeflachte, steinige Ablagerung in annähernd rechteckiger Form interpretiert. (Waddell et al 2009, 189-190)

Auf oder beziehungsweise in Oberflächennähe der Hügelkuppe kann Waddell drei große und zusammenhängende Monumente und Phasen verorten. Dabei stellt für ihn die erste dieser Phasen die im Zentrum der Hügelkuppe liegende, große leicht erhobene Plattform dar, welche von einem Graben mit außenliegendem Wall eingefriedet zu sein scheint und sich mit der

II.) Integrierte Neu-Interpretation der geophysikalischen Prospektionen

Um den in dieser Arbeit beabsichtigten Vergleich zwischen archäologischen Hinterlassenschaften in Rathcroghan und literarischen Beschreibungen von ‘Crúachan Ai’ durchführen zu können, war es von Nöten, die Ergebnisse der geophysikalischen Untersuchungen in einer integrierten visuellen Gesamtinterpretation darzustellen, wozu sämtliche Daten georeferenziert im Geographischen Informations-System (GIS) ArcGis 10.0 der Firma esri integriert, sowie die archäologisch relevanten Strukturen in ‘shapefiles’ umgezeichnet und interpretiert wurden. Diese Methode ermöglicht es dem Anwender sämtliche Ergebnisse der einzelnen, an sich getrennten Interpretationen miteinander zu kombinieren, um sie zu einer integrierten Gesamtinterpretation zu vervollständigen.

Obwohl sicherlich ‘Rathcroghan Mound’ das imposanteste Monument des Komplexes von Rathcroghan darstellt, so erfährt dieses Zentrum durch die 360-Meter-Einfriedung zusätzlich an Bedeutung. Am deutlichsten in den Untersuchungsergebnissen der Geomagnetik zeigte sich die 360 Meter im Durchmesser messende Einfriedung als einstiger, beachtlicher, in etwa 5 Meter breiter Graben (G2 in Abb.42), dessen nordöstlicher Bereich im Gebiet eines heutigen Parkplatzes liegt und deswegen nicht untersucht werden konnte. Wie Waddell bereits vermutete, ist wahrscheinlich mit einem formalen Eingang im Osten zu rechnen, wodurch man in den trapezförmigen Eingangsbereich der Anlage, dessen beidseitige Gräben (G15 & G16 in Abb.42) einst vermutlich Palisaden beinhalteten, gelangte. Direkt angeschlossen an die beiden Arme dieser ‘avenue’, lässt sich die Einfriedung des ‘Rathcroghan Mounds’ als einstiger, eventuell palisadentragender Graben (G1 in Abb.48) mit den versetzt angeordneten Enden im östlichen Bereich (G39 in Abb.48) erkennen, wobei auch hier ein Eingang im Osten wahrscheinlich erscheint. Ob der nördliche Graben (G32 in Abb.42 & Abb.45) und der sich im Südosten befindliche Graben (siehe R12 in Abb.50) zusammenlaufen und eine zusammengehörige Struktur bilden, konnte aus den Daten der geophysikalischen Prospektionen nicht erschlossen werden. – siehe Abb.60
Abb. 60: Interpretation der geophysikalischen Prospektionsergebnisse von 'Rathcroghan Mound' & Umgebung (Interpretation Tanja Trausmuth, Datengrundlage: Waddell et al 2009, 140, 143, 157, 163, 165, 169)
Innerhalb der 360-Meter-Einfriedung liegt die sogenannte Nördliche Struktur (siehe Abb.61), deren einstige Pfostengräben oder –löcher eindeutig zwei miteinander konzentrische Kreise (G14 in Abb.42 & Abb.45 & G27 in Abb.45) bilden (in Abb.61 durch Strich-Punkt-Linien angedeutet). Wie Waddell bereits bemerkte, können auch Spuren eines eventuellen dritten Kreises (G29 & G30 in Abb.45) sowie mögliche Gruben innerhalb der kreisförmigen Struktur ausgenommen werden. Die Eingänge der beiden konzentrischen Kreise (G26 & G28 in Abb.45) befinden sich im Osten und stellen den wahrscheinlich formalen Zugangsweg in diese Anlage dar, da sie in die östlich angeschlossene ‘avenue‘ führen, deren gegenüberliegende Arme aus Paaren einstiger, vermutlich palisadenträger Gräben (G33 & G34 in Abb.45) bestehen, wobei ein Neben- oder Seiteneingang im Bereich des südlichen Armes (G35 in Abb.45) zu erkennen ist. – siehe Abb.61

Abb.61: Interpretation der geophysikalischen Prospektionsergebnisse der Nördlichen Struktur (Interpretation Tanja Trausmuth, Datengrundlage: Waddell et al 2009, 143, 153)

Ebenfalls innerhalb der 360-Meter-Einfriedung, jedoch im Bereich des trapezförmigen Eingangsbereiches im Osten der Anlage, sind die Östlichen Grabhügel als Paar zusammenhängender ‘ringbarrows’ wahrnehmbar. Waddells Interpretation folgend, zeigt sich der südliche, wahrscheinlich jüngere Grabhügel durch zwei miteinander konzentrische Gräben (G19 & G20 in Abb.43 & R5 & R6 in Abb.44) mit jeweils außenliegenden Wällen (G21 & G22 in Abb.43), wobei der innere Graben gegenüberliegende Lücken im Nordwesten und Südosten (R8 & R9 in Abb.44), sowie eine mittige in etwa 4 Meter große Grube (G23 in
Abb.43) aufweist. Der nördlich angrenzende, kleinere Grabhügel repräsentiert sich als innenliegender Graben (G17 in Abb.43 & R2 in Abb.44) mit einem vermutlichen Zugang im Westen (R3 in Abb.44) und einem außenliegenden Wall (G18 in Abb.43 & R4 in Abb.44). Zusätzlich zu Waddells Beobachtungen lassen sich in den Ergebnissen der Widerstandsuntersuchungen scheinbar zwei sich gegenüberliegende Lücken im Osten und Westen des außenliegenden Walles vermuten. – siehe Abb.62

Abb.62: Interpretation der geophysikalischen Prospektionsergebnisse der Östlichen Grabhügel (Interpretation Tanja Trausmuth, Datengrundlage: Waddell et al 2009, 143, 149, 152)

