DIPLOMARBEIT

Titel der Diplomarbeit
The global structure of Kerr-de Sitter metrics

verfasst von
Christa Raphaela Ölz

angestrebter akademischer Grad
Magistra der Naturwissenschaften (Mag. rer. nat.)

Wien, 2013

Studienkennzahl lt. Studienblatt: A 411
Studienrichtung lt. Studienblatt: Diplomstudium Physik
Betreut von: Univ.-Prof. Piotr T. Chruściel, MSc PhD
Acknowledgements

Sincere and cordial thanks to my thesis advisor Prof. Piotr Chruściel for constantly showing interest in my project, his invaluable help, and the time he took to answer all of my questions. I wish to express deepest gratitude also to my parents Hildegard and Bernhard Ölz for their support, which enabled me to write this thesis. Thanks to Joe and all my friends for moral support, and to the gravitation group, who shared their working space and lunch breaks with me. I would also like to thank Sebastian Szybka for helpful discussions on the program library, and for letting me use his original version of it.
The global structure of Kerr-de Sitter metrics

Contents

1 Introduction 1

2 Global properties 2
 2.1 Principal null directions ... 5
 2.2 Asymptotic behavior .. 6
 2.3 Obvious singularities .. 7
 2.4 Parameter space ... 9
 2.4.1 $1 - \frac{4}{3}a^2 > 0$... 10
 2.4.2 $1 - \frac{4}{3}a^2 \leq 0$... 13

3 Conformal diagrams 15
 3.1 General construction .. 15
 3.2 Kerr-de Sitter conformal diagrams 21
 3.2.1 $1 - \frac{a^2}{3} > 0$.. 23
 3.2.2 $1 - \frac{a^2}{3} \leq 0$.. 25

4 Extensions 26
 4.1 Axis singularity .. 27
 4.2 Horizons .. 28
 4.2.1 Eddington-Finkelstein-like coordinates 28
 4.2.2 Kruskal-Szekeres-like coordinates 29

5 Space-time diagrammatics (co-authored) 33

6 Concluding discussion 53
The conformal and projection diagrams appearing in this work were constructed using ePiX [18], with a library built together with Sebastian Szybka.
1 Introduction

The Kerr-de Sitter metric is a solution of the vacuum Einstein equations with a cosmological constant [7]. It can be interpreted as describing a space-time with a positive cosmological constant containing an axisymmetric rotating black hole. A black hole with nonzero angular momentum can be formed from a star gaining rotational energy from infalling matter [24, p.57]. The assumption of a background de Sitter space-time, characterized by a positive cosmological constant \(\Lambda \), can be understood as attributing a positive energy density to vacuum, with \(\rho_{\text{vac}} = \Lambda / (8\pi G) \) [5]. Experiments predict a positive \(\Lambda \), see for example [17] obtaining \(\Omega_{\Lambda} = 0.721 \pm 0.025 \) from nine years of WMAP data, where \(\Omega_{\Lambda} \) is the ratio of vacuum energy density and total energy density in a spatially flat universe, and [26], observing type Ia supernovae. As the existence of rotating black holes and space-times with positive cosmological constant is likely, we find it of interest to take a closer look at the global structure of Kerr-de Sitter space-time.

Even though a comprehensive overview of the global structure of Kerr-de Sitter space-time has not been provided so far, discussions about some global aspects can be found in literature, see for example [1, 8]. Conformal Carter-Penrose diagrams are commonly used to visualize the global structure, where for Kerr-de Sitter space-time, and also Kerr space-time, only the symmetry axis is considered. As it turns out in the course of this work, this comes from the fact that for all other angles the global structure of the full space-time is not correctly represented. Even though this does not seem to be explicitly discussed in literature, the lack of conformal diagrams for angles away from the axis of rotation in literature indicates awareness of this fact. We intend to give an overview of a number of global properties of Kerr-de Sitter in this work, using two-dimensional diagrams to visualize the global structure of the four-dimensional metric for all angles.

We start with a review of various aspects of the global structure of Kerr-de Sitter space-times by discussing the metric tensor in Boyer-Lindquist coordinates, closing gaps where necessary and generalizing some existing discussions about Kerr space-times to Kerr-de Sitter space-times.

More precisely, in Section 2 we determine the principal null directions, and characterize the Kerr-de Sitter space-time by it’s asymptotic behavior at large \(|r| \) as an asymptotically de Sitter space-time. There are a number of coordinate values where the metric functions in Boyer-Lindquist coordinates are not well defined. This is the case at the ring singularity, at the axis and at up to four values of the radial coordinate \(r \), where the horizons of the black hole are located. We examine these horizons more closely by studying the dependence of their number, location and possible degeneracy on the parameters. This results in the observation that there are always at least two, and up to four, simple Killing horizons, one located at a negative value of \(r \), and the remaining ones at positive values of \(r \).

The original area of definition of the metric in Boyer-Lindquist coordinates is extended in Section 4 by finding coordinates that are valid at the axis of rotation and at the Killing horizons. It is not possible however to find coordinates that extend over the ring singularity, the only singularity in our extended space-time.

We then construct several new conformal Penrose-Carter diagrams for various two-dimensional submanifolds in Section 3. It turns out that these diagrams correctly represent the causal structure of the full four-dimensional space-time only on the axis of rotation, which leads us
to search for alternative ways to represent the global structure of space-times.

This is accomplished in Section 5, consisting of the paper *Space-time diagrammatics*, which was written together with Piotr T. Chruścief and Sebastian J. Szybka and published in 2012 in Physical Review D [9]. There we introduce the concept of *projection diagrams*, which are a class of two-dimensional diagrams used to depict the global structure of space-times of two or more dimensions.

Space-time diagrammatics starts with a short reminder on the construction of conformal diagrams for two-dimensional static space-times. After a definition of projection diagrams, we give some simple examples to outline their properties. To make a comparison with the conformal Carter-Penrose diagrams, we construct both, projection diagrams and conformal diagrams, for the example of the Kerr metric. Projection diagrams are then constructed for a number of space-times, specifically the Kerr-Newman-(anti)-de Sitter family of metrics and the Emparan-Reall metrics, and an outlook is given on how we expect the projection diagrams for the Pomeransky-Senkov black holes to look like. Furthermore, we construct projection diagrams for spatially compact $U(1) \times U(1)$ symmetric models with compact Cauchy horizons which are obtained from the Kerr-Newman-(anti)-de Sitter and Taub-NUT metrics.

As large parts of the paper [9] developed from discussion and joint work, it is difficult to make a precise separation between what each author contributed. I was the main contributor to [9, Section III.C-III.F], dealing with the construction of projection diagrams for the Kerr-Newman-de Sitter family of metrics and the construction of conformal diagrams for the Kerr metric, and wrote parts of section [9, Section III.G] about projection diagrams for the Kerr-Newman-anti-de Sitter metrics. The material in [9, Section III.E] between equation (45) and equation (54) has been borrowed from our presentation in Section 2 of this work.

2 Global properties

The Kerr-de Sitter metric in Boyer-Lindquist coordinates is given by [7]1,

$$
 g = \rho^2 \left(\frac{1}{\Delta r} dr^2 + \frac{1}{\Delta \theta} d\theta^2 \right) + \frac{\sin^2(\theta)}{\rho^2 \Xi^2} \Delta \theta \left(adt - (r^2 + a^2) d\varphi\right)^2 \\
-\Delta r \frac{1}{\rho^2 \Xi^2} \left(dt - a \sin^2(\theta) d\varphi\right)^2 ,
$$

(2.1)

1The transformation between the coordinates used in [7] and the Boyer-Lindquist coordinates used in this work is given in [8, p. 102] as

$$
\lambda = r, \quad \mu = a \cos(\theta), \quad \psi = \frac{1}{\Delta \varphi}, \quad \chi + a^2 \psi = \frac{1}{2} t, \\
p = a^2, \quad h = 1 - \frac{a^2 \Lambda}{3}, \quad e = 0, \quad q = 0
$$

Note that [7,8] originally use the convention that de Sitter is described by $\Lambda < 0$; in other words, Carter’s Λ is the negative of ours.
where

\[\rho^2 = r^2 + a^2 \cos^2(\theta) , \quad (2.2) \]

\[\Delta_r = (r^2 + a^2) \left(1 - \frac{\Lambda}{3} r^2 \right) - 2mr , \quad (2.3) \]

\[\Delta_\theta = 1 + \frac{a^2 \Lambda}{3} \cos^2(\theta) , \quad (2.4) \]

\[\Xi = 1 + \frac{a^2 \Lambda}{3} , \quad (2.5) \]

with \(t \in \mathbb{R} \), \(r \in \mathbb{R} \), and \(\theta, \varphi \) being the standard coordinates parameterizing the sphere. Note that the metric functions are only well-defined away from zeros of \(\rho \) and \(\Delta_r \), and the determinant vanishes at \(\sin(\theta) = 0 \). We further assume \(\Lambda > 0 \), as \(\Lambda < 0 \) describes an Anti de Sitter space-time, as well as \(a > 0 \) and \(m > 0 \). When \(a < 0 \), we can replace \(\varphi \) by \(-\varphi\) to obtain a new positive value of \(a \), and therefore, to reduce the number of cases that remain to be considered, we will assume

\[a > 0 . \quad (2.6) \]

With the same reasoning we require

\[m > 0 ; \]

for \(m < 0 \) a new positive value for \(m \) is obtained by replacing \(r \) by \(-r\). The case \(a = 0 \), \(m \neq 0 \) is the Schwarzschild-de Sitter metric, with well-known global structure which will not be discussed here any further. Neither will the case \(m = 0 \) be considered here, which is the de Sitter metric. For \(a = 0 \) this is obvious, for \(a \neq 0 \) an explicit coordinate transformation is found by [8, p. 102], see also [1, 16, 30],

\[T = \frac{t}{\Xi} , \]

\[R^2 = \frac{1}{\Xi} \left(r^2 \Delta_\theta + a^2 \sin^2(\theta) \right) , \]

\[R \cos(\Theta) = r \cos(\theta) , \]

\[\Phi = \varphi - \frac{\Lambda}{3 \Xi} t , \quad (2.7) \]

which brings \(g \) to the de Sitter metric in static coordinates, given by [19, p.103]

\[g_{\text{dS}} = -(1 - \frac{\Lambda R^2}{3})dT^2 + \frac{1}{1 - \frac{\Lambda R^2}{3}}dR^2 + R^2 \left(d\Theta^2 + \sin^2(\Theta) d\Phi^2 \right) . \quad (2.8) \]

As \(m = 0 \) turns out to be de Sitter, and \(a = 0 = \Lambda \) Schwarzschild, it is customary to interpret \(m \) as a parameter related to mass, and \(a \) as a parameter related to rotation. The determinant of (2.1) is

\[\det(g) = -\frac{\rho^4}{\Xi} \sin^2(\theta) \quad (2.9) \]

and the metric is manifestly Lorentzian at \(r = 0 \), which shows that (2.1) defines a Lorentzian metric on any connected set on which the metric components remain bounded, i.e., away from zeros of \(\Delta_r \), the ring singularity at \(\rho = 0 \), and the (trivial) singularity at \(\theta \in \{0, \pi\} \).
The inverse metric reads

\[g^{\mu\nu} \partial_{\mu} \partial_{\nu} = - \frac{\Xi^2}{\Delta_r \Delta_\theta} \left((a^2 + r^2)^2 \Delta_\theta - a^2 \sin^2(\theta) \Delta_r \right) \partial_t^2 + 2 \frac{\Xi^2}{\Delta_r \Delta_\theta \rho^2} \left((a^2 + r^2) \Delta_\theta - \Delta_r \right) \partial_t \partial_\varphi + \frac{\Delta_\theta}{\rho^2} \partial_\varphi^2 \]

Note that

\[g^{tt} = g^{rr} = g^{\theta\theta} = g^{\varphi\varphi} \frac{\det(g)}{\Xi^4} \quad \frac{1}{\Delta_r} \times \frac{g_{\varphi\varphi}}{\sin^2(\theta)} \]

and

\[\text{sgn}(g^{tt}) = \text{sgn}(\Delta_r), \]

so either \(r \) or \(-r \) is a time-function for \(\Delta_r < 0 \), and \(t \) or \(-t \) is a time-function for \(\Delta_r > 0 \) and \(g_{\varphi\varphi} > 0 \). In the region where \(\partial_\varphi \) is timelike,

\[\{(a^2 + r^2)\Delta_\theta - a^2 \Delta_r \sin^2(\theta) < 0\} , \]

which is nonempty for \(\sin(\theta) \neq 0 \), the orbits of the Killing vector \(\partial_\varphi \) are closed timelike curves.

The character of the principal orbits of the isometry group \(\mathbb{R} \times U(1) \) is determined by the sign of the determinant

\[\det \begin{pmatrix} g_{tt} & g_{t\varphi} \\ g_{t\varphi} & g_{\varphi\varphi} \end{pmatrix} = \frac{\Delta_r \Delta_\theta}{\Xi^4} \sin^2(\theta) . \]

Therefore, for \(\theta = 0 \) the orbits are either null or one-dimensional, while for \(\theta \neq 0 \) the orbits are timelike in the regions where \(\Delta_r > 0 \), spacelike where \(\Delta_r < 0 \) and null where \(\Delta_r = 0 \); the last case is only well-defined after the space-time is extended over zeros of \(\Delta_r \).

In parallel to the Lemma 2.1.1 of [20, p.60] for Kerr\(^2\), the metric coefficients of (2.1) satisfy the identities

\[g_{\varphi\varphi} + a \sin^2(\theta) g_{t\varphi} = \frac{\Delta_\theta (a^2 + r^2) \sin^2(\theta)}{\Xi^2} , \]

\[g_{t\varphi} + a \sin^2(\theta) g_{tt} = -\frac{a \Delta_\theta \sin^2(\theta)}{\Xi^2} , \]

\[a g_{\varphi\varphi} + (r^2 + a^2) g_{t\varphi} = \frac{a \Delta_r \sin^2(\theta)}{\Xi^2} , \]

\[a g_{t\varphi} + (r^2 + a^2) g_{tt} = -\frac{\Delta_r}{\Xi^2} , \]

as well as

\[g_{tt} g_{\varphi\varphi} - g_{t\varphi}^2 = -\frac{\Delta_r \Delta_\theta \sin^2(\theta)}{\Xi^4} . \]

\(^2\text{This calculation following O’Neill, as well as the canonical vectors and associated identities below, also appear in [25], which I noticed after writing this section.}\)
Kerr-de Sitter space-time is of constant scalar curvature, as the Ricci scalar takes the constant positive value [25]

\[R = 4 \Lambda \, . \]

The Kerr-de Sitter metric therefore satisfies

\[R_{\mu \nu} = \Lambda g_{\mu \nu} \, , \]

see also [13].

2.1 Principal null directions

By analogy to [20, p.60] we define the **canonical vector fields**

\[
V = a \partial_\varphi + (a^2 + r^2) \partial_t , \\
W = \partial_\varphi + a \sin^2 (\theta) \partial_t ,
\]

satisfying the identities

\[
g (V, V) = - \frac{\Delta_r \rho^2}{\Xi^2} , \\
g (W, W) = \frac{\Delta_\theta \rho^2 \sin^2 (\theta)}{\Xi^2} , \\
g (V, W) = 0 .
\]

As discussed in, e.g., [28, p179], the Weyl tensor \(C_{abcd} \) in a four-dimensional Lorentzian vector space,

\[
C_{abcd} = R_{abcd} - (g_{a[c} R_{d]b} - g_{b[c} R_{d]a}) + \frac{1}{3} R g_{a[c} g_{d]b} ,
\]

possesses four, possibly coinciding, **principal null directions**, which are null vector fields \(k^\mu \) satisfying

\[
k^b k^c k^e C_{a[b}k_{c[d}k_{f]} = 0 \, . \tag{2.12}
\]

The **Petrov-Pirani classification** uses this fact to categorize the Weyl tensor according to the number of coinciding principal null directions. Kerr-de Sitter is of Petrov type D [1], in which case the Weyl tensor has two pairs of coinciding principal null directions, which is equivalent to the condition

\[
k^b k^c C_{a[b}k_{c[d}k_{e]} = 0 \tag{2.13}
\]

being satisfied [28, Table 7.1]. The authors of [1] find the outgoing principal null vector fields of Kerr-de Sitter to be given by

\[
l^\mu = \sqrt{\frac{\Delta_r}{2 \rho^2}} \left(\partial_r + \frac{\Xi}{\Delta_r} V \right) ,
\]

where the attribute outgoing refers to the fact that if we regard \(l^\mu \) as tangent to a curve, on that curve \(r \) is increasing. By extrapolation from the principal null directions of Kerr space-time,
given e.g. in [28, p.313], and verification by direct calculation of (2.13) using Mathematica with the package Riemannian Geometry & Tensor Calculus (RGTC) [4], we find the ingoing principal null vector field to be

\[n^\mu = \sqrt{\frac{\Delta_r}{2r^2}} \left(-\partial_r + \frac{\Xi}{\Delta_r} V \right). \]

Both \(l^\mu \) and \(n^\mu \) are defined up to a multiplicative factor, which we chose in order for \(l^\mu n_\mu = -1 \) to be satisfied. The form of \(n^\mu \) can also be inferred from \(l^\mu \), as letting \(r \rightarrow -r \) in \(l^\mu \) leads to a principal null direction of (2.1) with \(m \rightarrow -m \), and with that to a principal null direction of (2.1).

2.2 Asymptotic behavior

For \(\Lambda > 0 \) the space-time has a spacelike conformal boundary at infinity, in the sense of Penrose [21] (compare [10, 11]): We say that a space-time \((M, g)\) admits a conformal boundary \(\mathcal{I} \) if there exists a space-time with non-empty boundary \((\tilde{M}, \tilde{g})\) such that

1. \(M \) is the interior of \(\tilde{M} \) and \(\mathcal{I} = \partial \tilde{M} \), thus \(\tilde{M} = M \cup \mathcal{I} \);
2. there exists \(\Omega \in C^\infty(\tilde{M}) \) such that
 a. \(\tilde{g} = \Omega^2 g \) on \(M \),
 b. \(\Omega > 0 \) on \(M \),
 c. \(\Omega = 0 \) and \(d\Omega \neq 0 \) on \(\mathcal{I} \).

We apply this to Kerr-de Sitter by choosing \(\Omega = \sqrt{y^2} \) with \(y := \frac{1}{r} \) to obtain

\[\tilde{g} = \Omega^2 g = y^2 g = -3 \left(1 + a^2 y^2 \cos^2(\theta) \right) \left(\frac{1}{3 \Xi^2} \left(1 + a^2 y^2 \cos^2(\theta) \right) \right) d\varphi \]

\[+ \frac{3a^2 \Delta_\theta y^4 \sin^2(\theta)}{3 \Xi^2} - 3a^2 y^4 + y^2 (a^2 \Lambda - 3) + \Lambda + 6my^3 dt^2 \]

\[+ \frac{3a^2 \Delta_\theta y^4 \sin^2(\theta)}{3 \Xi^2} - 3a^2 y^4 + y^2 (a^2 \Lambda - 3) + \Lambda + 6my^3 \]

\[+ \frac{3 \Xi^2 (1 + a^2 y^2 \cos^2(\theta))}{3 \Xi^2 (1 + a^2 y^2 \cos^2(\theta))} d\varphi^2 + \frac{1 + a^2 y^2 \cos^2(\theta)}{\Delta_\theta} d\theta^2. \]

All the resulting metric coefficients can now be analytically extended across, and to a neighborhood of, the set \(\{ y = 0 \} \). At \(y = 0 \) we have

\[\lim_{y \to 0} y^2 g = -3 \left(\frac{\Delta_\theta}{\Xi^2} \right) d\varphi^2 + \left(\frac{\Lambda}{3 \Xi^2} \right) d\theta \to 0, \]

\[\left(\frac{\Lambda + 6my^3 + 3y^2}{3 \Xi^2 (1 + a^2 y^2 \cos^2(\theta))} \right) d\varphi^2 + \left(\frac{1 + a^2 y^2 \cos^2(\theta)}{\Delta_\theta} \right) d\theta^2, \]

\[\lim_{y \to 0} y^2 g = -3 \left(\frac{\Delta_\theta}{\Xi^2} \right) d\varphi^2 + \left(\frac{\Lambda}{3 \Xi^2} \right) d\theta \to 0, \]

\[\left(\frac{\Lambda + 6my^3 + 3y^2}{3 \Xi^2 (1 + a^2 y^2 \cos^2(\theta))} \right) d\varphi^2 + \left(\frac{1 + a^2 y^2 \cos^2(\theta)}{\Delta_\theta} \right) d\theta^2, \]
which is manifestly Lorentzian there, and hence in neighborhood of \(\{ y = 0 \} \). As \(\tilde{g} \) on \(\partial \tilde{M} \) is Riemannian, \(\mathcal{I} \) is spacelike.

In [8, p.102] it is emphasized that the Kerr-de Sitter is \textit{asymptotically de Sitter} as it tends to the de Sitter metric in the limit as \(r \) goes to infinity. This is already made precise by (2.15), where it is seen that the metric at \(y = 0 \) does not depend upon \(m \), and hence coincides there with the corresponding conformal rescaling of the Kerr-de Sitter metric. Yet another way of making this precise is to invoke the Kerr-Schild coordinates, with a de Sitter background metric. Following [1, 13], we use the transformation

\[
d\tau = \frac{1}{\Xi} dt + \frac{2mr}{(1 - \frac{r^2 A}{\Lambda})} dr ,
\]
\[
d\phi = d\varphi - \frac{a\Lambda}{3\Xi} dt + \frac{2mr a}{(r^2 + a^2)\Delta r} dr
\]

(2.16)
to obtain

\[
g = g_{dS} + \frac{2mr}{\rho^2} (k_\mu dx^\mu)^2 ,
\]

(2.17)

with

\[
g_{dS} = -\frac{(1 - \frac{r^2 A}{\Lambda})}{\Xi} d\tau^2 + \frac{\rho^2}{(1 - \frac{r^2 A}{\Lambda}) (r^2 + a^2)} dr^2 + \frac{\rho^2}{\Delta \theta} d\theta^2
\]
\[
+ \frac{(r^2 + a^2) \sin^2(\theta)}{\Xi} d\phi^2 ,
\]
\[
k_\mu dx^\mu = \frac{\Delta \theta}{\Xi} d\tau + \frac{\rho^2}{(1 - \frac{r^2 A}{\Lambda}) (r^2 + a^2)} dr - \frac{a \sin^2(\theta)}{\Xi} d\phi .
\]

(2.18)

(2.19)

\(g_{dS} \) is the de Sitter metric in unusual coordinates, which can be verified by using [8, 13] to find the transformation

\[
R^2 = \frac{r^2 \Delta \theta + a^2 \sin^2(\theta)}{\Xi} ,
\]
\[
R^2 \sin^2(\theta) = \frac{r^2 + a^2}{\Xi} \sin^2(\theta) ,
\]
\[
T = \tau ,
\]
\[
\Phi = \phi
\]

between (2.18) and the de Sitter metric in static coordinates (2.8). \(k^\mu \) is a null vector for both \(g \) and \(g_{dS} \), as can be easily verified by direct calculation, and tangent to a null geodesic congruence, as is noted in [13].

