DIPLOMARBEIT

Titel der Diplomarbeit
“The Syntax of Light Negation in German”

verfasst von
Milena Sisovics

angestrebter akademischer Grad
Magistra der Philosophie (Mag. phil.)

Wien, 2013

Studienkennzahl lt. Studienblatt: A 328
Studienrichtung lt. Studienblatt: Allgemeine und Angewandte Sprachwissenschaft
Betreuer: Univ.-Prof. Dr. Daniel Büring
Contents

Acknowledgements v
List of tables vii
List of abbreviations and symbols ix
Introduction 1

1 The distribution of Light Negation 7
 1.1 Indefinite Light Negation 7
 1.2 Definite Light Negation 10
 1.3 Disjunctive Light Negation 13
 1.4 Summarizing the facts 16
 1.5 Further occurrences of Light Negation 18

2 Light negation licensing: an instance of NPI licensing? 21
 2.1 Distribution I: The licensers of Light Negation and NPIs 22
 2.1.1 NPIs in Light Negation licensing environments 22
 2.1.2 Other NPI licensing environments 26
 2.1.3 Preliminary summary 31
 2.2 Distribution II: The locality of Light Negation licensing and NPI li-
 censing 32
 2.3 A final remark 36

3 Deriving Light Negation 39
 3.1 Light negation and the case of λ checking 39
 3.1.1 The inventory of λ items 41
 3.1.2 The locality of λ checking 45
 3.2 The realization of Light Negation 46
 3.2.1 The derivation of definite Light Negation 46
 3.2.2 The derivation of indefinite Light Negation 51
 3.2.3 Concluding remarks 53
 3.3 Light Negation in a Negative Concord view of German 53
Contents

4 **λ clauses and PPIs**
4.1 Types of PPI rescuing
4.1.1 PPIs in the scope of negation
4.1.2 PPIs in the scope of other DE operators
4.2 Analyses of PPI rescuing
4.2.1 PPI rescuing in a λ checking approach
4.2.2 Existing approaches towards rescuing
4.3 Light negation as an instance of rescuing?

5 **Further issues in the domain of λ items**
5.1 λ clauses and QPs
5.2 The semantics of λ clauses
5.3 λ clauses and NPIs
5.4 Crosslinguistic evidence for the class of λ items
5.4.1 PPI rescuing in English
5.4.2 *nibud'*-indefinites under clausemate negation in Russian

Conclusion

Bibliography

A Abstract (German)

B Abstract (English)

C Curriculum Vitae
Acknowledgements

I would like to thank all people who have helped me through the completion of this thesis.

In particular, I wish to thank my supervisor, Daniel Büring, for first pointing out the problem of Light Negation to me, and for giving me valuable support and advice throughout the writing of this work.

Special thanks also go to my professor Martin Prinzhorn. It was him who first sparked my interest in the Theory of Syntax, and his encouragement and generosity have been invaluable on both an academic and a personal level throughout my study.

I would like to thank Alexandra Platt for her ready help with the Russian examples, and Jakob Steixner for his comments on various issues related to this work.

My deepest gratitude is to Matthias Wenigwieser. Thank you.
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>A typology of ON and LN</td>
<td>17</td>
</tr>
<tr>
<td>1.2</td>
<td>LN environments</td>
<td>17</td>
</tr>
<tr>
<td>2.1</td>
<td>LN environments and NPI licensing environments</td>
<td>32</td>
</tr>
<tr>
<td>2.2</td>
<td>The locality of NPI licensing and LN licensing</td>
<td>37</td>
</tr>
<tr>
<td>3.1</td>
<td>The class of λ items in German</td>
<td>45</td>
</tr>
<tr>
<td>5.1</td>
<td>Syntactic specifics of λ clauses across languages</td>
<td>89</td>
</tr>
</tbody>
</table>
List of abbreviations and symbols

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2sg</td>
<td>second person singular</td>
</tr>
<tr>
<td>α, β</td>
<td>syntactic distances</td>
</tr>
<tr>
<td>AA-Op</td>
<td>antiadditive operator</td>
</tr>
<tr>
<td>ACC</td>
<td>accusative case</td>
</tr>
<tr>
<td>ArgCl</td>
<td>argument clause</td>
</tr>
<tr>
<td>AUX</td>
<td>auxiliary</td>
</tr>
<tr>
<td>CP</td>
<td>Complementizer Phrase</td>
</tr>
<tr>
<td>DAT</td>
<td>dative case</td>
</tr>
<tr>
<td>DE</td>
<td>downward entailing</td>
</tr>
<tr>
<td>DEF</td>
<td>definite</td>
</tr>
<tr>
<td>DP</td>
<td>Determiner Phrase</td>
</tr>
<tr>
<td>∃</td>
<td>existential quantification</td>
</tr>
<tr>
<td>EXPL</td>
<td>expletive</td>
</tr>
<tr>
<td>FACT-Op</td>
<td>factive operator</td>
</tr>
<tr>
<td>[if]</td>
<td>interpretable feature</td>
</tr>
<tr>
<td>IMP</td>
<td>imperative</td>
</tr>
<tr>
<td>INDF</td>
<td>indefinite</td>
</tr>
<tr>
<td>INF</td>
<td>infinitive</td>
</tr>
<tr>
<td>InfCl</td>
<td>non-finite clause</td>
</tr>
<tr>
<td>IPFV</td>
<td>imperfective</td>
</tr>
<tr>
<td>LF</td>
<td>Logical Form</td>
</tr>
<tr>
<td>LN</td>
<td>Light Negation</td>
</tr>
<tr>
<td>MP</td>
<td>modal particle</td>
</tr>
<tr>
<td>NC</td>
<td>Negative Concord</td>
</tr>
<tr>
<td>NEG</td>
<td>negation morpheme</td>
</tr>
<tr>
<td>neg</td>
<td>light negation morpheme</td>
</tr>
<tr>
<td>NEG-P</td>
<td>Negation Phrase</td>
</tr>
<tr>
<td>NI</td>
<td>Negative Indefinite</td>
</tr>
<tr>
<td>NP</td>
<td>Noun Phrase</td>
</tr>
<tr>
<td>NPI</td>
<td>Negative Polarity Item</td>
</tr>
<tr>
<td>ON</td>
<td>ordinary negation</td>
</tr>
<tr>
<td>Op</td>
<td>operator</td>
</tr>
<tr>
<td>PFV</td>
<td>perfective</td>
</tr>
<tr>
<td>PL</td>
<td>plural</td>
</tr>
</tbody>
</table>
List of abbreviations and symbols

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPI</td>
<td>Positive Polarity Item</td>
</tr>
<tr>
<td>PQ</td>
<td>polar question</td>
</tr>
<tr>
<td>Q</td>
<td>question particle</td>
</tr>
<tr>
<td>QP</td>
<td>Quantifier Phrase</td>
</tr>
<tr>
<td>QR</td>
<td>Quantifier Raising</td>
</tr>
<tr>
<td>REFL</td>
<td>reflexive</td>
</tr>
<tr>
<td>RelCl</td>
<td>relative clause</td>
</tr>
<tr>
<td>SBJV</td>
<td>subjunctive</td>
</tr>
<tr>
<td>SpecXP</td>
<td>Specifier of XP</td>
</tr>
<tr>
<td>TP</td>
<td>Tense Phrase</td>
</tr>
<tr>
<td>[uF]</td>
<td>uninterpretable feature</td>
</tr>
<tr>
<td>V1</td>
<td>verb-initial</td>
</tr>
<tr>
<td>VP</td>
<td>Verb Phrase</td>
</tr>
<tr>
<td>vP</td>
<td>Light Verb Phrase</td>
</tr>
<tr>
<td>YN-Op</td>
<td>interrogative operator</td>
</tr>
</tbody>
</table>
Introduction

In certain syntactic environments, German clausal negation is realized in an atypical way in interaction with clausemate DPs. We can distinguish three different manifestations of the phenomenon, corresponding to the three types of DPs that can be involved: indefinite DPs, definite DPs, and DPs coordinated by oder. To make out the deviation, let us first have a look at the default way of expressing clausal negation in the context of clausemate DPs.

In clauses with indefinite DPs, clausal negation, i.e. negation taking widest scope, is expressed by the negative determiner kein ‘no’, or a Negative Indefinite (NI), niemand ‘nobody’ or nichts ‘nothing’, marking the highest indefinite. This can be seen in (1-a). On the other hand, the negative adverb nicht cannot be used to express clausal negation in a clause containing indefinites, see (1-b).

(1) a. Maria hat keinem Gast ein Glas Wein angeboten.
 Maria AUX no-DAT guest a.ACC glass wine offered
 Intended: ‘It is not the case the Maria offered a guest a glass of wine.’ / ‘Maria didn’t offer a guest a glass of wine.’

b. *Maria hat nicht einem Gast ein Glas Wein angeboten.
 Maria AUX not a-DAT guest a.ACC glass wine offered
 Intended: ‘It is not the case the Maria offered a guest a glass of wine.’ / ‘Maria didn’t offer a guest a glass of wine.’

Indefinites that outscope negation lose their existential reading and instead receive a specific or generic interpretation, cf. einem Gast in (2). Negation in example (2) can either be contrastive with respect to the kein-DP (cf. example (6)) or correlate with a focused reading of the higher indefinite DP einem Gast, which is the reading indicated below.

(2) Maria hat einem Gast kein Glas Wein angeboten.
 Maria AUX a-DAT guest no.ACC glass wine offered
 ‘There is one guest who Maria didn’t offer a glass of wine.’

1For the sake of simplicity, we will mostly cite full DPs of the type ein NP. Note, however, that what we say about full DPs mutatis mutandis applies to other indefinite expressions such as jemand ‘someone’, etwas ‘something’.

2Generally, our judgments relate to sentences produced with a neutral intonation. Note that (1-b), for example, is felicitous with stress on ein, which gives rise to a reading of nicht einem as ‘not (even) one’, ‘not a single’.

3In the latter case, negation need not be contrastive. See Jacobs (1982) on the relation between contrastive (‘contrasting’) negation and negation focus. Note that negation in (2) can have widest scope if the higher indefinite DP is assigned a generic interpretation.
Proceeding to negation and definite DPs, we note that definite DPs in the scope of clausal negation by default precede the negation adverb *nicht* as in (3-a). If the order is reversed and the definite DP follows *nicht* as in (3-b) the constituent following *nicht* is narrowly focused. (3-b) in isolation is perceived as ungrammatical.4

(3)
 a. Ralf hat den Kater nicht gefüttert.
 Ralf AUX the.ACC he-cat not fed
 Intended: ‘Ralf didn’t feed the cat.’

 Intended: ‘Ralf didn’t feed the cat.’

Last but not least, if clausal negation scopes over a disjunction of DPs, we use the bipartite conjunction *weder ... noch* ‘neither ... nor’ to substitute for the negation adverb *nicht* and the disjunction *oder* ‘or’, see (4-a) and (5-a). The structural counterpart (5-b) of (5-a) in which *nicht* is retained, is ungrammatical without further context. Otherwise it may convey narrow focus of negation on the constituent following *nicht*, as already noted for (3-b).

(4)
 a. Maria hat weder ein Fahrrad noch Rollschuhe.
 Maria has neither a.ACC bike nor roller skates
 b. *Maria hat nicht ein Fahrrad oder Rollschuhe.
 Maria has not a.ACC bike or roller skates
 Intended: ‘It is not the case that Maria has a bike or roller skates.’ / ‘Maria doesn’t have a bike or roller skates.’

(5)
 a. David hat seiner Freundin weder die Dachterrasse noch den Garten gezeigt.
 David AUX his.DAT girlfriend neither the.ACC roof terrace nor the.ACC garden shown
 b. *David hat seiner Freundin nicht die Dachterrasse oder den Garten gezeigt.
 David AUX his.DAT girlfriend not the.ACC roof terrace or the.ACC garden shown
 Intended: ‘David didn’t show his girlfriend the rooftop terrace or the garden.’

The one well-known exception to the syntactic restrictions discussed above is contrastive negation. Thus if negation in examples (1-b), (3-b), (4-b) and (5-b) is interpreted as contrastive negation, all sentences will be fine. Contrastive negation is contingent on the presence of a *sondern*- (‘but’) phrase as illustrated in (6-a).

4Penka (2011: 108, fn. 11, citing an anonymous reviewer) makes the important point that “[t]his claim should be restricted to definite DPs serving as discourse referents [...] Definite expressions that do not have this discourse function can occur under negation, as in the following example.”

(i)
 Es hat nicht die richtige Farbe.
 it has not the right colour
 ‘It doesn’t have the right colour.’
 (Ibid.)
Example [6] shows that *kein*, too, can express contrastive negation.5

(6) a. Maria hat ihm nicht ein Glas Wein angeboten *(, sondern ein Bier).
 ‘Maria didn’t offer him a glass of wine, but a beer.’
 b. Maria hat ihm kein Glas Wein angeboten, sondern ein Bier.
 ‘Maria didn’t offer him a glass of wine, but a beer.’

(7) Ralf hat nicht den Kater gefüttert *(, sondern den Hund).
 ‘Ralf didn’t feed the cat, but the dog.’

(8) David hat seiner Freundin nicht die Dachterrasse oder den Garten gezeigt
 *,(, sondern die Küche und das Bad).
 ‘David didn’t show his girlfriend the rooftop terrace or the garden, but the
 kitchen and the bath.’

This thesis is concerned with negation which is clausal but displays similar morphosyntactic properties as contrastive negation; i.e., which is realized as *nicht ein* NP, *nicht d- NP*, or *nicht DP oder DP* even though *nicht* negates the whole clause rather than only the constituent following it, and which should hence be ruled out by the conditions on clausal negation presented above. Following Schwarz and Bhatt (2006), we will call these forms *Light Negation* (LN), referring both to their use as expressions of clausal negation and their exceptional morphosyntactic status as such. [9] through [11] are examples of LN, involving indefinite, definite, and oder-coordinated DPs, respectively.

(9) Maria wird sich nicht setzen, bevor sie ihm nicht ein Glas Wein angeboten hat.
 ‘Maria won’t sit down before/until she has offered him a glass of wine.’

(10) Hat Ralf nicht den Kater gefüttert?
 ‘Didn’t Ralf feed the cat?’

(11) Maria hätte eingewilligt, wenn David ihr nicht die Dachterrasse oder den Garten gezeigt hätte.
 ‘Maria would have agreed, if David hadn’t shown her the rooftop terrace or
 the garden.’

The use of the forms *nicht ein NP, nicht d- NP*, and *nicht DP oder DP* in the ex-

5For a detailed discussion of the distinction between clausal negation and contrastive negation see Jacobs (1982).
pression of non-contrastive, clausal negation has received considerably less attention
than their use to express contrastive negation. So far these forms have been reported
to be used as forms of clausal negation in polar questions (PQs) by Büring and Gun-
logson (2000), who refer to them as outer negation in line with Ladd (1981); in
purpose clauses, bevor-, bis-, and solange-clause, and exclamatives by Weiss (2002)
under the name of presuppositional and expletive negation and mainly with respect
to Bavarian; in relative clauses restricting niemand ‘no one’ and jeder ‘every’, in
CP complements of adverbial clauses, conditional antecedents, and counterfac-
tual subjunctive clauses by Schwarz (2004). Weiss (2002) makes several interesting
observations with regard to these forms. Schwarz and Bhatt (2006) are the first
to address the phenomenon in more detail, introducing the name ‘Light Negation’
which we have adopted in this work. Krifka (2010) focuses on the semantic side of
LN in bevor-clauses.

In Chapter 1 we provide an overview of the syntactic environments in which LN
can be encountered. We also touch upon environments which have not previously
been mentioned in discussions of LN, namely, negative imperatives, and CP comple-
ments of glauben ‘believe’ and verstehen ‘understand’. We divide the data into three
blocks, according to the three types of DPs involved, i.e., indefinite DPs, definite
DPs, and DPs coordinated by oder.

Subsequently, we address the issue of how we can account for the distribution
of LN. In Chapter 2 we evaluate an idea brought up in Schwarz and Bhatt (2006)
and try to assimilate LN with NPIs and, correspondingly, LN licensing with NPI
licensing.

As such an approach fails to capture the full range of LN data, in Chapter 3
we propose an alternative approach. We argue that LN is a side-effect of a feature
checking operation between an element with an uninterpretable feature located in
CP, called λ item, and the negation morpheme underlying nicht (Section 3.1). In
Section 3.1.1 we try to identify the inventory of λ items based on the distribution
of LN; in Section 3.1.2 we establish the locality conditions on the checking relation
between a λ item and the negation morpheme. Section 3.2 provides a detailed
account of the derivation of LN, and explains why LN differs from ordinary negation
(henceforth ON) in the way it does. In Section 3.3 we discuss a modified account of
LN and λ checking based on an analysis of German as a covert Negative Concord
(NC) language along the lines of Penka (2011).