Wie bereits erwähnt, zeigt sich ‘Rathcroghan Mound‘ eingefriedet von einem annähernd runden, massiven Graben (G1 in Abb.48), der vermutlich einst mit einer hölzernen Palisade ausgestattet war. Wie Waddell bereits interpretierte, besteht die Möglichkeit, dass diese Palisade eine Art hölzerner Verkleidungsmauer darstellte, um den steilen Hang des Hügels vor dem Abrutschen zu schützen, wofür auch der innerhalb des Grabens liegende Bereich mit relativ hohen elektrischen Widerstandswerten (R13 in Abb.50) sprechen würde, welcher durch das Vorhandensein einer größeren Menge an Steinen einstige steinerne Stützkonstruktionen (in Abb.63 durch eine rote Linie angedeutet) zur Sicherung des ‘Rathcroghan Mounds‘ repräsentieren könnte. Deutlich erkennbar sind die versetzt angeordneten Endstellen (G39 in Abb.48) im Osten des Grabens, wobei in diesem wahrscheinlichen Eingangsbereich am Fuße der östlichen Aufgangsrampen eine zusätzliche Torkonstruktion oder Einlassstruktur vorstellbar wäre. Für eine bereits vorher bestehende Existenz der Nördlichen Struktur spricht die Abflachung der Einfriedungen (G1 in Abb.48 &
R13 in Abb.50) im Norden, da ein deutlicher Abstand zur Nördlichen Struktur hin eingehalten wurde und keine Störung vorliegt. – siehe Abb.63

Wie bereits durch die beinahe unüberschaubare Anzahl an Nummern und Bezeichnungen der bisher genannten Strukturen zu vermuten war, zeigt sich das Plateau des ‘Rathcroghan Mounds‘ als äußerst komplexe Anordnung verschiedener baulicher Gefüge. – siehe Abb.64

Für Waddell stellt, wie schon in Kapitel ‘Strukturen im ‘Rathcroghan Mound’‘ beschrieben, eines der großen Monumente die doppelte Holzpfeifenkonstruktion dar, welche als vielfacher Holzpfostenring mit eventueller Dachkonstruktion interpretierbar ist. Eventuell scheint jedoch auch die Möglichkeit zu bestehen, in den zahlreichen Holzpfeinsetzungen verschiedene miteinander konzentrische Strukturen und zusammengehörige Phasen zu entdecken.
Deutlich wahrnehmbar stellen sich die östlich liegenden Pfostengräben beziehungsweise Pfostenlöcher (G49 in Abb.49) dar, welche sich direkt an eine der Holzpfostenkonstruktionen zu schließen scheinen und den eventuell einst palisadenflankierten Zugangsweg bildeten, der mit der heutzutage in den topographischen Aufnahmen noch sichtbaren östlichen Aufgangsrampe (T21 in Abb.46 & R14 in Abb.50) sowie der Lücke in den Widerstandsuntersuchungen (R20 in Abb.51) in Verbindung gebracht werden kann und bis zur Einfriedung am Fuß des ‘Rathcroghan Mounds’ (G1 in Abb.48) mit den versetzt angeordneten Endstellen des Grabens (G39 in Abb.48) reicht. Zu welcher der zentral am Plateau des Hügels liegenden, eventuell unterscheidbaren Strukturen oder Phasen dieser Eingangsbereich gehören könnte, ist jedoch nicht auszunehmen. – siehe Abb.64

Eine weitere Auffälligkeit des vielfachen Pfostenringes ist im Westen zu erkennen, da sich auch hier eine dem östlichen Eingangsbereich gegenüberliegende, linear verlaufende Lücke zwischen den einzelnen Pfostensetzungen und -gräben der verschiedenen Strukturen zeigt, welche einen möglichen weiteren Eingang darstellen könnte. – siehe Abb.64 bis Abb.67

Obwohl einige der Pfostenlöcher und -gräben zu keiner erkennbaren Struktur zu gehören scheinen oder zumindest mit den Methoden der geophysikalischen Prospektionen nicht eindeutig zuordenbar sind (in Abb.64 weiß dargestellt), soll hier der Versuch unternommen werden eventuell zusammengehörige oder zumindest sich konzentrisch zeigende Gefüge vorzustellen.

So zeigen sich in Abb. 65 leicht östlich der Mitte der Kuppe liegend, die Teile eines massiven Pfostengrabens, der sowohl in den Ergebnissen der Geomagnetik (G41 in Abb. 49) als auch in den Widerstandsuntersuchungen (R30 in Abb. 52) auszunehmen war, wobei je ein möglicher Eingang sich im Osten als irreguläre Lücke (G48 in Abb. 49) sowie im Westen mit knollenförmigen Endpunkten (G47 in Abb. 49) zeigt. Interessanterweise scheint sich der äußere massive Pfostengraben (G41 in Abb. 49) mit den Zonen des niedrigen Widerstandes im nördlichen Bereich (R18 in Abb. 51), sowie im südwestlichen Bereich (R21 in Abb. 51) und im südöstlichen Bereich mit der in der Elektrischen Widerstands-Tomographie erkannten, im Hügel innenliegenden Struktur (ERT7 in Abb. 57) zu decken. Konzentrisch zum äußeren Pfostengraben in einem durchschnittlichen Abstand von 2 Metern, ist ein innenliegender Pfostenkreis zu erkennen, welcher sich mit der nur im Norden erkennbaren bogenförmigen Struktur (G51 in Abb. 49) deckt und dort vom im Radar stark reflektierenden Bereich (GPR13 in Abb. 58) sowie der in der Elektrischen Widerstands-Tomographie erkannten, im Hügel innenliegenden Struktur (ERT7 in Abb. 57) umrundet wird. Dieser innenliegende Pfostenkreis lässt sich mit einzelnen in den Ergebnissen der Geomagnetik erkannten Pfostenlöchern im Süden zu einer kreisförmigen Struktur ergänzen, wobei die scheinbare Lücke im Osten durch den Bereich mit niedrigem Widerstand (R21 in Abb. 51 & R29 in Abb. 52) ausgefüllt wird (in Abb. 65 durch eine türkisfarbene Linie angedeutet). Somit soll hier der äußere Pfostengraben mit dem innenliegenden Pfostenkreis zur blauen Phase zusammengefasst werden, welche sich mit den Bereichen der erhöhten Suszeptibilitätswerten (S9 & S10 in Abb. 47) deckungsgleich
zeigt und die leicht erhöhte Plattform (T30 in Abb.46) die möglichen Überreste eines einstigen Gebäudes darstellt. – siehe Abb.65