2.3 Obvious singularities

As becomes clear from the vanishing of the determinant (2.9) at \(\sin(\theta) = 0 \), the metric in Boyer-Lindquist coordinates is degenerate at the axis. A coordinate transformation to make the metric non-degenerate at the subset \{ \(\sin^2(\theta) = 0 \) \} is found in Section 4.1.
The set \(\{ \rho = 0 \} \) corresponds to a geometric singularity in the metric. To see this, note that on the equatorial plane \(\cos(\theta) = 0 \) we have
\[
g_{tt} = \frac{6m - r \left(3 - a^2 \Lambda \right) + r^3 \Lambda}{3r^2 \Xi^2}.
\]
It follows that the norm of the Killing vector \(\partial_t \) blows up as the set \(\{ \rho = 0 \} \) is approached along some directions when \(m \neq 0 \), which is impossible if the metric could be continued across this set in a \(C^2 \) manner.

Suppose that \(\Delta_r \) has no zeros, then the singular set \(\{ \rho = 0 \} \equiv \{ r = \cos(\theta) = 0 \} \) is not shielded by horizons, and so the metric is "nakedly singular". We will thus only be interested in those values of the parameters for which \(\Delta_r \) has zeros. This leads to restrictions on \(m \) when \(\Lambda \leq 0 \), but does not exclude any values of \(m \) and \(a \) when \(\Lambda > 0 \).

The metric coefficients in Boyer-Lindquist coordinates are singular at \(\{ \Delta_r = 0 \} \). As will be shown in Section 4.2, it is possible to find coordinates that extend over these singularities. Zeros of \(\Delta_r \) give rise to Killing horizons in Kerr-de Sitter space-time. From now on, by horizon we will mean a Killing horizon \(\mathcal{H}(\xi) \) associated with a Killing vector \(\xi \) on a manifold \(M \), defined by [3] as an embedded null hypersurface which coincides with a connected component of the set
\[
\mathcal{H}(\xi) := \{ p \in M : g(\xi, \xi)(p) = 0 \, , \, \xi(p) \neq 0 \}.
\]
We would like to find the location of the Killing horizons in Kerr-de Sitter space-time. For this we make a general ansatz for Killing vectors \(\xi^\mu \) of Kerr-de Sitter,
\[
\xi^\mu = \tilde{a} \partial_t + \tilde{b} \partial_\phi,
\]
with \(\tilde{a} \) and \(\tilde{b} \) constants, and set
\[
\bar{F}(r, \theta) := g(\xi, \xi) = \tilde{a}^2 g_{tt} + \tilde{b}^2 g_{\phi\phi} + 2\tilde{a}\tilde{b} g_{t\phi} = 0. \tag{2.20}
\]
On the hypersurface \(\bar{F}(r, \theta) = 0 \) we have
\[
d\bar{F}(r, \theta) = 0 \iff \bar{F}_r dr = -\bar{F}_\theta d\theta,
\]
and with that, assuming \(\bar{F}_r \neq 0 \),
\[
g = \rho^2 \left(\frac{1}{\Delta_r} \left(\frac{\bar{F}_\theta}{\bar{F}_r} \right)^2 + \frac{1}{\Delta_\theta} \right) d\theta^2 + \frac{\sin^2(\theta)}{\rho^2 \Xi^2} \Delta_\theta \left(adt - (r^2 + a^2)d\varphi\right)^2
\]
\[
-\Delta_r \frac{1}{\rho^2 \Xi^2} \left(dt - a \sin^2(\theta) d\varphi \right)^2, \tag{2.21}
\]
with signature
\[
\left(-\text{sgn}(\Delta_r) \, , \, \text{sgn}(\sin^2(\theta)) \, , \, \text{sgn} \left(\Delta_\theta \left(\frac{\bar{F}_\theta}{\bar{F}_r} \right)^2 + \Delta_r \right) \right),
\]
whereas for \(\bar{F}_r = 0 \) we substitute \(dr^2 \) instead. As \(\sin^2(\theta) = 0 \) is not a hypersurface, we get a null hypersurface if and only if either
\[
\Delta_r = 0
\]
or
\[
\Delta_\nu \left(\frac{F_{\nu\rho}}{F_{\rho\sigma}} \right)^2 + \Delta_\nu = 0, \quad \Delta_\nu \neq 0. \tag{2.22}
\]

It is easy to see that at \(\{ r = r_h \} \), where \(\Delta(r_h) = 0 \), we indeed have a Killing horizon, as we can find a Killing vector satisfying condition (2.20),
\[
\xi^\mu = \bar{\alpha} \left(\partial_\mu + \frac{a}{a^2 + r_h^2} \partial_\varphi \right) .
\]

In accordance with [1, 13] we choose \(\bar{\alpha} = \Xi \) so that the Killing vector associated to the Killing horizon at \(\Delta_\nu = 0 \) is
\[
\xi^\mu = \Xi \partial_\mu + \Omega_h \partial_\varphi ,
\]
with the angular momentum \(\Omega_h \) of the Killing horizon
\[
\Omega_h = \frac{a \Xi}{a^2 + r_h^2} .
\]

On a Killing horizon, the surface gravity \(\kappa \) of the horizon is defined as [3]
\[
\nabla^\mu (\xi^\nu \xi_\nu) = -2\kappa \xi^\mu .
\]

For Kerr-de Sitter, [1, 13] find that the surface gravity \(\kappa \) of the horizon at \(r = r_h \) is given by
\[
\kappa = 1 - r_h^2 \Lambda \frac{4m}{4mr_h} \Delta'_r(r_h) \tag{2.23}.
\]

From (2.23) we see that degenerate horizons, denoting Killing horizons where \(\kappa = 0 \) [3], occur at zeros of \(\Delta_\nu \) of order two or higher.

To find out if there exist further Killing horizons for \(\Delta_\nu \neq 0 \), we could analyze surfaces satisfying condition (2.22), which leads to very long expressions. We instead find a different argument, that shows that no Killing horizons for \(\Delta_\nu \neq 0 \) exist. As \(\partial_\varphi \) and \(\epsilon_\varphi \) are Killing vectors, we have \(L_{\partial_\varphi} g = 0 = L_{\epsilon_\varphi} g, L_{\partial_\varphi} \xi = 0 = L_{\epsilon_\varphi} \xi \) and \(L_{\partial_\varphi} g (\xi, \xi) = 0 = L_{\epsilon_\varphi} g (\xi, \xi) \). This implies that any Killing horizon \(\mathcal{H} \) is invariant under time-translations and rotations around the axis, and \(\partial_\varphi \) and \(\epsilon_\varphi \) are tangent to \(\mathcal{H} \). Therefore, any linear combination
\[
\bar{X}^\mu = \bar{\alpha} \partial_\mu + \bar{\beta} \partial_\varphi, \quad \bar{\alpha}, \bar{\beta} \in \mathbb{R},
\]
is tangent to \(\mathcal{H} \). A Killing horizon can only occur if there exists a linear combination of Killing vectors that is null on a subset of the manifold. A necessary and sufficient condition for the existence of such a linear combination is that the metric on the orbits of the Killing vectors is degenerate, or equivalently, the determinant (2.11) is zero. Apart from \(\Delta_\nu = 0 \), this is only the case at \(\sin(\theta) = 0 \), which is not a hypersurface and therefore not a Killing horizon.

2.4 Parameter space

We wish to analyze the number and character of zeros of the metric function\(^3\)
\[
\Delta_\nu = (r^2 + a^2) \left(1 - \frac{\Lambda r^2}{3} \right) - 2mr
\]
\[
= -\Lambda \frac{r^4}{3} + \left(1 - \frac{a^2\Lambda}{3} \right) r^2 - 2mr + a^2 . \tag{2.24}
\]

\(^3\)Note that [27] contains a shorter analysis of the zeros of \(\Delta_\nu \) as well, which differs from ours.
This will be needed to determine the location and character of the horizons.

2.4.1 \(1 - \frac{1}{3}a^2 > 0\)

By introducing a new variable \(x\) through the formula
\[
r = \sigma x := \sqrt{\frac{1 - \frac{1}{3}a^2}{\Lambda}} x ,
\]
the equation \(\Delta_r = 0\) becomes
\[
P(x) := -x^4 + 3x^2 - 2\beta x + \gamma = 0 ,
\]
where
\[
\beta = \frac{3m}{\Lambda \sigma^3} \geq 0 , \quad \gamma = \frac{3a^2}{\Lambda \sigma^4} > 0 .
\]
Thus, \(P(x)\) is a polynomial of degree four with at most four distinct real roots, and with \(P(x) \rightarrow -\infty\) for \(x \rightarrow \pm\infty\).

\(P(x)\) can have three extrema at most, we denote them \(x_1, x_2, x_3\). As \(P(0) = a^2 > 0\) and \(P(x) \rightarrow -\infty\) for \(|x| \rightarrow \infty\), there always exists at least one strictly positive global maximum and hence at least two distinct real zeros of \(P\). Since the function \(x \mapsto -x^4 + 3x^2 = x^2(3 - x^2)\) is even and \(\beta x\) changes sign at zero, the global maximum of \(P\) is attained at a negative value of \(x\). The analysis of (2.26) is particularly simple when \(m = 0\), since then \(\beta = 0\), leaving the function symmetric around zero. The zeros of \(P(x)\) then occur at
\[
x_h^{(1,2,3,4)} = \pm \frac{1}{\sqrt{2}} \sqrt{3 \pm \sqrt{9 + 4\gamma}} .
\]
In the remainder of this section we assume that
\[
m > 0 \quad \iff \quad \beta > 0 .
\]
A plot of \(P\) with \(\gamma = 0\) can be found in Figure 2.1. It is clear from the graph that, for \(\gamma > 0\), the equation \(P(x) = 0\) has always at least two zeros. To obtain insight into the problem at hand, we consider first \(P\) with \(\gamma = 0\),
\[
P_\beta(x) := -x^4 + 3x^2 - 2\beta x .
\]
Calculating the resultant of \(P_\beta \) and its derivative with Mathematica one finds that a double zero occurs only at \(\beta = 0 \) and \(\beta = 1 \). Similarly, one finds that \(P_\beta' \) and \(P_\beta'' \) vanish simultaneously only if \(\beta = \sqrt{2} \). As a reminder, the resultant of two polynomials

\[
p(x) = \sum_{i=0}^{n} a_i x^{n-i}, \quad q(x) = \sum_{j=0}^{m} b_j x^{m-j},
\]

with nonzero \(a_0 \) and \(b_0 \), and with zeros at \(\alpha_i \) and \(\beta_j \) respectively, can be written as

\[
R(p,q) = a_0^{m_0} b_0^n \prod_{i=1}^{n} \prod_{j=1}^{m} (\alpha_i - \beta_j),
\]

see e.g. [23, p.20-22]. So the resultant vanishes if and only if \(p \) and \(q \) have common roots.

By inspection of the graph of \(P_\beta \) we see that as \(\beta \) is increased from zero, the negative maximum goes up and the zero at the origin splits into two zeros, say \(x_{h(2)} \) and \(x_{h(3)} \), with \(x_{h(3)} \) traveling to the right. On the other hand, the zero at \(\sqrt{3} \), say \(x_{h(4)} \), travels to the left as we increase \(\beta \) from zero. This happens until \(x_{h(3)} \) and \(x_{h(4)} \) merge, at \(\beta = 1 \). For \(\beta > 1 \) the polynomial \(P_\beta \) has only two simple real zeros. There is a further qualitative change which occurs at \(\beta = \sqrt{2} \), since for \(0 < \beta < \sqrt{2} \) there are precisely three extrema, while at \(\sqrt{2} \) two rightmost extrema merge into an inflection point. For \(\beta > \sqrt{2} \) the function \(P_\beta \) is concave and therefore has only one local extremum, which is also a global maximum.

Since \(P = P_\beta + \gamma \) and \(\gamma > 0 \), the addition of \(\gamma \) amounts to shifting the graph up, which reduces the analysis of \(P \) to that of \(P_\beta \). We proceed now to a systematic analysis of the general case, but in fact the results below can already be inferred from our discussion so far.

A calculation of the resultant of \(P \) and \(P' \) shows that zeros of order two or higher occur if and only if

\[
\beta = \beta_\pm(\gamma) := \sqrt{\frac{1}{2} + 2\gamma \pm \sqrt{(3 - 4\gamma)^2}} \quad 6\sqrt{3} . \tag{2.31}
\]

One checks that both values are real for \(0 \leq \gamma \leq 3/4 \), and that

\[
\beta_- (\gamma) : (0, 3/4] \mapsto (0, \sqrt{2}], \quad \beta_+ (\gamma) : (0, 3/4] \mapsto (1, \sqrt{2}] \tag{2.32}
\]

are monotonically increasing functions of \(\gamma \) in that range, as

\[
\frac{d}{d\gamma} \beta_\pm^2 = 2 \mp \frac{\sqrt{3 - 4\gamma}}{\sqrt{3}} > 0
\]

for \(\gamma \in (0, 3/4] \). We conclude that for \(0 < \beta < \sqrt{2} \) there always exists a value of \(\gamma \) for which \(P \) has exactly one double zero, and that all zeros are simple for \(\beta > \sqrt{2} \). The condition for the resultant of \(P' \) and \(P'' \) to vanish is \(\beta = \sqrt{2} \), which coincides with the maximum value of \(\beta_\pm \) obtained at \(\gamma = \frac{3}{4} \), where \(P(x) \) has a saddle point.
For \(\beta < \sqrt{2} \), some insight into (2.31)-(2.32) is provided by the following argument. Let \(\beta \in (0, 1] \), and consider the graph of \(P \) as \(\gamma \) increases from 0. For those values of \(\beta \) and for \(\gamma \) very small the function \(P \) has four roots, and as \(\gamma \) increases the two positive roots \(x_h^{(2)} \) and \(x_h^{(3)} \) merge at the value of \(\gamma = \gamma_* \) for which \(\beta = \beta_-(\gamma_*) \). For \(\gamma > \gamma_* \) there are only two zeros of \(P \).

Let, next \(\beta \in (1, \sqrt{2}) \). Then \(P \) has only two zeros for small \(\gamma \). As \(\gamma \) is increased the positive local maximum of \(P \) eventually meets the axis at the value \(\gamma = \gamma^* \) such that \(\beta = \beta_+ \left(\gamma^* \right) \). For \(\gamma > \gamma^* \) there are only two zeros of \(P \).

Note that since

\[
\beta < \sqrt{2} \iff m^2 < \frac{2}{3} \Lambda \left(3 - a^2 \Lambda \right)^3,
\]

and \(m^2 \geq 0 \), a necessary condition for \(0 < \beta < \sqrt{2} \) is

\[
a^2 \Lambda \frac{3}{3} < 1,
\]

which we have assumed for this section. As \(P''(x_i) < 0 \) for \(i = 1, 3 \), and \(P''(x_2) > 0 \), it follows that

\[
2x_i^2 < 1 < 2x_i^2, \quad i = 1, 3.
\]

From

\[
P'(x_i) = 0 \iff x_i \left(-4x_i^2 + 6 \right) = 2\beta > 0,
\]

we obtain

\[
x_i > 0 \iff x_i^2 < \frac{3}{2},
\]

\[
x_i < 0 \iff x_i^2 > \frac{3}{2}.
\]

Together with (2.35) we conclude that

\[
x_1 < -\sqrt{\frac{3}{2}} < 0 < x_2 < \sqrt{\frac{1}{2}} < x_3 < \sqrt{\frac{3}{2}}.
\]

We turn our attention now to the sign of the zeros of \(P(x) \), which we denote as \(x_h^{(1)} < x_h^{(2)} \leq x_h^{(3)} \leq x_h^{(4)} \). Since \(P' \) has exactly one zero for \(x < 0 \), and we know that \(P(0) > 0 \), the function \(P \) has precisely one simple zero for \(x \leq 0 \). We thus have

\[
x_h^{(1)} < 0 < x_h^{(2)} \leq x_h^{(3)} \leq x_h^{(4)}.
\]

We have already seen that a zero of order three, \(x_h^{(2)} = x_h^{(3)} = x_h^{(4)} \), cannot occur when \(\beta < \sqrt{2} \).

This leaves open the possibilities \(x_h^{(2)} = x_h^{(3)} < x_h^{(4)} \) or \(x_h^{(2)} < x_h^{(3)} = x_h^{(4)} \). Those will occur if and only if the resultant of \(P \) and \(P' \) vanishes, or equivalently if equation (2.31) is satisfied.
ii $\beta = \sqrt{2}$

For

$$\beta = \sqrt{2} \iff m^2 = \frac{2}{3\Lambda} (3 - a^2 \Lambda)^3 ,$$ \hspace{1cm} (2.37)

$P(x)$ has a maximum at $-\sqrt{2}$, and a saddle point at $x_2 = x_3 = 2^{-1/2}$. The graph of $P(x) - \gamma$ is found in Figure 2.1. For $\gamma > 0$ and distinct from 3/4 the function P has exactly two simple zeros. When

$$\gamma = \frac{3}{4} \iff a^2 = \frac{\Lambda \sigma^4}{4}$$

the function P has one simple zero $x_h^{(1)} = -3 \times 2^{-1/2}$ and one triple zero $x_h^{(2)} = 2^{-1/2}$. A triple zero of P occurs only for these values of the parameters, all the remaining zeros are simple or double.

iii $\beta > \sqrt{2}$

Finally, for

$$\beta > \sqrt{2} \iff m^2 > \frac{2}{3\Lambda} (3 - a^2 \Lambda)^3$$ \hspace{1cm} (2.38)

the function P is concave so that there will only be two simple zeros of P, regardless of the value of γ.

The maximum of the function P has to be at a real negative value, we denote it x_1. As discussed for the case $\beta < \sqrt{2}$, we conclude that $x_1^2 > \frac{3}{2}$. Since $P(0) > 0$, the zeros $x_h^{(1)}$, $x_h^{(2)}$ of $P(x)$ are ordered as

$$x_h^{(1)} < -\sqrt{\frac{3}{2}} < 0 < x_h^{(2)}.$$

An overview of the dependence of the number and order of zeros of $P(x)$ on β and γ is shown in Figure 2.2.

2.4.2 $1 - \frac{3}{4}a^2 \leq 0$

Since Δ_r is concave now, and strictly positive at the origin, the function Δ_r has always precisely two simple zeros, one positive and one negative, see Figure 2.3. When

$$a^2 \Lambda = 3,$$

the quadratic term in (2.24) vanishes, which simplifies the analysis considerably. Note that we necessarily have $a \neq 0$ then. For the simplest case $m = 0$ the roots of Δ_r are

$$\Delta_r = \frac{3}{\Lambda} - \Lambda a^2 r^4 = \frac{\Lambda}{3} \left(r^2 - \frac{3}{\Lambda} \right) \left(r^2 + \frac{3}{\Lambda} \right)$$

$$= -\frac{\Lambda}{3} (r - r_+)(r - r_-) \left(r^2 + \frac{3}{\Lambda} \right), \hspace{1cm} r_{\pm} = \pm \sqrt{\frac{3}{\Lambda}}, \hspace{1cm} (2.39)$$

which are the horizons of the de Sitter space-time, as expected.
Figure 2.2: In the shaded region between the graphs, $P(x)$ has four simple zeros. Two of them merge to $x_h^{(1)} < x_h^{(2)} < x_h^{(3)} = x_h^{(4)}$ on β_+ and to $x_h^{(1)} < x_h^{(2)} = x_h^{(3)} < x_h^{(4)}$ on β_-. All three positive zeros merge at the point $(3/4, \sqrt{2})$, which leads to a triple and a simple zero there. In the unshaded region outside the graphs there always are two simple zeros.

Figure 2.3: The function Δ_r with $m = 0.5$, $a = 0.8$ and $\Lambda a^2 = 3$ (left plot) or $\Lambda a^2 = 6$ (right plot).
3 Conformal diagrams

3.1 General construction

Conformal Carter-Penrose diagrams for the four-dimensional Kerr-Newman-(anti-)de Sitter family of metrics with $m \neq 0$ are constructed by first taking sections of constant angles of the metric in order to obtain a two-dimensional induced metric.

For $a = 0$ we have explicit spherical symmetry of the four-dimensional metric in Boyer-Lindquist coordinates, so the information needed for visualizing the global structure is contained in the $t-r$ part of the metric. Therefore, we construct conformal diagrams for the two-dimensional metric obtained by setting $\varphi = \text{const}$ and $\theta = \text{const}'$, see [15, Section 5] for the diagrams.

For $a \neq 0$ this is not the case anymore, so conformal diagrams are usually only constructed along the symmetry axis, see for example [8, 12, 29]. As it becomes clear by the construction of Kerr-de Sitter conformal diagrams in Section 3.2, the two-dimensional diagrams do not correctly represent the causal structure of the four-dimensional space-times for other angles. We first use a transformation of the form (4.16)-(4.18) below, then set $\bar{\varphi} = \text{const}$, $\theta = 0$ in order to obtain a conformal diagram along the symmetry axis, see [8].

In both cases, $a = 0$ and $a \neq 0$, this leads to a two-dimensional static metric of the more general form

$$g_2 = H(t, r) \left(-F(r)dt^2 + \frac{1}{F(r)} dr^2 \right), \quad (3.1)$$

where $H(t, r)$ is a conformal factor, possibly, but not necessarily, depending on r and t, and $F(r)$ is a function of r with zeros at the horizons of the four-dimensional space-time, which we denote $r^{(i)}_h$. Since the causal nature of relations is unchanged by a conformal factor, we use

$$g_2 = \frac{g_2}{H(t, r)} = -F(r)dt^2 + \frac{1}{F(r)} dr^2 \quad (3.2)$$

instead of \bar{g}_2 for the construction of the conformal diagrams. Conformal diagrams for g_2 are constructed by first introducing coordinates to bring the regions where g_2 is non-degenerate to a manifestly conformally flat form. We then show that these regions can be extended over zeros of $F(r)$ and glue the resulting patches in order to obtain a presumably maximal extension, which correctly depicts the causal relation between any two points of the four-dimensional space-time. What follows is a more detailed description, summarizing work of [9, 20, 29].