In Chapter 4 we examine the distributional relation between LN on the one hand,
and PPIs in the scope of DE operators (so-called rescuing) on the other previously
discussed in Schwarz (2004) and Schwarz and Bhatt (2006). We find a distributional
match between PPIs in the scope of clausal negation and LN, but not between PPIs
in other DE contexts and LN. In line with this, in Section 4.2 we propose an analysis
of rescuing within the theory of λ items and λ checking developed earlier. In 4.3 we
mention the option to analyze the indefinite and definite determiners in German as
PPIs, in which case LN and rescuing could be regarded as instances of one and the
same phenomenon.

Chapter 5 addresses several other issues in the domain of λ items. Section
Section 5.1 explores the interaction of λ items with clausemate quantifiers. Section 5.2 outlines the semantic characteristics of different types of λ clauses. In Section 5.3 we review the relationship of λ clauses and NPIs. Finally, in Section 5.4 we assume a crosslinguistic perspective and argue for the availability of the class of λ items in other languages apart from German. We base our argument on two phenomena observed in English and Russian, respectively: the availability of PPI rescuing in English, and the distribution of indefinites marked with *ni- and *-nibud’ in Russian.

Before we proceed to the main part of this work, let us say a few words about the motivation of a syntactic analysis of LN. It appears that the exceptionality of LN is underestimated in the literature. Penka (2011: 214), for example, claims that *nicht ein does not compete with kein in LN contexts, because “[l]ight negation usually does not contribute a negation to the semantics, as the following example of light negation in a *before-clause and the corresponding English paraphrase makes clear”.6

(12) Wir werden nicht ruhen, bevor nicht ein Verdächtiger festgenommen wurde. We won’t rest until a suspect has been arrested.

While it is true that LN in *before-clauses is expletive, we will see that in the majority of cases, LN is semantically negative and expletivity hence does not qualify as an explanation for its grammaticality, against Penka (2011).

In the theory of the German clause adopted in this work we assume the presence of a functional projection TP as the locus of tense, in addition to vP, which introduces the external argument and checks accusative case, and VP. We take the nominative subject to raise from its base position to the specifier of TP – be it for its strong case feature to be eliminated, or as a consequence of the EPP which requires SpecTP to be filled. Note that such a theory counters e.g. Haider’s (2002, among others) view, according to which the German middle field – the structural segment between C and V – comprises only one phrase.

6Penka views *kein as a NI which is semantically equivalent to *nicht ein and competes with *nicht ein for insertion in contexts of true clausal negation. *kein will be chosen over *nicht ein because it is more specific than *nicht ein.
1 The distribution of Light Negation

Let us recapitulate the default realization of German clausal negation in clauses containing DPs. First, when scoping over indefinite DPs, negation is marked by a NI or the negative determiner kein on the highest indefinite, resulting in forms such as kein NP. Second, definite DPs in the scope of clausal negation linearly precede the negation adverb nicht, giving rise to strings of the type d- NP nicht. Third, a disjunction of DPs usually appears as weder DP noch DP under negation. We referred to the ordinary realization of clausal negation shortly as ON. However, we saw that in some environments clausal negation can be realized differently, namely, as nicht ein NP, nicht d- NP, and nicht DP oder DP. We called these alternative forms for clausal negation Light Negation (LN). In the following we will specify the set of environments in which these forms can be found. To warrant the assumption that all three forms belong to the same, “LN” paradigm, each form is put to the test in all environments.

1.1 Indefinite Light Negation

Temporal clauses The indefinite variant of LN, nicht ein NP, in the following called indefinite LN, shows up in temporal clauses headed by the complementizers bevor ‘before’, bis ‘until’, and solange ‘as long as’.

(1) Wir können nicht mit der Zubereitung beginnen, bevor er nicht Tomaten gekauft hat.
We cannot start cooking before he has bought tomatoes.

(2) Lea gibt nicht auf, bis sie nicht eine Lösung gefunden hat.
Lea doesn’t/won’t give up until she has found a solution.

\footnote{By negation we will henceforth understand clausal negation, unless stated otherwise.}
1 The distribution of Light Negation

(3) Man bekommt kein Stipendium, solange man nicht einen Sprachkurs besucht.
 ‘One does not get a grant as long as one does not attend a language course.

Note that bis-clauses containing indefinite LN must not have argument status. This is evidenced by the grammaticality of LN in (2) as opposed to (4). The grammaticality of (4) without LN confirms that argument bis-clauses are not principally excluded.

(4) Es hat ewig gedauert, bis Lea (*nicht) eine Lösung gefunden hat.
 ‘It took ages until Lea found a solution.’

We will argue that this restriction is due to the fact that LN requires a different complementizer bis, which is homophonous with the default complementizer bis but differs in terms of its syntactic properties.

Conditionals Indefinite LN can stand in the *wenn*-clause of indicative (5) and subjunctive (6) conditionals.

(5) Man wird nicht zugelassen, wenn man nicht eine Fremdsprache spricht.
 ‘One does not get admitted unless one speaks a foreign language.’

(6) Ich würde noch länger bleiben, wenn ich nicht einen Arzttermin hätte.
 ‘I would stay longer if I didn’t have a doctor’s appointment.’

Moreover, indefinite LN can be included in the main clause of indicative (7) and subjunctive (8) conditionals.

(7) Wenn man einen guten Kuchen backen will, darf man nicht verdorbene Eier verwenden.
 ‘If you want to bake a good cake, you may not use bad eggs.’

2With respect to this example we note that LN in the matrix clause is acceptable even in the absence of a corresponding *wenn*-clause, as in (i). However, the proposition expressed by the *wenn*-clause must still be present in the discourse context; uttered out-of-the-blue, (i) will be ill-formed.

(i) ?Man darf nicht verdorbene Eier verwenden.
1.1 Indefinite Light Negation

(8) Wenn Fritz dumm wäre, könnte er nicht eine Fremdsprache.
 ‘If Fritz were stupid, he wouldn’t know a foreign language.’
 (Schwarz and Bhatt 2006: 14)

Restrictor of universally and negatively quantified DPs
Indefinite LN can be found in relatives restricting universally (jeden in [9]) and negatively (kaum ein Tag in [10]) quantified expressions.

(9) Wir haben jeden abgelehnt, der nicht eine Fremdsprache kann.
 ‘We rejected everyone who does not know a foreign language.’
 (Schwarz and Bhatt 2006: 34)

(10) Derzeit vergeht kaum ein Tag, an dem nicht neue schreckliche Details über den Umgang von Psychiatern und Ärzten mit institutionalized-children in the 60-ies and 70-ies years become-known
 (Bernt Koschuh, Ö1-Radio, 2012-02-10)

Purpose clauses
Indefinite LN can be embedded in purpose clauses. German purpose clauses can be finite or non-finite, depending on the complementizer, damit vs. um, by which they are introduced.

(11) Wir sollten bald umdrehen, damit wir nicht einem Sturm zum Opfer fall
 ‘We should soon turn around lest we become victims of the storm.’

(12) Wir sollten bald umdrehen, um nicht einen Sturm zum Opfer zu fallen.
 ‘We should soon turn-around to not a storm to victim to fall’

Polar questions
Indefinite LN is furthermore licit in polar questions (short PQs), where it correlates with a positive bias. A LN PQ can receive both a positive and a negative response, as indicated in [13]4

(13) Besitzt Tanjas Familie nicht eine Datscha im Umland von Moskau? (Ja/Nein.)
 ‘Doesn’t Tanya’s family possess a datcha in the suburbs of Moscow?’ (‘Yes/No.’)

4See Büring and Gunlogson (2000) for further information on “negative PQs”.
PQs featuring LN can also be embedded, provided that they can carry interrogative force. One such case can be seen in (14) with sich fragen ‘wonder’ acting as a matrix predicate.

(14) Maria fragt sich, ob Leo nicht einen älteren Bruder hat.
‘Maria wonders if Leo doesn’t have an older brother.’

warum-questions Indefinite LN also appears in warum- (‘why’) questions, which may similarly occur either as root (15) or embedded (16) clauses.

(15) Warum fragt er nicht einen Spezialisten?
‘Why doesn’t he ask a specialist?’
(16) Maria fragt sich, warum er nicht einen Spezialisten fragt.
‘Maria wonders why he doesn’t ask a specialist.’

Exclamatives Indefinite LN can be part of an exclamative. This can be a wh-exclamative (17) or a verb-initial (V1) (18) exclamative.

(17) a. Wie vielen Kunden sie nicht ein teures Fahrrad verkauft hat!
‘To how many customers she has sold an expensive bike!’
b. Wie vielen er nicht ähnliche Schmeicheleien gesagt hat!
‘How many (people) he tried to flatter in a similar way!’
(18) Hat er nicht eine schöne Stimme!
‘How beautiful a voice he has!’

Of the above-cited occurrences of indefinite LN, the following have been mentioned in the literature: bevor-, bis- and solange-clauses, indicative and subjunctive wenn-clauses as well as main clauses of subjunctive conditionals, relatives restricting of universally and negatively quantified DPs, purpose clauses, PQs, and wh-exclamatives. Apart from these, we detected indefinite LN in main clauses of indicative conditionals, warum-questions, and V1-exclamatives. In the following we will examine whether the same syntactic environments also allow for the definite variant of LN.

1.2 Definite Light Negation

Recall that in German, discourse-referent definite DPs normally precede the negation adverb nicht under clausal negation. Example (3) from the Introduction repeated below illustrates this requirement. If we take DP arguments to be base-generated inside VP, and nicht to be merged on top of VP or vP, we may assume that definite DPs reach their position to the left of nicht via movement.

(19) a. Ralf hat den Kater nicht gefüttert.

At the same time we noted that this condition is not universal, and that in some syntactic environments definite DPs stand in a position following *nicht* where they would otherwise be ungrammatical. In line with the terminology introduced in the previous section, we will refer to this deviation in the realization of clausal negation in conjunction with definite DPs as *definite LN*. To prove the suggested parallelism with indefinite LN, let us revisit the contexts which have been found to accommodate indefinite LN, and show that they are equally compatible with definite LN.

Temporal clauses

(20) Wir können nicht mit der Zubereitung beginnen, bevor wir nicht den Tisch freigeräumt haben.
‘We cannot start cooking before we have cleaned the table.’

(21) Lea kann nicht ruhig schlafen, bis sie nicht die korrekte Lösung gefunden hat.
‘Lea cannot sleep (easy) until she has found the correct solution.’

(22) Man bekommt kein Stipendium, solange man nicht den empfohlenen Sprachkurs besucht.
‘One does not get a grant as long as one does not attend the recommended language course.’

In the case of ditransitive predicates, *nicht* potentially precedes both the indirect and the direct DP object.

(23) David kann nicht ruhig schlafen, bevor er nicht [IO seiner Freundin] [DO die Wohnung] gezeigt hat.
‘David cannot sleep (easy) before he has shown the apartment to his girlfriend.’

(24) Maria scheint den Roman nicht kaufen zu wollen, bevor nicht Reich-Ranicki seine Meinung gesagt hat.
‘It seems that Maria doesn’t want to buy the novel before Reich-Ranicki has expressed his opinion.’

Conditionals

(25) (wenn-clause, indicative)
Man wird nicht zugelassen, wenn man nicht die Direktorin kennt.
‘One does not get admitted unless one knows the principal.’
The distribution of Light Negation

(26) \((\text{wenn-clause, subjunctive}) \)
Ich würde noch länger bleiben, wenn ich nicht meinen Sohn vom Kindergarten abholen müsste.
‘I would stay longer if I didn’t have to pick up my son from kindergarten.’

(27) \((\text{main clause, indicative}) \)
Wenn du die Wohnung loswerden willst, darfst du nicht die Dusche herzeigen.
‘If you want to get rid of the apartment, you may not show (people) the shower.’

(28) \((\text{main clause, subjunctive}) \)
Wenn er die Wohnung loswerden wollte, hätte er uns nicht die Dusche gezeigt.
‘If he wanted to get rid of the apartment, he would not have shown us the shower.’

Restrictor of universally and negatively quantified DPs

(29) Sie haben niemanden genommen, der nicht die Direktorin der Schule kennt.
‘They didn’t accept anybody who doesn’t know the school principal.’

Purpose clauses

(30) \((\text{damit}) \)
Wir sollten bald umdrehen, damit Laura nicht ihre Schwester verpasst.
‘We should soon turn around so that Laura does not miss her sister.’

(31) \((\text{um}) \)
Laura sollte bald umdrehen, um nicht ihre Schwester zu verpassen.
‘Laura should soon turn around so as not to miss her sister.’

Polar questions

(32) \((\text{matrix}) \)
Kennt Veronikas Vater nicht die Direktorin der Schule? (Ja/Nein.)
‘Doesn’t Veronika’s father know the school principal?’ (‘Yes/No.’)

(33) \((\text{embedded}) \)
Maria fragt sich, ob Veronikas Vater nicht die Direktorin der Schule kennt.
‘Maria wonders if Veronika’s father doesn’t know the school principal.’

warum-questions

(34) \((\text{matrix}) \)
Warum fragt er nicht seine Schwester?
‘Why doesn’t he ask his sister?’
1.3 Disjunctive Light Negation

(35) Maria fragt sich, warum er nicht seine Schwester fragt.
 ‘Maria wonders why he doesn’t ask his sister.’

Exclamatives

(36) Wie viele nicht ihre Kinder verwöhnen!
 ‘How many (people) spoil their children!

(37) Haben die nicht ihren Sohn verwöhnt!
 aux they not their son spoiled
 ‘(How) they have spoiled their son!’

This set of data confirms that definite LN has the same distribution as indefinite LN. Put differently, in all environments where clausal negation scoping over indefinites need not be expressed by a NI or kein, definite DPs are allowed to follow negation. In the following we will see that these environments also support the third manifestation of LN associated with DP disjunction.

1.3 Disjunctive Light Negation

To repeat, if a disjunction of DPs is in the scope of clausal negation, the negation adverb nicht is usually substituted by the discontinuous coordinator weder . . . noch. The relevant examples from the Introduction are repeated below.

(38) a. Maria hat weder ein Fahrrad noch Rollschuhe.
 b. *Maria hat nicht [ein Fahrrad oder Rollschuhe].

(39) a. David hat seiner Freundin weder die Dachterrasse noch den Garten gezeigt.
 b. *David hat seiner Freundin nicht [die Dachterrasse oder den Garten gezeigt].

However, in the same environments that were found to support indefinite and definite LN, this substitution is not necessary, and strings of the type nicht DP oder DP can be used to convey clausal negation. We will call this phenomenon disjunctive LN. What follows is a presentation of the full set of environments introduced in Sections 1.1 and 1.2, where instead of simple DPs, we will now insert disjunctions of DPs.

Temporal clauses

(40) Wir können nicht mit der Zubereitung beginnen, bevor wir nicht den Tisch oder die Arbeitsfläche freigeräumt haben.
 ‘We can not start the preparation before we not the table or the worktop cleaned’
‘We cannot start cooking before we have cleaned the table or the worktops.’

Lea kann nicht ruhig schlafen, bis sie nicht die Lösung oder einen Hinweis darauf gefunden hat.

‘Lea cannot sleep until she has found the solution or a clue towards it.’

‘One does not get a grant as long as one does not attend a language course or a business course.’

Like definite LN, disjunctive LN may appear in a position where it c-commands the nominal subject(s).

‘It seems that Maria doesn’t want to buy the novel as long as Reich-Ranicki or Sigrid Löffler have not expressed their opinion.’ (I.e. ‘...as long as it is not the case that Reich-Ranicki or Sigrid Löffler have expressed their opinion.’)

‘One does not get admitted unless one knows the principal or the school doctor.’

‘I would have stayed longer if Papa or Mama hadn’t come for a visit.’

‘If you want to get rid of the apartment, you may not show (people) the stove or the shower.’
1.3 Disjunctive Light Negation

(47) (main clause, subjunctive)
Wenn er die Wohnung loswerden wollte, hätte er nicht den Herd oder die Dusche hergezeigt.
‘If he wanted to get rid of the apartment, he would not have shown (people) the stove or the shower.’

Restrictor of universally and negatively quantified DPs

(48) Sie haben niemanden genommen, der nicht die Direktorin oder den Schularzt kennt.
‘They didn’t accept anybody who does not know the principal or the school doctor.’

Purpose clauses

(49) (damit)
Wir sollten bald umdrehen, damit Laura nicht den letzten Zug oder den Anschlussbus verpasst.
‘We should soon turn around so that Laura does not miss the train or the connecting bus.’

(50) (um)
Laura sollte bald umdrehen, um nicht den letzten Zug oder den Anschlussbus zu verpassen.
‘Laura should soon turn around so as not to miss the last train or the connecting bus.’

Polar questions

(51) (matrix)
Kennt Veronikas Vater nicht die Direktorin oder den Schularzt? (Ja/Nein.)
‘Doesn’t Veronika’s father know the principal or the school doctor?’ (‘Yes/No.’)