Eines der markantesten kreisförmigen Gebilde am Plateau des ‘Rathcroghan Mounds‘ stellt das Gefüge aus mehrfachen, konzentrischen Holzpfostensetzung mit einem Durchmesser von ungefähr 28 Metern bis 32 Metern (G40 in Abb.48 & in Abb. 49 & G46 in Abb.49) dar, welches von Waddell als vielfacher Holzpfostenring mit eventueller Dachkonstruktion interpretierbar scheint. Obwohl hier die Möglichkeit nicht abgesprochen werden soll, dass es sich tatsächlich um eine einzige, zusammengehörige, leicht ovale Struktur handeln kann, welche von der im Radar erkannten, stark reflektierenden, kreisförmigen Anomalie (GPR14 in Abb.58) und dem sich in der elektrischen Widerstands-Tomographie abzeichnenden Kreis mit hohen elektrischen Widerstandswerten (ERT8 in Abb.56 & in Abb.57), der laut Waddell keiner bisher bekannten Struktur in Oberflächennähe entspricht, umrandet wird, sollte jedoch die Eventualität in Betracht gezogen werden, dass diese Struktur einst zwei voneinander getrennte, leicht verschobene Monumente repräsentierte, da zu beobachten ist, dass, obwohl sich die einzelnen Pfostensetzungen im Osten überlagern, sie im Westen deutlich voneinander zu trennen sind.

So zeigt sich im Westen die mögliche rote Phase als zweifacher, eventuell dreifacher Holzpfostenring, wobei sich der äußere Pfostenkreis (G40 in Abb.48 & in Abb. 49) mit einem Durchmesser von ungefähr 32 Metern mit der Zone der deutlich erhöhten magnetischen
Suszeptibilitätswerten (S8 in Abb.47) und dem Halbkreis mit niedrigen elektrischen Widerstandswerten (R17 in Abb.51) deckt. Im Osten hingegen ist diese deutliche Abgrenzung der roten Phase nicht möglich, da sie sich mit der später noch näher besprochenen grünen Phase überlagert. In einem ungefähren Abstand von 2,50 Metern zum äußeren Pfostenkreis ist der mittlere konzentrische Pfostenkreis mit einem Durchmesser von ca. 28 Metern auszunehmen, der sich mit dem in den Widerstandsuntersuchungen festgestellten, kreisförmigen Bereich (R28 in Abb.52) im Südosten, sowie der kreisförmigen magnetischen Anomalie (G50 in Abb.49), dem Kreis mit niedrigen Widerstandswerten (R19 in Abb.51) und dem in den topographischen Aufnahmen ersichtlichen, von Waddell als möglicher Graben mit außenliegendem Wall angesprochenem Bereich (T31 in Abb.46) deckt. Im Zentrum des Gebildes der roten Phase lässt sich ein weiterer Kreis von einstigen Pfostensetzungen vermuten, welcher möglicherweise als zentrale Stützkonstruktion einer etwaigen Überdachung gedient haben könnte. – siehe Abb.66

Wie bereits erwähnt, lassen sich die einzelnen Pfostensetzungen, obwohl sie sich im Osten mit denen der roten Phase überlagern und nicht eindeutig unterschieden werden können, im Westen deutlich voneinander trennen und somit zu einer eventuellen grünen, leicht ovalen Phase zusammenfassen. Mit einem ungefähren Durchmesser von 30 Metern bis 34 Metern stellt sich der äußere Kreis der einzelnen Pfostensetzungen dar, welcher sich im Westen mit der magnetischen Anomalie (G46 in Abb.49) gleichsetzen lässt. In einem durchschnittlichen

5.) Alternativer Übersetzungsvorschlag von Teilen der ‘Táin Bó Fraích’

I.) Zur Übersetzungsproblematik

So wurde zweifelsohne die frühe irische Literatur in einem mittelalterlichen Umfeld und somit christianisierten Kontext Irlands niedergeschrieben, wobei, wie bereits im Kapitel ‘Die literarischen Beschreibungen von ‘Críathaich‘’ kurz erwähnt, forschungsgeschichtlich betrachtet, ab ungefähr der zweiten Hälfte des 20. Jahrhunderts n. Chr. ein heftiger und langjähriger Diskurs zwischen den so genannten ‘Nativisten’, mit Vertretern wie Kenneth H. Jackson, Myles Dillon oder Daniel Binchy – um nur einige zu nennen, und den Anhängern des ‘Antinativismus’, darunter Wissenschaftler wie James Carney, Donnchadh Ó Corrain, Liam Breathnach oder Kim McCon, über die Herkunft und Entstehungsgeschichte, sowie das kulturelle und soziale Umfeld der auf uns gekommenen Texte der frühen irischen Literatur herrschte. So vertraten Anhänger des ‘Nativismus’, obwohl unterschiedlicher Auffassungen und Auslegungen, die Ansicht, dass die frühmittelalterlichen irischen Texte eine längst vergangene, vorchristliche und somit eisenzeitliche Vergangenheit und Kultur Irlands widerspiegeln, da ihre Wurzeln im keltischen oder sogar indoeuropäische Bereichen liegen, wobei ähnlich dem Überlieferungssystem des Sanskrit in Indien besonderes Augenmerk auf die äußerst lange, mündliche Überlieferungstradition bis zur schlussendlichen Niederschrift der Texte gelegt wurde. Sogenannte ‘Antinativisten’ hingegen, obwohl ebenfalls unterschiedlicher Meinungen innerhalb ihres Feldes, vertraten die Auffassung, dass die Verfasser der frühen irischen Literatur, höchstwahrscheinlich christliche Mönche, ihre Werke in einem monastisch-christlichen Umfeld, wie etwa einem Kloster und für ein gebildetes Publikum des christianisierten Irlands und mit christlich gefärbten Inhalten und Werten versehen, niederschrieben und somit die auf uns gekommenen Texte bestenfalls Lebensbilder und kulturelle Gegebenheiten des frühen Mittelalters widerspiegeln können. Erst seit den frühen 1990er Jahren n. Chr. kam es größtenteils zu einer Beilegung dieser langanhaltenden Kontroverse und zu einem gewissen Paradigmen-Wechsel. So stimmt heutzutage ein Großteil der wissenschaftlichen Welt der ‘antinativistischen’ These zu, wobei hier angemerkt werden soll, dass, obwohl die frühmittelalterlichen irischen Texte zweifelsfrei in einem christianisierten Kontext stehen und auch so verstanden werden sollen, die Möglichkeit besteht, dass, wie Jonathan M. Wooding bereits 2009 bemerkte: „not ... everything is of Christian origin, but that early medieval writers were more open to interpreting their material than we have acknowledged; ... Perhaps one didn’t always have to work by the rules of institutions, and perhaps institutional mergers were not required to produce new interpretations of the religious past.“ (Wooding 2009, 61-63, 65, 69, 71-72 vgl. McCone 1991)