We denote maximal regions of constant sign of $F(r)$ as blocks, where we additionally demand $|F(r)| < \infty$ and $|K(r)| < \infty$, where $K(r) = -\frac{1}{2}F''(r)$, to avoid intrinsic singularities of g_2. $K(r)$ is the Gaussian curvature of (3.2), which in two dimensions equals the Ricci scalar times one half. We begin by bringing a block $(r^{(i)}_h, r^{(i+1)}_h)$, where $F(r^{(i)}_h) = 0 = F(r^{(i+1)}_h)$ and $F(r) > 0$, to manifestly conformally flat form by defining

$$I(r) := \int_{r_h}^r \frac{dw}{F(w)} \quad (3.3)$$
with some \(r_* \in (r_h^{(i)}, r_h^{(i+1)}) \), and introducing the coordinates

\[
\begin{align*}
 u &= t - I(r), \\
 v &= t + I(r),
\end{align*}
\]

leading to

\[g_2 = -F(r) du dv. \]

Note that these coordinates are well-defined for \(r \in (r_h^{(i)}, r_h^{(i+1)}) \), as \(I(r) \) is monotonic there. Subsequently introducing

\[
\begin{align*}
 U &= \arctan(u), \\
 V &= \arctan(v)
\end{align*}
\]

brings infinities of \(u \) and \(v \) to finite values of \(U \) and \(V \) and \(g_2 \) to the form

\[g_2 = -\frac{1}{\cos^2(U) \cos^2(V)} F(r) dU dV. \]

Note that we then have

\[
\begin{align*}
 \text{as } r \to r_h^{(i+1)} & \Rightarrow \quad \text{for } |V| < \frac{\pi}{2} \text{ fixed: } t \to -\infty, \ U \to -\frac{\pi}{2}, \\
 \text{as } r \to r_h^{(i)} & \Rightarrow \quad \text{for } |U| < \frac{\pi}{2} \text{ fixed: } t \to \infty, \ V \to \frac{\pi}{2},
\end{align*}
\]

Rotation by \(\pi/4 \) with

\[
\begin{align*}
 T &= \frac{V + U}{2}, \\
 X &= \frac{V - U}{2}
\end{align*}
\]

concludes the transformations to bring the metric defined on the block \(r \in (r_h^{(i)}, r_h^{(i+1)}) \), with \(F > 0 \), to the form

\[g_2 = -\frac{1}{\cos^2(T + X) \cos^2(T - X)} F(r) (dT^2 - dX^2), \]

as depicted in (3.1). Note that the borders and corners of the diamond, that is, the subset corresponding to \(r \in \{r_h^{(i)}, r_h^{(i+1)}\} \), do not belong to the block.

The same discussion applies to blocks \(r \in (r_h^{(i)}, r_h^{(i+1)}) \) with \(F(r) < 0 \). The corresponding diagram is of the same form as (3.1), but with \(r_h^{(i)} \) and \(r_h^{(i+1)} \) interchanged. The orbits of the Killing vector field \(\partial_t \) are indicated as arrows in Figure 3.1. They are timelike for \(F(r) > 0 \), spacelike for \(F(r) < 0 \) and null on the horizons. While \(t \) is a time-coordinate for \(F(r) > 0 \), \(r \) is a time-coordinate for \(F(r) < 0 \), so in order to obtain diagrams where the time-coordinate
Figure 3.1: The region \((r_h^{(i)}, r_h^{(i+1)})\) and \(F(r) > 0\) in manifestly conformally flat coordinates \((X, T)\), with \(T\) increasing vertically. The arrows indicate the orbits of the Killing vector field \(\partial_t\), pointing in direction of increasing \(t\).

is increasing vertically, the blocks with \(F(r) < 0\) appear as rotated by \(\pm \pi/2\) in the conformal diagrams.

Furthermore, letting \(t \to -t\), or \(u \to v\) and \(v \to u\), flips a block of the shape as in Figure 3.1 around the horizontal respectively vertical axis.

To extend the block \((r_h^{(i)}, r_h^{(i+1)})\) with \(F(r) > 0\) over a horizon, we use Eddington-Finkelstein-like coordinates, applying the transformation

\[
u = t - I(r) \tag{3.8}
\]

to the coordinates used in (3.2) and choosing \(I(r)\) as in (3.3) to leave the coefficient of \(dr^2\) of the metric in the new coordinates zero. With this we have extended our original region over the horizon, obtaining

\[
g_2 = -F(r)du^2 - 2drdu \, . \tag{3.9}
\]

The block is extended as shown in the top left diagram of Figure 3.2. In the same way we can also apply

\[
v = t + I(r) \tag{3.10}
\]

to obtain

\[
g_2 = -F(r)dv^2 + 2rdv \, ; \tag{3.11}
\]

the extension is shown in the top right diagram of Figure 3.2. Even though both transformations extend over any zero of \(F(r)\), for our purposes it is enough to have the original block extended over the horizon at \(r_h^{(i)}\) to the next block. To obtain a single larger patch from these two extensions, they are glued along the common regions \((r_h^{(i)}, r_h^{(i+1)})^4\) to create a new manifold consisting of the identified region as well as two remaining regions, as can be seen in the bottom diagram of Figure 3.2.

\footnote{see \cite[Section 1.4]{20} for details}
Figure 3.2: The two Eddington-Finkelstein-like extensions of the region \((r_h^{(i)}, r_h^{(i+1)}) \) where \(F(r) > 0 \), with the original region shaded in grey, and the resulting patch when gluing along the grey region. Note that only the interior of the diagrams is included.

The crossing spheres, where four non-degenerate horizons meet in a conformal diagram, cannot be included by gluing Eddington-Finkelstein-like extensions, which are by construction open sets. In order to obtain an extension that contains the missing set we use Kruskal-Szekeres-like coordinates, which extend one block to the whole diamond of Figure 3.3 at once, including the crossing spheres. Starting with

\[
 u = t - f(r) \\
 v = t + f(r)
\]

and

\[
 f' = \frac{1}{F(r)}
\]

leaves the (identical) coefficients of \(du^2 \) and \(dv^2 \) zero. \(g_2 \) of (3.2) then becomes

\[
 g_2 = -F(r) \, du \, dv,
\]

with determinant

\[
 \det(g_2) = -\frac{F(r)^2}{4}.
\]

\[
 \bar{u} = -\exp(-cu), \quad (3.12) \\
 \bar{v} = \exp(cu), \quad (3.13)
\]

allows us to get rid of the second order zero in the determinant occurring at \(r = r_h^{(i)} \) by suitable choice of constant \(c \). Since we demanded that \(F(r) \) has a first order zero at \(r_h^{(i)} \) we can rewrite

\[
 F(r) = \frac{1}{G(r)} (r - r_h^{(i)}) = \frac{(r - r_h^{(i)})}{(G(r_h^{(i)}) + h(r)(r - r_h^{(i)}))},
\]
with \(G(r_h^{(i)}) \neq 0 \) and

\[
\begin{align*}
h(r) &= \int_0^1 \frac{d}{dt} G(t(r - r_h^{(i)}) + r_h^{(i)}) dt = \int_0^1 G'(t(r - r_h^{(i)}) + r_h^{(i)}) dt,
\end{align*}
\]

where \(' \) denotes differentiation after the argument of \(G(t(r - r_h^{(i)}) + r_h^{(i)}) \). With that,

\[
\begin{align*}
\bar{u} - \bar{v} = -2f(r) &= -2 \int \frac{dw}{F(w)} = \mp 2G(r_h^{(i)}) \ln |r - r_h^{(i)}| + H(r),
\end{align*}
\]

where the negative sign is used for \(r > r_h^{(i)} \) and the positive sign otherwise, and \(H(r) \) is a function that is bounded away from zero at and near \(r = r_h^{(i)} \). We then obtain

\[
\begin{align*}
\det(g_2) &= -F^2 \exp(2c(u - v)) \\
&= -\frac{F^2}{4c^4} \frac{1}{|r - r_h^{(i)}|} \exp(2cG(r_h^{(i)})) \exp(2cH(r)),
\end{align*}
\]

(3.14)

Choosing \(c \) as

\[
\begin{align*}
c = \pm \frac{1}{2G(r_h^{(i)})} = \frac{F(r)}{2|r - r_h^{(i)}|} \bigg|_{r \to r_h^{(i)}},
\end{align*}
\]

(3.15)

where the positive sign is used for \(r > r_h^{(i)} \) and the negative otherwise, cancels the zero of order two at \(r = r_h^{(i)} \) in (3.14). With that, an extension over the horizon at \(r = r_h^{(i)} \) is possible, but due to the dependence of \(c \) on \(r_h^{(i)} \) only if the zero of \(F(r) \) is simple at \(r_h^{(i)} \), and only over that horizon. The metric is then given by

\[
\begin{align*}
g_2 &= -\frac{F}{c^2 |r - r_h^{(i)}|} \exp(cH(r))d\bar{u}d\bar{v}.
\end{align*}
\]

(3.16)

Note that the \(r \) appearing in (3.16) is to be considered a function of \(\bar{u}\bar{v} \). To obtain well-defined (bijective) coordinates on the whole diamond of Figure 3.3, the signs of \(\bar{u} \) and \(\bar{v} \) in the remaining blocks are chosen as,

on II, \(\bar{u} = + \exp(-cu) \), \(\bar{v} = + \exp(cv) \),

on III, \(\bar{u} = + \exp(-cu) \), \(\bar{v} = - \exp(cv) \),

on IV, \(\bar{u} = - \exp(-cu) \), \(\bar{v} = - \exp(cv) \),

see definitions in [20, Def. 3.4.5] and [6] for Kerr, but note the different conventions. Further, introducing the coordinates

\[
\begin{align*}
U &= \arctan(\bar{u}) , \\
V &= \arctan(\bar{v})
\end{align*}
\]

(3.17)

and

\[
\begin{align*}
T &= \frac{V + U}{2} , \\
X &= \frac{V - U}{2}
\end{align*}
\]

(3.19)

(3.20)
brings the corresponding diagram of this extension to a form as shown in Figure 3.3.

If $F(r)$ becomes unbounded at some value r_0, with $|r_0| < \infty$, then one needs to remove the value r_0 from the set under consideration: If, for example, $r_0 \in (r^{(i)}_h, r^{(i+1)}_h)$, then in order to have well-defined coordinates we restrict r to $r \in (r^{(i)}_h, r^{(i+1)}_h)$, restriction to $r \in (r^{(i)}_h, r_0)$ obviously works in the same way. For the function $I(r)$ of definition (3.3) we choose the integration constant $r_* = r_0 + \epsilon, \epsilon \to 0$. Since $I(r_0) \to 0$, the subset $\{r = r_0\}$ corresponds to $\{u = v\}$. The conformal diagram of the block $(r_0, r^{(i+1)}_h)$ has the shape of the interior of a half-diamond, with a border at $r = r_0$ that is timelike for $F(r) > 0$ and spacelike for $F(r) < 0$, see Figure 3.4. Note that the border at $r = r_0$ is not included by the extension.

In the limit $r \to \pm \infty$, $F(r)$ can become unbounded, with the integral $\int_{r_*}^{\pm \infty} \frac{1}{F(r)} dr$ bounded. By choosing $r_* \to \pm \infty$, again a half-diamond shaped diagram is obtained, see the left pair of diagrams in Figure 3.5. For a block where $I(r)$ is bounded at both ends, a strip is obtained, with spacelike or timelike borders depending on the sign of F. If, on the other hand, the integral $\int_{r_*}^{\infty} \frac{1}{F(r)} dr$ is unbounded, then $I(r) : (-\infty, \infty) \to (-\infty, \infty)$ is monotonic for either sign of $F(r)$, and the blocks can be depicted as the right pair of diagrams in Figure 3.5.

The borders at positive and negative infinity, depicted as bold lines in Figure 3.5, are included by adding the conformal boundaries \mathcal{I}^{\pm}. Depending on the sign of Λ, the conformal boundaries are spacelike, timelike or null, for $\Lambda > 0, \Lambda = 0$ or $\Lambda < 0$ respectively [22]. The explicit form of \mathcal{I}^{\pm} for Kerr-de Sitter is given by (2.15). The spacelike infinities \mathcal{I}^0 can not be included in
Figure 3.4: Conformal diagrams of blocks with a physical singularity at \(r = r_0 \), with \(F(r) > 0 \) in the left diagram, and \(F(r) < 0 \) in the right one. Note that the right block was rotated so that the timelike coordinate, which is \(r \) for \(F < 0 \), is increasing vertically.

Figure 3.5: Conformal diagrams of blocks with \(r \in (r_{\Lambda}^{(i)}, \infty) \). The first two diagrams show the case where \(I(r) \) approaches a finite constant value for \(r \to \infty \), with \(F > 0 \) on the far left, and \(F < 0 \) next to it. The second pair of figures show the case where \(I(r) \) becomes unbounded for \(r \to \infty \), again with the first diagram showing \(F > 0 \) and the second one \(F < 0 \). A priori only the interior of the diagram is included, the strong lines indicating conformal infinities can be added separately, however still leaving out the corners.

the diagrams for space-times with nonzero mass, as the Weyl-tensor is singular at \(i^0 \) in the conformal completion [2], similarly the points \(i^+ \) and \(i^- \), denoting future and past infinity, are not included. For the treatment of infinities, see [2, 22, 28].

3.2 Kerr-de Sitter conformal diagrams

In order to obtain a two-dimensional metric from the full four-dimensional metric, an obvious first attempt would be taking sections of constant \(\theta \) and \(\phi \) in (2.1) to obtain

\[
\dot{g}_2 = -\frac{\Delta_r}{\Xi r^2}dt^2 + \frac{\rho^2}{\Delta_r}dr^2,
\]

where

\[
\Delta_r := \Delta_r - a^2\Delta_\theta \sin^2(\theta).
\]

As is shown in [9] however, already for Kerr the Ricci scalar of the two-dimensional metric (3.21) diverges as the larger value in \(\{ r : \Delta_r\big|_{\Lambda=0} = 0 \} \) is approached; this turns out to be true for Kerr-de Sitter as well. Instead we proceed as [9] do for Kerr, and as [8] suggests for the construction of a conformal diagram of the symmetry axis of Kerr-de Sitter, admitting any value for \(\theta \). By taking sections of constant \(\theta \) and \(\hat{\phi} \), where

\[
d\hat{v} = dt + \Xi \frac{\rho^2 + a^2}{\Delta_r}dr,
\]

\[
d\hat{\phi} = d\phi + \Xi a \frac{a}{\Delta_r}dr,
\]

the Weyl-tensor is singular at \(i^0 \) in the conformal completion [2], similarly the points \(i^+ \) and \(i^- \), denoting future and past infinity, are not included. For the treatment of infinities, see [2, 22, 28].
the four-dimensional metric (2.1) becomes

$$\bar{g}_2 = -\frac{\hat{\Delta}_r}{\Xi^2 \rho^2} d\hat{v}^2 + 2 \frac{dr d\hat{v}}{\Xi} ,$$

(3.25)

which is non-degenerate both at zeros $r_h^{(i)}$ of Δ_r and at zeros $\hat{r}_h^{(i)}$ of $\hat{\Delta}_r$. Note that $\hat{r}_h^{(i)} \neq r_h^{(i)}$ in general, equality is obtained if and only if $\theta \in \{0, \pi\}$. A second extension can be obtained by changing dr to $-dr$ in (3.23)-(3.25). The transformation

$$d\hat{t} = d\hat{v} - \frac{\Xi \rho^2}{\hat{\Delta}_r} dr$$

brings (3.25) to the form (3.1),

$$\bar{g}_2 = H \left(-F(r) d\hat{t}^2 + \frac{1}{F(r)} dr^2 \right) ,$$

(3.26)

where

$$F(r) = \frac{\hat{\Delta}_r}{\Xi \rho^2}$$

and

$$H = \frac{1}{\Xi} .$$

As the Ricci scalar for a metric of the form (3.2) equals $R = -F''(r)$, it is easily verified that the Ricci scalar for this metric is finite away from the ring singularity and infinite r^2. To construct conformal diagrams we proceed as discussed in Section 3.1. Dropping the conformal factor in (3.26) and considering $g_2 := \Xi \bar{g}_2$ from now on, the Eddington-Finkelstein-like transformations

$$u = \hat{t} - \int \frac{\Xi \rho^2}{\hat{\Delta}_r} dr$$

(3.27)

and

$$v = \hat{t} + \int \frac{\Xi \rho^2}{\hat{\Delta}_r} dr$$

(3.28)

extend the original regions of constant sign of F over the horizons, leading to metrics

$$g_2 = -\frac{\hat{\Delta}_r}{\Xi \rho^2} du^2 - 2 dr du$$

and

$$g_2 = -\frac{\hat{\Delta}_r}{\Xi \rho^2} dv^2 + 2 dr dv$$

respectively. To include the crossing spheres, both transformations are used at once to obtain a Kruskal-Szekeres-like extension of the original region, the metric is then

$$g_2 = -\frac{\hat{\Delta}_r}{\Xi \rho^2} dudv .$$
The subsequent transformations

\[\bar{u} = -\exp(-cu) , \]
\[\bar{v} = \exp(cv) , \]

with suitable choice of the constant \(c \) according to (3.15),

\[c = \frac{\hat{\Delta}_r}{2\Xi\rho^2} \bigg|_{r \to \hat{r}_k^{(i)}} , \]

lead now to an extension of \(g_2 \) over the respective non-degenerate horizon including the crossing spheres,

\[g_2 = -\frac{\hat{\Delta}_r \exp(c(u - v))}{\Xi\rho^2} \frac{d\bar{u}d\bar{v}}{c^2} , \]

where

\[u - v = -2 \int \frac{\Xi\rho^2}{\hat{\Delta}_r} dr' . \]

As discussed in the previous chapter, we subsequently use the transformations (3.17)-(3.18) and (3.19)-(3.20), the corresponding conformal diagrams are then constructed by gluing suitably extended regions.

For \(\theta \in \{0, \pi\} \) the conformal diagrams have the same form as the projection diagrams shown in Figures 6-9 of [9], excluding the grey regions bordered by \(\hat{r}_\pm \) and where \(r_i \) denote \(r_k^{(i)} \) in our notation, see also [8, p.111] for the case of four simple zeros of \(\Delta_r \). The location of the horizons shown in the diagrams coincides with the location of the horizons of the full four-dimensional space-time, whereas the horizon structure of the conformal diagrams with \(\theta \in (0, \pi) \) may differ from the diagrams for the symmetry axis. The horizons don’t appear in the same location as the horizons of the full space-time, and, more importantly, the causal structure is changed for a range of parameters.

Assuming now \(\theta \in (0, \pi) \), then

\[\hat{\Delta}_r(0) = a^2 - a^2 \sin^2(\theta) \Delta_\theta = a^2 \cos^2(\theta) \left(1 - \frac{a^2\Lambda}{3} \sin^2(\theta) \right) < a^2 , \]

so the whole function \(\hat{\Delta}_r \) is shifted down by an overall value with respect to \(\Delta_r \). Note that \(\Delta'_r(r_i) = 0 = \hat{\Delta}'_r(r_i) \) for the location of extrema \(r_i \). Again we distinguish between two different cases, depending on the sign of \(1 - \frac{a^2\Lambda}{3} \).

3.2.1 \(1 - \frac{a^2\Lambda}{3} > 0 \)

If the sign is positive, \(\hat{\Delta}_r(0) \) is always positive and there always exist at least two distinct horizons, one at a positive and one at a negative value of \(r \). In analogy to Section 2.4.1, we define a function \(\hat{P}(x) \) for \(\hat{\Delta}_r \),

\[\hat{P}(x) = -x^4 + 3x^2 - 2\beta x + \eta \gamma , \]
Figure 3.6: β_\pm and $\hat{\beta}_\pm$ with $\eta > 0$, here assuming $\eta = 0.5$, are shown as a function of $\gamma > 0$. The grey shading between β_\pm and β_\pm, as well as between $\hat{\beta}_\pm$ and $\hat{\beta}_\pm$, indicates the existence of four zeros of Δ_r and $\hat{\Delta}_r$ respectively. In the region where they intersect, indicated by a darker shading, as well as in the white regions where both Δ_r and $\hat{\Delta}_r$ have two zeros, the global structure is correctly represented by the conformal diagram.

where

$$\eta := 1 - \sin^2(\theta)\Delta_\theta$$

and σ, x, β and γ as defined in (2.25) and (2.27). The resultant of \hat{P} and \hat{P}' vanishes at

$$\beta = \hat{\beta}_{\pm}(\gamma) := \sqrt{\frac{1}{2} + 2\eta \gamma \pm \frac{\sqrt{3 - 4\eta \gamma}^3}{6\sqrt{3}}}$$

with $\hat{\beta}_{\pm}(\gamma)$ real for $\eta \times \gamma \in [0, 3/4]$, and monotonically increasing in this interval. Note that for $\eta = 1$, the functions $\hat{P}(\gamma)$ and $\hat{\beta}_{\pm}(\gamma)$ are equal to $P(\gamma)$ and $\beta_{\pm}(\gamma)$ as defined in (2.26) and (2.31).

In Section 2.4.1 we saw that for a specific value of β, the functions $\beta_{\pm}(\gamma)$ give information on the number and order of zeros of $P(x)$, and with that of Δ_r, as is explained in Figure 2.2. The function $\hat{\beta}_{\pm}(\gamma)$ determines the zeros of $\hat{\Delta}_r$ in an analogous manner. Thus, the relation between $\hat{\beta}_{\pm}(\gamma)$ and $\beta_{\pm}(\gamma)$ gives information on how the horizon structure of the four-dimensional space-times is represented in the conformal diagrams.

Since we assume here $\theta \in (0, \pi)$, we always have $\eta < 1$. In case of $\eta < 0$, the functions $\hat{\beta}_{\pm}$ are not real and all conformal diagrams have two simple horizons. Regarding now $\eta \in (0, 1)$, we have $\hat{\beta}_{\pm}(\gamma) < \beta_{\pm}(\gamma)$ for $\gamma \in (0, 3/4]$. The relation between β_{\pm} and $\hat{\beta}_{\pm}$ for $\eta > 0$ is shown in Figure 3.6.

We can deduce from Figure 3.6 in which way the global structure represented by the conformal diagrams with $\eta \in (0, 1)$ relates to the structure of the four-dimensional space-time. We only find resemblance if (γ, β) lies in the dark grey area, where four horizons occur, or in the white.
Figure 3.7: The conformal diagrams for $\theta \in (0, \pi)$ and large $\Delta_\theta \sin^2(\theta)$, so that $\hat{\Delta}_r$ has no zeros. The ring singularity in the right diagram at $\theta = \frac{\pi}{2}$ and $r = 0$ is not part of the diagram and can not be crossed by any observer. Therefore, the two regions $r > 0$ and $r < 0$ are disconnected, which is indicated by a gap at $r = 0$.

Figure 3.8: The conformal diagrams for $\theta \in (0, \pi)$ and $\Delta_\theta \sin^2(\theta)$ large enough so that $\hat{\Delta}_r$ has one zero of order two at r_1, where it’s global maximum is located. While the strong lines indicate conformally smooth infinities that are part of the diagram, the circles indicate points that are excluded.

area, where we get two horizons. The conformal diagrams then correspond to the ones we got for $\theta \in \{0, \pi\}$, but where horizons appear at $r_h^{(i)} \neq r_h^{(i)}$. A similar analysis can be made for $\eta = 0$. In this case we get constant values $\hat{\beta}_+ = 1$ and $\hat{\beta}_- = 0$, so the number and possible degeneracy of the horizons is only correctly represented for (γ, β) lying in the grey area of Figure 2.2 for $\beta < 1$, and in the white area of the same figure for $\beta > 1$.

A detailed analysis of how the conformal diagrams represent the four-dimensional global structure in all other areas is not provided in this section, as the number of cases to consider is very large and the global structure is not represented in a useful way anyway. An exemplary analysis is provided in the next section, for the case $1 - \frac{a^2 \Lambda}{3} \leq 0$ however.