(52) (embedded)
Maria fragt sich, ob Veronikas Vater nicht die Direktorin oder den Schularzt kennt.
‘Maria wonders if Veronika’s father doesn’t know the principal or the school doctor.’

warum-questions

(53) (matrix)
Warum fragt er nicht Peter oder Max?
‘Why doesn’t he ask Peter or Max?’
1 The distribution of Light Negation

Maria fragt sich, warum er nicht Peter oder Max fragt. ‘Maria wonders why he doesn’t ask Peter or Max.’

Exclamatives Disjunctive LN is hard to obtain in exclamatives, though presumably for reasons external to LN. For one thing, LN is not particularly productive in exclamatives in general, and adds to them a certain archaic touch. More importantly, and explaining the divergence between disjunctive and (in)definite LN in exclamatives, the presence of a disjunction will conflict with the pragmatic properties of an exclamative: In line with Zanuttini and Portner (2003), we assume that the force of exclamatives consists in widening. However, it is unclear how widening will apply to a domain composed of disjoint sets. This also explains why the exclamatives in (55) and (56) are just as bad with ON as they are with LN.

(55) (wh) (56) (V1)
#Wie sehr man (nicht) Freunde oder Geschwister (nicht) beneiden kann!
how (much) one not friends or siblings not envy can

#Haben die (nicht) Alle Geld oder Grips!
have they not all money or brains

Since the analysis of coordinate structures itself is problematic, disjunctive LN will not play a crucial role for the development of our theory of LN. We will focus on indefinite and definite LN, and will turn to disjunctive LN mainly for reasons of illustration.

1.4 Summarizing the facts

In the preceding sections we provided empirical evidence supporting the assumption that LN manifests itself at least in three different forms, namely, as what we called indefinite, definite, and disjunctive LN. To warrant the grouping together of these forms under a common name, we demonstrated that indefinite, definite, and disjunctive LN are identical in terms of their distribution: to wit, that they are licit in the same small set of syntactic environments, and illicit in all others.

To remind ourselves once more that LN is ungrammatical in most syntactic environments, consider the sentences in (57) featuring indefinite, definite, and disjunctive LN in the declarative complement of erzählen ‘to tell’. The presence of LN renders all sentences infelicitous.

(57) a. *Masha hat uns erzählt, dass sie auf der Uni nicht Freunde gefunden hat.
 Masha aux us told that she at the university not friends found

(54) (embedded)
The findings of this chapter are summarized in the tables below. Table 1.1 contrasts the ordinary (ON) with the exceptional (LN) realization of clausal negation scoping over indefinite DPs, definite DPs, or disjunctions of DPs. Table 1.2 provides a synopsis of the syntactic environments in which LN could be found.

<table>
<thead>
<tr>
<th></th>
<th>ON</th>
<th>LN</th>
</tr>
</thead>
<tbody>
<tr>
<td>kein NP</td>
<td>nicht ein NP</td>
<td></td>
</tr>
<tr>
<td>d- NP nicht</td>
<td>nicht d- NP</td>
<td></td>
</tr>
<tr>
<td>weder DP noch DP</td>
<td>nicht DP oder DP</td>
<td></td>
</tr>
</tbody>
</table>

Table 1.1: A typology of ON and LN

<table>
<thead>
<tr>
<th></th>
<th>bevor</th>
</tr>
</thead>
<tbody>
<tr>
<td>temporal CPs</td>
<td>bis (as adjunct/*argument CP)</td>
</tr>
<tr>
<td></td>
<td>solange</td>
</tr>
<tr>
<td>Conditionals</td>
<td>wenn-CP (indicative, subjunctive)</td>
</tr>
<tr>
<td></td>
<td>matrix CP (indicative, subjunctive)</td>
</tr>
<tr>
<td>Relatives restricting</td>
<td>universally quantified heads (e.g. jeder)</td>
</tr>
<tr>
<td></td>
<td>negatively quantified heads (e.g. niemand, kaum jemand)</td>
</tr>
<tr>
<td>Purpose clauses</td>
<td>um</td>
</tr>
<tr>
<td></td>
<td>damit</td>
</tr>
<tr>
<td>PQs</td>
<td>as matrix CPs</td>
</tr>
<tr>
<td></td>
<td>as embedded CPs</td>
</tr>
<tr>
<td>warum-CPs</td>
<td>as matrix CPs</td>
</tr>
<tr>
<td></td>
<td>as embedded CPs</td>
</tr>
<tr>
<td>Exclamatives</td>
<td>wh-exclamatives</td>
</tr>
<tr>
<td></td>
<td>V1-exclamatives</td>
</tr>
</tbody>
</table>

Table 1.2: LN environments
1 The distribution of Light Negation

1.5 Further occurrences of Light Negation

Apart from the environments identified in the previous section, LN is available in a few other syntactic contexts. We will highlight two such cases, namely, negative imperatives, and CP complements of the predicates glauben ‘believe’ and verstehen ‘understand’ with and without matrix negation.

In negative imperatives, LN seems to be obligatory under certain syntactic or semantic circumstances. Syntactically, LN must be used instead of ON if the verb occurs in the infinitive and negation surfaces in initial position as in (58). In semantic terms, LN seems to be preferred over ON if the proposition in the scope of negation refers to what is in the speaker’s mind a likely, though undesirable event, cf. (59) (note the inclusion of jetzt ‘now’). Imperatives expressing general rules, on the other hand, seem to only allow for ON, as indicated by example (60).

(58) ??Keine/ Nicht eine Schokolade essen, vor dem Mittagessen! (??ON/LN)
no/ not a chocolate eat.INF before the lunch

(59) Iss jetzt ??keine/ ?nicht eine Schokolade!
(n=ON/?LN)

(60) (E.g. from a dental hygiene leaflet for school children)
Iss nach dem Zähneputzen keine/ *nicht Süßigkeiten.
(ON/*LN)
eat.IMP after the tooth-brushing no/ not sweets

Interestingly, the same semantic dichotomy has a morphosyntactic reflex in Russian negative imperatives: there, it correlates with an aspectual distinction. While normally marked with the imperfective aspect (cf. (61)), Russian negative imperatives come in the perfective aspect when denoting a future event along the lines of (59), i.e., an event which the speaker considers undesirable but likely, and which she therefore tries to forestall, cf. (62).

(61) Ne davaj-te rebènku moloka!
not give.IPV.IMP.PL child milk
Don’t give the child milk!

(62) Ne zabud’-te zaperet’ dver’!
not forget.IPV.IMP.PL lock door
Don’t forget to lock the door!

As a further environment not previously mentioned, LN can stand in the CP complement of glauben ‘believe’.

(63) John glaubt ??(nicht), dass Mary nicht ein Bier getrunken hat.
 a. *‘John assumes (doesn’t assume) that Mary didn’t drink a beer.’
 b. ‘John trusts (doesn’t trust) the claim that Mary didn’t drink a beer.’

Note that just as English believe, glauben can have two different meanings, ‘assume’ and ‘trust’/‘give credit to’. This distinction plays a crucial role in LN licensing:
As indicated by the English paraphrase in \((63)\), LN is only available if glauben is assigned the reading of ‘trust’. This restriction is further evidenced by the fact that \((64)\), which involves an overt dative, is slightly better than \((63)\) in particular if the external context does not identify the ‘trust’ reading as the one to be preferred; note that in the presence of an indirect object, marking the source of the claim expressed by the embedded CP, the ‘trust’ reading is the only feasible reading. Both sentences \((63)\) and \((64)\) are slightly degraded if the matrix clause is positive.

\[(64)\] John glaubt Mary ?(nicht), dass sie nicht ein Bier getrunken hat.

‘John believes (doesn’t believe) Mary that she didn’t drink a beer.’

Apart from CP complements of glauben, LN can be embedded in syntactically declarative complements of verstehen ‘understand’. Interestingly, LN ties the dass-complement of verstehen to a specific reading otherwise expressed by a warum-CP. I.e., LN is not compatible with the primary, declarative reading of the dass-CP (which is the only reading for structurally parallel English examples), as shown by \((65-a)\). As the secondary, warum reading, for some reason, hinges on the presence of matrix negation, LN is not an option in \((66)\).

\[(65)\]
\[(65-a)\] John versteht nicht, dass Mary nicht einen Freund hat.

a. *(‘John doesn’t understand that Mary has no boyfriend.’ (He is unable to grasp this fact.))
b. ‘John cannot understand why Mary has no boyfriend.’

\[(66)\] John versteht, dass Mary keinen/*nicht einen Freund hat.

‘John understands that Mary has no boyfriend.’

In the preceding paragraphs we argued that the set of LN contexts established in the previous sections needs to be extended to accommodate occurrences of LN in negative imperatives, and CP complements of glauben and verstehen. In our analysis, however, these occurrences of LN will not play a crucial role; the exact conditions under which LN is licit in these contexts still need to be investigated in full detail.

5 Apart from declarative complements, verstehen also takes warum-complements. LN can also be used in them, in line with the general availability of LN in warum-CPs established in the preceding sections.
2 Light negation licensing: an instance of NPI licensing?

Over the preceding chapter we might have noticed that the distribution of LN resembles the distribution of NPIs. Is it possible that LN actually is an instance of an NPI? This question shall be the topic of the following discussion. A similar idea has been raised in Schwarz (2004) and Schwarz and Bhatt (2006), who conclude that an NPI analysis is unable to account for the full range of ON/LN data. In the following we will recap their observations, as well as add to them our own data and results.

For the sake of the argument, let us assume that German possesses two negation morphemes: the default negation morpheme \textit{NEG}, which is realized as ON, and a special, “light” negation morpheme \textit{neg}, which gives rise to LN.\footnote{By distinguishing two different negation morphemes we take up an idea introduced by Ladusaw (1979), who postulates two different morphemes \textit{not}$_1$ and \textit{not}$_2$ for English.} Consequently, our original question whether LN is an NPI can be reformulated as the question whether \textit{neg} is an NPI.

In line with the scope of this work, we will concentrate on the syntactic side of the comparison, and contrast \textit{neg} and NPIs in terms of their syntactic distribution. Notably, the distribution of any polarity element can be defined based on two parameters, namely, the set of potential licensors (or “licensing environments”), and the locality of the licensing relation. Section 2.1 will be concerned with the first parameter, and contrast the set of environments accommodating \textit{neg} with the environments licensing NPIs. Specifically, Section 2.1.1 will address the grammaticality of NPIs in environments identified as LN environments. As we will see, a number of these environments reject NPIs. In 2.1.2, on the other hand, we will highlight a number of attested NPI environments that are incompatible with \textit{neg}. Section 2.2 will deal with the second distributional parameter and investigate the locality of \textit{neg} licensing as compared to the locality of NPI licensing.

We will come to the conclusion that, despite considerable overlaps, the distributional similarities between \textit{neg} and NPIs (or the co-incidence of \textit{neg} with NPI licensors) are not convincing, in line with Schwarz (2004) and Schwarz and Bhatt (2006). This will confirm our need for an independent analysis of LN.
2.1 Distribution I: The licensers of Light Negation and NPIs

2.1.1 NPIs in Light Negation licensing environments

In the following we will revisit the set of LN environments identified in Chapter 1 and examine whether they simultaneously license NPIs. In our examination, we will mainly use two NPIs, auch nur (ein einziger) ‘even only (a single)’ and je(mals) ‘ever’. Each NPI will be inserted in all LN contexts. In contexts where both je(mals) and auch nur (ein einziger) are ungrammatical, a third NPI, überhaupt ‘at all’, will be put to the test to raise the significance of our results. For ease of reference, each LN environment will be introduced by a LN example repeated from above.

Starting with temporal CPs headed by bevor, bis, and solange, we can see that they vary regarding their acceptance of NPIs: NPIs are licensed in bevor- and solange-clauses, but not in bis-clauses\(^2\). Consider the sentences in (2) and (4), which contrast with the sentences in (3).

(1) LN in temporal CPs (repeating [1]–[3], Ch. 1)
 a. Wir können nicht mit der Zubereitung beginnen, bevor er nicht Tomaten gekauft hat.
 b. Lea gibt nicht auf, bis sie nicht eine Lösung gefunden hat.
 c. Man bekommt kein Stipendium, solange man nicht einen Sprachkurs besucht.

(2) NPIs in bevor-CPs
 a. Ich habe schon gewusst, was er sagen wird, bevor er auch nur den Mund aufgemacht hat.
 ‘I already knew what he was going to say before he even opened his mouth.’
 b. Wir können nicht gemeinsam auf Urlaub fahren, bevor wir uns jemals gesehen haben.
 ‘We cannot go on holiday together before we have ever met.’

(3) NPIs in bis-CPs
 a. ?Lea wird nicht aufhören von der Arktis zu schwärmen, bis sie auch nur ein einziges Mal dort war.
 ‘Lea won’t stop dreaming of the Arctic until she has been there for once.’
 b. ??. . . bis sie jemals dort war.
 ‘. . . until she has ever been there.’
 c. ??. . . bis sie überhaupt dort war.
 ‘. . . until she has been there at all.’

(4) NPIs in solange-CPs

\(^2\)Recall that bis-CPs must be adjuncts rather than arguments to license LN. Therefore in this section only adjunct bis-CPs are examined as to their potential to license NPIs.
2.1 Distribution I: The licensers of Light Negation and NPIs

a. Man bekommt ein Stipendium, solange man auch nur einen einzigen Sprachkurs besucht.
 ‘One gets a grant as long as one attends a single language course.’

b. ?Man wird entlassen, solange man bei den Therapiesitzungen je die Fassung verliert.
 ‘One gets dismissed as long as one ever loses one’s temper during therapy sessions.’

In *wenn*-clauses of conditionals the analogy between LN and NPI licensing is perfect.
The grammaticality of examples (5) through (7) illustrates this.

(5) LN in *wenn*-CPs (repeating (5) and (6), Ch. 1)
 a. Man wird nicht zugelassen, wenn man auch nur einen einzigen Fehler gemacht hat.
 ‘One doesn’t get admitted if one has made a single mistake.’
 b. Ich würde noch länger bleiben, wenn ich nicht einen Arzttermin hätte.

(6) NPIs in *wenn*-CPs, indicative
 a. Man wird (nicht) zugelassen, wenn man je in einer militärischen Organisation tätig war.
 ‘One gets (doesn’t get) admitted if one has ever worked for a military organization.’
 b. Man wird nicht zugelassen, wenn man auch nur einen einzigen Fehler gemacht hat.

(7) NPIs in *wenn*-CPs, subjunctive
 a. Peter hätte einen positiveren Eindruck hinterlassen, wenn er auch nur ein einziges Wort mit uns gewechselt hätte.
 ‘Peter would have made a more positive impression if he had exchanged a single word with us.’
 b. Sie würden sich besser verstehen, wenn sie je länger miteinander gesprochen hätten.
 ‘They would get along better if they had ever spoken to each other for some time.’

In main clauses of conditionals, however, LN and NPIs come apart: Consider the grammaticality of the LN examples in (8) which contrasts with the unacceptability of the NPI sentences in (9) and (10). Examples (9-c) and (10-c) featuring the NPI *überhaupt* are added for good measure. However as a matter of fact, *überhaupt* is not licensed in these constructions, either.

(8) LN in main clauses of conditionals (repeating (7) and (8), Ch. 1)
 a. Wenn man einen guten Kuchen backen will, darf man nicht verdorbene Eier verwenden.
 b. Wenn er dumm wäre, könnte er nicht eine Fremdsprache.

(9) NPIs in main clauses of conditionals, indicative
 a. ?*Wenn du die Wohnung loswerden willst, musst du auch nur ein einziges
Wort sagen und ich übernehme sie.
‘If you want to get rid of the apartment, you only have to say one word and I will take it off your hands.’
‘If the oven is supposed to work properly, you must have ever cleaned it.’
c. ?*Wenn das Backrohr gut funktionieren soll, musst du es überhaupt schon mal gereinigt haben.
‘If the oven is supposed to work properly, you have to to have it cleaned at all before.’

(10) NPIs in main clauses of conditionals, subjunctive
a. ?*Wenn Markus interessiert wäre, wäre er auch nur in einem einzigen anderen Land gewesen.
‘If Markus was inquisitive, he would have been to a single foreign country.’
b. ?*. . . wäre er jemals in einem anderen Land gewesen.
c. ?. . . wäre er überhaupt schon in einem anderen Land gewesen.

Relatives restricting universally and negatively quantified expressions, purpose clauses, and PQs license both LN and NPIs, as demonstrated by examples (11) through (18).

(11) LN in relatives (repeating (9), Ch. II)
Wir haben jeden abgelehnt, der nicht eine Fremdsprache kann.

(12) NPIs in relatives
a. Wir haben jeden abgelehnt, der auch nur ein einziges Mal zu spät gekommen ist.
‘We rejected everyone who was late for once.’
b. Wir haben jeden abgelehnt, der je in einer militärischen Organisation tätig war.
‘We rejected everyone who had ever worked for a military organization.’