Weitere beim Übersetzen von Texten auftretende Schwierigkeiten können für den Übersetzer die Bedingungen des Übersetzens selbst darstellen, da hierfür nicht nur lexikalisch und grammatisches Wissen gefragt sind, sondern auch das kultur- und gesellschaftsspezifische Weltwissen des Übersetzers über seine soziale und natürliche Umwelt Einfluss nimmt, welches aufgrund seiner persönlichen Sozialisation und Ausbildung sowie den gesammelten Erfahrungen und erlebten Situationen entsteht. (Liefländer-Koistinen 2001; Bonacchi 2012, 48-49) So konnten überdies hinaus die Ergebnisse weiterer Untersuchungen von englisch- und griechischsprachigen Menschen über das Wahrnehmungsvermögen und die
Unterscheidungsfähigkeit der Farben grün und blau aufzeigen, dass die grundsätzliche Wahrnehmung von Farben unbewusst geschieht, wörtlich vermittelt wird, an die Muttersprache gebunden ist und innerhalb verschiedener Kulturen und Sprachen variiert, sowie, dass die gesprochene Sprache des Individuums seine Wahrnehmung der Welt beeinflusst. (Athanasopoulos et al 2009, 332-333)

II.) Besprechung des altirischen Textes & Vergleich mit den geophysikalischen und archäologischen Befunden

Im Folgenden soll ein alternativer Übersetzungsvorschlag (mit der Abkürzung: A.Ü. 2012 versehen) vorgestellt werden, der als Hilfestellung und Grundlage die neuesten Ergebnisse der archäologischen Interpretation berücksichtigt und die Textpassage behandelt, bei der Fraech mit seinem Gefolge in ‘Cruachan’ ankommt, wobei die jeweilige, beschriebene, räumliche Position der Akteure anhand einer virtuellen 3D-Darstellung anschaulich dargestellt werden soll.

M. 1974 § 4: Dosndécccai in derccaid din dúin in tan dodechatar i mMág Cruáchan.

M. 1974 § 5: Tairleïgait ì ndorus in dúïne.
T. 1901 übersetzte den altirischen Text als: „Der Späher erblickte sie von der Burg herab, als sie das Feld von Cruachna betraten.“ und „Vor der Burg sprangen die Jünglinge ab...“

A.Ü. 2012 § 4: Der Wächter beobachtet sie vom ‘dún‘ (aus), als sie in die Ebene von ‘Crúachu‘ kamen. (siehe Abb.70 - räumliche Position Pfeil)

A.Ü. 2012 § 5: Sie steigen ab beim Tor des ‘díuns‘. (siehe Abb.70 - räumliche Position Stern)

M. 1974 § 5: Dosennat na secht n-aige do Ráith Chrúachan, ocus secht sinnchu ocus secht mila maige ocus secht turcu alta, conda rubatar ind óic issind aurlaind in dúine.

M. 1974 § 5: Dosbertatar dochum na ardda i ndorus na primrátha.

A.Ü. 2012 § 5: Sie brachten sie in Richtung der Anhöhe vor das Tor des Hauptráths. (siehe Abb.71 - räumliche Position Stern)

M. 1974 § 6: ‘Táet issin less.’

A.Ü. 2012 § 6: „Er soll in den Innen-Hof kommen.“ (siehe Abb.72 - räumliche Position Pfeil)

M. 1974 § 7: Ed a écosc in taige: sechtordd and, secht n-imdai ó thein co fraig isin taig imme cúaird.

Airinech di chrédumu for cech imdai; aurscartad derggibair fo mrechtruncain uile.

A.Ü. 2012 § 7: Das Aussehen des Hauses ist: sieben Reihen (waren) dort, sieben Abteile (waren) im Haus von der Feuerstelle zur Wand im Kreis rundum. Eine Stirnseite aus Bronze (war) auf jedem Abteil; die Trennwand (war) von roter Eibe, alles mit vielfältiger Holzschnitzerei. (siehe Abb.73)

M. 1974 § 7: Tri stéill chrédumai i n-aulaith cecha imda, secht stialla umai ón damdabaich co cléithe issin tig.

A.Ü. 2012 § 7: Drei bronzene Täfelungen (waren) in der Wand jedes Abteils, sieben Täfelungen aus Kupfer von dem Platz, wo (normalerweise) der Kessel steht (bis) zum Firstkranz im Haus.

M. 1974 § 7:
De gius dogníth a tech.
Ba tuga slinned boí fair dianechtair.
 Bátar sé senistri dèc issin tig, ocus comlae humae ar cech n-ai.
Cuíng umai darsa forlés.

A.Ü. 2012 § 7: Das Haus wurde aus Kiefernholz gemacht.
Die Bedachung (war) aus Schindeln, welche auf der Außenseite waren.
Sechzehn Fenster waren in dem Haus und ein Laden aus Kupfer vor jedem von ihnen.
Über dem Oberlicht (war) ein kupfernnes Joch. (siehe Abb.74)

A.Ü. 2012 § 7: Sie beschritten das Haus im Kreis herum von der (einen) Tür zur anderen.
Sie hängen ihre Waffen in jenem Haus auf und setzen sich und es wird ein Willkommen zu ihnen ausgedrückt.