3.2.2 $1 - \frac{a^2 \Lambda}{3} \leq 0$

In case of $1 - \frac{a^2 \Lambda}{3} \leq 0$, $\hat{\Delta}_r$ does not necessarily have zeros anymore. Starting with large $\Delta_\theta \sin^2(\theta)$ so that $\hat{\Delta}_r < 0$ for all $r \in \mathbb{R}$, the metric (3.25) has no singularities away from the ring singularity, and the conformal diagram is of a form as shown in Figure 3.7. Decreasing $\Delta_\theta \sin^2(\theta)$ first leads to a zero of order two where $\hat{\Delta}_r(r_1) = 0 = \hat{\Delta}_r'(r_1)$, with a conformal diagram as shown in Figure 3.8, and then, as the double zero at $r_1 < 0$ splits, to two simple zeros. Both zeros are first at negative values of r, moving outwards with $\Delta_\theta \sin^2(\theta)$ becoming smaller, until the larger zero first falls together with $r = 0$ at $\Delta_\theta \sin^2(\theta) = 1$ and then becomes
Figure 3.9: The conformal diagram for $\theta \in (0, \pi)$, with $\theta \neq \frac{\pi}{2}$, and $\Delta_\theta \sin^2(\theta)$ small enough so that $\hat{\Delta}_r$ always has two zeros.

(a) The case $i_h^{(1)} < i_h^{(2)} < 0$, with the left diagram showing $r < 0$ and the right diagram $r > 0$.

(b) The case $i_h^{(1)} = i_h^{(2)} = 0$, with the left diagram showing $r < 0$ and the right diagram $r > 0$.

(c) The case $i_h^{(1)} < 0 < i_h^{(2)}$.

Figure 3.10: The conformal diagrams for $\theta \in (0, \pi)$, with $\theta = \frac{\pi}{2}$, and $\Delta_\theta \sin^2(\theta)$ small enough so that $\hat{\Delta}_r$ always has two zeros.

positive when $\Delta_\theta \sin^2(\theta) < 1$. For $\theta \neq \pi/2$ the causal structure of the conformal diagram in Figure 3.9 is already representative of the structure of the Kerr-de Sitter space-time, even though the horizons appear at different values of r. For $\theta = \pi/2$ the causal structure is correctly reflected only after $\hat{\Delta}_r(0) > 0 \iff \frac{2\Lambda}{3} \sin^2(\theta) < 1$, where we have one positive and one negative zero. For the conformal diagrams with $\theta = \pi/2$, see Figure 3.10.

To construct diagrams with a horizon structure more closely resembling the one of the full Kerr-de Sitter space-time, the concept of projection diagrams can be used, as is carried out in Section 5.

4 Extensions

As discussed for the two-dimensional case in Section 3.1, we can extend regions of the four-dimensional Kerr-de Sitter space-time over zeros of Δ_r and over the axis singularity by extending initial regions with nonsingular metric tensor and subsequently gluing suitable patches in
the manner illustrated in Section 3.2. We then obtain an analytical extension of the original
region that is well-defined on the axis and non-singular at the horizons. Analyticity comes
from the fact that all transformations we use are analytic. It is a maximal extension if it can
be shown that every geodesic in the extended manifold is either complete, i.e. is extendible to
infinite values of the affine parameter \(\lambda \), or reaches the ring singularity for finite \(\lambda \) [6]. A proof
for maximality of this extension will not be part of this work, as it would be a very lengthy
task. The analytical solution of the geodesic equation, which is needed for the proof, can be
found in [14].

4.1 Axis singularity

At the axis, the metric in Boyer-Lindquist coordinates (2.1) becomes degenerate. This can
be seen by inspection of the determinant (2.9) of \(g \), which becomes zero at \(\{ \sin(\theta) = 0 \} \). By
introducing the coordinates

\[
\bar{x} = \sin(\theta) \cos(\varphi),
\]

\[
\bar{y} = \sin(\theta) \sin(\varphi),
\]

we make the metric non-degenerate at zeros of \(\sin(\theta) \), with

\[
\det(g) = -\frac{\rho^4}{(1 - \bar{x}^2 - \bar{y}^2) \Xi^4}.
\]

Note that the transformations (4.1)-(4.2) have introduced a new singularity at \(1 = x^2 + y^2 \),
but that is irrelevant as we already know that the metric is regular there. Rewriting the metric
coefficients and using

\[
d\varphi = \frac{\bar{x} d\bar{y} - \bar{y} d\bar{x}}{\bar{x}^2 + \bar{y}^2},
\]

\[
d\theta^2 + \sin^2(\theta) d\varphi^2 = dx^2 + dy^2 + \frac{(\bar{x} d\bar{x} + \bar{y} d\bar{y})^2}{1 - \bar{x}^2 - \bar{y}^2},
\]

brings the metric (2.1) to the form

\[
g = -\frac{\Delta_r - a^2 (\bar{x}^2 + \bar{y}^2)}{\Xi^2 \rho^2} dt^2 + 2a \frac{\Delta_r - (a^2 + r^2) \Delta_\theta}{\Xi \rho^2} (\bar{x} d\bar{y} - \bar{y} d\bar{x}) dt
\]

\[
+ a^2 \frac{6mr \Delta_\theta + (3 - \Lambda r^2) \Xi \rho^2}{3 \Delta_\theta \Xi^2 \rho^2} (\bar{x} d\bar{y} - \bar{y} d\bar{x})^2 + \frac{\rho^2}{\Delta_r} dr^2
\]

\[
+ \frac{\rho^2}{\Delta_\theta} \left(dx^2 + dy^2 + \frac{(\bar{x} d\bar{x} + \bar{y} d\bar{y})^2}{1 - \bar{x}^2 - \bar{y}^2} \right),
\]

with

\[
\rho^2 = r^2 + a^2 \left(1 - \bar{x}^2 - \bar{y}^2 \right),
\]

\[
\Delta_\theta = 1 + \frac{a^2 \Lambda}{3} \left(1 - \bar{x}^2 - \bar{y}^2 \right),
\]

which is smooth for \(\bar{x}^2 + \bar{y}^2 < 1 \), and away from the ring singularity and the horizons at
\(\Delta_r = 0 \).
4.2 Horizons

At the horizons $\Delta_r = 0$, the coefficient g_{rr} in the metric in Boyer-Lindquist coordinates (2.1) becomes infinite. In order to show that original connected regions of nonzero Δ_r can indeed be extended over zeros of Δ_r, we need to find suitable Eddington-Finkelstein-like and Kruskal-Szekeres-like transformations.

In our considerations we will temporarily drop the term $\frac{\rho^2}{\Xi^2}d\theta^2$ of the metric in equation (2.1) since it is regular already. Our new metric g_3 is then of the form

$$g_3 = g_{tt} dt^2 + g_{rr} dr^2 + 2g_{t\phi} dtd\phi + g_{\phi\phi} d\phi^2,$$

(4.3)

where

$$g_{tt} = -\frac{\Delta_r - \Delta_\theta a^2 \sin^2(\theta)}{\rho^2 \Xi^2},$$

(4.4)

$$g_{rr} = \rho^2 \Delta_r,$$

(4.5)

$$g_{t\phi} = a \sin^2(\theta) \frac{\Delta_r - \Delta_\theta (r^2 + a^2)}{\rho^2 \Xi^2},$$

(4.6)

$$g_{\phi\phi} = -\sin^2(\theta) \frac{a^2 \sin^2(\theta) \Delta_r - \Delta_\theta (r^2 + a^2)^2}{\rho^2 \Xi^2}.$$

(4.7)

4.2.1 Eddington-Finkelstein-like coordinates

In order to obtain coordinates similar to (3.8) and (3.10) we make an ansatz that works for Kerr [6],

$$dv = dt + \frac{n_1(r)}{\Delta_r} dr,$$

(4.8)

$$d\psi = d\phi + \frac{n_2(r)}{\Delta_r} dr,$$

(4.9)

where the functions $n_1(r)$ and $n_2(r)$ will be chosen suitably to render the coefficient of dr^2 zero. In these coordinates the metric g_3 of (4.3) is of the following form

$$g_3 = \frac{a^2 \sin^2(\theta) \Delta_\theta - \Delta_r dr^2 - 2a \sin^2(\theta) \frac{(a^2 + r^2) \Delta_\theta - \Delta_r}{\Xi^2 \rho^2} dv d\psi}{\Xi^2 \rho^2} + \sin^2(\theta) \frac{\Delta_\theta (a^2 + r^2)^2 - a^2 \sin^2(\theta) \Delta_r}{\Xi^2 \rho^2} d\psi^2$$

$$- \frac{2}{\Delta_r \Xi^2 \rho^2} \frac{\Delta_\theta a \sin^2(\theta) \bar{p}(r) - \Delta_r \left(n_1(r) - a n_2(r) \sin^2(\theta) \right)}{dr d\psi}$$

$$+ 2 \frac{\sin^2(\theta) \Delta_\theta \bar{p}(r) - \Delta_r a \left(n_1(r) - a n_2(r) \sin^2(\theta) \right)}{\Delta_r \Xi^2 \rho^2} dr d\psi$$

$$+ \frac{\Delta_\theta \sin^2(\theta) \bar{p}(r)^2 + \Delta_r \bar{q}(r, \theta)}{\Delta_r \Xi^2 \rho^2} dr^2,$$

(4.10)

where

$$\bar{p}(r) := a n_1(r) - (a^2 + r^2) n_2(r),$$

(4.11)

$$\bar{q}(r, \theta) := \Xi^2 \rho^2 - (n_1(r) - a n_2(r) \sin^2(\theta))^2.$$

(4.12)
As is clear from (4.10), setting the coefficient of \(dr^2 \) zero by choosing \(\tilde{p}(r) = 0 \) and \(\tilde{q}(r, \theta) = 0 \), leaves the coefficients of \(drdv \) and \(dvd\psi \) regular at zeros of \(\Delta_r \). This is achieved by choosing \(n_1(r) \) and \(n_2(r) \) as

\[
n_1(r) = (a^2 + r^2) \Xi, \\
n_2(r) = a\Xi.
\]

Note that \(-n_1(r), -n_2(r)\) satisfy the conditions \(\tilde{p}(r) = 0 = \tilde{q}(r, \theta) \) as well. With this we obtain

\[
g_3 = -\frac{\Delta_r + a^2 \sin^2(\theta) \Delta_\theta}{\Xi^2 \rho^2} dv^2 + \frac{2 \Delta_r}{\Xi^2 \rho^2} drdv - 2a \sin^2(\theta) \frac{(a^2 + r^2) \Delta_\theta - \Delta_r}{\Xi^2 \rho^2} dvd\psi - 2a \sin^2(\theta) \frac{dr}{\Xi} drd\psi + \frac{\sin^2(\theta)}{\Xi^2 \rho^2} d\psi^2.
\]

The coefficients of the metric are all regular now, except at the ring singularity at \(\rho = 0 \). The determinant of the full metric (2.1) in the \((v, r, \theta, \psi)\)-coordinates is

\[
\text{det}(g) = -\rho^4 \sin^2(\theta) \Xi^4.
\]

As already noted we can also use

\[
du = dt - \frac{n_1(r)}{\Delta_r} dr = dt - \frac{(a^2 + r^2) \Xi}{\Delta_r} dr, \\
d\tilde{\psi} = d\varphi - \frac{n_2(r)}{\Delta_r} dr = d\varphi - \frac{a\Xi}{\Delta_r} dr,
\]

instead of the transformations (4.8) - (4.9). In these new coordinates, \(g_3 \) is of the form

\[
g_3 = -\frac{\Delta_r + a^2 \sin^2(\theta) \Delta_\theta}{\Xi^2 \rho^2} dv^2 - \frac{2 \Delta_r}{\Xi^2 \rho^2} drdu - 2a \sin^2(\theta) \frac{(a^2 + r^2) \Delta_\theta - \Delta_r}{\Xi^2 \rho^2} du d\tilde{\psi} + \frac{2a \sin^2(\theta)}{\Xi} drd\tilde{\psi} + \frac{\sin^2(\theta)}{\Xi^2 \rho^2} (a^2 + r^2) \Delta_\theta - a^2 \Delta_r \sin^2(\theta)) d\psi^2,
\]

where the determinant of \(g \) is again given by (4.13).

4.2.2 Kruskal-Szekeres-like coordinates

To include the crossing spheres at a non-degenerate horizon at \(r = r_h \) we make an ansatz for Kruskal-Szekeres-like coordinates,

\[
\begin{align*}
u &= t - f(r) &\iff du &= dt - f' dr, \\
v &= t + f(r) &\iff dv &= dt + f' dr, \\
\psi &= \varphi + \alpha t &\iff d\psi &= d\varphi + \alpha dt,
\end{align*}
\]

with constant \(\alpha \). This is equivalent to

\[
\begin{align*}
dt &= \frac{du + dv}{2}, \\

\end{align*}
\]

with constant \(\alpha \).
Under this transformation, the metric (4.3) becomes

\[g_3 = \frac{-f'^2 \Delta_r^2 + \Xi^2 \rho^4 + f'' \Delta_r \sin^2(\theta) s(r, \theta)}{4f'^2 \Delta_r \Xi^2 \rho^2} (du^2 + dv^2) \]
\[+ \frac{-f'^2 \Delta_r^2 - \Xi^2 \rho^4 + f'' \Delta_r \sin^2(\theta) s(r, \theta)}{2f'^2 \Delta_r \Xi^2 \rho^2} dudv \]
\[+ \sin^2(\theta) \frac{\alpha \Delta_r - (a^2 + r^2) \Delta_\theta b(r) + \alpha a^2 \Delta_r \sin^2(\theta)}{\Xi^2 \rho^2} (dud\psi + dvd\psi) \]
\[+ \frac{(a^2 + r^2) \Delta_\theta - a^2 \Delta_r \sin^2(\theta)}{\Xi^2 \rho^2} \sin^2(\theta) dv^2, \]

(4.19)

where

\[b(r) := a + (a^2 + r^2) \alpha \]
\[s(r, \theta) := -\alpha a^2 \Delta_r \sin^2(\theta) - 2 \alpha a \Delta_r + b(r)^2 \Delta_\theta. \]

(4.20)

Choosing \(\alpha \) and \(f(r) \) appropriately permits us to get rid of the first order zero at \(r = r_h \) in the denominator of the coefficients of \(du^2, dv^2 \) and \(dudv \). By inspection of (4.19) it can be seen that this can be achieved by choosing \(f' \sim \Delta_r^{-1} \), and setting \(b(r) \) zero at the horizon. This then brings the metric coefficients of \(du^2, dv^2, dudv, dud\psi \) and \(dvd\psi \) to a form proportional to \(\Delta_r \).

We start with the coefficient of \(dud\psi \) of \(g_3 \), which is regular everywhere away from the ring singularity at \(\rho = 0 \). Choosing

\[\alpha = -\frac{a}{r_h + a^2} \]

(4.21)

introduces a first order zero at \(r = r_h \) in the term

\[b(r) = a + \alpha(a^2 + r^2), \]

so the coefficients of both \(dud\psi \) and \(dvd\psi \) have a first order zero at \(r = r_h \). We proceed by choosing

\[f'(r) = \frac{\chi(r)}{\Delta_r}, \]

(4.22)

where \(\chi(r) \) is a function of \(r \) which is bounded away from zero and positive and negative infinity near \(r = r_h \), leaving the coefficients of \(du^2, dv^2 \) and \(dudv \) nonsingular at zeros of \(\Delta_r \). \(g_3 \) is then of the form

\[g_3 = \frac{\Xi^2 \rho^4 \Delta_r - \chi^2 \Delta_r + \chi^2 a^2 \sin^2(\theta) \tilde{s}(r, \theta)}{4\chi^2 \rho^2 \Xi^2} (du^2 + dv^2) \]
\[- \frac{\Xi^2 \rho^4 \Delta_r + \chi^2 \Delta_r - \chi^2 a^2 \sin^2(\theta) \tilde{s}(r, \theta)}{2\chi^2 \Xi^2 \rho^2} dudv \]
\[+ \left(1 - \frac{a^2 \sin^2(\theta)}{a^2 + r^2} \right) \Delta_\theta - (a^2 + r^2) \left(1 - \frac{a^2 + r^2}{a^2 + r_h^2} \right) a \sin^2(\theta) (dud\psi + dvd\psi) \]
\[+ \frac{(a^2 + r^2) \Delta_\theta - a^2 \sin^2(\theta) \Delta_r}{\Xi^2 \rho^2} \sin^2(\theta) dv^2, \]

(4.23)
with
\[\tilde{s}(r, \theta) := \left(\frac{1}{a^2 + r_h^2} \left(2 - \frac{a^2 \sin^2(\theta)}{a^2 + r_h^2} \right) \Delta_r + \left(1 - \frac{a^2 + r^2}{a^2 + r_h^2} \right)^2 \Delta_\theta \right). \] (4.24)

Apart from the singularity at \(\rho = 0 \) there are no singularities in the metric coefficients anymore, but as already can be seen from (4.23), the determinant of \(g \) in the \((u, v, \Theta, \varphi)\) coordinates will vanish at \(r = r_h \). An explicit calculation of the determinant is performed by taking the product of the determinant \(\det(g) \) of \(g \) in the old coordinates according to equation (2.9) and the inverse square of the determinant of the Jacobi matrix of the transformation. Since the determinant of the Jacobi matrix \(J \) equals
\[\det(J) = 2f'(r) = \frac{2\chi(r)}{\Delta_r}, \]
the determinant \(\det(g) \) of the metric (2.1) in the new coordinates is given by
\[\det(g) = -\sin^2(\theta) \frac{\rho^4}{\Xi^4} \frac{\Delta_r^2}{4\chi(r)^2}, \]
indeed vanishing at all zeros of \(\Delta_r \). Introducing a new set of coordinates
\[\bar{u} = -\exp(-cu) \iff du = \frac{\exp(cu)}{c} d\bar{u}, \]
\[\bar{v} = \exp(cv) \iff dv = \frac{\exp(-cv)}{c} d\bar{v}, \]
with Jacobi determinant of the transformation
\[\det(\bar{J}) = c^2 \exp(c(v - u)) = c^2 \exp(2cf(r)), \]
leaves the determinant of (2.1),
\[\det(g) = -\sin^2(\theta) \frac{\rho^4}{\Xi^4} \frac{\Delta_r^2}{4\chi(r)^2} \frac{\exp(-4cf(r))}{c^4}, \]
nonzero at \(r = r_h \) if \(c \) is chosen appropriately. The considerations for the choice of \(c \) we made in Section 3.1 for two-dimensional metrics apply to this case as well, so we choose \(c \) according to (3.15) as
\[c = \frac{\Delta_r}{2\chi(r)|r - r_h|} \bigg|_{r \to r_h} = \frac{1}{2A}. \] (4.25)
In these coordinates the metric is of the form
\[
\begin{align*}
g_3 &= A^2 \Xi^2 \rho^4 \Delta_r - \chi^2 \Delta_r + \tilde{s}(r, \theta) a^2 \chi^2 \sin^2(\theta) \left(\exp \left(\frac{u}{A} \right) d\bar{u}^2 + \exp \left(-\frac{v}{A} \right) d\bar{v}^2 \right) \\
&\quad - 2A^2 \exp \left(\frac{u - v}{2A} \right) \Xi^2 \rho^\prime^2 \frac{\Delta_r}{\chi \Xi^2 \rho^2} \frac{\Delta_r}{2A} \frac{\Delta_r - \tilde{s}(r, \theta) a^2 \chi^2 \sin^2(\theta)}{\chi^2 \Xi^2 \rho^2} d\bar{u} d\bar{v} \\
&\quad + 2A \frac{\tilde{n}(r, \theta)}{\Xi^2 \rho^2} a \sin^2(\theta) \left(\exp \left(\frac{u}{2A} \right) d\bar{u} d\psi + \exp \left(-\frac{v}{2A} \right) d\bar{v} d\psi \right) \\
&\quad + \frac{(a^2 + r^2)^2 \Delta_\theta - a^2 \sin^2(\theta) \Delta_r}{\Xi^2 \rho^2} \sin^2(\theta) d\psi^2.
\end{align*}
\] (4.26)
where A as in (4.25), \tilde{s} as in (4.24) and

$$\tilde{n}(r, \theta) := \left(1 - \frac{a^2 \sin^2(\theta)}{a^2 + r_h^2}\right) \Delta r - \left(a^2 + r^2\right) \left(1 - \frac{a^2}{a^2 + r_h^2}\right) \Delta \theta,$$

(4.27)

The metric then has a strictly negative determinant away from the ring singularity and the singularity at the axis, and nonsingular metric coefficients at $r = r_h$.

32
Space-time diagrammatics

Piotr T. Chrusciel* and Christa R. Ölz†

Gravitational Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria

Sebastian J. Szybka‡

Astronomical Observatory, Jagellonian University, Orla 171, 30-244 Kraków, Poland

(Received 22 August 2012; published 20 December 2012)

We introduce a new class of two-dimensional diagrams, the projection diagrams, as a tool to visualize the global structure of space-times. We construct the diagrams for several metrics of interest, including the Kerr-Newman-(anti)de Sitter family, with or without cosmological constant, and the Emparan-Reall black rings.

DOI: 10.1103/PhysRevD.86.124041 PACS numbers: 04.20.Jb, 04.20.−q, 97.60.Lf, 04.50.Gh

I. INTRODUCTION

A very useful tool for visualizing the geometry of two-dimensional Lorentzian manifolds is that of conformal Carter-Penrose diagrams. Such diagrams have been successfully used to visualize the geometry of two-dimensional sections of the Schwarzschild (cf., e.g., Ref. [1]), Kerr [2,3] and several other [4] geometries. A systematic study of conformal diagrams for time-independent two-dimensional geometries has been carried out in Ref. [5] by Walker; for the convenience of the reader, Walker’s analysis is briefly summarized in Sec. II.

For spherically symmetric geometries, the two-dimensional conformal diagrams provide useful information about the four-dimensional geometry as well, since many essential aspects of the space-time geometry are contained in the \(t - r \) sector of the metric.

The object of this paper is to show that one can usefully represent classes of nonspherically symmetric geometries in terms of two-dimensional diagrams, which we call projection diagrams, using an auxiliary two-dimensional metric, constructed out of the space-time metric. The issues such as stable causality, global hyperbolicity, existence of event or Cauchy horizons, the causal nature of boundaries, and existence of conformally smooth infinities become evident by inspection of the diagrams.

We give a general definition of such diagrams and construct examples for the Kerr-Newman family of metrics, with or without cosmological constant of either sign, and for the Emparan-Reall metrics. We show how the projection diagrams for the Pomeransky-Senkov metrics could be constructed and present a tentative diagram for those metrics. We end the paper by pointing out how the projection diagrams can be used to construct inequivalent extensions of a family of maximal, globally hyperbolic, vacuum or electrovacuum, space-times with compact Cauchy surfaces obtained by periodic identifications of the time coordinate in the Kerr-Newman-(anti)de Sitter family of metrics, as well as for Taub-NUT space-times.