(13) LN in purpose clauses (repeating (11) and (12), Ch. II)
a. Wir sollten bald umdrehen, damit wir nicht einem Sturm zum Opfer fallen.
b. Wir sollten bald umdrehen, um nicht einem Sturm zum Opfer zu fallen.

(14) NPIs in purpose clauses headed by damit
a. Wir sollten bald umdrehen, damit wir auch nur ein einziges Mal pünktlich zum Abendessen kommen.
‘We should soon turn around to be on time for dinner for once.’
b. . . . damit wir jemals wieder nach Hause finden.
‘. . . to ever again find our way home.’

(15) NPIs in purpose clauses headed by um
a. ?Wir sollten bald umdrehen, um auch nur ein einziges Mal den Zug zu
erwischen.
‘We should soon turn around to catch the train for once.’

b. Wir sollten bald umdrehen, um jemals wieder nach Hause zu finden.

(14-b)

(16) LN in PQs (repeating (13) and (14), Ch. I)
a. Besitzt Tanjas Familie nicht eine Datscha im Umland von Moskau? (Ja/Nein.)

b. Maria fragt sich, ob Leo nicht einen älteren Bruder hat.

(17) NPIs in matrix PQs
a. Besitzt Tanjas Familie auch nur eine einzige Datscha? (Ja/Nein.)
‘Does Tanya’s family own a single datcha?’ (‘Yes/No.’)

b. Hat Tanjas Familie je eine Datscha besessen? (Ja/Nein.)
‘Has Tanya’s family ever owned a datcha?’ (‘Yes/No.’)

(18) NPIs in embedded PQs
a. Maria fragt sich, ob Tanjas Familie auch nur eine einzige Datscha besitzt.

b. Maria fragt sich, ob Tanjas Familie je eine Datscha besessen hat.

In root and embedded warum-CPs, different NPIs are acceptable to various degrees. Of the selected NPIs, only überhaupt is unproblematic, while auch nur ein einziger is slightly degraded, and je is pretty bad.

(19) LN in warum-CPs (repeating (15) and (16), Ch. I)
a. Warum fragt er nicht einen Spezialisten?

b. Maria fragt sich, warum er nicht einen Spezialisten fragt.

(20) NPIs in matrix warum-CPs
a. ?Warum hat er auch nur einen einzigen Alternativmediziner gefragt?
‘Why did he ask even one alternative MD?’

b. ?*Warum hat er je einen Alternativmediziner gefragt?

c. Warum hat er überhaupt einen Alternativmediziner gefragt?

(21) NPIs in embedded warum-CPs
a. ?Maria fragt sich, warum John auch nur einen einzigen Alternativmediziner gefragt hat.

b. ?*Maria fragt sich, warum John je einen Alternativmediziner gefragt hat.

c. Maria fragt sich, warum John überhaupt einen Alternativmediziner gefragt hat.

NPIs are disallowed in wh- as well as V1-exclamatives. Both paradigms (23) and (24) are ungrammatical.

(22) LN in exclamatives (repeating (17) and (18), Ch. I)
a. Wie vielen Kunden sie nicht ein teures Fahrrad verkauft hat!

b. Hat er nicht eine schöne Stimme!
2. Light negation licensing: an instance of NPI licensing?

(23) NPIs in wh-exclamatives
 a. ??Wer aller auch nur eine einzige Rose bekommen hat!
 who all even only a single rose received aux
 b. ??Wer aller je eigenhändig einen Fisch gefangen hat!
 who all ever by his/her own hand a fish caught aux
 c. ??Wer aller überhaupt was zum Valentinstag bekommen hat!
 who all at all something for valentine’s day received aux

(24) NPIs in V1-exclamatives
 a. *Hat er auch nur einen einzigen Fehler gemacht!
 aux he even only a single mistake made
 b. *Hat er je einen großen Fisch gefangen!
 aux he ever a big fish caught
 c. *Hat er überhaupt einen großen Fisch gefangen!
 aux he at all a big fish caught

To sum up, we saw that LN shares many, though not all of its licensing environments with NPIs. LN environments that do not simultaneously function as licensors of NPIs are adjunct *bis-CPs, main clauses of conditionals with indicative and subjunctive morphology, and wh- and V1-exclamatives.

2.1.2 Other NPI licensing environments

In the following we highlight some additional NPI contexts which have not previously been mentioned in our discussion of LN. These are (i) non-NPI bevor-clauses, (ii) argument *bis-clauses, (iii) non-counterfactual wenn-clauses of subjunctive conditionals, and (iv) clausal complements of DE predicates. We will see that LN is only licensed in selected instances of (iv), i.e., in the complement of certain DE predicates.

Clauses headed by non-NPI bevor

If we consider a larger sample of LN bevor-clauses and compare them to their NPI containing counterparts, we will notice that the former are systematically accompanied by superordinate negation (see e.g. [1-a]). By contrast, bevor-CPs accommodating NPIs are not contingent on matrix negation (e.g. [2-a]). The following minimal pair illustrates this generalization: While LN is ruled out in example [25] in the absence of matrix negation, this is not the case for the NPI jemals in [26], which is fine both with and without matrix negation. We take the ungrammaticality of LN in bevor-clauses that are not in the scope of superordinate negation to signal that in addition to ordinary bevor, there is an NPI bevor, and that it is the latter which licenses LN. The bevor which is not an NPI, on the other hand, is able to license NPIs, though not LN.

(25) Sie haben sich *(nicht) gemocht, bevor sie nicht ein längeres Gespräch
2.1 Distribution I: The licensers of Light Negation and NPIs

miteinander geführt haben.
‘They had liked (didn’t like) each other before they had had a long conversation.’

(26) Sie haben sich schon (nicht) gemocht, bevor sie jemals ein längeres Gespräch miteinander geführt haben.
‘They had liked (didn’t like) each other (already) before they had ever had a long conversation.’

Notably, bis as a LN licenser (which, as noted earlier, always heads adjunct CPs) resembles bevor in that it, too, seems to depend on matrix negation; consider (27).

We could hence make a similar assumption for bis and assume it to be ambiguous between a polarity neutral and a homophonous NPI variant, where only the latter licenses LN.\(^3\) (Recall that the relevant type of bis-clauses, namely, adjunct bis-clauses, is incompatible with NPIs; cf. (3)\(^4\))

\(^3\)One might object that the assumption of NPI variants of bevor and bis that license LN is spurious, and that LN in bevor- and bis-clauses is rather directly licensed by matrix negation. In support of this objection one might refer to examples like (63)|\([65]\) and (66) in Section 1.5. However, we showed that the expanded version (64) of (63) which at first sight might seem like an instance of LN licensing by matrix negation, is only slightly degraded if matrix negation is left out. Moreover, by way of a more general argument, note that under the assumption that matrix negation is a LN licenser we would expect LN to be licensed in all other adjunct clauses as well, apart from bevor- and bis-CPS, given the presence of matrix negation. Crucially, though, we find that this is not the case: consider the following examples, where LN in the weil ‘because’ clause is ungrammatical regardless of the presence of matrix negation.

(i) Lea hat nicht schlecht geschlafen, weil sie keine/?*nicht eine Schlaftablette genommen hat, sondern weil sie am Abend eine Flasche Rotwein geleert hat.
‘Lea didn’t sleep badly because she hadn’t taken a sleeping pill, but because she had emptied a bottle of red wine in the evening.’

(ii) Ich hab nicht vermutet dass John schon am Montag vom Urlaub zurückkommen wird, weil er keine/?*nicht Wechselkleidung mitgenommen hat, sondern weil ich bei ihm Konzertkarten für Montag gefunden habe.
‘I didn’t assume that John would return from his vacation already on Monday because he hadn’t taken any extra clothes with him, but because I’ve found concert tickets for Monday (belonging to him).’

With regard to embedded LN we, furthermore, note that in the examples which could theoretically be interpreted as instances of LN licensing by matrix negation (e.g., (63)|\([65]\) and (66) in Section 1.5), LN is contained in argument clauses. As we pointed out before, the opposite holds for bevor- and bis-clauses in that they only accommodate LN if they have adjunct status. We take these divergences to motivate our assumption that LN in bevor- and bis-CPS is indeed directly licensed by the respective temporal complementizers. The assumption that bevor and bis employed in the case of LN are NPIs moreover explains why LN bevor- and bis-CPS are systematically accompanied by matrix negation.

\(^4\)For this reason we do not have a direct or at least obvious NPI-licensing counterpart (for LN-licensing bis), whose NPI status we could determine. For a full-fledged comparison, we would first need to make sure whether the same or different complementizers (as suggested in Section 1.1) are employed in adjunct and argument bis-clauses. It would be interesting to find out whether there is a correlation between the argument vs. adjunct status and the NPI vs. non-NPI status of bis,
2 Light negation licensing: an instance of NPI licensing?

(27) Sie haben sich *(nicht) gemocht, bis sie nicht ein längeres Gespräch miteinander geführt haben.
‘They had liked (didn’t like) each other until they had led a long conversation.’

For the sake of completeness, note that there is no such dichotomy in the case of solange: In solange-CPs, LN (28) and NPIs (29) are both grammatical even in the absence of matrix negation.

(28) Man bekommt (k)ein Stipendium, solange man nicht einen Sprachkurs besucht.
‘One gets (doesn’t get) a grant as long as one doesn’t attend a language course.’

(29) Man bekommt (k)ein Stipendium, solange man auch nur einen einzigen Sprachkurs besucht.
‘One gets (doesn’t get) a grant as long as one even attends a single language course.’

bis-clauses with argument status

In Chapter 1 we saw that bis-clauses that are arguments are incompatible with LN. Consider once more example (4) from Chapter 1 repeated below, where the bis-CP functions as a complement to the verb dauern ‘take (time)’.

(30) *Es hat ewig gedauert, bis Lea nicht eine Lösung gefunden hat.
Intended: ‘It took ages until Lea found a solution.’

The sentences in (31) and (32) show that argument bis-clauses are, however, compatible with NPIs.

(31) Es hat ewig gedauert, bis Lea auch nur eine einzige Seite geschrieben hat.
‘…until Lea had even written a single page.’

(32) Es hat ewig gedauert, bis Lea überhaupt was geschrieben hat.
‘…until Lea had written anything at all.’

Since the exact opposite is true for adjunct bis-clauses, which license LN though not NPIs, we might say that LN and NPIs are in complementary distribution in bis-CPs, depending on their role as either adjunct or argument clauses.

Non-counterfactual subjunctive wenn-clauses

Schwarz (2004) and Schwarz and Bhatt (2006) note that wenn-clauses in subjunctive conditionals trigger a counterfactual interpretation when featuring LN. Thus (33) for example can only mean that Fritz did in fact answer question number three.

and, in case there is, whether one could be a direct consequence of the other.
2.1 Distribution I: The licensers of Light Negation and NPIs

(33) Wenn Fritz nicht Frage 3 beantwortet hätte, wäre er
if Fritz not question 3 answered AUX.SBJV AUX.SBJV he
durchgefallen.
failed
‘If Fritz hadn’t answered question 3, he would have failed.’

(Schwarz and Bhatt 2006: 11)

Schwarz and Bhatt also point out that wenn-CPs in subjunctive conditionals do

not always have a counterfactual interpretation. They illustrate this by using the example in (34) and (35). Imagine a conversation along the lines of (34) and assume it to be continued by the subjunctive conditional in (35). Note that the conditional does not receive a counterfactual interpretation in such a context. While (35) which contains ON, is fine in this context, the LN conditional (33) whose counterfactuality apparently cannot be canceled, could not serve as a continuation of (34) precisely for this reason.

(34) A: Was glaubst du warum Fritz durchgefallen ist? B: Ich bin mir
what think you why Fritz failed has I am self not
nicht sicher, aber . . .
certain but
‘Why do you think Fritz failed?’ ‘I’m not sure, but . . .’

(Schwarz and Bhatt 2006: 16)

(35) . . . wenn Fritz Frage 3 nicht beantwortet hätte, wäre er durchgefallen.
‘. . . if Fritz hadn’t answered question 3, he would have failed.’ (Ibid.: 15)

Do NPIs in subjunctive conditionals, too, force a truly counterfactual reading? Schwarz (2004) argues that this is not the case. Examples (36) and (37) are supposed to illustrate this for the NPI any: In both examples a counterfactual reading of the if-clause (“there wasn’t any dirt in the tank”) must be abandoned for the utterance to make sense in the context at hand. Schwarz notes that the presence of the NPI any obviously does not inhibit a non-counterfactual interpretation.

(36) If there had been any dirt in the tank, the furnace would have made just
exactly the kind of noise that it in fact did. (So it’s quite likely there was
indeed some dirt in there.)

(Schwarz and Bhatt 2006: 13)

(37) The fact that there was dirt in the tank could have been a problem. If they
had come to fix the furnace, then if there had been any dirt in the tank,
they couldn’t have done anything.

(Ibid.)

Unfortunately, neither Schwarz (2004) nor Schwarz and Bhatt (2006) discuss the licensing of German NPIs in non-counterfactual subjunctive conditionals. The following German example (38) is modeled on (36) and features subjunctive morphology. The wenn-CP contains the NPIs auch nur einmal ‘even only once’ and je, respectively. As in the case of (36) a counterfactual reading is ruled out for pragmatic reasons. To get a feel for the example first consider the non-NPI version of the
example involving schon einmal. It turns out that the NPIs auch nur einmal and je are not equally acceptable under the required non-counterfactual reading, and only the NPI auch nur einmal can be reconciled with such a reading.

(38) (Context: Little Theresa is given tea without sugar. She begins to cry.)
Wenn Theresa schon einmal/auch nur einmal/#je gesüßten Tee bekommen hätte, hätte sie auf ungesüßten Tee wohl genau auf diese Art reagiert. Es ist also anzunehmen, dass sie schon einmal von irgendjemandem gesüßten Tee bekommen hat.
‘If Theresa had already been given tea with sugar/had been given tea with sugar even once/had ever been given tea with sugar, she would have reacted to tea without sugar in exactly this way. Hence I suppose that she has already been given tea with sugar (by somebody).’

At this point we should note that German examples of the above type are hard to obtain and even harder to judge. We believe that therefore, the above data does not warrant a generalization about the interaction of German NPIs and non-counterfactuality in wenn-clauses with subjunctive morphology. In line with this, we won’t make a final statement regarding the similarities and/or differences of LN and NPIs in this environment.

5 As Schwarz and Bhatt (2006) point out, there are at least two ways to view the relationship between LN and counterfactuality. The first option, which has been presupposed throughout the preceding paragraphs, is to posit a general syntactic distinction between counterfactual and non-counterfactual readings of subjunctive conditionals. In that case we would need to make counterfactuality part of the licensing conditions of LN in subjunctive conditionals to capture the fact that counterfactuality is obligatory in the presence of LN.

Alternatively, counterfactuality could be a semantic property of LN, which is activated in subjunctive contexts. An approach along these lines might actually be superior to the first option in several respects. First, the interaction between NPIs in subjunctive wenn-CPs and counterfactuality is poorly understood. As example [38] shows, German NPIs are most probably inhomogeneous regarding their compatibility with non-counterfactual readings, though respective grammaticality judgments are pretty diffuse. Of course, we could add the presence of a counterfactual presupposition to the licensing conditions of LN regardless of how NPIs behave in this matter. However, the fact that certain NPIs, e.g. jemals, resemble LN in that they are not compatible with a non-counterfactual interpretation, would then require an additional explanation.

As a further problem associated with the first approach, counterfactuality in subjunctive antecedents does not have an overt morphological or syntactic counterpart. Consequently, if counterfactuality is supposed to receive an independent syntactic representation, we must make it an (in this case noncancelable) pragmatic presupposition, or stipulate a silent element which introduces counterfactuality into the derivation.
their complement.

The following sentences illustrate this correlation. The first sentences of each pair contain NPIs, while the second ones feature LN.

(39) a. John bezweifelt, dass Mary jemals trainiert war.
 ‘John doubts that Mary has ever been athletic.’
 b. *John bezweifelt, dass Mary nicht ein Alkoholproblem hat.
 ‘…that Mary does not have an alcohol problem.’

(40) a. John streitet ab, dass er jemals geraucht hat.
 ‘John denies that he has ever smoked.’
 b. *John streitet ab, dass er nicht eine Freundin hat.
 ‘…that he does not have a girlfriend.’

(41) a. Meine Katze weigert sich, sich auch nur ein einziges Mal waschen zu lassen.
 ‘My cat refuses to be washed even once.’
 b. (John is diabetic.)
 *Aber er weigert sich, nicht eine Geburtstagstorte zu essen.
 ‘But he refuses not to eat a (piece of) birthday cake.’