6.) Zusammenfassung und Schlussfolgerungen

um eine zeitgemäße, kombinierte und integrierte Interpretation zu erstellen. Die angefertigten Umzeichnungen der aufgefundenen Monumente auf und rund um den imposanten Hügel im Zentrum des weitläufigen Komplexes konnten durch den Vergleich mit ähnlichen Strukturen der anderen, ergrabenen ‘königlichen’ Zentren aufzeigen, dass es sich bei Rathcroghan ebenfalls um eine Fundstelle in eisenzeitlichem Kontext handelt.

Darüber hinaus konnte der Interpretationsplan als Grundlage für den Vergleich der archäologischen Hinterlassenschaften in Rathcroghan mit den literarischen Beschreibungen von ‘Crúachan Ai’ herangezogen werden und diente als wertvolle Hilfestellung bei der Übersetzung der wesentlichen Textstellen der mittelalterlichen irischen Literatur, da bisher etwaige unscharfe oder schwierig zu übersetzende Textabschnitte durch die archäologischen und geophysikalischen Befunde erhellt werden konnten.

Weiters war es durch die zusätzlich zum archäologischen Interpretationsplan zur Verfügung stehende, umfangreiche literarische Beschreibung des herrschaftlichen Hauptgebäudes möglich, für die im archäologischen Befund zumeist nicht erhaltenen Gebäudeteile, wie etwa Bedachung, Fenster, Innenausstattung, etc., zusätzliche Ideen, sowie neue Impulse und Lösungsansätze für eine virtuelle 3D-Rekonstruktion des Gebäudes zu gewinnen. (siehe Abb.75)

Nachdem die in dieser Arbeit dargestellten literarischen Schilderungen des herrschaftlichen Königssitzes aus dem Mittelalter stammen – die früheste erhaltene Version der Erzählung, aus der die Beschreibungen entnommen wurden, stammt aus dem 12. Jahrhundert n. Chr. – sind die Texte dieser Zeit zweifelsfrei im Kontext eines christianisierten Irlands niedergeschrieben worden, wodurch gewiss mit einer christlichen Färbung dieser Literatur zu rechnen ist. Dennoch bleibt die Tatsache bestehen, dass die Schreiber scheinbar auf detailliertes Wissen über das Aussehen des ‘königlichen’ Zentrums in ‘Crúachan Ai’ zurückgreifen konnten. Dieses Wissen kann entweder auf persönliche Beobachtung zurückzuführen sein, was ein Weiterleben der eisenzeitlichen Bautradition bis ins Mittelalter – ein Zeitraum von ca. 1000
Jahren – implizieren würde, oder die Berichte der mittelalterlichen Schreiber konnten sich auf eine mündlich überlieferte Erzähltradition stützen – über den gleichen, sehr langen Zeitraum hinweg!

Um eine zeitgemäße Erforschung und Interpretation, sowie ein tieferes Verständnis einer vergangenen Situation zu ermöglichen, scheint es somit beinahe unabdingbar eine fächerübergreifende Kommunikation und fruchtbringende Zusammenarbeit zwischen den verschiedenen Disziplinen zu betreiben.
7.) Abstract

Without doubt, the so-called prehistoric ‘royal’ centres of Ireland are not only considered by most scientists to count amongst the most important archaeological remains, but as well many interested lay persons and tourists recognize their value as former centres of power on the Emerald Isle.

Aside from archaeologists and pre- and proto-historians, linguists also engage in the study of medieval Irish texts that tell of places with melodious names such as Tara, ‘Emain Macha’, ‘Dún Ailinne’ or ‘Crúachan Aí’ as ‘royal’ sites of former rulers and kings.

The ‘royal’ seat of power, well known from literary sources, described in the ‘Táin Bó Cúailnge’ through the famous pillow talk between the Connacht royal couple Ailill and Medb appears to represent ‘Crúachan’, which still today is assumed to be visible in the topography at Rathcroghan near the village of Tulsk in County Roscommon. The detailed construction, which in medieval times has been described as ‘royal’ residence, as well as its immediate surroundings, have been presented in detail in the narration ‘Táin Bó Fraich’ – ‘The Cattle Raid of Fraích’, dating in its oldest extant version to the 12th century AD.

Until the intensive geophysical surveys, carried out by the Department of Archaeology of the University of Galway in the framework of the research project ‘ArchaeoGeophysical Imaging Project’, the remains of ‘Cruachan’ currently still visible in the landscape appeared archaeologically rather insignificant and of little interest. Based on this latest research project exiting new results emerged and it could be shown that ‘Rathcroghan Mound’ and its immediate surroundings contain and represent fascinating archaeological structures of extraordinary complexity. In the present work for the first time the georeferenced data has been combined, integrated, visualized and analysed in the framework of a Geographical Information System (GIS). This approach permitted new archaeological classifications and the generation of state-of-the-art interpretations of the archaeologically relevant structures.

Through comparison of the drawings made of the discovered monuments located on top of the imposing mound and in its vicinity within the centre of the wider ‘Crúachan’ complex, with similar structures at other excavated ‘royal’ centres, it became clear that the Rathcroghan site should be considered and placed in an Iron Age context.

Furthermore, the interpretation maps could be used as a basis for the comparison of the archaeological remains found at Rathcroghan with the literary descriptions of ‘Crúachan Aí’, serving as valuable guides in the translation of major passages in medieval Irish literature. Passages which earlier had been ambiguous or difficult to translate could be resolved with the help of the findings of the archaeological and geophysical investigations.

Additionally, the extensive collection of literary texts in combination with the archaeological interpretation maps created for this study made it possible to gain new ideas and answers concerning those parts of the architecture that have not survived in the archaeological record,
such as roofing, windows, interior equipment and the like, permitting a virtual 3D visualisation of the building.