II. CONFORMAL DIAGRAMS FOR STATIC TWO-DIMENSIONAL SPACE-TIMES

Following [5], we construct conformal diagrams for two-dimensional Lorentzian metrics of the form

\[
\tilde{g} = -F(r)dt^2 + F(r)^{-1}d\rho^2,
\]

where \(F \) is, for simplicity and definiteness, a real-analytic function on an interval, \(t \) ranges over \(\mathbb{R} \), and one considers separately maximal intervals in \(\mathbb{R} \) on which \(F \) is finite and does not change sign; those define the ranges of \(r \). Each such interval leads to a connected Lorentzian manifold on which \(\tilde{g} \) is defined, and the issue is whether or not such manifolds can be patched together, and how. Note that \(t \) is not a time coordinate in regions where \(F \) is negative.

It should be kept in mind that the study of the conformal structure for more general metrics of the form

\[
\tilde{g} = -H_1(r)dt^2 + H_2(r)^{-1}d\rho^2,
\]

where \(H_1 \) and \(H_2 \) are positive in the range of \(r \) of interest, can be reduced to the one for the metric (1) by writing

\[
\tilde{g} = \sqrt{H_1 H_2} (\tilde{F} dt^2 + \tilde{F}^{-1} d\rho^2),
\]

where \(\tilde{F} = \sqrt{H_1 H_2} F \).

A. Manifest conformal flatness

In order to bring the metric (1) to a manifestly conformally flat form, one chooses a value of \(r_\ast \), such that \(F(r_\ast) \neq 0 \) and introduces a new coordinate \(x \) defined as

\[
x(r) = \int_{r_\ast}^r \frac{ds}{F(s)} \Rightarrow dx = \frac{dr}{F(r)}.
\]
leading to

\[g = -F dt^2 + \frac{1}{F} (F dx)^2 = F (-dt^2 + dx^2). \]

(5)

The geometry of the space-time, and its possible extendibility, will depend upon the sign of \(F \), the zeros of \(F \), and their order. For example, whenever \(x \) ranges over \(\mathbb{R} \) the space-time \((\mathbb{R}^2, g)\) can be conformally mapped to the following diamond:

\[\{ -\pi/2 < T - X < \pi/2, -\pi/2 < T + X < \pi/2 \} \subset \mathbb{R}^2. \]

This is done by first introducing

\[u = t - x, \quad v = t + x \iff t = \frac{u + v}{2}, \quad x = \frac{v - u}{2}, \]

(6)

which brings \((2, g)\) into the form

\[g = -dudv. \]

While some other ranges of variables might arise in specific examples, in the current case we have \((u, v) \in \mathbb{R}^2\). We bring the last \(\mathbb{R}^2 \) to a bounded set using

\[U = \arctan(u), \quad V = \arctan(v), \]

(7)

and thus

\[(U, V) \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times \left(-\frac{\pi}{2}, \frac{\pi}{2}\right). \]

This looks somewhat more familiar if we make one last change of coordinates similar to that in (6):

\[U = T - X, \quad V = T + X \iff T = \frac{U + V}{2}, \quad X = \frac{V - U}{2}. \]

(8)

see Fig. 1, leading to

\[g = \frac{1}{\cos^2(T - X) \cos^2(T + X)} (-dT^2 + dX^2). \]

Simple variations of the above coordinate transformations might be used for alternative ranges of \(x \). An integral of \(1/F \) which is infinite near one of the integration bounds and finite at the other one leads to triangles, obtained by cutting a diamond across a diagonal; the sign of \(F \) determines which diagonal is relevant. A finite integral of \(1/F \) leads to strips, if one does not perform the subsequent coordinate transformation (7). These are then the building blocks, out of which the final maximal diagrams can be built.

B. Gluing

We pass now to the gluing question. It turns out that *four blocks* can be glued together across a boundary \(\{ r = r_0 \} \) at which

\[F(r_0) = 0, \quad F'(r_0) \neq 0. \]

Since \(F \) has a simple zero, it factorizes as

\[F(r) = (r - r_0) H(r), \]

for a function \(H \) which has no zeros in a neighborhood of \(r_0 \). The gluing is done in two steps by defining

\[u = t - f(r), \quad v = t + f(r), \quad f' = \frac{1}{F}, \]

\[\hat{u} = -\exp(-cu), \quad \hat{v} = \exp(cv), \]

where

\[c = \frac{F'(r_0)}{2}. \]

This leads to the following form of the metric:

\[\hat{g} = \mp \frac{4H(r)}{(F'(r_0))^2} \exp(-\hat{f}(r)F'(r_0)) d\hat{u} d\hat{v}. \]

(10)

with a negative sign if we started in the region \(r > r_0 \) and positive otherwise. Here

\[\hat{f}(r) = f(r) - \frac{1}{F(r_0)} \ln |r - r_0|. \]

In (10) the function \(r \) should be viewed as a function of the product \(\hat{u} \hat{v} \), implicitly defined by the equation

\[\hat{u} \hat{v} = \mp (r - r_0) \exp(\hat{f}(r) F'(r_0)). \]

Note that for analytic \(F \)’s the extension so constructed is real analytic; this follows from the analytic version of the implicit function theorem.

Boundaries at finite distance \(r = r_0 \) but at which \(F \) has a zero of higher order can still be glued together via *two-block gluing*. Here one continues to use the functions \(u \) and \(v \) defined in (9), but now one does not use \(u \) and \(v \) simultaneously as coordinates. Instead one considers a coordinate system \((u, r)\), so that

\[\hat{g} = -F \left(du + \frac{1}{F} dr \right)^2 + \frac{1}{F} dr^2 = -F du^2 - 2F dr d\hat{u}. \]

Since \(\det \hat{g} = -1 \), the resulting metric ends smoothly as a Lorentzian metric to the whole nearby interval where \(F \) is defined. This will certainly include the nearest
conformal block, as well as some further ones if the case arises. A distinct extension is obtained when using instead the coordinate system (v, r).

Asymptotic regions where |r| → ∞ but F is bounded, and bounded away from zero, provide null conformal boundaries at infinity.

III. PROJECTION DIAGRAMS

A. The definition

Let (ℳ, g) be a smooth space-time, and let ℝ1+n be the (n + 1)-dimensional Minkowski space-time. A projection diagram is a pair (π, ℛ), where

\[\pi: ℳ → ℛ \]

is a continuous map, differentiable on an open dense set, from ℳ onto \(π(ℳ) =: ℛ ⊂ ℝ^{1,1} \), together with an open set \(ℛ ⊂ ℳ \),

assumed to be nonempty, on which \(π \) is a smooth submersion, so that it holds:

1. every smooth timelike curve \(\gamma \subset π(ℛ) \) is the projection of a smooth timelike curve \(γ \in ℛ-g : \)

\[\gamma = π \circ γ \]

2. the image \(π \circ γ \) of every smooth timelike curve \(γ \subset ℛ \) is a timelike curve in \(ℝ^{1,1} \).

Some comments are in order.

First, we have assumed for simplicity that (ℳ, g), \(π|ℛ \), and the causal curves in the definition are smooth, though this is unnecessary for most purposes.

Next, we do not assume that \(π \) is a submersion, or in fact differentiable, everywhere on ℳ. This allows us to talk about “the projection diagram of Minkowski space-time,” or “the projection diagram of Kerr space-time,” rather than of “the projection diagram of the subset ℛ of Minkowski space-time,” etc. Note that the latter terminology would be more precise, and will sometimes be used, but appears to be an overkill in most cases.

Further, the requirement that timelike curves in \(π(ℛ) \) arise as projections of timelike curves in ℳ ensures that causal relations on \(π(ℛ) \), which can be seen by inspection of \(π(ℛ) \) reflect causal relations on ℳ. Conditions 1 and 2 taken together ensure that causality on \(π(ℛ) \) represents as accurately as possible causality on ℛ.

By continuity, images of causal curves in ℛ are causal in \(π(ℛ) \). Note that null curves in ℛ are often mapped to timelike ones in \(π(ℛ) \).

The second condition of the definition is of course equivalent to the requirement that the images by \(π \) of timelike vectors in ℳ are timelike. This implies further that the images by \(π \) of causal vectors in ℳ are timelike. One should keep in mind that images by \(π \) of null vectors in ℳ could be timelike. And, of course, many spacelike vectors will be mapped to causal vectors under \(π \).

Recall that \(π \) is a submersion if \(π \) is surjective at every point. The requirement that \(π \) is a submersion guarantees that open sets are mapped to open sets. This, in turn, ensures that projection diagrams with the same set ℛ are locally unique, up to a local conformal isometry of two-dimensional Minkowski space-time. We do not know whether or not two surjective projection diagrams \(π_i: ℛ \rightarrow ℛ_i, i = 1, 2 \), with identical domain of definition ℛ are globally unique, up to a conformal isometry of ℛ1. It would be of interest to settle this question.

In many examples of interest the set ℛ will not be connected.

Note that a necessary condition for existence of a projection diagram is stable causality of ℛ; indeed, let \(f \) be any time function on ℝ1, then \(f \circ π \) is a time function on ℛ.

It might be tempting to require that ℛ be dense in ℳ. Such a requirement would, however, prohibit one to construct a projection diagram of the usual maximal extension of Kerr space-time, since the latter contains open regions which are not stably causal.

Recall that a map is proper if inverse images of compact sets are compact. One could further require \(π \) to be proper; indeed, many projection diagrams below have this property. This is actually useful, as then the inverse images of globally hyperbolic subsets of ℛ are globally hyperbolic, and so global hyperbolicity, or lack thereof, can be established by visual inspection of ℛ. It appears, however, more convenient to talk about proper projection diagrams whenever \(π \) is proper, allowing for nonproperness in general.

As such, we have assumed for simplicity that \(π \) maps ℳ into a subset of Minkowski space-time. In some applications it might be natural to consider more general two-dimensional manifolds as the target of \(π \); this requires only a trivial modification of the definition. An example is provided by the Gowdy metrics on a torus, discussed at the end of this section, where the natural image manifold for \(π \) is \((-∞, 0) × S^1 \), equipped with a flat product metric. Similarly, maximal extensions of the class of Kerr-Newman-de Sitter metrics of Fig. 8 require the image of \(π \) to be a suitable Riemann surface.

B. Simplest examples

The simplest examples of projection diagrams can be constructed for metrics of the form

\[g = e^f (−Fdt^2 + F^{−1}dr^2) + h_{AB}dx^A dx^B \]

(11)

with \(F = F(r) \), and \(\hbar = h_{AB}(t, r, x^C)dx^A dx^B \) is a family of Riemannian metrics on an \((n−1)\)-dimensional manifold \(N^{n−1} \), possibly depending upon \(t \) and \(r \). \(f \) is a function which is allowed to depend upon all variables. It should be clear that any manifestly conformally flat representation of any extension, defined on \(ℛ \), of the
two-dimensional metric $-Fdt^2 + F^{-1}dr^2$, as discussed in Sec. II, provides immediately a projection diagram for $(W \times N^{a-1}, g)$.

In particular, introducing spherical coordinates (t, r, x^i) on

$$\mathcal{U} := \{(t, x) \in \mathbb{R}^{n+1}, |x| \neq 0 \} \subset \mathbb{R}^{1,n}$$

and forgetting about the $(n-1)$-sphere part of the metric leads to a projection diagram for Minkowski space-time which coincides with the usual conformal diagram of the fixed-angles subsets of Minkowski space-time (see the left figure in Fig. 14 below; the shaded region there should be left unshaded in the Minkowski case). The set \mathcal{U} defined in (12) cannot be extended to include the world line passing through the origin of \mathbb{R}^n since the map π fails to be differentiable there. This diagram is proper but fails to represent correctly the nature of the space-time near the set $|x| = 0$.

On the other hand, a globally defined projection diagram for Minkowski space-time [thus, $(\mathcal{U}, g) = (\mathbb{R}^{1,n})$] can be obtained by writing $\mathbb{R}^{1,n}$ as a product $\mathbb{R}^1 \times \mathbb{R}^{n-1}$ and forgetting about the second factor. This leads to a projection diagram of Fig. 1. This diagram, which is not proper, fails to represent correctly the connectedness of I^+ and J^- when $n > 1$.

It will be seen in Sec. III H that yet another choice of π and of the set $(\mathcal{U}, g) \subset \mathbb{R}^{1,n}$ leads to a third projection diagram for Minkowski space-time.

A further example of nonuniqueness is provided by the projection diagrams for Taub-NUT metrics, discussed in Sec. IV B.

These examples show that there is no uniqueness in the projection diagrams and that various such diagrams might carry different information about the causal structure. It is clear that for space-times with intricate causal structure, some information will be lost when projecting to two dimensions. This raises the interesting question, whether there exists a notion of optimal projection diagram for specific space-times. In any case, the examples we give in what follows appear to depict the essential causal properties of the associated space-time, except perhaps for the black ring diagrams of Secs. III H and III I.

Nontrivial examples of metrics of the form (11) are provided by the Gowdy metrics on a torus [6], which can be written in the form [6,7]

$$g = e^l(-d\tau^2 + d\theta^2) + l(e^p(dx^1 + Qdx^2) + e^{-p}(dx^2)^2),$$

with $t \in (-\infty, 0)$ and $(\theta, x^1, x^2) \in S^1 \times S^1 \times S^1$. Unwrapping θ from S^1 to \mathbb{R} and projecting away the dx^1 and dx^2 factors, one obtains a projection diagram the image of which is the half-space $t \leq 0$ in Minkowski space-time. This can be further compactified as in Sec. II A, keeping in mind that the asymptotic behavior of the metric for large negative values of t [8] is not compatible with the existence of a smooth conformal completion of the full space-time metric across past null infinity. Note that this projection diagram fails to represent properly the existence of Cauchy horizons for nongeneric [9] Gowdy metrics.

Similarly, generic Gowdy metrics on $S^1 \times S^2, S^3$, or $L(p, q)$ can be written in the form [6,7]

$$g = e^l(-d\tau^2 + d\theta^2) + R_0 \sin(t) \sin(\theta) \times (e^p(dx^1 + Qdx^2)^2 + e^{-p}(dx^2)^2),$$

with $(t, \theta) \in (0, \pi) \times [0, \pi]$, leading to the Gowdy square as the projection diagram for the space-time. [This is the diagram of Fig. 13, where the lower boundary corresponds to $t = 0$, the upper boundary corresponds to $t = \pi$, the left boundary corresponds to the axis of rotation $\theta = 0$, and the right boundary is the projection of the axis of rotation $\theta = \pi$. The diagonals, denoted as $y = y_h$ in Fig. 13, correspond in the Gowdy case to the projection of the set where the gradient of the area $R = R_0 \sin(t) \sin(\theta)$ of the orbits of the isometry group $U(1) \times U(1)$ vanishes, and do not have any further geometric significance. The lines with the arrows in Fig. 13 are irrelevant for the Gowdy metrics, as the orbits of the isometry group of the space-time metric are spacelike throughout the Gowdy square.]

In the remainder of this work we will construct projection diagrams for families of metrics of interest which are not of the simple form (11).

C. The Kerr metrics

Consider the Kerr metric in Boyer-Lindquist coordinates,

$$g = -\frac{\Delta_r - a^2 \sin^2(\theta) \Sigma}{\Sigma} d\tau^2 + \frac{\Sigma}{\Delta_r} dr^2 + \Sigma d\theta^2 + \frac{\sin^2(\theta)(r^2 + a^2)^2 - a^2 \sin^2(\theta) \Delta_r}{\Sigma} d\varphi^2$$

$$-2 \sin^2(\theta)(r^2 + a^2 - \Delta_r) dt d\varphi. \quad (15)$$

Here

$$\Sigma = r^2 + a^2 \cos^2 \theta,$$

$$\Delta_r = r^2 + a^2 - 2mr = (r - r_+)(r - r_-). \quad (16)$$

for some real parameters a and m, with

$$r_{\pm} = m \pm (m^2 - a^2)^{1/2},$$

and we assume that $0 < |a| \leq m$. We note that

$$g_{\varphi \varphi} = \sin^2(\theta) \left(\frac{2a^2 mr \sin^2(\theta)}{a^2 \cos^2(\theta) + r^2} + a^2 + r^2 \right)$$

$$= \sin^2(\theta) \left(a^2 + a^2 \cos(2\theta) \Delta_r + a^2 r(2m + 3r) + 2r^2 \right) \left(\frac{a^2 \cos(2\theta) + a^2 + 2r^2}{a^2 \cos(2\theta) + a^2 + 2r^2} \right). \quad (17)$$
the first line making clear the non-negativity of $g_{\varphi\varphi}$ for $r \geq 0$.

In the region where ϑ is spacelike we rewrite the $t - \varphi$ part of the metric as

$$g_{tt}dt^2 + 2g_{t\varphi}dt \varphi + g_{\varphi\varphi}d\varphi^2 = g_{\varphi\varphi} \left(\frac{d\varphi}{g_{\varphi\varphi}} + \frac{g_{t\varphi}}{g_{\varphi\varphi}} dt \right)^2 + \left(g_{tt} - \frac{g_{t\varphi}^2}{g_{\varphi\varphi}} \right) dt^2,$$ \hspace{1cm} (18)

with

$$g_{tt} - \frac{g_{t\varphi}^2}{g_{\varphi\varphi}} = \frac{2\Delta, \Sigma}{a^4 + a^2\Delta, \cos(2\vartheta) + a^2r(2m + 3r) + 2r^2}.$$

For $r > 0$ and $\Delta, \Sigma > 0$ it holds that

$$\frac{\Delta, \Sigma}{(a^2 + r^2)^2} \leq \left| g_{tt} - \frac{g_{t\varphi}^2}{g_{\varphi\varphi}} \right| \leq \frac{\Delta, \Sigma}{r(a^2(2m + r) + r^2)},$$ \hspace{1cm} (19)

with the infimum attained at $\vartheta \in (0, \pi)$ and maximum at $\vartheta = \pi/2$.

In the region $r > 0$, $\Delta, \Sigma > 0$ consider any vector

$$X = X^t \partial_t + X^\varphi \partial_\varphi + X^\vartheta \partial_\vartheta + X^\varphi \partial_\varphi,$$

which is causal for the metric g. Let $\Omega(r, \vartheta)$ be any positive function. Since both $g_{\vartheta\vartheta}$ and the first term in (18) are positive, while the coefficient of dt^2 in (18) is negative, we have

$$0 \geq \Omega^2 g(X, X) = \Omega^2 g_{tt}(X^t)^2 + \Omega^2 g_{\varphi\varphi}(X^\varphi)^2$$

$$\geq \Omega^2 \left(g_{tt} - \frac{g_{t\varphi}^2}{g_{\varphi\varphi}} \right) (X^t)^2 + \Omega^2 g_{rr}(X^r)^2$$

$$\geq -\sup_\vartheta \left(\Omega^2 \left| g_{tt} - \frac{g_{t\varphi}^2}{g_{\varphi\varphi}} \right| \right) (X^t)^2 + \inf_\vartheta (\Omega^2 g_{rr})(X^r)^2.$$ \hspace{1cm} (20)

To guarantee the requirements of the definition of a projection diagram, it is simplest to choose Ω so that both extrema in (20) are attained at the same value of ϑ, say ϑ_*, while keeping those features of the coefficients which are essential for the problem at hand. It is convenient, but not essential, to have ϑ_* independent of r. We will make the choice

$$\Omega^2 = \frac{r^2 + a^2}{\Sigma},$$ \hspace{1cm} (21)

but other choices are possible and might be more convenient for other purposes. The Σ factor has been included to get rid of the angular dependence in $\Omega^2 g_{rr}$, while the numerator has been added to ensure that the metric coefficient g_{rr} in (23) tends to one as r recedes to infinity, reflecting the asymptotic behavior for large r of the corresponding function \bar{F} in (3). With this choice of Ω, (20) is equivalent to the statement that

$$\pi_\gamma(X) := X^t \partial_t + X^\varphi \partial_\varphi,$$ \hspace{1cm} (22)

is a causal vector in the two-dimensional Lorentzian metric

$$\gamma := -\frac{\Delta, (r^2 + a^2)}{r(a^2(2m + r) + r^2)} dt^2 + \frac{(r^2 + a^2)}{\Delta, r} dr^2.$$ \hspace{1cm} (23)

Using the methods of Walker [5], as reviewed in Sec. II, in the region $r_+ < r < \infty$, the metric γ is conformal to a flat metric on the interior of a diamond, with the conformal factor extending smoothly across that part of its boundary at which $r \rightarrow r_+$ when $|a| < m$. This remains true when $|a| = m$ except at the leftmost corner i_0^+ of Fig. 1.

To avoid ambiguities, at this stage π is the projection map $(t, r, \vartheta, \varphi) \mapsto (t, r)$. The fact that g-causal curves are mapped to γ-causal curves follows from the construction of γ. In order to prove the lifting property, let $\sigma(s) = (t(s), r(s))$ be a γ-causal curve, and then the curve

$$(t(s), r(s), \pi/2, \varphi(s)),$$

where $\varphi(s)$ satisfies

$$\frac{d\varphi}{ds} = -\frac{g_{t\varphi}}{g_{\varphi\varphi}} \frac{dt}{ds},$$

is a g-causal curve which projects to σ.

For causal vectors in the region $r > 0$, $\Delta, > 0$, we have instead

$$0 \geq \Omega^2 g(X, X) \geq \Omega^2 \left(g_{tt} - \frac{g_{t\varphi}^2}{g_{\varphi\varphi}} \right) (X^t)^2 + \Omega^2 g_{rr}(X^r)^2$$

$$\geq \inf_\vartheta \left(\Omega^2 \left| g_{tt} - \frac{g_{t\varphi}^2}{g_{\varphi\varphi}} \right| \right) (X^t)^2 + \sup_\vartheta (\Omega^2 g_{rr})(X^r)^2.$$ \hspace{1cm} (24)

Since the inequalities in (19) are reversed when $\Delta, < 0$, choosing the same factor Ω one concludes again that $X^t \partial_t + X^\varphi \partial_\varphi$ is γ-causal in the metric (23) whenever it is in the metric g. Using again [5], in the region $r_- < r < r_+$, such a metric is conformal to a flat two-dimensional metric on the interior of a diamond, with the conformal factor extending smoothly across those parts of its boundary where $r \rightarrow r_+$ or $r \rightarrow r_-$.

When $|a| < m$ the metric coefficients in γ extend analytically from the $(r > r_+)$ range to the $(r_- < r < r_+)$ range. As described in Sec. II, one can then smoothly glue together four diamonds as above to a single diamond on which $r_- < r < \infty$.

The singularity of γ at $r = 0$ reflects the fact that the metric g is singular at $\Sigma = 0$. This singularity persists even if $m = 0$, which might at first seem surprising since then there is no geometric singularity at $\Sigma = 0$ anymore [2]. However, this singularity of γ reflects the singularity of the associated coordinates on Minkowski space-time, with the set $r = 0$ in the projection metric corresponding to a boundary of the projection diagram.