(42) a. John bedauert, jemals geraucht zu haben.
 ‘John regrets that he has ever smoked.’ (lit.: . . .to have ever smoked.)
 b. John bedauert, seiner Tochter nicht eine Geburtstagstorte gebacken zu haben.
 ‘…that he hasn’t baked a birthday cake for his daughter.’ (lit.: . . .not to have baked . . .)

(43) a. John ist überrascht, dass seine Tochter jemals geraucht hat.
 ‘John is surprised that his daughter has ever smoked.’
 b. John ist überrascht, dass er nicht eine Mahnung bekommen hat.
 ‘…that he hasn’t received a reminder.’

(44) a. John wundert sich, dass seine Tochter jemals geraucht hat.
 (43-a)
 b. John wundert sich, dass er nicht eine Mahnung bekommen hat.
 (43-b)

(45) a. ?John ist froh, dass er jemals/auch nur ein einziges Mal in einem anderen Land war.
 ‘John is glad that he has ever been in a foreign country/that he has been in a foreign country for once.’ (see also Neubarth 2006: 82)
 b. John ist froh, dass er nicht eine Mahnung bekommen hat.
 ‘John is glad that he hasn’t received a reminder.’

2.1.3 Preliminary summary

In the preceding sections we saw that LN and NPIs indeed share a considerable number of licensers. Still there are environments where only one of them is li-
Light negation licensing: an instance of NPI licensing?

Certain syntactic contexts, e.g., main clauses of conditionals, allow for LN, but disallow NPIs (see 2.1.1). On the other hand, there are contexts such as clausal complements of certain DE predicates, which license NPIs, but do not allow for LN (see 2.1.2). Table 2.1 provides a summary of these observations. It shows which of the environments discussed in this work simultaneously license LN and NPIs, and sets these environments apart from contexts which only admit members of one of the two classes.

<table>
<thead>
<tr>
<th>Syntactic environment</th>
<th>LN</th>
<th>NPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>bevor-CP</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>bis-CP as an adjunct</td>
<td>√</td>
<td>?*</td>
</tr>
<tr>
<td>solange-CP</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>wenn-CP indicative, subjunctive</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Main clause of a conditional</td>
<td>√</td>
<td>*</td>
</tr>
<tr>
<td>Relative clause</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Purpose clause um, damit</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>PQ</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>warum-CP matrix, embedded</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Exclamative warum, embedded</td>
<td>√</td>
<td>*</td>
</tr>
<tr>
<td>CP complement of DE predicate</td>
<td>*</td>
<td>√</td>
</tr>
</tbody>
</table>

Table 2.1: LN environments and NPI licensing environments

2.2 Distribution II: The locality of Light Negation licensing and NPI licensing

Under the assumption that the neg morpheme of LN is an NPI, we would not only expect LN to be available in the same environments as NPIs, but also to be subject to similar locality conditions. In the preceding section we saw that the first
correlation holds only partially. The current section is concerned with the adequacy of the second prediction, schematized in (46).

\[(46) \quad \begin{align*}
 \text{a. } & \text{Op} \ \alpha \ \text{NPI/neg} \\
 \text{b. } & \star \text{Op} \ \beta \ \text{NPI/neg}
\end{align*}\]

In concrete terms, in an NPI approach to LN we expect the maximal distance \(\alpha(\text{NPI})\) between an NPI licenser \(\text{Op}_{\text{npi}}\) and a licensed NPI to equal the maximal distance \(\alpha(\text{neg})\) between a LN licenser \(\text{Op}_{\text{neg}}\) and a licensed instance of \(\text{neg}\). Along the same lines, we expect minimal \(\beta(\text{NPI})\) (> \(\alpha(\text{NPI})\)) to correlate with minimal \(\beta(\text{neg})\) (> \(\alpha(\text{neg})\)), i.e., the minimal structural distance violating the locality of licensing should be the same for NPIs and for \(\text{neg}\) of LN. To establish the locality conditions of a number of NPIs as well as of LN, we use the following environments (i)–(v) by way of values for \(\alpha/\beta\). \(\emptyset\) means that licenser and licensee are in the same clause. Note that all examples (48)–(52) are labeled by (i)–(v) and the distances marked as \(\alpha\) (grammatical) or \(\beta\) (ungrammatical), depending on whether or not the locality of licensing is satisfied in the examples in question.

\[(47) \quad \begin{align*}
 \text{(i) } & \emptyset \\
 \text{(ii) } & [\text{RelCl}] \\
 \text{(iii) } & [\text{InfCl}/\text{ArgCl}] \\
 \text{(iv) } & [\text{RelCl} \ [\text{InfCl}]] \\
 \text{(v) } & [\text{ArgCl} \ [\text{InfCl}]]
\end{align*}\]

The below data suggests that locality conditions vary among different NPIs. The NPI \(\text{mehr}\) ‘anymore’ shows rigid locality conditions in that it can only be licensed if negation is in the same clause, cf. (i) in (47) consider (48-a) and compare it to (48-b) and (48-c).

\[(48) \quad \begin{align*}
 \text{mehr} \\
 \text{a. } & \text{Um zehn Uhr war niemand mehr nüchtern.} \quad \text{(i) } \alpha \\
 \text{‘At ten there was no one left sober.’} \\
 \text{b. } & \star \text{Auf der Party war niemand [der um 10 Uhr mehr nüchtern} \quad \text{(ii) } \beta \\
 \text{war].} \\
 \text{Intended: ‘At the party there was nobody who was still sober at ten.’} \\
 \text{c. } & \star \text{Bill hat nicht vor [um 10 Uhr mehr nüchtern zu sein].} \quad \text{(iii) } \beta \\
 \text{Intended: ‘Bill does not intend still to be sober at ten.’}
\end{align*}\]

The NPIs \(\text{je(mals)}, \text{überhaupt} ‘at all’, \text{sonderlich} ‘particularly’, and \(\text{auch nur ein (einziger)} ‘even a single’ are more liberal than \(\text{mehr}\). The a.-examples of (49) through (52) show that these NPIs can be licensed in the restrictor of negatively quantified heads (ii). The same NPIs also allow for licensing by superordinate negation, if negation is only one clause away (iii); cf. the b.-examples of (49) through (52). Unlike in the a.-examples, in the c.-examples the NPI in the relative clause is embedded in a non-finite clause further separating the licensee from its licenser (iv). Licensing is more controversial in that case and works better for the NPI \(\text{auch nur ein einziger} \)
than for *jemals*, *überhaupt*, and *sonderlich*.\(^6\) NPI licensing across more than one clause boundary (v) as in the d.-examples is equally inhomogeneous and difficult to judge as licensing spanning distances of type (iv).

(49)
\(\text{je(mals)} \)

a. Auf der Party war niemand [der *jemals* getrunken hat].
 ‘At the party there was nobody who had ever been drinking.’

b. Bill hat nicht vor [je wieder was zu trinken].
 ‘Bill does not intend to drink ever again.’

c. ?Lisa hat niemanden t\(_i\) eingeladen [der t\(_j\) vorhat], [je wieder was zu trinken]\(_j\).
 ‘Lisa didn’t invite anybody who intended to drink ever again.’

d. ?Lisa glaubt nicht [dass Bill t\(_i\) vorhat] [je wieder was zu trinken].
 ‘Lisa doesn’t believe that Bill intends to drink ever again.’

(50)
\(\text{überhaupt} \)

a. Auf der Party war niemand [der *überhaupt* was getrunken hat].
 ‘At the party there was nobody who drank anything at all.’

b. Bill hat nicht vor [überhaupt was zu trinken].
 ‘Bill does not intend to drink anything at all.’

c. ?Lisa hat niemanden t\(_i\) eingeladen [der t\(_j\) vorhat], [überhaupt was zu trinken]\(_j\).
 ‘Lisa didn’t invite anybody who intended to drink anything at all.’

d. Lisa glaubt nicht [dass Bill t\(_i\) vorhat] [überhaupt was zu trinken].
 ‘Lisa doesn’t believe that Bill intends to drink anything at all.’

(51)
\(\text{sonderlich} \)

a. Auf der Party war niemand [der *sonderlich* viel trinkt].
 ‘At the party there was nobody who was drinking a lot (lit.: especially much).’

b. Bill hat nicht vor [sonderlich viel zu trinken].
 ‘Bill does not intend to drink a lot.’

\(^6\)Schwarz and Bhatt (2006: 27) provide an example similar to (49-c) which they however regard as grammatical. Though intuitions of other speakers of German including myself differ from this judgment, this sentence indeed feels better than (49-c).

(i)
[?]Wir lassen keinen t\(_i\) rein [der t\(_j\) wagt], [jemals ein Hemd zu tragen]\(_j\).
 ‘We let no one in who dares to ever wear a shirt.’

Strangely, (ii) where the same distance (iv) separates the NPI from its licenser is even better than (i).

(ii)
Wir nehmen niemanden t\(_i\) mit [der t\(_j\) ankündigt], [sich je von der Gruppe zu entfernen]\(_j\).
 ‘We do not take anybody with us who announces to ever go away from the group.’
2.2 Distribution II: The locality of Light Negation licensing and NPI licensing

c. ?Lisa hat niemanden t_i eingeladen [der t_j vorhat],
 sonderlich viel zu trinken].
 ‘Lisa didn’t invite anybody who intended to drink a lot.’
d. ?Lisa glaubt nicht [dass Bill t_i vorhat] *sonderlich viel zu
 trinken]*.
 ‘Lisa doesn’t believe that Bill intends to drink a lot.’

(52) auch nur ein (einziger)

a. Auf der Party war niemand [der auch nur einziges Glas Wein
 getrunken hat].
 ‘At the party (there was) nobody (who) was drinking even one glass of
 wine.’
b. Bill hat nicht vor [auch nur ein Glas Wein zu trinken].
 ‘Bill does not intend to drink even one glass of wine.’
c. Lisa hat niemanden t_i eingeladen [der t_j vorhat], [auch nur
 ein einziges Glas Wein zu trinken]*.
 ‘Lisa didn’t invite anybody who intended to drink even one glass of
 wine.’
d. Lisa glaubt nicht [dass Bill t_i vorhat] [auch nur einziges
 Glas Wein zu trinken]*.
 ‘Lisa doesn’t believe that Bill intends to drink even one glass of wine.’

Let us now turn to LN. Consider examples (53) through (56). In all examples,
LN/neg is in the scope of a matching licenser; in the restrictor of alle or keinen in
(53) and (55), and in the scope of negated glauben in (54) and (56). The sentences
in (53) and (54) show that neg can be licensed in relatives (ii) and in the scope of
superordinate negation (iii), respectively. However, unlike the set of liberal NPIs
examined above, neg cannot be licensed in relatives if it is further embedded in a
(non-finite) CP (iv) as shown by (55), neither does it accept licensing by negation
across more than one clause boundary (v) as in (56).

(53) [RelCl]
a. Wir haben alle t_i weggeschickt [die nicht ein Gastgeschenk mitgebracht
 haben]*.
 ‘We dismissed everyone who hadn’t brought a (guest’s) present.’
b. Wir lassen keinen t_i rein [der nicht ein Hemd trägt]*.
 ‘We let no one in who doesn’t wear a shirt.’

(54) [ArgCl]
Peter glaubt Maria nicht [dass sie nicht ein Gastgeschenk mitgebracht hat].
 ‘Peter doesn’t believe Mary that she hasn’t brought a (guest’s) present.’

(55) [RelCl] [InfCl]
a. *Wir haben alle t_i weggeschickt [die t_j gewagt haben]* [nicht ein Gast-
 geschenk mitzubringen]*.
 ‘We dismissed everyone who had dared not to bring a (guest’s) present.’

35
2 Light negation licensing: an instance of NPI licensing?

b. *Wir lassen keinen t_i rein [der t_j wagt], [nicht ein Hemd zu tragen].
 ‘We let no one in who dares not to wear a shirt.’

(55-b) from Schwarz and Bhatt 2006, 27)

(56) \[\text{ArgCl} \quad \text{InfCl} \]

\(\beta\)

?*Peter glaubt Maria nicht [dass sie t_i vorhat] [nicht ein Gastgeschenk mitzubringen].
 ‘Peter doesn’t believe Mary that she intends not to bring a (guest’s) present.’

Interestingly, there is also a lower boundary on the locality of neg licensing: Unlike NPIs, neg does not permit (let alone require, as e.g. \textit{mehr}) clausemate negation licensing (i). In other words, neg seems to be subject to locality and antilocality conditions simultaneously. Consider in this regard the minimal pair in (57), which contrasts LN \textit{nicht ein} and the NPI \textit{je} in terms of clausemate licensing.

(57) \[\emptyset\]

(i)

a. Kaum ein Gast hat kein/*nicht ein Geschenk mitgebracht.
 ‘There was hardly any guest who hadn’t brought a present.’

b. Kaum eine Akademikerin kommt \textit{je} zu spät.
 ‘Hardly any academic is ever late.’

The results of this examination are summarized in Table 2.2. To recapitulate, we observed that different types of locality are relevant in the licensing of NPIs and LN. First, we saw that within the class of NPIs conditions on locality vary and NPIs fall in at least two different classes: while for one class (containing \textit{mehr}) clausemate negation (i) is the only possible licenser, members of the other class (e.g. \textit{je(mals)}, \textit{auch nur ein einziger}) can be licensed in the restrictor of negatively and universally quantified heads (ii) as well as by superordinate negation (iii), and in some cases they even allow for long-distance licensing, (iv) and (v). Most importantly, we also found an answer to the question raised at the beginning of this section, namely, whether neg of LN resembles NPIs in terms of locality: Clearly, the licensing of neg does not pattern with either of the two subclasses of NPIs identified above, but rather underlies a third, strictly ‘intermediate’ type of locality and may only span distances of type (ii) and (iii).

Naturally, we cannot completely exclude the existence of NPIs that are subject to the same locality restrictions as LN. However, as long as we haven’t found concrete examples of such NPIs, we will assume that LN licensing stands alone in the domain of locality.

2.3 A final remark

Before we conclude this chapter, it should be pointed out that there are some aspects related to the licensing of LN and NPIs, for example intervention effects, which have not been discussed in this chapter. However, since LN could be shown to diverge
significant from NPIs in terms of its licensers as well as locality, we won’t pursue an NPI approach to LN any further. Instead, to achieve a more adequate account of LN, we propose that the distributional properties of LN reflect syntactic properties specific to LN. The details of this proposal are set out in the following chapter.

<table>
<thead>
<tr>
<th></th>
<th>NPI</th>
<th>LN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mehr je(mals), auch nur neg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>überhaupt, ein einziger sonderlich</td>
<td></td>
</tr>
<tr>
<td>(i)</td>
<td>∅</td>
<td>√</td>
</tr>
<tr>
<td>(ii)</td>
<td>[RelCl]</td>
<td>*</td>
</tr>
<tr>
<td>(iii)</td>
<td>[InfCl/ArgCl]</td>
<td></td>
</tr>
<tr>
<td>(iv)</td>
<td>[RelCl] [InfCl]</td>
<td>*</td>
</tr>
<tr>
<td>(v)</td>
<td>[ArgCl] [InfCl]</td>
<td></td>
</tr>
</tbody>
</table>

Table 2.2: The locality of NPI licensing and LN licensing
3 Deriving Light Negation

In this chapter we present an alternative account of German LN. Unlike the NPI approach discussed in Chapter 2, our account will be able to capture the full range of documented LN occurrences without making unwarranted predictions.

In Section 3.1 we discuss the ingredients necessary for a successful analysis of LN and its distribution. Section 3.2, on the other hand, deals with the internal structure of LN and explains how different factors eventually lead to the altered realization of negation in LN clauses.

Note that the syntactic background (“licensing”) of LN, and the internal structure of LN constitute two different problems, which differ significantly in their scope. We will see that the syntactic conditions underlying LN are of a general and crosslinguistic nature: they can be diagnosed in other languages apart from German, and also in German they manifest themselves in various forms apart from LN. As an example, Büring and Gunlogson (2000) (see also Schwarz 2004, and Schwarz and Bhatt 2006) observed that the grammaticality of nicht ein as the indefinite variant of LN patterns with the exceptional grammaticality (“rescuing”) of PPIs in the immediate scope of antiadditive elements as in English not some, German nicht einige. On the other hand, to explain the internal structure of LN, we will need to make reference to syntactic processes that are specific to German such as scrambling and the lexical relation holding between nicht ein and kein.

3.1 Light negation and the case of λ checking

In the preceding chapter we raised the idea that the negation morpheme neg of LN is an NPI. However, neg could not be found to pattern with any attested NPI, neither regarding the set of possible licensers nor in terms of locality. As for the set of LN licensers, it turned out that it is neither a subset nor a superset of the set of NPI licensers. In the following we hence propose a descriptively more adequate account of the distribution of LN. Our account will be set in the framework of minimalist feature theory.

Recall that the reason why we need to restrict the occurrence of LN are sentences like the following, where LN is unavailable.