Because the literary descriptions of the ‘royal’ residence date from the Middle Ages – the earliest extant version providing us with the descriptions dates from the 12th century – the texts have without doubt been written in the context of a Christianized Ireland and are therefore influenced by Christianity. Nevertheless the fact remains that the writers apparently had access to detailed knowledge of the appearance of the ‘royal’ centre in ‘Cruachan Ai’. This knowledge can either be derived from personal observations, which would imply the survival of an Iron Age building traditions up to medieval times – a period of at least about 1000 years – or the reports of the medieval writers were the results of an oral tradition – over the same long period of time! Similar to the proposal of the ‘window on the Iron Age’ postulated by Jackson in 1964 AD, which undoubtedly gives a view too simplified and romanticized, the idea of an elucidation of the Irish Iron Age by the various texts of the medieval Irish literature cannot be entirely dismissed – similar to a view through a slightly opaque window.

To permit up to date research and interpretation and gain a deeper understanding of the past, pursuing interdisciplinary communication and cooperation thus seems almost indispensable.
8.) Bibliographie und Quellenverzeichnis

http://www.staff.uni-mainz.de/hauptp/downloads/Habil%20Haupt%202008.pdf

http://heritagecouncil.ie/unpublished_excavations/section10.html#TaraRath

http://heritagecouncil.ie/unpublished_excavations/section10.html#DúnAilinne

http://heritagecouncil.ie/unpublished_excavations/section10.html

Leckebusch & Peikert 2001: Jürg Leckebusch & Ronald Peikert, Investigating the True Resolution and Three-dimensional Capabilities of Ground-penetrating Radar Data in Archaeological

9.) Abbildungsverzeichnis

Abb.1: Irlands heutige Heide, Foto Tanja Trausmuth; ...11

Abb.2: Eingriffeliger Weißdorn, Foto Tanja Trausmuth; ...12

Abb.3: Rinder beim Grasen, Foto Tanja Trausmuth; ...14

Abb.4: Bewaldete Flusslandschaft, Foto Tanja Trausmuth; ...16

Abb.5: Bohlenweg aus dem County Longford, 148 v.Chr, Hall 2011, 107; ..21

Abb.6: Castlestrange-Stein mit Latèneverzierung, County Roscommon, Foto Tanja Trausmuth; ...22

Abb.7: Seite aus dem ‘Book of Kells’, Konstam 2005, 163; ...24

Abb.8: Die 4 Haupttypen der irischen ‘ringforts’, Edwards 1990, 13; ...25

Abb.9: Karte von Irland mit Provinzen & Counties, Edwards 1990, 2; ...27

Abb.10: Übersichtskarte der näheren Umgebung von Rathcroghan, Waddell et al 2009, 2; ...28

Abb.11: Karte der ‘königlichen’ Zentren & Versammlungsorte, sowie der linearen Erdwälle: Black Pig’s Dyke, Dorsey, Drumsna, Dane’s Cast, Raftery 1994, 84; ...36

Abb.12: Provinz Connacht mit Counties (grau), fruchtbaren Ebenen & ehemaligen Bevölkerungsgruppen (schwarz), Breathnach 2006b, 478; ...38

Abb.13: Gabriel Berangers Aquarell von Rathcroghan, Waddell et al 2009, 36; ...41
Abb.14: Fergusons Zeichnung des Querbalkens von außerhalb der Höhle, Ferguson 1864, 165; ... 43

Abb.15: Fergusons Zeichnung des Querbalkens von innerhalb der Höhle, Ferguson 1864, 165; ... 43

Abb.16: Knoxs Zeichnung des ‘Rathcroghan Mounds‘, Knox 1911a, 98; ... 44

Abb.17: Reliefkarte von Rathcroghan mit Höhenschichtlinien & wichtigen Monumenten, Abbildung Tanja Trausmuth, Datengrundlage: Oxford Archaeology 2007, 110, 114; ... 46

Abb.18: Übersichtskarte der Monumente des Rathcroghan Komplexes, Waddell et al 2005, 4; ... 47

Abb.19: Luftbild des ‘Rathcroghan Mounds‘ (vom Süden aus fotografiert), Fenwick et al 1996, 20; ... 48

Abb.20: Luftbild von ‘Reilig na Righ‘ (vom Nordwesten aus fotografiert), Waddel et al 2005, 7; ... 50

Abb.21: Luftbild von ‘Dáithí’s Mound‘ (vom Süden aus fotografiert), Waddell et al 2005, 6; ... 51

Abb.22: Luftbild der ‘Mucklaghs‘ (vom Norden aus fotografiert), Waddell et al 2005, 7; ... 52

Abb.24: Luftbild von ‘Rath na dTarbh‘ (vom Westen aus fotografiert), Waddell et al 2005, 11; ... 54

Abb.25: Luftbild von ‘Rathbeg‘ (vom Osten aus fotografiert), Waddell et al 2005, 9; ... 55

Abb.26: Übersichtsplan von Tara (adaptiert nach Raftery), Raftery 1994, 67; ... 58

Abb.27: Luftbild vom ‘ringfort Tech Cormaic‘ mit angeschlossenem ‘ringbarrow Forrad‘ (vom Norden aus fotografiert), Waddell et al 2009, 126; ... 59
Abb.28: Luftbild von ‘Duma Selga’ (vom Nordnordosten aus fotografiert),
Waddell et al 2009, 125; ...60

Abb.29: Übersichtsplan vom Navan Komplex (adaptiert nach Mallory),
Mallory 2006c, 692; ...62

Abb.30: Rekonstruktion einer bronzezeitlichen Besiedlungsphase,
Raftery 1994, 20; ...63

Abb.31: Die 40-Meter-Struktur der ‘Site B’ in Navan Fort,
Raftery 1994, 77; ...65

Abb.32: Rekonstruktionsversuch der 40-Meter-Struktur der ‘Site B’ in Navan Fort,
Raftery 1994, 77; ...65

Abb.33: Radiale Segmente der 40-Meter-Struktur der ‘Site B’ in Navan Fort (adaptiert nach
Lynn),
Lynn et al 2002, 17; ...66

Abb.34: Übersichtsplan von ‘Dún Ailinne’,
Johnston et al 2009, 389; ...67

Abb.35: Übersicht der verschiedenen ergrabenen Bauphasen von ‘Dún Ailinne’,
Johnston et al 2009, 390; ...70

Abb.36: Interpretation der geophysikalischen Ergebnisse von ‘Dún Ailinne’,
Johnston et al 2009, 397; ...71