For $r < 0$ we have $\Delta, > 0$, and the inequality (20) still applies in the region where ϑ is spacelike. Here one needs
to keep in mind the nonempty Carter time-machine set [compare (17)]
\[V := \{ g_{ee} < 0 \} = \left\{ r \leq 0, \Sigma \neq 0, \sin(\theta) \right. \]
\[\left. \neq 0, \cos(2\theta) < -\frac{a^4 + 2a^2mr + 3a^2r^2 + 2r^4}{a^4 \Delta_r} \right\}, \] (25)
on which the Killing vector \(\partial_e \) (which has \(2\pi \)-periodic orbits) is timelike. The projection of the closure of this region to a two-dimensional diagram should be considered to be a singular set. But causality is restored regardless of the value of \(\theta \) if we remove from \(\mathcal{M} \) the closure of \(V \): Setting
\[u := \mathcal{M} \setminus \overline{V}, \]
throughout \(u \) we have
\[\frac{a^4 + 2a^2mr + 3a^2r^2 + 2r^4}{a^4 (a^2 - 2mr + r^2)} > 1 \]
\[\iff \left(r(a^2(2m + r) + r^3) > 0. \right. \] (26)
Equivalently,
\[r < \hat{r}_- := \sqrt[3]{\frac{\sqrt{3} \sqrt{a^6 + 27a^4m^2 - 9a^2m}}{3} \left(\frac{a^2}{\sqrt[3]{\sqrt{3} \sqrt{a^6 + 27a^4m^2 - 9a^2m}} - a^2} \right) < 0; \] (27)
see Fig. 2. In the region \(r < \hat{r}_- \) the inequalities (19) hold again, and so the projected vector \(\pi_+(X) \) as defined by (22) is causal, for \(g \)-causal \(X \), in the metric \(\gamma \) given by (23). One concludes that the four-dimensional region \(\{ -\infty < r < r_- \} \) has the causal structure which projects to those diamonds of, e.g., Fig. 3 which contain a shaded region. Those shaded regions, which correspond both to the singularity \(r = 0 \), \(\theta = \pi/2 \) and to the time-machine region \(\overline{V} \) of (25), belong to \(\mathcal{W} = \pi(\mathcal{M}) \) but not to \(\pi(\mathcal{U}) \). Causality within the shaded region is not represented in any useful way by a flat two-dimensional metric there, as causal curves can exit this region earlier, in Minkowskian time on the diagram, than they entered it. This results in causality violations throughout the enclosing diamond unless the shaded region is removed.

The projection diagrams for the usual maximal extensions of the Kerr-Newman metrics with two distinct zeros of \(\Delta_r \) (left diagram) and one double zero (right diagram); see Remark III.1.

Remark III.1.—Let us make some general remarks concerning projection diagrams for the Kerr-Newman family of metrics, possibly with a nonvanishing cosmological constant \(\Lambda \). The shaded regions in figures such as Fig. 3 and others contain the singularity \(\Sigma = 0 \) and the time-machine set \(\{ g_{ee} < 0 \} \); they belong to the set \(\mathcal{W} = \pi(\mathcal{M}) \) but do not belong to the set \(\pi(\mathcal{U}) \), on which causality properties of two-dimensional Minkowski space-time reflect those of \(\mathcal{U} \subset \mathcal{M} \). We emphasize that there are closed timelike curves through every point in the preimage under \(\pi \) of the entire diamonds containing the shaded areas. On the other hand, if the preimages of the shaded region are removed from \(\mathcal{M} \), the causality relations in the resulting space-times are accurately represented by the diagrams, which are then proper.

The parameters \(\hat{r}_- \) are determined by the mass and the charge parameters [see (64)], with \(\hat{r}_- = 0 \) when the charge \(e \) vanishes and \(\hat{r}_+ \) positive otherwise. The boundaries \(r = \pm \infty \) correspond to smooth conformal boundaries at infinity, with causal character determined by \(\Lambda \). The arrows indicate the spatial or timelike character of the orbits of the isometry group. Maximal diagrams are obtained when continuing the diagrams shown in all allowed directions. It should be kept in mind that the resulting subsets of \(\mathbb{R}^2 \) are not simply connected in some cases, which implies that many alternative nonisometric maximal extensions of the
space-time can be obtained by taking various coverings of the planar diagram. One can also make use of the symmetries of the diagram to produce distinct quotients.

1. Conformal diagrams for a class of two-dimensional submanifolds of Kerr space-time

One can find, e.g., in Refs. [1,3] conformal diagrams for the symmetry axes in the maximally extended Kerr spacetime. These diagrams are identical with those of Fig. 3, except for the absence of shading. (The authors of Refs. [1,3] seem to indicate that the subset $r = 0$ plays a special role in their diagrams, which is not the case as the singularity $r = \cos \theta = 0$ does not intersect the symmetry axes.) Now, the symmetry axes are totally geodesic submanifolds, being the collection of fixed points of the isometry group generated by the rotational Killing vector field. They can be thought of as the submanifolds $\theta = 0$ and $\theta = \pi$ (with the remaining angular coordinate irrelevant then) of the extended Kerr space-time. As such, another totally geodesic two-dimensional submanifold in Kerr is the equatorial plane $\theta = \pi/2$, which is the set of fixed points of the isometry $\theta \mapsto \pi - \theta$. This leads one to inquire about the global structure of this submanifold or, more generally, of various families of two-dimensional submanifolds on which θ is kept fixed. The discussion that follows appears to have some interest of its own. More importantly for us, it illustrates clearly the distinction between projection diagrams, in which one projects out the θ and φ variables, and conformal diagrams for submanifolds where θ, and φ or the angular variable $\tilde{\varphi}$ of (30) below, are fixed.

An obvious family of two-dimensional Lorentzian submanifolds to consider is that of submanifolds, which we denote as $N_{\theta, \varphi}$, which are obtained by keeping θ and φ fixed. The metric, say $g(\theta)$, induced by the Kerr metric on $N_{\theta, \varphi}$ reads

$$g(\theta) = -\frac{\Delta_r - a^2 \sin^2(\theta)}{\Sigma} dt^2 + \frac{\Sigma}{\Delta_r} dr^2$$

$$= -F_1(r) dt^2 + \frac{dr^2}{F_2(r)}.$$ \hfill (28)

For $m^2 - a^2 \cos^2(\theta) > 0$ the function F_1 has two first-order zeros at the intersection of $N_{\theta, \varphi}$ with the boundary of the ergoregion $\{g(\partial_\theta, \varphi) > 0\}$:

$$r_{\theta, z} = m \pm \sqrt{m^2 - a^2 \cos^2(\theta)}. \hfill (29)$$

The key point is that these zeros are distinct from those of F_2 if $\cos^2 \theta \neq 1$, which we assume in the remainder of this section. Since $r_{\theta, z}$ is larger than the largest zero of F_2, the metric $g(\theta)$ is a priori only defined for $r > r_{\theta, z}$. One checks that its Ricci scalar diverges as $(r - r_{\theta, z})^{-2}$ when $r_{\theta, z}$ is approached; therefore, those submanifolds do not extend smoothly across the ergosphere and will thus be of no further interest to us.

We consider, next, the two-dimensional submanifolds, say $\tilde{N}_{\theta, \varphi}$, of the Kerr space-time obtained by keeping θ and φ fixed, where φ is a new angular coordinate defined as

$$d\tilde{\varphi} = d\varphi + \frac{a}{\Delta_r} dr. \hfill (30)$$

Using further the coordinate v defined as

$$dv = dt + \left(\frac{a^2 + r^2}{\Delta_r}\right) dr,$$

the metric, say $\tilde{g}(\theta)$, induced on $\tilde{N}_{\theta, \varphi}$ takes the form

$$\tilde{g}(\theta) = -\frac{\tilde{F}(\theta)}{\Sigma} dv^2 + 2 dv dr$$

$$= -\frac{\tilde{F}(\theta)}{\Sigma} dv + 2 \frac{\Sigma}{\tilde{F}(\theta)} dr,$$ \hfill (31)

where $\tilde{F}(r) := r^2 + a^2 \cos^2(\theta) - 2mr$. The zeros of $\tilde{F}(r)$ are again given by (29). Setting

$$du = dv - 2 \frac{\Sigma}{\tilde{F}(r)} dr$$ \hfill (32)

brings (32) to the form

$$\tilde{g}(\theta) = -\frac{\tilde{F}(\theta)}{\Sigma} dv du.$$ \hfill (33)

The usual Kruskal-Szekeres type of analysis applies to this metric, leading to a conformal diagram as in the left Fig. 3 with no shadings, and with r_{\pm} there replaced by $r_{\theta, z}$, as long as \tilde{F} has two distinct zeros.

Several comments are in order. First, the event horizons within $\tilde{N}_{\theta, \varphi}$ do not coincide with the intersection of the event horizons of the Kerr space-time with $\tilde{N}_{\theta, \varphi}$. This is not difficult to understand by noting that the class of causal curves that lie within $\tilde{N}_{\theta, \varphi}$ is smaller than the class of causal curves in space-time, and there is therefore no a priori reason to expect that the associated horizons will be the same. In fact, is should be clear that the event horizons within $\tilde{N}_{\theta, \varphi}$ should be located on the boundary of the ergoregion, since in two space-time dimensions the boundary of an ergoregion is necessarily a null hypersurface. This illustrates the fact that conformal diagrams for submanifolds might fail to represent correctly the location of horizons. The reason that the conformal diagrams for the symmetry axes correctly reflect the global structure of the space-time is an accident related to the fact that the ergosphere touches the event horizon there.

This last issue acquires a dramatic dimension for extreme Kerr black holes, for which $|a| = m$, where for $\theta \in (0, \pi)$ the global structure of maximally extended $\tilde{N}_{\theta, \varphi}$ is represented by an unshaded version of the left Fig. 3, while the conformal diagrams for the axisymmetry axes are given by the unshaded version of the right Fig. 3.
Next, another dramatic change arises in the global structure of the $N_{\theta, \phi}$'s with $\theta = \pi/2$. Indeed, in this case we have $r_{\theta, +} = 2m$, as in Schwarzschild space-time, and $r_{\theta, -} = 0$, regardless of whether the metric is underspinning, extreme, or overspinning. Since $r_{\theta, -}$ coincides now with the location of the singularity, $N_{\theta, \phi}$ acquires two connected components: one where $r > 0$ and a second one with $r < 0$. The conformal diagram of the first one is identical to that of the Schwarzschild space-time with positive mass, while the second is identical to that of Schwarzschild with negative mass; see Fig. 4. We thus obtain the unexpected conclusion that the singularity $r = \cos(\theta) = 0$ has a spacelike character when approached with positive r within the equatorial plane and a timelike one when approached with negative r within that plane. This is rather obvious in retrospect, since the metric induced by Kerr on $N_{\pi/2, \phi}$ coincides, when $m > 0$, with the one induced by the Schwarzschild metric with positive mass in the region $r > 0$ and with the Schwarzschild metric with negative mass m in the region $r < 0$.

Note finally that, surprisingly enough, even for overspinning Kerr metrics there will be a range of angles θ near $\pi/2$ so that \tilde{F} will have two distinct first-order zeros. This implies that, for such θ, the global structure of maximally extended $N_{\theta, \phi}$'s will be similar to that of the corresponding submanifolds of the underspinning Kerr solutions. This should be compared with the projection diagram for overspinning Kerr space-times, to be found in Fig. 5.

2. The orbit space-metric on $\mathcal{M}/U(1)$

Let h denote the tensor field obtained by quotienting out in the Kerr metric g the $\eta := \partial_\eta$ direction:

\[h(X, Y) = g(X, Y) - \frac{g(X, \eta)g(Y, \eta)}{g(\eta, \eta)}. \]

The tensor field h projects to the natural quotient metric on the manifold part of $\mathcal{M}/U(1)$. In the region where η is spacelike, the quotient space $\mathcal{M}/U(1)$ has the natural structure of a manifold with boundary, where the boundary is the image, under the quotient map, of the axis of rotation $\{ \eta = 0 \}$.

Using r, r, θ as coordinates on the quotient space we find a diagonal metric

\[h = h_n dt^2 + \frac{1}{\Delta} dr^2 + \Sigma d\theta^2, \]

where

\[h_n = g_{tt} - \frac{\Delta}{g_{\phi\phi}}. \]

as in (18). Thus, the metric γ of Sec. III C is directly constructed out of the (t, r) part of the quotient-space metric h. However, the analogy is probably misleading as there does not seem to be any direct correspondence between the quotient space $\mathcal{M}/U(1)$ and the natural manifold as constructed in Sec. III C using the metric γ [10].

D. The Kerr-Newman metrics

The analysis of the Kerr-Newman metrics is essentially identical: The metric takes the same general form (15), except that now

\[\Delta = r^2 + a^2 + e^2 - 2mr =: (r - r_+)(r - r_-), \]

and we assume that $e^2 + a^2 \leq m$ so that the roots are real. We have

\[g_{\phi\phi} = \frac{\sin^2(\theta)(r^2 + a^2)^2 - a^2 \Delta \sin^2(\theta)}{\Sigma}, \]

\[g_{rr} = \frac{\Delta \Sigma}{(r^2 + a^2)^2 - a^2 \Delta \sin^2(\theta)}, \]

and note that the sign of the denominator in (37) coincides with the sign of $g_{\phi\phi}$. Hence

\[\text{sgn} \left(\frac{g_{rr} - \frac{\Delta \Sigma}{g_{\phi\phi}}}{g_{\phi\phi}} \right) = -\text{sgn}(\Delta_\phi) \text{sgn}(g_{\phi\phi}). \]

For $g_{\phi\phi} > 0$, which is the main region of interest, we conclude that the minimum of \((g_{rr} - \frac{\Delta \Sigma}{g_{\phi\phi}}) \Sigma^{-1} \Delta_\phi^{-1} \) is assumed at $\theta = \frac{\pi}{2}$ and the maximum at $\theta = 0$, π, so for all r for which $g_{\phi\phi} > 0$ we have

\[-\frac{\Delta \Sigma}{(r^2 + a^2)^2 - a^2 \Delta_\phi} \leq g_{rr} - \frac{\Delta \Sigma}{g_{\phi\phi}} \leq -\frac{\Delta \Sigma}{(r^2 + a^2)^2}. \]
Choosing the conformal factor as
\[\Omega^2 = \frac{r^2 + a^2}{\Sigma} \]
we obtain, for \(g \)-causal vectors \(X \),
\[0 = \Omega^2 g(X,X) = \Omega^2 g_{\mu\nu} X^\mu X^\nu \]
\[= \Omega^2 \left(g_{tt} - \frac{g_{\phi\phi}}{g_{\phi\phi}} \right)(X')^2 + \Omega^2 g_{rr}(X')^2 \]
\[= -\frac{\Delta_r(r^2 + a^2)}{(r^2 + a^2)^2 - a^2 \Delta_r} (X')^2 + \left(\frac{r^2 + a^2}{\Delta_r} \right)^2 (X')^2. \]
(39)
This leads to the following projection metric:
\[\gamma := -\frac{\Delta_r(r^2 + a^2)}{(r^2 + a^2)^2 - a^2 \Delta_r} dr^2 + \frac{(r^2 + a^2)}{\Delta_r} \frac{a^2}{r^2(2m + r - e^2) + r^2} d\theta^2 + \frac{(r^2 + a^2)}{\Delta_r} \frac{a^2}{r^2(2m + r - e^2) + r^2} d\phi^2, \]
(40)
which is Lorentzian if and only if \(r \) is such that \(g_{\phi\phi} > 0 \) for all \(\theta \in [0, \pi] \). Now, it follows from (36) that \(g_{\phi\phi} \) will have the wrong sign if
\[0 > (r^2 + a^2)^2 - a^2 \Delta_r \sin^2(\theta). \]
(41)
This does not happen when \(\Delta_r \leq 0 \), and hence in a neighborhood of both horizons. On the other hand, for \(\Delta_r > 0 \), a necessary condition for (41) is
\[0 > (r^2 + a^2)^2 - a^2 \Delta_r = r^4 + r^2 a^2 + 2ma^2 - a^2 e^2 =: f(r). \]
(42)
The second derivative of \(f \) is positive; hence, \(f' \) has exactly one real zero. Note that \(f \) is strictly smaller than the corresponding function for the Kerr metric, where \(e = 0 \); thus, the interval where \(f \) is negative encloses the corresponding interval for Kerr. We conclude that \(f \) is negative on an interval \((\hat{r}_-, \hat{r}_+) \), with \(\hat{r}_- < 0 < \hat{r}_+ < r_- \).

The corresponding projection diagrams are identical to those of the Kerr space-time, see Fig. 3, with the minor modification that the region to be excised from the diagram is \(\{ r \in (\hat{r}_-, \hat{r}_+) \} \), with \(\hat{r}_+ > 0 \), while we had \(\hat{r}_+ = 0 \) in the uncharged case.

E. The Kerr-de Sitter metrics

The Kerr-de Sitter metric in Boyer-Lindquist-like coordinates reads [12,13]
\[g = \frac{\Sigma}{\Delta_r} dt^2 + \frac{\Sigma}{\Delta_r} \sin^2(\theta) (d\phi + (r^2 + a^2) dt)^2 - \frac{1}{\Sigma \Delta_r} \Delta_r d\theta^2 + \frac{\Sigma}{\Delta_r} d\phi^2, \]
(43)
where
\[\Sigma = r^2 + a^2 \cos^2(\theta), \]
\[\Delta_r = (r^2 + a^2) \left(1 - \frac{\Lambda}{3} r^2 \right)^2 - 2\mu \Sigma, \]
(44)
\[\Delta_\theta = 1 + \frac{\Lambda}{3} a^2 \cos^2(\theta), \quad \Xi = 1 + \frac{\Lambda}{3} a^2. \]
(45)
for some real parameters \(a \) and \(\mu \), where \(\Lambda \) is the cosmological constant. In this section we assume \(\Lambda > 0 \) and \(\mu \neq 0 \). By a redefinition \(\varphi \mapsto -\varphi \) we can always achieve \(a > 0 \), similarly changing \(r \) to \(-r \) if necessary we can assume that \(\mu \geq 0 \). The case \(\mu = 0 \) leads to the de Sitter metric in unusual coordinates (see, e.g., Eq. (17) in Ref. [14]). The inequalities \(a > 0 \) and \(\mu > 0 \) will be assumed from now on.

The Lorentzian character of the metric should be clear from (43); alternatively, one can calculate the determinant of \(g \):
\[\det(g) = -\frac{\Sigma^2}{\Xi} \sin^2\theta. \]
(46)
We have
\[g'' = \frac{g_{tt} g_{\theta\theta} - g_{t\theta}^2}{\det(g)} = -\frac{\Xi^4}{\Delta_\theta} \times \frac{1}{\Delta_r} \times \frac{g_{\phi\phi}}{\sin^2 \theta}, \]
(47)
which shows that either \(t \) or its negative is a time function whenever \(\Delta_r \) and \(g_{\phi\phi}/\sin^2 \theta \) are positive. (Incidentally, chronology is violated on the set where \(g_{\phi\phi} < 0 \); we will return to this shortly.) One also has
\[g^{rr} = \frac{\Delta_r}{\Sigma}, \]
(48)
which shows that \(r \) or its negative is a time function in the region where \(\Delta_r < 0 \).

The character of the principal orbits of the isometry group \(\mathbb{R} \times U(1) \) is determined by the sign of the determinant
\[\det \left(\begin{array}{cc} g_{tt} & g_{t\theta} \\ g_{\theta t} & g_{\theta\theta} \end{array} \right) = -\frac{\Delta_r \Delta_\theta}{\Xi^2} \sin^2 \theta. \]
(49)
Therefore, for \(\sin(\theta) \neq 0 \) the orbits are two-dimensional, timelike in the regions where \(\Delta_r > 0 \), spacelike where \(\Delta_r < 0 \), and null where \(\Delta_r = 0 \) once the space-time has been appropriately extended to include the last set.

When \(\mu \neq 0 \) the set \(\{ \Sigma = 0 \} \) corresponds to a geometric singularity in the metric. To see this, note that
\[g(\partial_r, \partial_r) = \frac{a^2 \sin^2 \theta \Delta_\theta - \Delta_r}{\Sigma \Xi} = 2 \frac{\mu r}{\Sigma} + O(1), \]
(50)
where \(O(1) \) denotes a function which is bounded near \(\Sigma = 0 \). It follows that for \(\mu \neq 0 \) the norm of the Killing vector \(\partial_r \) blows up as the set \(\{ \Sigma = 0 \} \) is approached along
the plane \(\cos(\theta) = 0 \), which would be impossible if the metric could be continued across this set in a \(C^2 \) manner.

The function \(\Delta_r \) has exactly two distinct first-order real zeros when

\[
\mu^2 > \frac{2}{3} \Xi^2 \Lambda (3 - a^2 \Lambda^3).
\]

It has at least two, and up to four, possibly but not necessarily distinct, real roots when

\[
a^2 \Lambda \leq 3, \quad \mu^2 \leq \frac{2}{3} \Xi^2 \Lambda (3 - a^2 \Lambda^3).
\]

The negative root \(r_1 \) is always simple and negative; the remaining ones are positive. We can thus order the roots as

\[
r_1 < 0 < r_2 \leq r_3 \leq r_4,
\]

when there are four real ones, and we set \(r_3 = r_4 := r_T \) when there are only two real roots \(r_1 < r_2 \). The function \(\Delta_r \) is positive for \(r \in (r_1, r_2) \), and for \(r \in (r_3, r_4) \) whenever the last interval is not empty; \(\Delta_r \) is negative or vanishing otherwise.

It holds that

\[
\varrho_{\varphi \varphi} = \frac{\sin^2(\theta) (\Delta_{\varphi}(r^2 + a^2 \varphi^2) - a^2 \Delta_r \sin^2(\theta))}{\Xi^2 \Sigma} \quad (54)
\]

\[
= \frac{\sin^2(\theta) (2a^2 \mu \sin(\theta) + r^2 + a^2 + r^2)}{\Xi^2 \Sigma} \quad (55)
\]

The second line is manifestly non-negative for \(r \geq 0 \) and positive there away from the axis \(\sin(\theta) = 0 \). The first line is manifestly non-negative for \(\Delta_r \leq 0 \), and hence also in a neighborhood of this set.

Next

\[
g_{\mu} - \frac{\dot{g}_{\varphi}}{g_{\varphi}} = - \frac{\Delta_{\varphi} \Delta_r \Sigma}{\Xi^2 (\Delta_{\varphi}(r^2 + a^2 \varphi^2) - a^2 \mu \sin^2(\theta))} \quad (56)
\]

with

\[
A(r) = \frac{\Xi}{2} (a^3 + 3a^2 r^2 + 2r^4 + 2a^2 \mu r), \quad (57)
\]

\[
B(r) = \frac{a^2}{2} \Xi (a^2 + r^2 - 2 \mu r). \quad (58)
\]

We have

\[
A(r) + B(r) = \Xi (a^2 + r^2), \quad (59)
\]

\[
A(r) - B(r) = r^2 \Xi \left(a^2 + r^2 + 2 \frac{a^2 \mu}{r} \right).
\]

which confirms that for \(r > 0 \), or for large negative \(r \), we have \(A > |B| > 0 \), as needed for \(g_{\varphi \varphi} \equiv 0 \). The function

\[
f(r, \theta) := \frac{(A(r) + B(r) \cos(2\theta))}{\Delta_{\theta}} = \frac{(A(r) + B(r) \cos(2\theta))}{1 + \frac{a^2 \mu \cos^2(\theta)}}
\]

satisfies

\[
\frac{\partial f}{\partial \theta} = - \frac{\alpha^2 \Xi}{\Delta_{\theta}} \Delta_r \sin(2\theta), \quad (60)
\]

which has the same sign as \(-\Delta_r \sin(2\theta) \). In any case, its extrema are achieved at \(\theta = 0, \pi/2 \) and \(\pi \). Accordingly, this is where the extrema of the right-hand side of (56) are achieved as well. In particular, for \(\Delta_r > 0 \), we find

\[
\frac{\Delta_{\Sigma}}{(a^2 + r^2)^2} \leq \Xi^2 \left| g_{\mu} - \frac{\dot{g}_{\varphi}}{g_{\varphi}} \right| \leq \Xi \frac{\Sigma \Delta_r}{r(a^2(2 \mu + r) + r')}, \quad (61)
\]

with the minimum attained at \(\theta = 0 \) and the maximum attained at \(\theta = \pi/2 \).