(1) *Maria hat nicht einem Gast ein Glas Wein angeboten.
 ‘Maria didn’t offer a guest a glass of wine.’
3 Deriving Light Negation

We will assume a feature checking operation to lie at the bottom of these restrictions. In general, a feature checking operation is assumed to be triggered by an uninterpretable feature [uF]. [uF] would need to be checked against a matching interpretable feature [iF] in an instance of Agree for the derivation to be sanctioned at LF.

How can this model be applied to the case of LN? We suggest that all (and only) LN environments contain an element which carries an uninterpretable feature [u\(\lambda\)]. We will use the term \(\lambda\) item as a name for all elements endowed with [u\(\lambda\)]. As we will see in Section 3.1.1 a \(\lambda\) item can for example be an abstract operator, or a complementizer. The uninterpretable feature [u\(\lambda\)] of the \(\lambda\) item must be checked against a matching interpretable feature [i\(\lambda\)]. Crucially, we assume that the German neg morpheme\(^1\) (and only it) is endowed with [i\(\lambda\)]. The process by which the uninterpretable feature of the \(\lambda\) item is checked is regarded as an overt movement process: we assume that the \(\lambda\) item carries a strong feature and overtly attracts neg to check its feature (in an instance of Move-F or Agree; cf. e.g. Hornstein et al. 2005). In minimalist terms, the \(\lambda\) item acts as a probe and neg as its goal. We will see (Section 3.1.1) that all \(\lambda\) items occupy a position either in C\(^0\) or in SpecCP. As the German neg morpheme may not adjoin to CP by lexical specification, TP is the farthest it can move. However, this type of movement seems to satisfy the conditions on feature checking between [u\(\lambda\)] and [i\(\lambda\)] and allow for [u\(\lambda\)] to be eliminated.\(^2\) If the checking operation is felicitous, we can say that the \(\lambda\) item has been licensed.

Below we provide a rough sketch of the process of \(\lambda\) checking. In this example, the \(\lambda\) item is located in C\(^0\). However, there are also \(\lambda\) items located in SpecCP.

(2)
```
   CP        
   /\        
  C'      C\(^0\)  
   \      \       
  TP    TP          
   \    \          
  \(\lambda\) [i\(\lambda\)] T'          
   \   \            
  \   \            
  \  \            
  vP T\(^0\) t\(_i\) . . .
```

If \(\lambda\) checking is felicitous, negation will be realized as LN and manifest itself variously as nicht ein NP (instead of kein NP), nicht d- NP (instead of d- NP nicht), and nicht DP oder DP (instead of weder DP noch DP). The details of the realization

\(^1\)Note that in Chapter 2 we have distinguished between ON and LN on the basis of distinct negation morphemes, neg and neg. However, there is no conclusive evidence in favor of such a distinction. In the following we therefore assume that negation is always realized by the same morpheme neg.

\(^2\)Note that \(\lambda\) checking is subject to minimality; i.e., neg as a goal is accessible to the \(\lambda\) item as a probe only if no other element with the the same feature [i\(\lambda\)] intervenes.
3.1 Light negation and the case of \(\lambda \) checking

will be discussed in Section 3.2. Conversely, if the \(\lambda \) item fails to check its feature \([u\lambda]\), the derivation will crash.

On a final remark, note that in our model it is not the special (“light”) NEG configuration that involves an uninterpretable feature needing to be checked, but the \(\lambda \) item. LN merely constitutes an epiphenomenon which arises from the checking operation between the \(\lambda \) item as a probe, and NEG as its goal.

3.1.1 The inventory of \(\lambda \) items

Above we assumed that the presence of LN in a clause indicates the presence of an element carrying an uninterpretable feature \([u\lambda]\). Elements of this type were called \(\lambda \) items. In what follows we will address the question which elements might be considered \(\lambda \) items in different LN environments. Once we have identified all \(\lambda \) items, we will be able to establish whether they share certain structural properties. At the same time it will be possible to determine the distance between the \(\lambda \) item and NEG for each LN context and, on the basis of this, formulate the locality conditions on \(\lambda \) checking.

Recall that in our account the presence of LN signals that the \(\lambda \) item has successfully been checked (and its absence, moreover, to show that \(\lambda \) checking has not taken place). As suggested above (cf. the tree in (2)), we assume that \([u\lambda]\) can only be eliminated if NEG adjoins to TP, and that TP-adjunction of NEG is what underlies LN syntax. In light of these implications, it is not easy to decide which elements actually are \(\lambda \) items.

To begin with, in LN environments associated with specific complementizers we take the complementizers themselves to be \(\lambda \) items. This concerns the temporal complementizers bevor, bis, and solange (see (3) for a bevor-sentence; clauses headed bis and solange are structurally equivalent), as well as damit and um heading purpose clauses (4) and wenn in conditionals (5).

(3) Wir können nicht mit der Zubereitung beginnen \([_{\text{CP}}\ \text{bevor}_{\text{\lambda \\lambda}}]\ \text{[_{\text{TP}}\ \text{er nicht}_{\text{\lambda \lambda}}]}\ \text{Tomaten gekauft hat}]\)

(4) a. Wir sollten bald umdrehen \([_{\text{CP}}\ \text{damit}_{\text{\lambda \lambda}}]\ \text{[_{\text{TP}}\ \text{wir nicht}_{\text{\lambda \lambda}}]}\ \text{einem Sturm zum Opfer fallen]}\]
 b. Wir sollten bald umdrehen \([_{\text{CP}}\ \text{um}_{\text{\lambda \lambda}}]\ \text{[_{\text{TP}}\ \text{PRO nicht}_{\text{\lambda \lambda}}]}\ \text{einem Sturm zum Opfer zu fallen]}\]

(5) Ich würde noch länger bleiben \([_{\text{CP}}\ \text{wenn}_{\text{\lambda \lambda}}]\ \text{[_{\text{TP}}\ \text{ich nicht}_{\text{\lambda \lambda}}]}\ \text{einen Arzttermin hätte}]\)

However, if these complementizers were always \(\lambda \) items, we would expect clauses containing them always to feature LN. This is obviously not the case – we can construe bevor-CPs and purpose clauses with ON syntax or even without negation. To obtain correct results and avoid overgeneralization, we hence need to refine our theory. We suggest that all items carrying \([u\lambda]\) have homophonous counterparts which lack \([u\lambda]\). Our lexicon thus contains bevor as well as bevor\([u\lambda]\), damit and
Deriving Light Negation

damit\[u\lambda\], and so forth; while the presence of LN evidences the presence of items of the \[u\lambda\] series, i.e., \(\lambda\) items, the absence of LN suggests that items lacking \[u\lambda\] have been inserted.\(^3\)

Interestingly, for some \(\lambda\) items such a distinction might be needed on independent grounds. We saw that the complementizers bevor and bis behave like NPIs in the presence of LN, though not in its absence. Under the assumption that there are two items bevor and bevor\[u\lambda\], as well as bis and bis\[u\lambda\], NPI status could pertain to the \(\lambda\) items bevor\[u\lambda\] and bis\[u\lambda\], as opposed to ordinary bevor and bis. Further, the fact that LN bis-clauses (though not ON bis-clauses) must be adjuncts rather than arguments could be a consequence of the NPI status of bis\[u\lambda\]: We take LN clauses headed by bevor and bis to fall in the scope of matrix negation. However, if a clause headed by the NPI bis\[u\lambda\] is merged as an argument, the matrix predicate may act as an intervener between the NPI and matrix negation and prevent bis\[u\lambda\] from checking its uninterpretable NPI feature, such that bis\[u\lambda\] and, correspondingly, LN would eventually be ruled out; cf. (6). The structure of the (ungrammatical) LN variant is given in (7). Compare this to the LN structure in (8), corresponding to example (2) in Section 1.1, where the bis-clause is an adjunct and the NPI-feature of the \(\lambda\) item bis\[u\lambda\] can be checked. What remains unexplained regarding the \(\lambda\) items bis\[u\lambda\] and bevor\[u\lambda\] is why in the case of these complementizers the \[u\lambda\]-feature correlates with an NPI property.\(^4\)

(6) Lea konnte es nicht erwarten, bis sie (*nicht) eine eigene Wohnung
get would
Intended: ‘Lea couldn’t wait to get her own apartment.’

(7) *Lea, konnte es nicht\[u\lambda\] [VP t_i t_j erwarten] [CP bis\[u\lambda\] [uNPI] [TP sie nicht\[i\lambda\] eine eigene Wohnung bekommen würde]],\(j\)

(8) Lea, gibt nicht\[u\lambda\] t_j [VP t_i auf] [CP bis\[u\lambda\] [uNPI] [TP sie nicht\[i\lambda\] eine Lösung gefunden hat]],\(j\)

Let us have a look at further instances of LN and, in particular, the \(\lambda\) items involved. To capture the distributional constraints on LN in relative clauses, i.e., the restriction to relatives which are headed by universally or negatively quantified DPs, we need to tie \[u\lambda\] to the respective quantificational expressions, or to elements distinguishing corresponding relative clauses from other relatives. Note that we cannot attribute \[u\lambda\] to relative pronouns in general. However, we may assume that universal and negative quantifiers optionally select a null \(\lambda\)-operator in C\(^0\) which carries \[u\lambda\] and

\(^3\)An alternative option is to relate \[u\lambda\] directly to C and assume that apart from C\[wh\] and declarative C, there is a third clause type, C\[u\lambda\]. The presence of C\[u\lambda\] would correlate with the presence of elements described as \(\lambda\) items above, and its feature \[u\lambda\] would attract NEG in the same way as \(\lambda\) items did in our above proposal. However, the assumption of a third, “\(\lambda\)” clause type certainly amounts to a major claim and lacks a solid empirical foundation.

\(^4\)Krifka (2010: 14f.) proposes a semantic explanation for what he calls the “obligatoriness of negation” in the context of bevor-CPs featuring LN.
hence must be checked against NEG.\footnote{This would be similar to the null polarity operator postulated by Progovac (1994) with respect to NPI licensing in non-negative contexts, e.g. relatives. Progovac (ibid.: 67) provides the following example.} This option is sketched in (9).

(9) Wir haben jeden Tag abgelehnt [CP der [C0 λ-Op$_{\lambda}$] [TP nicht$_{\lambda}$] eine Fremdsprache kann].

The location of [uλ] is difficult to define in main clauses of conditionals, i.e., it is unclear which element could be a λ item in this environment. As a working hypothesis we assume that the null λ-operator can be present in main clauses of conditionals as well, where it adjoins to the verb in C0. The grammaticality of the λ-operator in this environment might rely on A’-movement of the wenn-CP; this assumption would be motivated by the contrast between LN conditionals where topicalization of the wenn-CP has taken place (10) and conditionals where the wenn-CP remains in situ (11). Main clauses of conditionals constitute the only context where LN occurs in a root declarative clause.

(10) [CP Wenn er dumm wäre] [C0 könnte-λ-Op$_{\lambda}$] [TP er nicht$_{\lambda}$] eine Fremdsprache]

(11) ??Er könnte nicht eine Fremdsprache, wenn er dumm wäre.

The occurrence of LN in matrix and embedded PQs suggests that there further is a yes/no interrogative operator (YN-Op) which is a λ item.

(12) [CP YN-Op$_{\lambda}$] Besitzt [TP Tanjas Familie nicht$_{\lambda}$] eine Datscha im Umland von Moskau]

(13) Maria fragt sich [CP YN-Op$_{\lambda}$ ob [TP Leo nicht$_{\lambda}$] einen älteren Bruder hat]]

The second type of interrogatives allowing for LN are warum-questions, as root clauses as well as in subordinate position. From the fact that warum-questions are the only wh-questions permitting LN we conclude that, in addition to ordinary warum, there is a λ item warum which is lexically specified for [uλ].

(14) [CP Warum$_{\lambda}$] fragt [TP er nicht$_{\lambda}$] einen Spezialisten]]

(15) Maria fragt sich [CP warum$_{\lambda}$] [TP er nicht$_{\lambda}$] einen Spezialisten fragt]]

In wh- as well as verb-initial exclamatives we take [uλ] to be carried by a factive operator FACT-Op in SpecCP. Following Zanuttini and Portner (2003) we consider exclamatives to differ from semantic interrogatives by the presence of the factive

\[\text{NP Every man [CP who [C0 has Op [IP read anything by Chomsky]]]}\] will attend the lecture.

Note, however, that while in NPI licensing the licensee is the NPI, in our case the licensee is the operator.
operator FACT-Op. In accordance with our theory, we assume FACT-Op also to exist as a \(\lambda \) item, as FACT-Op\([u\lambda]\).

\[
(16) \quad [\text{CP Wie vielen } [\text{CP FACT-Op} u\lambda] \text{ C}^0 \text{ [TP er nicht} [u\lambda] \text{ ähnliche Schmeicheleien gesagt hat}]])
\]

\[
(17) \quad [\text{CP FACT-Op} u\lambda] \text{ Hat [TP er nicht} [u\lambda] \text{ eine schöne Stimme}]])
\]

Finally, the fact that LN clauses can be complements to certain DE predicates, e.g. *sich wundern*, indicates that there is a complementizer *dass* carrying \([u\lambda]\) which can be selected by these predicates, cf. (18).

\[
(18) \quad \text{John wundert sich [CP [C}^0 \text{ dass} u\lambda] \text{ [TP er nicht} [u\lambda] \text{ eine Mahnung bekommen hat}]})
\]

The preceding discussion suggests that the set of \(\lambda \) items is syntactically heterogeneous. However, there is one property which is shared by all members of the set: they are all associated with a position in CP. While in PQs and *warum*-questions as well as in exclamatives, the \(\lambda \) item is located in SpecCP, in all other environments the \(\lambda \) item (including the \(\lambda \)-Op) sits in \(C^0 \).\(^7\) Note that knowledge of the precise location of all \(\lambda \) items is important, among others, in establishing the locality conditions on \(\lambda \) checking (see Section 3.1.2).

Table 3.1 gives an overview of the inventory of \(\lambda \) items in German.\(^8\)

We should bear in mind that so far we have not found independent evidence for the existence of \([u\lambda]\) and its presence on these items; as pointed out at the beginning of this work, Penka’s claim that LN is always non-negative is not tenable, which rules out expletivity as a semantic indicator of \([u\lambda]\). It should be the concern of future research dealing with this topic to prove the existence and describe the semantic character of \([u\lambda]\). As a long-term goal, an analysis of LN should get to the roots

\(^6\)Note that Zanuttini and Portner limit the presence of the factive operator to wh-exclamatives.

\(^7\)One might object that this generalization disregards examples like \[(63)] \[(65)\] (Section 1.5), and \[(54)\] (Section 2.2, repeated below), where at first sight LN seems to be induced by superordinate *nicht*, that is, by a \(vP \) adjunct. In response to this criticism, we will argue that in these examples it is actually the matrix predicate which triggers LN, as in the LN examples in \[(42)\] through \[(45)\] discussed in Section 2.1.2, represented by \[(18)\] above. By way of support for this claim, note that superordinate negation does not generally constitute a LN environment, but only when it co-occurs with predicates of a certain, pretty restricted set (most notably *glauben* and *verstehen*). Technically, we thus assume that the predicates *glauben* and *verstehen* optionally select a \(\lambda \) item in \(C^0 \), like certain DE predicates (e.g. *bedauern, sich wundern*). This is illustrated below.

\[(i) \quad \text{Peter glaubt Maria nicht [CP [C}^0 \text{ dass} u\lambda] \text{ [TP sie nicht} [u\lambda] \text{ ein Gastgeschenk mitgebracht hat}]})
\]

A selection analysis along these lines for the predicates *glauben* and *verstehen* allows us to maintain our view that all \(\lambda \) items can be found either in \(C^0 \) or SpecCP.

\(^8\)In an alternative view, competing with the assumption of a whole set of \(\lambda \) items, \([u\lambda]\) could always be carried by the same silent \(\lambda \)-operator in \(C^0 \), whose occurrence would be restricted to LN contexts. We will investigate this option in more detail in the context of a Negative Concord (NC)-based approach to LN (Section 3.3).
of the relationship between [uλ] and NEG, and explain what it is that ties elements carrying [uλ] to NEG.

3.1.2 The locality of λ checking

Consider once more the operation of λ checking, depicted in (19). The operation is induced by the presence of an uninterpretable feature [uλ] in C⁰ or SpecCP. [uλ] triggers movement of NEG to TP in order to be eliminated.

(19)

The data discussed in Section 2.2 and repeated below suggests that NEG cannot check [uλ] on λ items in clause-external position. Under the assumption that even in examples like (21) the λ item is a λ-Op in C⁰ (see fn. 7), we can make the following
generalization about the locality of λ checking: checking of the $[u\lambda]$ feature through $[i\lambda]$ on NEG must take place within the boundaries of the clause; the clause boundary constitutes a barrier for the checking relation. Consider the contrast between (20) and (21) where the λ item is in the same clause as NEG, and (22) and (23) where the λ item is in the superordinate clause. Recall that λ checking differs herein from NPI licensing (see 2.2), which can go across clause boundaries. The locality condition on λ checking is formalized in (24).