Abb.37: Zusammenfassende Chronologie der ‘königlichen’ Zentren,
Johnston 2006, 54; ...73

Abb.38: Thermoremanente Magnetisierung von Ton,
Neubauer 2001, 52; ...78

Abb.39: Elektronenmikroskopaufnahme einer magnetischen Bodenbakterie,
Hecht & Fassbinder 2006, 38; ...78

Abb.40: Ausbildung von Bewuchsmerkmalen,
Wilson 2000, 69; ...84

Abb.41: Magnetische Suszeptibilität rund um ‘Rathcroghan Mound’ (adaptiert nach
Waddell),
Waddell et al 2009, 141; ...88
Abb.42: Visualisierung der Geomagnetik rund um ‘Rathcroghan Mound‘ (adaptiert nach Waddell), Waddell et al 2009, 143; ..89

Abb.43: Visualisierung der Geomagnetik der Östlichen Grabhügel (adaptiert nach Waddell), Waddell et al 2009, 149; ..90

Abb.44: Visualisierung der Widerstandsmessung der Östlichen Grabhügel (adaptiert nach Waddell), Waddell et al 2009, 152; ..90

Abb.45: Visualisierung der Geomagnetik der Nördlichen Struktur, Waddell et al 2009, 153; ..92

Abb.46: Schattiertes Reliefmodell des ‘Rathcroghan Mounds‘ (adaptiert nach Waddell), Waddell et al 2009, 159; ..93

Abb.47: Magnetische Suszeptibilität auf dem ‘Rathcroghan Mound‘, Waddell et al 2009, 161; ..94

Abb.48: Visualisierung der Geomagnetik am ‘Rathcroghan Mound‘ (adaptiert nach Waddell), Waddell et al 2009, 163; ..95

Abb.49: DetaillierteVisualisierung der Geomagnetik am ‘Rathcroghan Mound‘, Waddell et al 2009, 165; ..97

Abb.50: Visualisierung der Widerstandsmessung am ‘Rathcroghan Mound‘ (adaptiert nach Waddell), Waddell et al 2009, 169; ..98

Abb.51: Visualisierung der Widerstandsmessung Nr.1 im Zentrum des ‘Rathcroghan Mounds‘ (adaptiert nach Waddell), Waddell et al 2009, 171; ..99

Abb.52: Visualisierung der Widerstandsmessung Nr.2 im Zentrum des ‘Rathcroghan Mounds‘, Waddell et al 2009, 173; ..100

Abb.54: Visualisierung der Bodenradar-Untersuchungen 1993/1994 (adaptiert nach Waddell), Waddell et al 2009, 179; ..101
Abb. 55: Visualisierung der elektrischen Widerstands-Tomographie,
Waddell et al 2009, 182; ...102

Abb. 56: Planimetrische Visualisierung der elektrischen Widerstands-Tomographie in einer
Tiefe von 0,50 Meter,
Waddell et al 2009, 183; ...103

Abb. 57: Planimetrische Visualisierung der elektrischen Widerstands-Tomographie in einer
Tiefe von 1,50 Meter,
Waddell et al 2009, 184; ...104

Abb. 58: Visualisierung der horizontalen Zeitscheiben der Untersuchungen mit dem
Bodenradar,
Waddell et al 2009, 190; ...105

Abb. 59: Vergleich der sogenannten ‘8er-Figuren’ mit ‘Rathcroghan Mound’ und der
Nördlichen Struktur (adaptiert nach Waddell),
Waddell et al 2009, 192; ...106

Abb. 60: Interpretation der geophysikalischen Prospektionsergebnisse von Rathcroghan
Mound & Umgebung, Interpretation Tanja Trausmuth, Datengrundlage:
Waddell et al 2009, 140, 143, 157, 163, 165, 169;108

Abb. 61: Interpretation der geophysikalischen Prospektionsergebnisse der Nördlichen
Struktur, Interpretation Tanja Trausmuth, Datengrundlage:
Waddell et al 2009, 143, 153; ...109

Abb. 62: Interpretation der geophysikalischen Prospektionsergebnisse der Östlichen
Grabhügel, Interpretation Tanja Trausmuth, Datengrundlage:
Waddell et al 2009, 143, 149, 152; ...110

Abb. 63: Interpretation der geophysikalischen Prospektionsergebnisse von Rathcroghan
Mound, Interpretation Tanja Trausmuth, Datengrundlage:
Waddell et al 2009, 140, 143, 157, 163, 165, 169; ..111

Abb. 64: Interpretation der geophysikalischen Prospektionsergebnisse des Plateaus des
‘Rathcroghan Mounds’, Interpretation Tanja Trausmuth, Datengrundlage:
Waddell et al 2009, 143, 163, 165, 169, 171, 173; ...112

Abb. 65: Interpretation der geophysikalischen Prospektionsergebnisse des Plateaus des
‘Rathcroghan Mounds’ – Blaue Phase, Interpretation Tanja Trausmuth,
Datengrundlage: Waddell et al 2009, 143, 163, 165, 169, 171, 173;113

Abb.70: Virtuelle 3D-Darstellung des ‘dúns’ von ‘Cruachan’, Interpretation Tanja Trausmuth, Datengrundlage: Waddell et al 2009, 140, 143, 157, 163, 165, 169; ...121

Abb.73: Idealisierte 3D-Darstellung der Innenstruktur des Hauses, Abbildung Tanja Trausmuth; ...124

Abb.74: Idealisierte Darstellung der Außenansicht des Hauses, Abbildung Tanja Trausmuth; ..126

Abb.75: Idealisierte 3D-Visualisierung von Rathcroghan, Interpretation Tanja Trausmuth, Datengrundlage: Waddell et al 2009, 140, 143, 157, 163, 165, 169;128

„Ich habe mich bemüht, sämtliche Inhaber der Bildrechte ausfindig zu machen und ihre Zustimmung zur Verwendung der Bilder in dieser Arbeit eingeholt. Sollte dennoch eine Urheberrechtsverletzung bekannt werden, ursuche ich höflichst um Meldung bei mir.“ (Tanja Trausmuth)
10.) Curriculum Vitae