To obtain the projection diagram, we can now repeat word the analysis carried out for the Kerr metrics on the set \(\varrho_{\varphi \varphi} > 0 \). Choosing a conformal factor \(\Omega^2 \) equal to

\[
\Omega^2 = \frac{r^2 + a^2}{\Sigma}, \quad (62)
\]

one is led to a projection metric

\[
\gamma := - \frac{r^2 + a^2}{\Xi^2} \frac{\Delta_r}{r(a^2(2 \mu + r) + r')} dr^2 + \frac{r^2 + a^2}{\Delta_r} dr^2. \quad (63)
\]

It remains to understand the set

\[
\mathcal{V} := \{ \varrho_{\varphi \varphi} < 0 \},
\]

where \(g_{\varphi \varphi} \) is negative. To avoid repetitiveness, we will do it simultaneously both for the charged and the uncharged case, where (54) still applies [but not (55) for \(\Delta_r \) given by (64)]; the Kerr-de Sitter case is obtained by setting \(e = 0 \) in what follows. A calculation shows that \(g_{\varphi \varphi} \) is the product of a non-negative function with

\[
\chi := 2a^2 \mu r - a^2 e^2 + r^2 a^2 + r^4 + (r^2 a^2 - 2a^2 \mu r + a^2 e^2 + a^4) \cos^2(\theta).
\]

This is clearly positive for all \(r \) and all \(\theta \neq \pi/2 \) when \(\mu = e = 0 \), which shows that \(\mathcal{V} = \emptyset \) in this case.

Next, the function \(\chi \) is sandwiched between the two following functions of \(r \), obtained by setting \(\cos(\theta) = 0 \) or \(\cos^2(\theta) = 1 \) in \(\chi' \):

\[
\chi_0 := r^2 + r^2 a^2 + 2a^2 \mu r - a^2 e^2, \quad \chi_1 := (r^2 + a^2)^2.
\]

Hence, \(\chi \) is positive for all \(r \) when \(\cos^2(\theta) = 1 \). Next, for \(\mu > 0 \) the function \(\chi_0 \) is negative for negative \(r \) near zero. Further, \(\chi_0 \) is convex. We conclude that, for \(\mu > 0 \), the set on which \(\chi_0 \) is nonpositive is a nonempty interval \([\tilde{r}_-, \tilde{r}_+] \) containing the origin. We have already seen that \(g_{\varphi \varphi} \) is non-negative wherever \(\Delta_r \leq 0 \), and since \(r_2 > 0 \) we must have

\[
r_1 < \tilde{r}_- \leq \tilde{r}_+ < r_2.
\]
In fact, when $e = 0$ the value of \hat{r}_- is given by (27) with m replaced by μ, with $\hat{r}_- = 0$ if and only if $\mu = 0$.

We conclude that if $\mu = e = 0$ the time-machine set is empty, while if $|\mu| + e^2 > 0$ there are always causality violations “produced” in the nonempty region $\{\hat{r}_- \leq r \leq \hat{r}_+\}$.

The projection diagrams for the Kerr-Newman-de Sitter family of metrics depend upon the number of zeros of Δ_r, and their nature, and can be found in Figs. 6–9.

F. The Kerr-Newman-de Sitter metrics

In the standard Boyer-Lindquist coordinates the Kerr-Newman-de Sitter metric takes the form (43) [13,15,16] with all the functions as in (44) and (45) except for Δ_r, which instead takes the form

$$\Delta_r = \left(1 - \frac{1}{3} \Lambda r^2\right)\left(r^2 + a^2\right) - 2 \Xi \mu r + \Xi e^2, \quad (64)$$

where $\sqrt{\Xi}e$ is the electric charge of the space-time. In this section we assume,

$$\Lambda > 0, \quad \mu \geq 0, \quad a > 0, \quad e \neq 0.$$

The calculations of the previous section, and the analysis of zeros of Δ_r, remain identical except for the following equations: First,

$$g_{\phi\phi} = \frac{\sin^2(\theta)}{\Xi} \left(\frac{a^2(2 \mu r - e^2) \sin^2(\theta)}{a^2 \cos^2(\theta) + r^2} + a^2 + r^2\right), \quad (65)$$

the sign of which requires further analysis; we will return to this shortly. Next, we still have

$$g_{tt} = \frac{g_{\phi\phi}}{g_{\phi\phi}} = \frac{\Delta_\phi \Delta_\Sigma}{\Xi^2\left(\Delta_\phi (r^2 + a^2)^2 - \Delta_\Sigma a^2 \sin^2(\theta)\right)} - \frac{\Delta_\phi \Delta_\Sigma}{\Xi^2(A(r) + B(r) \cos(2\theta))}. \quad (66)$$
but now

\[A(r) = \frac{\Xi}{2} \left(a^4 + 3a^2 r^2 + 2r^4 + 2\alpha^2 \mu r - \alpha^2 e^2\right), \]

\[B(r) = \frac{a^2}{2} \Xi \left(a^2 + r^2 - 2\mu r + e^2\right), \]

with

\[A(r) + B(r) = \Xi \left(a^2 + r^2\right)^2, \]

\[A(r) - B(r) = r^2 \Xi \left(a^2 + r^2 + 2\frac{\alpha^2 \mu}{r} - \frac{\alpha^2 e^2}{r^2}\right). \]

Equation (60) remains unchanged, and for \(\Delta_r > 0 \), we find

\[\frac{\Delta_r \Xi}{(a^2 + r^2)^2} \leq \Xi \left| g_{tt} - \frac{\Xi}{\Xi g_{tt}} \right| \leq \Xi \left(a^2 (2\mu r - e^2 + r^2) + r^2\right), \]

with the minimum attained at \(\theta = 0 \) and the maximum attained at \(\theta = \pi/2 \). This leads to the projection metric

\[\gamma = -\frac{\Delta_r}{\Xi^3(a^2 - e^2 + r^2 + r^2)} dt^2 + \frac{1}{\Delta_r} dr^2. \]

We recall that the analysis of the time-machine set \(\{g_{\varphi\varphi} < 0\} \) has already been carried out at the end of Sec. III E, where it was shown that for \(e \neq 0 \) causality violations always exist and arise from the nonempty region \(\{\hat{r}_- < r < \hat{r}_+\} \).

The projection diagrams for the Kerr-Newman-de Sitter family of metrics can be found in Figs. 6–9.

G. The Kerr-Newman-anti de Sitter metrics

We consider the metric (43)–(45), with however \(\Delta_r \) given by (64), assuming that

\[a^2 + e^2 > 0, \quad \Lambda < 0. \]

While the local calculations carried out in Sec. III E remain unchanged, one needs to reexamine the occurrence of zeros of \(\Delta_r \).

We start by noting that the requirement that \(\Xi \neq 0 \) imposes

\[1 + \frac{\Lambda}{3} a^2 \neq 0. \]

Next, a negative \(\Xi \) would lead to a function \(\Delta_\varphi \) which changes sign. By inspection, one finds that the signature changes from \((-+++)\) to \((++--)\) across these zeros, which implies nonexistence of a coordinate system in which the metric could be smoothly continued there [17]. From now on we thus assume that

\[\Xi = 1 + \frac{\Lambda}{3} a^2 > 0. \]

It is well known that those metrics for which \(\Delta_r \) has no zeros are nakedly singular whenever

\[e^2 + |\mu| > 0. \]

This can, in fact, be easily seen from the following formula for \(g_{tt} \) on the equatorial plane:

\[g_{tt} = \frac{1}{3\Xi^2 r^2} \left(-3\Xi e^2 + 6\Xi \mu r + (\Lambda a^2 - 3)r^2 + \Lambda r^4\right). \]

So, under (70) the norm of the Killing vector \(\partial_t \) is unbounded and the metric cannot be \(C^2 \)-continued across \(\{\Sigma = 0\} \) by usual arguments.

Turning our attention, first, to the region where \(r > 0 \), the occurrence of zeros of \(\Delta_r \) requires that

\[\mu \geq \mu_c(a, e, \Lambda) > 0. \]

Hence, there is a positive threshold for the mass of a black hole at given \(a \) and \(e \). The solution with \(\mu = \mu_c \) has the property that \(\Delta_r \), and its \(r \) derivative have a joint zero and can thus be found by equating to zero the resultant of these two polynomials in \(r \). An explicit formula for \(m_c = \Xi \mu_c \) can be given, which takes a relatively simple form when expressed in terms of suitably renormalized parameters. We set

\[\alpha = \sqrt{\frac{|\Lambda|}{3} a} \Longleftrightarrow a = \alpha \sqrt{\frac{3}{|\Lambda|}} \]

\[\beta = \frac{3\sqrt{|\Lambda|}}{(1 + \alpha^2)^{3/2}} \Xi \mu \Longleftrightarrow m : = \Xi \mu_c = \frac{(1 + \alpha^2)^{3/2}}{3\sqrt{|\Lambda|}} \beta, \]

and

\[\gamma = 9 \alpha^2 + \frac{|\Lambda|}{3} q^2 (1 + \alpha^2)^2 \]

\[\Longleftrightarrow q^2 := \Xi a^2 = \frac{3}{|\Lambda|} \left(\frac{1 + \alpha^2}{3}\right) \gamma - \alpha^2. \]

Letting \(\beta \) be the value of \(\beta \) corresponding to \(\mu_c \), one finds

\[\beta_c = \frac{\sqrt{-9 + 36\gamma + \sqrt{3(3 + 4\gamma)^3}}}{3\sqrt{2}} \]

\[\Longleftrightarrow m_c^2 = \frac{(1 + \alpha^2)^3(-9 + 36\gamma + \sqrt{3(3 + 4\gamma)^3})}{162|\Lambda|}. \]

When \(q = 0 \), the graph of \(\beta_c \) as a function of \(\alpha \) can be found in Fig. 10. In general, the graph of \(\beta_c \) as a function of \(a \) and \(q \) can be found in Fig. 11.

Note that if \(q = 0 \), then \(\gamma \) can be used as a replacement for \(a \); otherwise, \(\gamma \) is a substitute for \(q \) at fixed \(a \).

When \(e = 0 \) we have \(m_c = a + O(a^3) \) for small \(a \), and

\[m_c \rightarrow \frac{8}{3\sqrt{|\Lambda|}} |a| \sqrt{3/|\Lambda|}. \]

According to Ref. [18], the physically relevant mass of the solution is \(\mu \) and not \(m \); because of the rescaling involved, we have \(\mu_c \rightarrow \infty \) as \(|a| \rightarrow \sqrt{3/|\Lambda|} \).

We have \(d^2 \Delta_r/dr^2 > 0 \), so that the set \(\{\Delta_r \leq 0\} \) is an interval \((r_-, r_+) \), with \(0 < r_- < r_+ \).
It follows from (54) that $g'' = \sin^2(\theta/\sqrt{C_{18}})$ is positive for $r > 0$, and the analysis of the time-machine set is identical to that derived in Sec. III E, with projection diagrams seen in Fig. 12.

The projection metric is formally identical to that de Sitter metrics with two distinct zeros of Δ, so that $\Delta > 0$ as long as $\Xi > 0$, which is assumed. We note that stable causality of each region on which Δ, has constant sign follows from (47) and (48).

The projection metric is formally identical to that derived in Sec. III E, with projection diagrams seen in Fig. 12.

H. The Emparan-Reall metrics

We consider the Emparan-Reall black-ring metric as presented in [19]:

$$ds^2 = -\frac{F(y)}{F(x)}(dt - CR^2(F(y) dy^2) + \frac{R^2 F(x)}{x - y})d\psi^2 + \frac{G(y)}{G(x)}d\theta^2,$$

$$= F(\xi) = 1 + \lambda \xi, \quad G(\xi) = (1 - \xi^2)(1 + \nu \xi). \quad (74)$$

and

$$\sqrt{\Lambda} m_\lambda = \frac{a \sqrt{\Lambda}}{\sqrt{3}}.$$
FIG. 10 (color online). The critical mass parameter $m_\lambda \sqrt{\Lambda}/3 = \Xi \mu \sqrt{3}/\Lambda$ as a function of $|a|\sqrt{\Lambda}$ when $q = 0$.

$$\sqrt{\Lambda} m_\lambda = \frac{a \sqrt{\Lambda}}{\sqrt{3}}.$$
FIG. 11 (color online). The critical mass parameter $m_\lambda \sqrt{\Lambda}/3$ as a function of $a = m_\lambda \sqrt{\Lambda}$ and $q \sqrt{\Lambda}$.

$$C = \sqrt{\lambda(\lambda - \nu) \frac{1 + \lambda}{1 - \lambda}}.$$
(75)

The parameter λ is chosen to be

$$\lambda = \frac{2\nu}{1 + \nu^2},$$
(76)

with the parameter ν lying in $(0, 1)$, so that

$$0 < \nu < \lambda < 1.$$
(77)

The coordinates x, y lie in the ranges $-\infty \leq y \leq -1, -1 \leq x \leq 1$, assuming further that $(x, y) \notin (-1, -1)$. The event horizons are located at $y = y_\pm = -1/\nu$ and the ergosurface is at $y = y_e = -1/\lambda$. The ∂_θ axis is at $y = y = -1$ and the ∂_ϕ axis is split into two parts $x = \pm 1$. Spatial infinity ∂^0 corresponds to $x = y = -1$. The metric becomes singular as $y \to -\infty$.

Although this is not immediately apparent from the current form of the metric, it is known [20] that ∂_θ is spacelike or vanishing in the region of interest, with $g_{\phi\phi} > 0$ away from the rotation axis $y = -1$. Now, the metric (73) may be rewritten in the form

$$g = (g_{tt} - g_{\phi\phi})dt^2 - \frac{R^2 F(x)}{(x - y)^2 G(y)}dy^2 + g_{\phi\phi}(d\psi + g_{t\phi}dt)^2 + g_{xy}dx^2 + g_{\phi\phi}d\theta^2.$$
(78)

We have
\[g_{\mu
u} - g_{\phi\phi}^2 = -\frac{G(y)F(y)F(x)}{F(x)^2G(y) + C^2(1 + y)^2(x - y)^2}. \]

It turns out that there is a nonobvious factorization of the denominator as

\[F(x)^2G(y) + C^2(1 + y)^2(x - y)^2 = -F(y)I(x, y), \]

where \(I \) is a second-order polynomial in \(x \) and \(y \) with coefficients depending upon \(\nu \), sufficiently complicated so that it cannot be usefully displayed here. The polynomial \(I \) turns out to be non-negative, which can be seen using a trick similar to one in Ref. [21], as follows: One introduces new, non-negative, variables and parameters \((X, Y, \sigma) \) via the equations

\[x = X - 1, \quad y = -Y - 1, \quad \nu = \frac{1}{1 + \sigma}, \quad (80) \]

with \(0 \leq X \leq 2, \quad 0 \leq Y < +\infty, \quad 0 < \sigma < +\infty \). A MATHEMATICA calculation shows that in this parameterization the function \(I \) is a rational function of the new variables, with a simple denominator which is explicitly non-negative, while the numerator is a complicated polynomial in \(X, Y, \sigma \) with, however, all coefficients positive.

Let \(\Omega = (x - y)/\sqrt{F(x)} \), then the function

\[\kappa(x, y) := \Omega^2\left(g_{\mu
u} - g_{\phi\phi}^2\right) = -\frac{G(y)F(y)}{(x - y)G(y) + C^2(1 + y)^2} \]

has extrema in \(x \) only for \(x = y = -1 \) and \(x = -1/\lambda < -1 \). This may be seen from its derivative with respect to \(x \), which is explicitly nonpositive in the ranges of variables of interest:

\[
\frac{\partial \kappa}{\partial x} = -\frac{2G(y)^2F(y)^2F(x)(x - y)}{(F(x)^2G(y) + C^2(1 + y)^2(x - y)^2)^2} = -\frac{2G(y)^2F(x)(x - y)}{I(x, y)^2}.
\]

Therefore,

\[
\frac{(1 + y)^2G(y)}{I(-1, y)} = \kappa(-1, y) \geq \kappa(x, y) \geq \kappa(1, y) = \frac{(1 - y)^2G(y)}{I(1, y)}.
\]

Since both \(I(-1, y) \) and \(I(1, y) \) are positive, in the domain of outer communications \(\{-1/\nu < y \leq -1\} \) where \(G(y) \) is negative we obtain

\[
\frac{-G(y)(1 + y)^2}{I(-1, y)} \leq \Omega^2\left(g_{\mu
u} - g_{\phi\phi}^2\right) \leq \frac{-G(y)(1 - y)^2}{I(1, y)}.
\]

One finds

\[
I(1, y) = \frac{1 + \lambda}{1 - \lambda}(-1 + y^2)(1 - y(\lambda - \nu) - \lambda \nu),
\]

which leads to the projection metric

\[
\gamma := \chi(y)\frac{G(y)}{(-1 - y)} d^2t - \frac{R^2}{G(y)} dy^2,
\]

where, using the variables (80) to make manifest the positivity of \(\chi \) in the range of variables of interest,

\[
\chi(y) = \frac{(1 - y)(1 - \lambda)}{(1 + \lambda)(1 - y(\lambda - \nu) - \lambda \nu)} = \frac{(2 + \nu)\sigma(1 + \sigma)(2 + 2\sigma + \sigma^2)}{(2 + \sigma^2)(2 + Y + \sigma^2)} > 0.
\]

The calculation of (3) leads to the following conformal metric:

\[
(\tilde{g}) = R\sqrt{\frac{x}{1 + y}}\left(-\hat{F} dt^2 + \hat{F}^{-1} dr^2\right),
\]

where \(\hat{F} = -\frac{1}{r}\sqrt{\frac{x}{1 + y}}G \). Since the integral of \(\hat{F}^{-1} \) diverges at the event horizon and is finite at \(y = -1 \) (which corresponds both to an axis of rotation and the asymptotic region at infinity), the analysis in Sec. II shows that the corresponding projection diagram is as in Fig. 13.

It is instructive to compare this to the projection diagram for five-dimensional Minkowski space-time

\[
(t, \hat{r} \cos \phi, \hat{r} \sin \phi, \hat{r} \cos \psi, \hat{r} \sin \psi) = (t, \hat{x}, \hat{y}, \hat{z}, \hat{\omega}) \in \mathbb{R}^5
\]

parameterized by ring-type coordinates:

\[
y = -\frac{\hat{r}^2}{(\hat{r}^2 + \hat{\omega}^2)^2} - 1, \quad x = \frac{\hat{r}^2}{(\hat{r}^2 + \hat{\omega}^2)^2} - 1,
\]

\[
\hat{r} = \sqrt{\hat{x}^2 + \hat{y}^2}, \quad \hat{\omega} = \sqrt{\hat{x}^2 + \hat{y}^2}.
\]

FIG. 13. The projection diagram for the Emparan-Reall black rings. The arrows indicate the causal character of the orbits of the isometry group. The boundary \(y = -1 \) is covered, via the projection map, by the axis of rotation and by spatial infinity \(\hat{r} \). Curves approaching the conformal null infinities \(I^\pm \) asymptote to the missing corners in the diagram.
For fixed $x \neq 0$, $y \neq 0$ we obtain a torus as φ and ψ vary over S^1. The image of the resulting map is the set $x \geq -1$, $y \leq -1$, $(x, y) \neq (-1, -1)$. Since

$$x - y = \frac{1}{r^2 + \bar{r}^2},$$

the spheres $r^2 + \bar{r}^2 = r^2 = 1$ are mapped to subsets of the lines $x = y + 1/r^2$, and the limit $r \to \infty$ corresponds to $0 \leq x - y \leq 0$ (hence $x \to -1$ and $y \to -1$). The inverse transformation reads

$$\hat{r} = \frac{\sqrt{x - 1}}{x - y}, \quad \hat{r} = \frac{\sqrt{x + 1}}{x - y}.$$

The Minkowski metric takes the form

$$\eta = -dt^2 + dx^2 + dy^2 + dz^2 + d\varphi^2 = -dt^2 + \frac{dy^2}{4(-y - 1)(x - y)^2} + \frac{dz^2}{4(x + 1)(x - y)^2} + r^2 d\varphi^2.$$

Thus, for any η-causal vector X,

$$\eta(X, X) \approx -(X')^2 + \frac{(X')^2}{4(-y - 1)(x - y)^2}.$$

There is a problem with the right-hand side since, at fixed y, x is allowed to go to infinity, and so there is no positive lower bound on the coefficient of $(X')^2$. However, if we restrict attention to the set

$$r = \sqrt{r^2 + \bar{r}^2} \geq R$$

for some $R > 0$, we obtain

$$\eta(X, X) \approx -(X')^2 + \frac{R^4(X')^2}{4(-y - 1)}.$$

This leads to the conformal projection metric, for $-1 < \frac{1}{R} =: y_R \leq y \leq -1$,

$$\gamma := -dt^2 + \frac{R^2 dy^2}{4|y + 1|} = -dt^2 + \left(\frac{R^2}{2\sqrt{|y + 1|}} \frac{dy}{\sqrt{|y + 1|}}\right)^2.$$

Introducing a new coordinate $y' = -R^2 \sqrt{y - 1}$ we have

$$\gamma = -dt^2 + dy'^2,$$

and the event horizon corresponds to

$$y_h := -\frac{\lambda - \sqrt{\lambda^2 - 4\nu}}{2\nu},$$

and the cauchy horizon is located at

$$y_c := -\frac{\lambda + \sqrt{\lambda^2 - 4\nu}}{2\nu}.$$

Using an appropriate Gauss diagonalization, the metric may be rewritten in the form

$$g = (*) dt^2 + g_{y'y'^2} + (**).$$
where
\[
(*) = \left(g_{\phi\phi} - 2 g_{\phi\psi} g_{\phi\psi} + g_{\psi\psi} \right)
+ \frac{g_{\phi}(g_{\phi\phi} - g_{\phi\psi} g_{\phi\psi})}{(g_{\phi\phi} - g_{\phi\psi} g_{\phi\psi})}.
\]

\[
(**) = g_{xx} dx^2 + \frac{(g_{\phi\phi} dt + g_{\phi\psi} d\varphi + g_{\phi\psi} d\psi)^2}{g_{\phi\phi}}
+ \left(\frac{g_{\phi\phi} - g_{\phi\psi} g_{\phi\psi}}{g_{\phi\phi}} \right) \left(d\varphi + \frac{g_{\phi\psi} g_{\phi\psi} - g_{\phi\psi} g_{\phi\psi}}{g_{\phi\phi}} dt \right)^2.
\]

The positive-definiteness of \((**\rangle\) for \(y > y_c\) follows from Refs. \[21,25\]. Note that \(g_{\phi\phi} < 0\) would give a timelike Killing vector \(\partial_{\phi}\) and that \(g_{\phi\phi} - g_{\phi\psi} g_{\phi\psi} < 0\) would lead to some combination of the periodic Killing vectors \(\partial_{\phi}\) and \(\partial_{\phi}\) being timelike, so the term \((**\rangle\) in \((88)\) is non-negative on any region where there are no obvious causality violations.