(20) Wir haben alle t$_i$ weggeschickt [$_{CP}$ die Op$_{$[u\lambda]}$ nicht$_{[i\lambda]}$ ein Gastgeschenk mitgebracht haben]$_i$

'We dismissed everyone who hadn’t brought a (guest’s) present.'

(21) Peter glaubt Maria nicht [$_{CP}$ [$_{CP}$ dass λ-Op$_{[u\lambda]}$] sie nicht$_{[i\lambda]}$ ein Gastgeschenk mitgebracht hat]

'Peter doesn’t believe Mary that she hasn’t brought a (guest’s) present.'

(22) *Wir haben alle t$_i$ weggeschickt [$_{CP}$ die Op$_{[u\lambda]}$ t$_j$ gewagt haben]$_i$ [$_{CP}$ nicht$_{[i\lambda]}$ ein Gastgeschenk mitzubringen]$_j$

'We dismissed everyone who had dared not to bring a (guest’s) present.'

(23) ?*Peter glaubt Maria nicht [$_{CP}$ [$_{CP}$ dass λ-Op$_{[u\lambda]}$] sie t$_i$ vorhat] [$_{CP}$ nicht$_{[i\lambda]}$ ein Gastgeschenk mitzubringen]$_i$

'Peter doesn’t believe Mary that she intends not to bring a (guest’s) present.'

(24) a. [$_{CP}$ λ_{[u\lambda]} ... NEG$_{[i\lambda]}$]
b. *[$_{CP}$ λ_{[u\lambda]} [$_{CP}$... NEG$_{[i\lambda]}$]

3.2 The realization of Light Negation

In the previous section we dealt with the distribution of LN. We proposed a syntactic analysis in terms of feature-checking to capture the restrictions on the distribution of LN. Crucially, we still need to find an explanation for the specific (morpho)syntactic shape of LN: to wit, we must answer the question of how the overt difference between LN and ON can be derived from the underlying syntactic difference between LN and ON clauses, which consists in the presence or absence of λ checking. We will address this issue in the following sections. In Section 3.2.1 we review the derivation of definite LN, while Section 3.2.2 examines the derivation of indefinite LN.

3.2.1 The derivation of definite Light Negation

Let us consider sentences where ON and LN appear with definite DPs. In these sentences the difference between ON and LN is reflected in different word orders: while nicht always follows definite DPs in ON structures, it precedes at least one of the present definite DPs in LN structures. DP_{DEF} nicht thus alternates with nicht DP_{DEF}.

We argue that this difference is due to the different placement of NEG in ON and LN clauses. As suggested in Section 3.1 we assume that in LN clauses a λ
3.2 The realization of Light Negation

item in C° or SpecCP triggers adjunct movement of NEG from vP or VP to TP in order to check its uninterpretable feature [u\(\lambda\)] against [i\(\lambda\)] on NEG. Though adjunct movement is not part of canonical syntactic theories, we assume that NEG movement is licit as long as it has a trigger and takes place in the overt part of the derivation. Movement of NEG to TP in the absence of a trigger will be ruled out. This is the reason why NEG remains in its base position in vP in ON clauses, where there is no \(\lambda\) item to trigger TP-movement of NEG.\(^9\)

To explain why definite DPs precede \textit{nicht} in the case of ON, we assume that definite DPs which are discourse referents obligatorily scramble out of their VP-internal position to adjoin to vP. They adjoin to vP on top of NEG if the clause is negative. (The subject, as usually, raises to SpecTP.). Crucially, this gives rise to strings of the form \(DP_{\text{def}} \text{nicht}\) in ON clauses, where NEG remains in its base position adjoined to vP. In LN clauses, on the other hand, DP movement still correlates with strings of the form \textit{nicht} \(DP_{\text{def}}\), as NEG is attracted by a \(\lambda\) item in these clauses and adjoins to TP, moving across the vP-adjoined definite DP.

The nominative DP subject precedes \textit{nicht} in most LN clauses. To reconcile this fact with NEG adjunction to TP, we assume that after raising to the innermost SpecTP to check its case, the subject undergoes TP-internal movement to reach its overt position left of NEG.\(^10\) We demonstrate the derivation of definite ON and LN below.

(25) definite ON
 \begin{enumerate}[a.]
 \item dass Ralf den Kater nicht gefüttert hat
 \end{enumerate}

\(^9\)Interestingly, Weiss (2002) posits a similar structural difference to distinguish between “predicate negation” and “presuppositional negation” (though in his account \textit{nicht} is the head of a NegP rather than an adjunct). Specifically, Weiss argues that the phrase associated with predicate negation immediately dominates VP, while the projection of presuppositional negation immediately dominates TP.

\(^10\)Note, however, that TP-internal subject movement violates the ban on phrase-internal movement put forward in Minimalism. This ban is part of a larger set of anti-locality constraints, which place a lower bound on movement in accordance with the observation that “[m]ovement must not be too local” (Grohmann 2003: 144).
3 Deriving Light Negation

(26) definite LN

a. bevor Ralf nicht den Kater gefüttert hat

b. bevor Ralf nicht den Kater gefüttert hat
3.2 The realization of Light Negation

The postulated difference between the neg position in ON and LN clauses might also be the reason why LN clauses show more flexibility than ON clauses in the linear ordering of object DPs and neg. Consider the ditransitive clauses below.

In all sentences (27) through (29) the direct object precedes the indirect object. We take this order to be derived from the base-generated order where the direct object follows the indirect object. The derived order is fine in positive clauses (27).

Moreover, it is fine in both ON and LN clauses if the direct object scrambles across neg (28).

(27) weil du das Katzenjunge deinem Freund gezeigt hast
 'because you showed the kitten to your friend’

(28) a. weil du das Katzenjunge \[vP nicht deinem Freund t_i gezeigt\] hast
 'because you have shown the kitten to your friend’ (ON)

 b. bevor du das Katzenjunge, \[TP nicht deinem Freund t_i gezeigt hast\]
 'before you have shown the kitten to your friend’ (LN)

If reordering takes place entirely below neg as in (29), however, it is only grammatical in conjunction with LN (29-b). It is bad in the case of ON (29-a) in ON clauses one definite DP object has to scramble across neg, as in (28-a).

Note that this difference falls out naturally: There is no space for scrambling below neg, which adjoins to vP in ON clauses. However, there is ample space for scrambling below neg in LN clauses, where neg raises to adjoin to TP. For example, the direct object DP can adjoin to vP as a further adjunct alongside base-generated neg in sentences like (29-b) as outlined in (30).

(29) a. *weil du \[vP nicht das Katzenjunge deinem Freund gezeigt\] hast (ON)
 b. ?bevor du \[TP nicht das Katzenjunge deinem Freund gezeigt hast\] (LN)

11This observation complies with Haider’s (2010: 134) view that “‘light negation’ may precede scrambled DPs” – though the sentence Haider intends to support this claim fails to make the point; Haider’s example (i) featuring a scrambled accusative object is flawed.

(i) *Ob nicht die Frau jemand rechtzeitig erreicht hat?
 whether not the woman.ACC someone.NOM on-time reached has?
 ‘Could it be that someone has not reached the woman on time?’
 (Ibid., modulo grammaticality judgment)

However, note that the ungrammaticality of (i) seems to be unrelated to the ON/LN split. The type of scrambling where the definite object DP raises across an indefinite subject to a position below C is unavailable even in positive clauses; see (ii).

(ii) *dass die Frau jemand rechtzeitig erreicht hat
(30) relating to (29-b)

Note that in LN clauses with more than one definite DP object, definite DP movement can be string-vacuous, if it takes place entirely below the position in TP where \(\text{nicht} \) is realized and proceeds in a successive-cyclic manner. An example is (31).

(31) a. bevor du nicht deinem Freund das Katzenjunge gezeigt hast
3.2 The realization of Light Negation

3.2.2 The derivation of indefinite Light Negation

We saw that in the case of indefinites the difference between ON and LN is partially morphological. Recall that in ON structures the highest indefinite DP in the scope of negation is marked with the negative determiner *kein*; in the case of non-nominal indefinite expressions like *jemand*, the indefinite is substituted by a specific negative form, e.g. *niemand*. In LN structures, on the other hand, negation and the highest indefinite in its scope are realized as *nicht ein NP* or e.g. *nicht jemand*. In the following, we will discuss how this difference arises.

Let us begin by reviewing the rule which governs *kein*-insertion. In terms of Distributed Morphology, we analyze the negative determiner *kein* as a phonological unit that realizes a string consisting of two morphemes, NEG and the indefinite

12Disjunctive ON and its LN counterpart stand in a similar, morphological opposition: *weder (noch)* contrasts with *nicht (oder)*. Parts of the analysis put forward in this section may therefore also be applicable to the disjunctive ON/LN split, which will not be treated separately in this work.
determiner D_{INDF}. We argue that the rule for *kein*-insertion relates to a structurally restricted domain and only affects morphemes in positions dominated by vP. In practical terms, we assume that NEG and an indefinite determiner are spelled out as *kein* in clauses where NEG is adjoined to vP (i.e. in ON clauses), though not in clauses where NEG moves to TP (i.e. in LN clauses).

Below we provide the relevant lexical entries (“vocabulary items”). *nicht* is the phonological realization of NEG. *kein* as another phonological expression is associated with a more specific entry. Insertion of *kein* overrides insertion of simple *nicht* and *ein* by (32-a) and (32-b) if NEG is a vP-adjunct. However, if NEG moves to TP as in the case of LN clauses, *kein* is not called into action. The derivation of indefinite ON and indefinite LN is outlined in (33) and (34), respectively.

(32) Vocabulary items

a. *nicht* ↔ $[\text{NEG}]$

b. *ein* ↔ $[D_{\text{INDF}}]$

c. *kein* ↔ vP

(33) Indefinite ON

13 In line with Distributed Morphology, we assume that NEG incorporates into the DP containing D_{INDF} by morphological merger. This operation is outlined below (Penka 2011: 139, following Marantz 1984, 1988). NEG is lowered “from the terminal node of sentential negation to the terminal node of a right-adjacent indefinite” (Penka 2011: ibid.). By consequence, *kein* realizes the morphological content of a single terminal node.

(i) \Rightarrow neg- incorporation \Rightarrow XP \Rightarrow neg- incorporation \Rightarrow XP

14 It is not clear what happens in cases where negation has narrow scope over an indefinite DP, giving rise to a contrastive interpretation: As pointed out at the beginning of this work, contrastive negation with respect to an indefinite can be marked both through *kein* and *nicht ein* (cf. [32-a]). Further research will be needed to find out whether this is a case of true optionality, and in case it is not, to determine the difference between both variants. Only then we can return to our initial question about the format of a *kein*-rule which makes correct predictions both with respect to wide scope and narrow scope negation.

15 This conforms to the *Subset Principle*, which figures prominently in the technical inventory of Distributed Morphology. According to this principle, “[w]here several Vocabulary Items meet the conditions for insertion, the item matching the greatest number of features specified in the terminal morpheme must be chosen” (Halle 1996: 128). *nicht ein* is ruled out in structures like (33) precisely because its insertion would violate the condition specified by the Subset Principle: note that there is a more specific item (32-c) which is able to realize the same morphological content as *nicht ein.*
3.3 Light Negation in a Negative Concord view of German

\[vP \rightarrow \text{kein} \quad \text{(by (32-c), overriding (32-a) and (32-b))} \]

\[\text{INDF} \]

\[\text{Indf} \rightarrow \text{nicht ein} \quad \text{(by (32-a) and (32-b))} \]

3.2.3 Concluding remarks

In the preceding sections we proposed an account of the morphosyntactic difference between ON and LN under the general provision of \(\lambda \) checking. We found a way to derive the definite and the indefinite forms of LN, and contrasted their derivation with the derivation of definite and indefinite ON.

With regard to indefinite LN, one thing still needs to be clarified. Note that the structural restriction on \(\text{kein} \)-insertion as expressed by the lexical entry in (32-c) is controversial; what it states with respect to morphological merger is that left-adjacent \(\text{NEG} \) may only be lowered to \(\text{INDF} \) if it is adjoined to \(\text{vP} \) or a lower phrase. It is unclear why bare structure, such as the intermediate T-positions in clauses where \(\text{NEG} \) adjoins to TP, would hinder \(\text{NEG} \) from lowering. If this was indeed the case, it would mean that linear adjacency, albeit “a crucial prerequisite” (Penka 2011: 140, referring to Marantz 1988, Bobaljik 1994), is not enough to warrant application of morphological merger. This difficulty can be circumvented under the assumption that German is a strict NC language. The details of the proposal will be laid out in the following section.

3.3 Light Negation in a Negative Concord view of German

It has been proposed (Penka 2011, among others) that all languages are underly-ingly (non-strict) NC languages. In the following, we want to examine what the consequences of an analysis of German as a NC language are for the theory and derivation of LN.

Among others, NC can be analyzed as a type of syntactic agreement. Zeijlstra (2004) argues that in NC languages, sentential negation is [...] realised through syntactic negation, in which negation is expressed by means of agreement between a (c)overnegative operator and a number of morpho-phonologically negative elements that are marked for negation by a \([\text{uNEG}] \) feature. (Zeijlstra 2004: 265)
NC languages are typically contrasted with non-NC languages, where clausal negation “is expressed by means of semantic negation, in which every negative element is semantically negative and corresponds to a negative operator” (ibid.).

Negative Indefinites (NIs) in NC languages are inherently non-negative and must be licensed by way of syntactic agreement with an element carrying semantic negation. Accordingly, if we regard German as a NC language, the denotation of NIs such as niemand or the determiner kein\(^16\) will equal the denotation of their positive counterparts, e.g. jemand and ein. However, in contrast to them, NIs like kein will carry an uninterpretable feature [u_neg] which must be checked against a c-commanding covert negative operator NEG-Op in the same clause. Note that if negative semantics is carried by NEG-Op rather than kein, kein can be regarded as a lexical unit at all levels of representation and need not be viewed as a purely phonological entity.\(^17\)

In this section we adopt an even stronger view and assume that German is a strict NC language. To wit, we argue that the negation adverb nicht is also semantically non-negative and subject to negative agreement, parallel to NIs. Consider the following LF representations, where negative agreement holds between NEG-Op and the NI kein\(^{35-a}\), or NEG-Op and the negation adverb nicht\(^{(35-b)}\)\(^{18}\)

\begin{align*}
\text{(35) LF} \\
\text{a. } & \quad [\text{CP NEG-Op_{NEG}} \text{C \text{TP} \text{vP ... \text{DP D kein } ... }\ldots \text{] }} \\
\text{b. } & \quad [\text{CP NEG-Op_{NEG}} \text{C \text{TP} \text{vP nicht ... } \text{vP }\ldots \text{] }}]
\end{align*}

The change in the domain of negation is accompanied by a change in our view of \(\lambda\) items. First, we assume that all \(\lambda\) items select an operator \(\lambda\)-Op. Second, we abandon the concept of \(\lambda\) checking. That is, we dispense with the notion of [u\(\lambda\)] which needs to be checked against NEG; neither the \(\lambda\) item nor \(\lambda\)-Op is taken to carry such a feature. We maintain the assumption that each \(\lambda\) item has a homophonous counterpart that does not select \(\lambda\)-Op.

Our main idea is that \(\lambda\)-Op functions as an intervener and blocks negative agreement between NEG-Op and a negative element carrying [u\(\text{NEG}\)] (in the following n-word) such as kein or the negation marker nicht: Being an operator, \(\lambda\)-Op is of

\(^{16}\)As in analyzing German as a covert NC language we follow a proposal by Penka (2011), we also adopt her view of kein as a member of the class of NIs.