Tanja Trausmuth

Geburtsdatum: 03. Mai 1977
Geburtsort: Mödling, NÖ
Staatsangehörigkeit: Österreich
e-mail: tanja.trausmuth@univie.ac.at

Schulische und Universitäre Bildung

Sept. 2006 Individuelles Diplom-Studium der Keltologie mit
Wahlfach Ur- und Frühgeschichte an der Universität Wien

April 2009 1. Diplomprüfung mit Auszeichnung bestanden

Juli 2014 voraussichtliche Absolvierung der Diplomprüfung

Mai 1996 Reife- und Befähigungsprüfung an der Bundes-Bildungsanstalt für
Kindergartenpädagogik, 1100 Wien

1991 – 1996 Bildungsanstalt für Kindergartenpädagogik, 1100 Wien

1987 – 1991 Hauptschule, 2603 Felixdorf

1983 – 1987 Volksschule, 2603 Felixdorf

Berufliche Tätigkeiten

2013 Wissenschaftliche Mitarbeiterin bei geophysikalischen Prospektionen,
Petronell-Carnuntum, NÖ, im Rahmen des Forschungsprojektes „ArchPro
Carnuntum“ des LBI ArchPro, der ZAMG und der Universität Wien

2013 Wissenschaftliche Mitarbeiterin bei geophysikalischen Prospektionen,
Stonehenge, England, GB, im Rahmen der „Case Study Stonehenge“ des
Ludwig Boltzmann Institutes für Archäologische Prospektion und Virtuelle
Archäologie, Wien

2012 Wissenschaftliche Mitarbeiterin bei geophysikalischen Prospektionen, Petronell-Carnuntum, NÖ, im Rahmen des Forschungsprojektes „ArchPro Carnuntum“ des LBI ArchPro, der ZAMG und der Universität Wien

2012 Meillionydd, Wales, GB (Schnittleitung und Supervisorin, vierwöchige stratigraphische Grabung unter der Leitung von Dr. Kate Waddington und Prof. PD Dr. Raimund Karl) in Zusammenarbeit mit „Early Celtic Societies in North Wales“ Projekt der Universität Bangor, Wales, GB

2011 Wissenschaftliche Mitarbeiterin beim FWF-Projekt „Die Altkeltischen Sprachreste in Österreich“ der Universität Wien, Institut für Sprachwissenschaft, unter der Leitung von Mag. Dr. David Stifter

2010 Betreuung des Informationsstandes des Ludwig Boltzmann Institutes für Archäologische Prospektion und Virtuelle Archäologie am „Wiener Forschungsfest“

1996 – 2007 Gruppenleitende Kindergärtnerin beim Amt der niederösterreichischen Landesregierung

Lehrtätigkeit

2011 Tutorium zur „Lehrgrabung 1 & 2 - Eisenzeitliche Siedlung Meillionydd, Llyn-Halbinsel, Nordwales“ an der Universität Wien

Stratigraphische Grabungserfahrung

2012 Meillionydd, Wales, GB (Schnittleitung und Supervisorin, vierwöchige stratigraphische Grabung unter der Leitung von Dr. Kate Waddington und Prof. PD Dr. Raimund Karl) in Zusammenarbeit mit „Early Celtic Societies in North Wales“ Projekt der Universität Bangor, Wales, GB

2011 Raiding, Bezirk Oberpullendorf, Bgld. (Eintägige stratigraphische Notgrabung) unter der Leitung von Kurt Fiebig für das burgenländische Landesmuseum, Eisenstadt

2011 Meillionydd, Wales, GB (Schnittleitung, dreiwöchige stratigraphische Grabung unter der Leitung von Dr. Kate Waddington und Prof. PD Dr. Raimund Karl) in Zusammenarbeit mit „Early Celtic Societies in North Wales“ Projekt der Universität Bangor, Wales, GB

2010 Meillionydd, Wales, GB (Schnittleitung, zweiwöchige stratigraphische Grabung unter der Leitung von Prof. PD Dr. Raimund Karl und Dr. Kate Waddington) in Zusammenarbeit mit „Early Celtic Societies in North Wales“ Projekt der Universität Bangor, Wales, GB
2009 Moel y Gaer, Wales, GB (dreiwöchige stratigraphische Grabung unter der Leitung von Prof. PD Dr. Raimund Karl) in Zusammenarbeit mit „Heather & Hillforts“ Projekt des Denbighshire C.C.

2007 Lochen, OÖ und Göming, Sbg. (zweiwöchige stratigraphische Grabung unter der Leitung von Prof. PD Dr. Raimund Karl)

Wissenschaftliche Vorträge

Publikationen

Raimund Karl, Mario Wallner, Tanja Trausmuth, Alexandra Vonkilch, Hazel Butler; Ausgrabungen in der Höhensiedlung Moel y Gaer Llanbedr Dyffryn Clwyd, in David Stifter, Keltische Forschungen VI, Praesens Verlag, Wien in Druck (2013).

Sprachkenntnisse

Kenntnisse der vergleichenden Sprachwissenschaft

gute aktive Kenntnisse: Englisch
aktive Grundkenntnisse: Bretonisch, Walisisch
gute passive Kenntnisse: Latein, Altirisch
passive Grundkenntnisse: Gallisch, Kornisch, Lepontisch, Keltiberisch
Weitere Kenntnisse

Führerschein B

EDV
Microsoft Word, Excel, Powerpoint, ArcGIS
div. Foto-Bearbeitungsprogramme (PhotoImpression, AirPhoto)

Auslandsaufenthalte

Zur Vertiefung meines Studiums Keltologie verbrachte ich mehrere Monate im Ausland

Juni 2013 Birka, Schweden (dreiwöchig)
Oktober 2012 England, GB (vierwöchig)
Juli 2012 Wales, GB (vierwöchig)
April 2012 England, Wales, GB (dreiwöchig)
Juli 2011 Wales, GB (dreiwöchig)
April 2011 Uppakra, Schweden (einwöchig)
Juli 2010 Wales, GB (zweiwöchig)
Juli 2010 England, GB (einwöchig)
Juli – Aug. 2009 Wales, GB (vierwöchig)
Sept. 2007 Irland (dreiwöchig)
Juli 2005 Irland (zweiwöchig)