The coefficient \((*)\) in front of \(dt^2\) is negative for \(y > y_h\) and positive for \(y < y_h\), vanishing at \(y = y_h\). This may be seen in the reparameterized form of the Pomeransky-Senkov solution that was introduced in Ref. \[21\]: Indeed, let \(a, b, c\) be the new coordinates as in Ref. \[21\] replacing \(x\) and \(y\), respectively, and let us reparameterize \(\nu, \lambda\) by \(c, d\) again as in Ref. \[21\], where all the variables \(a, b, c, d\) are non-negative above the Cauchy horizon, \(y > y_c\):

\[
\begin{align*}
x &= -1 - \frac{2}{1 + a}, \\
y &= -1 - \frac{d(4 + c + 2d)}{(1 + b)(2 + c)}, \\
\nu &= \frac{1}{(1 + d)^2}, \\
\lambda &= 2 \frac{2d^2 + 2(2 + c)d + (2 + c)^2}{(2 + c)(1 + d)(2 + c + 2d)}.
\end{align*}
\]

Set
\[
\kappa := (*)^{\Omega^2},
\]
\[
\Omega^2 := \frac{(x - y)^2(1 - \nu)^2}{2k^2H(x, y)}.
\]

Using MATHEMATICA one finds that \(\kappa\) takes the form
\[
\kappa = -\Omega^2(y - y_h)Q,
\]
where \(Q = Q(a, b, c, d)\) is a huge rational function in \((a, b, c, d)\) with all coefficients positive. To obtain the corresponding projection metric \(\gamma\) one would have, e.g., to find sharp lower and upper bounds for \(Q\), at fixed \(y\), which would lead to
\[
\gamma := -(y - y_h) \sup_{y \text{ fixed}} |Q| dt^2 - \frac{1}{G(y)} dy^2.
\]

This requires analyzing a complicated rational function, which we have not been able to do so far. We hope to return to this issue in the future.

We expect the corresponding projection diagram to look like that for Kerr-anti de Sitter space-time of Fig. 12, with \(r = \infty\) there replaced by \(y = -1\), \(r = -\infty\) replaced by \(y = 1\) with an appropriate analytic continuation of the metric to positive \(y\)'s (compare \[25\]), \(r_+\) replaced by \(y_h\) and \(r_-\) replaced by \(y_c\). The shaded regions in the negative region there might be nonconnected for some values of parameters and always extend to the boundary at infinity in the relevant diamond \[25\].

Recall that a substantial part of the work in Ref. \[25\] was to show that the function \(H(x, y)\) had no zeros for \(y > y_c\). We note that the reparameterization
\[
y \rightarrow -1 - \frac{cd}{(1 + b)(2 + c + 2d)}
\]
of Ref. \[21\] with the remaining formulas \((88)\) remaining the same gives
\[
H(x, y) = \frac{P(a, b, c, d)}{(1 + a)^2(1 + b)^2(2 + c)^2(1 + d)^2(2 + c + 2d)^4},
\]
where \(P\) is a huge polynomial with all coefficients positive for \(y > y_h\). This establishes immediately positivity of \(H(x, y)\) in the domain of outer communications. We have, however, not been able to find a simple proof of positivity of \(H(x, y)\) in the whole range \(y > y_c\).

IV. AN APPLICATION TO SPATIALLY COMPACT U(1) × U(1) SYMMETRIC MODELS WITH COMPACT CAUCHY HORIZONS

In this section we wish to use the Kerr-Newman-(anti-)de Sitter family of metrics to construct explicit examples of maximal, four-dimensional, \(U(1) \times U(1)\) symmetric, electrovacuum or vacuum models, with or without cosmological constant, containing a spatially compact partial Cauchy surface. Similarly, five-dimensional, \(U(1) \times U(1) \times U(1)\) symmetric, spatially compact vacuum models with spatially compact partial Cauchy surfaces can be constructed using the Emparan-Reall or Pomeransky-Senkov metrics. We will show how the projection diagrams constructed so far can be used to understand maximal (nonglobally hyperbolic) extensions of the maximal globally hyperbolic regions in such models, and for the Taub-NUT metrics.

A. Kerr-Newman-(anti-)de Sitter-type and Pomeransky-Senkov-type models

The diamonds and triangles which have been used to construct our diagrams so far will be referred to as blocks. Here the notion of a triangle is understood up to diffeomorphism; thus planar sets with three corners, connected by smooth curves intersecting only at the corners which are not necessarily straight lines, are also considered to be triangles.

In the interior of each block one can periodically identify points lying along the orbits of the action of the \(R\) factor of the isometry group. Here we are only interested in the connected component of the identity of the group,
which is $\mathbb{R} \times U(1)$ in the four-dimensional case and $\mathbb{R} \times U(1) \times U(1)$ in the five-dimensional case.

Note that isometries of space-time extend smoothly across all block boundaries. For example, in the coordinates (v, r, θ, φ) discussed in the paragraph around (30), translations in r become translations in v; similarly for the (u, r, θ, φ) coordinates. Using the (U, V, θ, φ) local coordinates near the intersection of two Killing horizons, translations in t become boosts in the (U, V) plane.

Consider one of the blocks, out of any of the diagrams constructed above, in which the orbits of the isometry group are spacelike. (Note that no such diamond or triangle has a shaded area which needs to be excised, as the shadings occur only within those building blocks where the isometry orbits are timelike.) It can be seen that the periodic identifications result then in a spatially compact maximal globally hyperbolic space-time with $S^1 \times S^2$ spatial topology, respectively, with $S^1 \times S^1 \times S^2$ topology.

Now, each diamond in our diagrams has four null boundaries which naturally split into pairs, as follows: In each block in which the isometry orbits are spacelike, we will say that two boundaries are orbit-adjacent if both boundaries lie to the future of the block or both to the past. In a block where the isometry orbits are timelike, boundaries will be said orbit-adjacent if they are both to the left or both to the right.

One out of each pair of orbit-adjacent null boundaries of a block with spacelike isometry-orbits corresponds, in the periodically identified space-time, to a compact Cauchy horizon across which the space-time can be continued to a periodically identified adjacent block. Which of the two adjacent boundaries will become a Cauchy horizon is a matter of choice; once such a choice has been made, the other boundary cannot be attached anymore: those geodesics which, in the unidentified space-time, would have been crossing the second boundary become, in the periodically identified space-time, incomplete inextendible geodesics. This behavior is well known from Taub-NUT space-times [26–28] and is easily seen as follows.

Consider a sequence of points $p_i := (t_i, r_i)$ such that p_i converges to a point p on a horizon in a projection diagram in which no periodic identifications have been made. Let $T > 0$ be the period with which the points are identified along the isometry orbits; thus, for every $n \in \mathbb{Z}$ points (t, r) and $(t + nT, r)$ represent the same point of the quotient manifold. It should be clear from the form of the Eddington-Finkelstein-type coordinates u and v used to perform the two distinct extensions [see the paragraph around (30)] that there exists a sequence $q_i \in \mathbb{Z}$ such that, passing to a subsequence if necessary, the sequence $q_i = (t_i + nT, r_i)$ converges to some point q in the companion orbit-adjacent boundary; see Fig. 15.

Denote by $[p]$ the class of p under the equivalence relation $(t, r) \sim (t + nT, r)$, where $n \in \mathbb{Z}$ and T is the period. Suppose that one could construct simultaneously an extension of the quotient manifold across both orbit-adjacent boundaries. Then the sequence of points $[q_i] = [p_i]$ would have two distinct points $[p]$ and $[q]$ as limit points, which is not possible. This establishes our claim.

Returning to our main line of thought, note that a periodically identified building block in which the isometry orbits are timelike will have obvious causality violations throughout, as a linear combination of the periodic Killing vectors becomes timelike there.

The branching construction, where one out of the pair of orbit-adjacent boundaries is chosen to perform the extension, can be continued at each block in which the isometry orbits are spacelike. This shows that maximal extensions are obtained from any connected union of blocks such that in each block an extension is carried out across precisely one out of each pair of orbit-adjacent boundaries. Some such subsets of the plane might only comprise a finite number of blocks, as seen trivially in Fig. 9. Clearly an infinite number of distinct finite, semi-infinite, or infinite sequences of blocks can be constructed in the diagram of Fig. 6. Two sequences of blocks which are not related by one of the discrete isometries of the diagram will lead to nonisometric maximal extensions of the maximal globally hyperbolic initial region.

B. Taub-NUT metrics

We have seen at the end of Sec. III B how to construct a projection diagram for Gowdy cosmological models. Those models all contain $U(1) \times U(1)$ as part of their isometry group. The corresponding projection diagrams constructed in Sec. III B were obtained by projecting out the isometry orbits. This is rather different from the remaining projection diagrams constructed in this work, where only one of the coordinates along the Killing orbits was projected out.

It is instructive to carry out explicitly both procedures for the Taub-NUT metrics, which belong to the Gowdy class. Using Euler angles (ζ, θ, φ) to parameterize S^3, the Taub-NUT metrics [26,29] take the form

$$
g = -U^{-1}dt^2 + (2t)^2U(d\zeta + \cos(\theta)d\varphi)^2 + (t^2 + \ell^2)(d\theta^2 + \sin^2(\theta)d\varphi^2). \tag{91}$$
Here

\[U(t) = -1 + \frac{2(mt + \ell^2)}{t^2 + \ell^2} = \frac{(t_+ - t)(t - t_-)}{t^2 + \ell^2}, \]

with

\[t_{\pm} := m \pm \sqrt{m^2 + \ell^2}. \]

Further, \(\ell \) and \(m \) are real numbers with \(\ell > 0 \). The region \(\{ t \in (t_-, t_+) \} \) will be referred to as the Taub space-time.

The metric induced on the sections \(\theta = \text{const}, \varphi = \text{const} \), of the Taub space-time reads

\[\gamma_0 := -U^{-1} dt^2 + (2\ell)^2 U d\xi^2. \] (92)

As already discussed by Hawking and Ellis [1], this is a metric to which the methods of Sec. II apply provided that the 4\(\pi \)-periodic identifications in \(\zeta \) are relaxed. Since \(U \) has two simple zeros, and no singularities, the conformal diagram for the corresponding maximally extended two-dimensional space-time equipped with the metric \(\gamma_0 \) can be seen as the left diagram in Fig. 16; compare Fig. 33 in Ref. [1]. The discussion of the last paragraph of the previous section applies and, together with the left diagram in Fig. 16, provides a family of simply connected maximal extensions of the sections \(\theta = \text{const}, \varphi = \text{const} \), of the Taub space-time.

However, it is not clear how to relate the above to extensions of the four-dimensional space-time. Note that projecting out the \(\zeta \) and \(\varphi \) variables in the region where \(U > 0 \), using the projection map \(\pi_1(t, \zeta, \theta, \varphi) := (t, \theta) \), one is left with the two-dimensional metric

\[\gamma_1 := -U^{-1} dt^2 + (t^2 + \ell^2) d\theta^2, \] (93)

which leads to the flat metric on the Gowdy space as the projection metric. (The coordinate \(t \) here is not the same as the Gowdy \(t \) coordinate, but the projection diagram remains a square.) And one is left wondering how this fits with the previous picture.

Now, one can attempt instead to project out the \(\theta \) and \(\varphi \) variables, with the projection map

\[\pi_2(t, \zeta, \theta, \varphi) := (t, \zeta). \] (94)

For this we note the trivial identity

\[g_{\zeta \zeta} d\zeta^2 + 2 g_{\zeta \varphi} d\zeta d\varphi + g_{\varphi \varphi} d\varphi^2 = \left(g_{\zeta \zeta} - \frac{g_{\zeta \zeta}^2}{g_{\varphi \varphi}} \right) d\zeta^2 + g_{\varphi \varphi} \left(d\varphi + \frac{g_{\zeta \zeta}}{g_{\varphi \varphi}} d\zeta \right)^2. \] (95)

Since the left-hand side is positive-definite on Taub space, where \(U > 0 \), both \(g_{\zeta \zeta} - \frac{g_{\zeta \zeta}^2}{g_{\varphi \varphi}} \) and \(g_{\varphi \varphi} \) are non-negative there. Indeed,

\[g_{\varphi \varphi} = (\ell^2 + t^2) \sin^2(\theta) + 4\ell^2 U \cos^2(\theta), \] (96)

\[g_{\zeta \zeta} - \frac{g_{\zeta \zeta}^2}{g_{\varphi \varphi}} = (2\ell)^2 \left(1 - \frac{(2\ell)^2 U \cos^2(\theta)}{g_{\varphi \varphi}} \right) U = \frac{4\ell^2 (\ell^2 + t^2) \sin^2(\theta)}{(\ell^2 + t^2) \sin^2(\theta) + 4\ell^2 U \cos^2(\theta)} U. \] (97)

However, perhaps not unsurprisingly given the character of the coordinates involved, the function \((**)\) in (97) does not have a positive lower bound independent of \(\theta \in [0, 2\pi] \), which is unfortunate for our purposes. To sidestep this drawback we choose a number \(0 < \epsilon < 1 \) and restrict ourselves to the range \(\theta \in [\theta_\epsilon, \pi - \theta_\epsilon] \), where \(\theta_\epsilon \in [0, \pi/2] \) is defined by

\[\sin^2(\theta_\epsilon) = \epsilon. \]

Now, \(g_{\varphi \varphi} \) is positive for large \(t \), independently of \(\theta \). Next, \(g_{\varphi \varphi} \) equals \(4\ell^2 U \) at the axes of rotation \(\sin(\theta) = 0 \) and equals \(\ell^2 + t^2 \) at \(\theta = \pi/2 \). Hence, keeping in mind that \(U \) is monotonic away from \((t_-, t_+) \), for \(\epsilon \) small enough there will exist values

\[\hat{t}_- (\epsilon), \quad \text{with} \quad \hat{t}_- (\epsilon) < t_- < 0 < t_+ < \hat{t}_+ (\epsilon) \]

such that \(g_{\varphi \varphi} \) will be negative somewhere in the region \((\hat{t}_- (\epsilon), t_-) \cup (t_+, \hat{t}_+ (\epsilon)) \) and will be positive outside of this.
region. We choose those numbers to be optimal with respect to those properties.

On the other hand, for \(\varepsilon \) close enough to 1 the metric coefficient \(g_{\varphi \varphi} \) will be positive for all \(\theta \in [\theta_e, \pi - \theta_e] \) and \(t < t_+ \). In this case we set \(\ddot{\iota}_-(\varepsilon) = t_- \), so that the interval \((\ddot{\iota}_-(\varepsilon), t_-) \) is empty. Similarly, there will exist a range of \(\varepsilon \) for which \(\ddot{\iota}_+(\varepsilon) = t_+ \), and \((t_+, \ddot{\iota}_+(\varepsilon)) = \emptyset \). The relevant ranges of \(\varepsilon \) will coincide only if \(m = 0 \).

We note

\[
\partial_\theta \left(g_{\varphi \varphi} - \frac{g_{\varphi \varphi}^2}{g_{\varphi \varphi}} \right) = \frac{16t^4U^2(\ell^2 + \ell'^2) \sin(2\theta)}{(\ell^2 + \ell'^2)\sin^2(\theta) + 4\ell^2U\cos^2(\theta))^2},
\]

which shows that, for

\[
t \notin (\ddot{\iota}_-(\varepsilon), t_-) \cup (t_+, \ddot{\iota}_+(\varepsilon)) \quad \text{and} \quad \theta \in (\theta_e, \pi - \theta_e),
\]

the multiplicative coefficient \((** \varepsilon) \) of \(U \) in (97) will satisfy

\[
(** \varepsilon) \geq \frac{4t^2(\ell^2 + \ell'^2)\sin^2(\theta_e)}{(\ell^2 + \ell'^2)\sin^2(\theta_e) + 4\ell^2U\cos^2(\theta_e)} =: f_(t). \tag{99}
\]

We are now ready to construct the projection metric in the region (98). Removing from the metric tensor (91) the terms \((\ast) \) appearing in (95), as well as the \(dt^2 \) terms, and using (99) one finds, for \(\gamma \)-causal vectors \(X \),

\[
g(X, X) \cong \gamma_2((\pi_2)_X, X, (\pi_2)_X),
\]

with \(\pi_2 \) as in (94), where

\[
\gamma_2 := -U^{-1}dt^2 + f_\varepsilon Ud\xi^2. \tag{100}
\]

Since \(U \) has exactly two simple zeros and is finite everywhere, and for \(\varepsilon \) such that \(g_{\varphi \varphi} \) is positive on the region \(\theta \in [\theta_e, \pi - \theta_e] \), the projection diagram for that region, in a space-time in which no periodic identifications in \(\xi \) are made, is given by the left diagram of Fig. 16. The reader should have no difficulties finding the corresponding diagrams for the remaining values of \(\varepsilon \).

However, we are in fact interested in those space-times where \(\xi \) is \(4\pi \) periodic. This has two consequences: (i) there are closed timelike Killing orbits in all the regions where \(U \) is negative, and (ii) no simultaneous extensions are possible across two orbit-adjacent boundaries. It then follows (see the right diagram of Fig. 16) that there are, within the Taub-NUT class, only two nonsymmetric, maximal, vacuum extensions across compact Cauchy horizons of the Taub space-time. (Compare Proposition 4.5 and Theorem 1.2 in Ref. [30] for the local uniqueness of extensions and [31] for a discussion of extensions with noncompact Killing horizons.)

ACKNOWLEDGMENTS

P.T.C. was supported in part by Narodowe Centrum Nauki under Grant No. DEC-2011/03/B/ST/02625. S.J.S. was supported by the John Templeton Foundation and would like to thank the University of Vienna for hospitality.

[10] Once this work was written it was pointed out to us that the idea of using the Penrose diagram for the quotient-space metric has been used in Ref. [11]. The Penrose-Carter conformal diagram of Sec. 4.6 of Ref. [11] coincides with a projection diagram for the Breckenridge-Myers-Peet-Vafa metric, but our interpretation of this diagram differs.
[16] The transition from the formulas in Ref. [13] to (43) is explained in Ref. [3], p. 102.
[17] We, and Kayll Lake (private communication), calculated several curvature invariants for the overspinning metrics and found no singularity at \(\Delta_\theta = 0 \). The origin of this surprising fact is not clear to us.
[23] We use \((\psi, \varphi)\) where Pomeransky and Senkov use \((\varphi, \psi)\).
[24] \(\nu = 0\) corresponds to the Emparan-Reall metric which has been already analyzed in Sec. III H.

6 Concluding discussion

The starting point of this work was a review of global properties of Kerr-de Sitter space-times. We brought some already existing discussions together, deepened the understanding of existence, location, number and degeneracy of the Killing horizons, and extended the original area of definition of the metric in Boyer-Lindquist coordinates. Even though the Kerr-de Sitter solution of the Einstein equations has been known for already quite a long time, there is still room for further research, for example on the question of maximality of the extension. We expect that many results can be inferred from existing discussions of Kerr and de Sitter space-times.

We then proceeded by using conformal Penrose-Carter diagrams to visualize the global structure for various subsections of the Kerr-de Sitter space-time. It turned out that conformal diagrams are a meaningful representation of the global structure of Kerr-de Sitter only on the symmetry axis. As we saw in the Space-time diagrammatics part of this work, this is also true for Kerr.

In order to be able to visualize the global structure for arbitrary angles, we searched for an alternative to conformal diagrams and developed the concept of projection diagrams. This is introduced in Space-time diagrammatics, a paper written together with Piotr T. Chruściel and Sebastian J. Szybka.

Whereas conformal diagrams for the Kerr-Newman-(anti)-de Sitter family of metrics are usually constructed by taking sections of constant angles of the metric, the idea of projection diagrams is to obtain a two-dimensional projection of the full space-time, valid for all angles, in the form of a two-dimensional projection metric that carries the necessary information to visualize the global structure of the original space-time. We furthermore have the freedom to choose a subset \(\mathcal{U} \) of the full manifold for which we want to construct the projection diagram, thereby giving us the possibility to exclude regions which would, if included, prevent us from constructing meaningful projection diagrams. For this reason we are able to build projection diagrams that correctly visualize the global structure of the full space-time for arbitrary angles of \(\theta \) for the Kerr-Newman-(anti)-de Sitter family of metrics. The drawback is that in general, nonempty regions have to be excluded from the space-time. This seems like a small disadvantage compared to the fact that conformal diagrams can not be constructed at all for many space-times containing such regions. As the idea of projection diagrams is very recent, there are still open questions such as global uniqueness of projection diagrams, or their application to more complicated space-times, and space-times of higher dimension. We find it a very worthwhile field of study, as projection diagrams make information on the global structure of space-times, such as global hyperbolicity, the conformal nature of boundaries, stable causality, the existence of event and Cauchy horizons and of conformally smooth infinities also of more complicated space-times easily accessible by representation in a single diagram.

References

Abstract

We review the global structure of Kerr-de Sitter space-time by analyzing the metric in Boyer-Lindquist coordinates. The dependence of number, location and possible degeneracy of the Killing horizons on the parameters is determined, and we show that the original area of definition of the metric can be extended over the horizons and the axis of rotation.

The global structure of the space-time is visualized by constructing several new conformal Carter-Penrose diagrams for various two-dimensional submanifolds. As it turns out, this is a suitable method only on the axis of rotation. This leads us to search for an alternative method of visualizing space-times, which we find in the concept of projection diagrams.

More precisely, the last part of this work, Space-time diagrammatics, consists of a paper written together with Piotr T. Chruściel and Sebastian J. Szybka, which was published in Physical Review D in 2012 [9]. There we introduce projection diagrams, a class of two-dimensional diagrams designed to visualize the global structure of space-times. Projection diagrams are then constructed for a number of space-times, amongst them the Kerr-Newman-de Sitter family of metrics.

Deutschsprachiges Abstract

Die globale Struktur der Raumzeit wird veranschaulicht, indem wir mehrere neue konforme Penrose-Carter Diagramme für verschiedene zweidimensionale Untermannigfaltigkeiten konstruieren. Es stellt sich heraus, dass diese nur auf der Rotationsachse dazu geeignet sind, kausale Strukturen der vierdimensionalen Raumzeit korrekt darzustellen. Dies ist die Motivation dafür, eine alternativen Form der Darstellung der globalen Raumzeit-Struktur vorzuschlagen, die Projektionsdiagramme.

Curriculum Vitae

Persönliche Daten
Name: Christa Raphaela Ölz

Ausbildung
1997-2005 Bundesgymnasium Feldkirch
06/2005 Matura mit ausgezeichnetem Erfolg
seit 2006 Diplomstudium Physik an der Universität Wien
09/2010-01/2011 Aufenthalt an der Boğaziçi Universität in Istanbul
im Rahmen des Erasmus Programms