\(^{17}\)Note that part of the motivation for viewing kein as a phonological expression associated with two underlying morphemes, NEG and D_indf, stems from split scope readings such as \((i)\) where a modal or intensional operator intervenes between the negative and the indefinite component of kein.

\begin{align*}
(i) \quad \text{Man muss keinen Ausweis herzeigen.} & \quad \text{not > must > a} \\
\text{one must kein-ACC ID present} & \quad \text{One need not present an ID.}
\end{align*}

\(^{18}\)An analysis of German as a strict NC language requires several additional assumptions. For example, to make adequate predictions, we need to make sure that NEG-Op can only license one negative element at a time. On the other hand, we also need to explain why negative agreement cannot target kein if kein is in subject position.
the same type as NEG-Op and, at the same time, it is a closer c-commander for clausemate n-words than NEG-Op. Consider the following derivations, where λ-Op undermines negative agreement between an n-word and NEG-Op.\footnote{A similar effect has been observed by Brown and Franks (1995) with respect to Russian NIs prefixed by -ni. ni-sequences are subject to NC and are licensed under agreement with the clausal negation particle ne. Brown and Franks claim that the ungrammaticality of ni-sequences in negative polar questions is due to the intervention of YN-Op between the negative head ne and NEG-Op responsible for lending ne negative force. Such configurations arise in interrogative contexts if the verb and the negation particle, which is proclitic to the verb, raise to C0. ni-sequences are taken to be ruled out in such constructions because negative force cannot be transmitted to ne. Semantically, such interrogatives carry a positive implicature, wherein they resemble German PQs featuring LN. Elements of the nibud'-series can be used as substitutes for ni-sequences in these constructions. nibud'-phrases are sometimes described as weak NPIs that are ruled out in the scope of (semantically active) clausemate negation.}

\begin{tabular}{l}
(36) \ a. \ *[CP NEG-Op [\textsubscript{C\textsubscript{0}} bevor-\lambda-Op] \ldots \ [DP kein \ldots]] \\
\hspace{1cm} b. \\
\hspace{1cm} CP \\
\hspace{2cm} \text{NEG-Op} \text{[INEG]} \\
\hspace{3cm} \text{C'} \\
\hspace{4cm} \text{C\textsubscript{0}} \\
\hspace{5cm} \text{TP} \\
\hspace{6cm} \ldots \\
\hspace{7cm} \text{T0} \\
\hspace{8cm} \text{DP} \\
\hspace{9cm} \text{V\textsubscript{0}} \\
\hspace{10cm} \text{kein} \ldots \\
\hspace{11cm} \text{[uNEG]} \\
(37) \ a. \ *[CP NEG-Op [\textsubscript{C\textsubscript{0}} bevor-\lambda-Op] \ldots \ [\text{vP nicht} \ [\text{vP} \ldots]]] \\
\hspace{1cm} b. \\
\hspace{1cm} CP \\
\hspace{2cm} \text{NEG-Op} \text{[INEG]} \\
\hspace{3cm} \text{C'} \\
\hspace{4cm} \text{C\textsubscript{0}} \\
\hspace{5cm} \text{TP} \\
\hspace{6cm} \text{T'} \\
\hspace{7cm} \text{vP} \\
\hspace{8cm} \text{T0} \\
\hspace{9cm} \text{nicht} \\
\hspace{10cm} \text{[uNEG]} \\
\hspace{11cm} \ldots \\
\hspace{12cm} \ldots \\
\end{tabular}
However, we suggest that there is still a way to achieve negative agreement despite the presence of an intervening λ-Op. To wit, we assume that agreement obtains once the n-word has moved in the direction of NEG-Op. The fact that nicht is grammatical in LN clauses, whereas kein is ungrammatical, follows directly from this assumption. We argue that kein cannot raise from its position inside DP, while nicht is free to move from its position to a TP-adjoined position, thereby approaching NEG-Op; compare this to our previous proposal, where nicht was subject to the same movement process, albeit for a different reason, namely, to check [uλ] on a λ item. As a result, nicht is able to enter into an agreement relation with NEG-Op irrespective of the presence of λ-Op. This is the reason why nicht can be used as a substitute for kein in LN clauses, thus leading to what we call indefinite LN, nicht ein NP. On the other hand, this also explains why nicht precedes definite DPs in LN clauses: as in our previous proposal nicht adjoins to TP instead of vP in LN clauses and, as a result, occupies a position where it c-commands definite DPs even if they have scrambled to a vP-adjoined position.

Below we give an example of a felicitous instance of negative agreement in the presence of λ-Op. λ-Op in this example acts as an intervener; it prevents licensing of [uNEG] in its base position and forces nicht to adjoin to TP for negative agreement to come out successfully.²⁰

(38) a. \[\text{CP NEG-Op} [c_0 \text{ bevor-λ-Op}] [\text{TP nicht}_i \ldots [\text{vP} t_i \ldots]]\]

²⁰For indefinite ON, things remain the same in a NC view of German; i.e., the fact that nicht ein is ruled out in ON clauses instead of being another option alongside kein (or, as Penka (2011: 219) puts it, that “whenever an NI can be used, it has to be used”), receives a similar explanation in this approach as in a non-NC approach. Penka attributes it to “a process of morphological blocking”, where “if a more specific form exists for a particular context, this form has to be used, excluding the more general form from this context” (ibid.: 220). By the Elsewhere Principle, the more general form is used in contexts for which no more specific form exists. This applies to the opposition of indefinite ON and LN in a straightforward manner: Semantically, both forms ‘NEG-Op \ldots kein’ and ‘NEG-Op \ldots nicht ein’ are equivalent. At the same time, kein is more specific than nicht ein. By the Elsewhere Principle this must be taken to mean that “[i]n the realm of indefinites, NIs are the forms specified for use in the context of sentential negation” (ibid.). nicht ein will in turn be used in derivations where kein is not licensed, for example, in LN clauses, where λ-Op inhibits negative agreement between NEG-Op and kein.
Before we conclude, note that in an analysis of German as a NC language it is crucial that covert NEG-Op is not present unless it is in an agreement relation with an element marked for negation. Otherwise we would allow for negative semantics in sentences lacking overt negation marking, which is clearly undesirable. Therefore, NEG-Op must also be subject to some sort of checking requirement. To this end, Penka (2011: 48, fn. 27) suggests that the negation feature on NEG-Op might simultaneously be interpretable and unvalued. Such an assumption would have two advantages: First, it would ensure that NEG-Op never occurs in the absence of an overt element marked for negation and equipped with a valued (though uninterpretable) [NEG] feature. Second, if we took feature checking to be induced by unvalued rather than uninterpretable features, negative agreement would comply with the standard form of agreement, in which the probe c-commands the goal and not vice versa (which would be the case, if agreement was viewed from the perspective of (un)interpretable features).

Footnotes:
21Penka thus adopts a proposal put forward by Pesetsky and Torrego (2007). Pesetsky and Torrego disentangle (un)interpretable and (un)valued features, thus making available interpretable unvalued and uninterpretable valued features, in addition to features of the traditional type (interpretable/valued and uninterpretable/unvalued, as proposed by Chomsky (2000, 2001)).
22The assumption that agreement is driven by unvalued rather than by uninterpretable features makes sense also from a general point of view: as (un)interpretability is a semantic notion, (un)interpretable features should actually be invisible to the syntactic component. (Cf. Penka 2011: 48, fn. 27)
4 λ clauses and PPIs

We already mentioned that the presence of a λ item in a clause can have several syntactic consequences, with LN being one of them. This chapter deals with the observation that clauses featuring a λ item, short λ environments\(^1\), differ from other syntactic environments in that they allow for PPIs to stand in the immediate scope of negation.

Corresponding phenomena have been discussed under the name of rescuing in the literature (Szabolcsi 2004, among others). In general, rescuing refers to grammatical instances of PPIs in the immediate scope of DE elements from whose scope they are normally excluded. In this chapter we will show that in German, the only DE element which allows for rescuing of PPIs is clausal \textit{nicht}. Moreover, we will see that the distribution of rescuing from under \textit{nicht} is parallel to the distribution of LN. These facts will lead us to the conclusion that the opportunity to rescue PPIs from under \textit{nicht} is related to the same syntactic fact as LN, that is, to the presence of a λ item. At the end of the chapter we will raise the question whether the German definite and indefinite articles might also be PPIs.

4.1 Types of PPI rescuing

4.1.1 PPIs in the scope of negation

It has been observed (Ladusaw 1979, Ladd 1981, Krifka 1991, Szabolcsi 2004, among others) that in certain syntactic contexts, PPIs can occur in the immediate scope of clausal negation and thus in a position where they are normally ungrammatical. Schematically,

\[
*(\sigma) > \text{NEG} > \text{PPI}
\]

where \(\sigma\) is a variable for a syntactic context.

The set of syntactic contexts \(\sigma\) satisfying \([1]\) constitutes the set of \textit{rescuing contexts}, or \textit{rescuers}.

In the following we will show that rescuing is possible in λ environments on a regular basis. In other words, we will see that the set of λ contexts is a subset of

\(^1\)For ease of reference, a clause containing a λ item will henceforth be called a λ \textit{environment} or a λ \textit{context}. λ clauses headed by different λ items correspond to different λ environments or λ contexts.
the set of rescuing contexts.

In general, an element is identified as a PPI if it is systematically ruled out in the scope of negation and probably other decreasing operators. According to this definition, German *einige* ‘several’ and *schon* ‘already’ are PPIs: \(^2\) illustrates that *einige* and *schon* cannot scope immediately below clausemate negation.\(^2\) Like most PPIs, they are grammatical if negation is not in the same clause, cf. \(^3\)

\[\text{(2) (Why is Peter nervous?)}\]
\[\text{a. Weil er (*nicht) einige Mitreisende kennt.} \]
\[\text{because he not several fellow travelers knows} \]
\[\text{b. Weil Rita (*nicht) schon gegangen ist.} \]
\[\text{because Rita not already gone \textit{AUX}} \]

\[\text{(3) Weil er nicht glaubt, dass Maria einige Fremdsprachen spricht.} \]
\[\text{because he not believes that Maria several foreign languages speaks} \]

However, also in German there are exceptions to this condition, and in a small set of contexts, so-called rescuing contexts, PPIs are permitted in the immediate scope of clausemate negation. Interestingly, the set of \(\lambda\) environments identified in this work is a subset of the set of rescuing contexts. Consider in this respect the following examples. Each example features a different \(\lambda\) environment. In all examples, *einige* and *schon* are permitted in the immediate scope of clausemate *nicht*.

\[\text{(4) Temporal CPs}\]
\[\text{a. Wir beginnen nicht mit der Planung, bevor wir nicht einige Zusagen bekommen haben.} \]
\[\text{‘We don’t start planning before we have received several positive answers.’} \]
\[\text{b. Lea darf nicht gehen, bis sie nicht einige Fragen beantwortet hat.} \]
\[\text{‘Lea may not leave until she has answered several questions.’} \]
\[\text{c. [...] dass es eine Rettung der bestehenden Strukturen gar nicht that it a rescuing the\textit{.GEN} existing structures at all not geben kann, solange sich nicht einige grundlegende Dinge ändern.} \]
\[\text{give can as long as \textit{REFL} not several fundamental things change} \]

\(^2\)We need to suppress a denial or contrastive reading of negation, as such a reading obscures the relation between negation and PPIs. To evaluate whether a certain element is a PPI, we phrase our examples as answers to why-questions, following Szabolcsi (2004: 413). Compare \([i]\) where negation receives a denial reading and is free to scope over the PPI \textit{something}, to \([ii]\) where a denial or contrastive reading is not possible and \textit{something} is not permitted to take narrow scope. Both examples are taken from Szabolcsi (2004: 413).

\[\text{(i) He found something.} \]
\[\text{Wrong! He DIDn’t / DID NOT find something.} \]
\[\text{\[not > some}\]

\[\text{(ii) Why did John leave empty-handed?} \]
\[\text{Because he didn’t find something.} \]
\[\text{\[not > some}\]
4.1 Types of PPI rescuing

‘...that the existing structures cannot be rescued as long as there are no fundamental changes’

(5) *wenn*-CPs
a. Peter kommt nicht mit, wenn er nicht *eine* Mitreisende kennt.
 ‘Peter doesn’t come along unless he knows several fellow travelers.’

b. Peter wäre nicht mitgekommen, wenn er nicht *eine* Mitreisende gekannt hätte.
 ‘Peter wouldn’t have come along if he hadn’t known several fellow travelers.’

(6) Main clauses of conditionals
a. Wenn du noch mit uns anstoßen möchtest, darfst du nicht *schon* gehen.
 ‘If you want to clink glasses with us you shouldn’t already be leaving.’

b. Wenn sie sich amüsiert hätte, wäre sie nicht *schon* gegangen.
 ‘If she had had fun, she wouldn’t have left already.’

(7) Relative clause restricting a universally quantified DP
Wir haben jeden abgelehnt, der nicht *eine* Referenzen mitgebracht hat.
‘We rejected everyone who didn’t have some references.’

(8) Purpose clauses
a. Beim anbringen [sic] der Achsen muss man sorgfältig arbeiten, damit
 nachher nicht *eine* Räder in der Luft hängen.5
 ‘When attaching the axles one has to work carefully lest some wheels
 dangle in the air afterwards.’

b. Aus diesen [sic] Grund gab ich auch bei den Panorama Bildern keine
 Namen an um nicht *eine* Berge umzubenennen6
 ‘For this reason I didn’t name the panoramic photos lest I rename some
 mountains.’

(9) PQs
a. Gibt es hier nicht *eine* vegetarische Restaurants?
 ‘Aren’t there several vegetarian restaurants around here?’

b. Maria fragt sich, ob es hier nicht *eine* vegetarische Restaurants gibt.
 ‘Maria wonders if there aren’t there several vegetarian restaurants around
 here.’

4The PPI seems tolerable under *nicht* also in the absence of the *wenn*-clause, see (i). Probably, the modal verb shields *schon* from negation. Recall that we observed a similar effect for indefinite LN in this environment.

(i) ?Du darfst nicht *schon* gehen.

6http://canosthome.at/2012/06/24/tonion-wanderung/, accessed 2012-10-07.
Examples (4) through (13) show that PPIs are grammatical in the immediate scope of clausal *nicht* throughout λ environments. Are λ environments at the same time the only syntactic environments where PPIs can stand in the immediate scope of clausal negation? To answer this question, we will have a look at NPI licensing environments. Note that an evaluation of the relationship between NPI environments and PPIs in the scope of negation is important, in particular, considering that in earlier works (most notably, Krifka 1991 and Szabolcsi 2004) it has been argued that the distribution of rescuing – of which the configuration under discussion, PPIs
scoping under negation, is an instance – imitates the distribution of NPIs like any and ever.7 Schwarz (2004) and Schwarz and Bhatt (2006), however, point out that this parallelism is not perfect. They argue that, rather than with NPIs, rescuing patterns with LN. The above examples make it clear that PPIs can scope immediately under negation in several non-NPI licensing environments, such as bis-CPs with adjunct status, main clauses of conditionals, and exclamatives. Conversely, the examples in (16) will show that some NPI licensing environments, namely, complements of certain DE predicates (cf. (14)) do not allow for PPIs to scope under negation. Curiously, these NPI licensing environments were likewise found to be incompatible with LN, cf. (15), (14), and (15) are repeated from Section 2.1.2.

(14)

\begin{itemize}
 \item a. John bezweifelt, dass Mary jemals trainiert war. (NPI)
 \textquote{John doubts that Mary has ever been athletic.}'
 \item b. John streitet ab, dass er jemals geraucht hat.
 \textquote{John denies that he has ever smoked.}'
 \item c. Meine Katze weigert sich, sich auch nur ein einziges Mal waschen zu lassen.
 \textquote{My cat refuses to be washed even once.}'
\end{itemize}

(15)

\begin{itemize}
 \item a. *John bezweifelt, dass Mary nicht ein Alkoholproblem hat. (LN)
 \textquote{John doubts that Mary does not have an alcohol problem.}'
 \item b. *John streitet ab, dass er nicht eine Freundin hat.
 \textquote{John denies that he does not have a girlfriend.}'
 \item c. (John is diabetic.)
 \textquote{Aber er weigert sich, nicht eine Geburtstagstorte zu essen.}
 \textquote{But he refuses not to eat a (piece of) birthday cake.}'
\end{itemize}

(16) (NEG > PPI)

\begin{itemize}
 \item a. *John bezweifelt, dass Mary nicht \textit{eine} Probleme hat.
 \textquote{John doubts that Mary doesn’t have several problems.}'
 lit.: ‘John doubts that Mary doesn’t have several problems.’
 \item b. *John streitet ab, dass er nicht \textit{eine} gute Freunde hat.
 \textquote{John denies that he doesn’t have several good friends.}'
 lit.: ‘John denies that he doesn’t have several good friends.’
 \item c. *John weigert sich, nicht \textit{eine} Gläser Wein zu trinken.
 \textquote{John refuses not to drink several glasses of wine.}'
 lit.: ‘John refuses not to drink several glasses of wine.’
\end{itemize}

PPIs under negation pattern with LN also in another respect: in subjunctive conditionals, PPIs scoping under negation trigger a counterfactual implicature which cannot be canceled (cf. Schwarz 2004, and Schwarz and Bhatt 2006). In the example provided below, the \textit{wenn}-clause (18) is therefore odd as a continuation of B’s utterance in (17). Recall that the same effect was observed for LN in Section 2.1.2. LN, too, was found to trigger a noncancelable counterfactual interpretation when standing in a subjunctive conditional.

(17)

A: Was glaubst du warum Fritz durchgefallen ist? B: Ich bin mir nicht

7Szabolcsi (2004) is “not aware of any ‘distributional’ properties of NPI licensing that do not carry over to the rescuing of [AA-Op > PPI]” (426; AA-Op stands for \textit{antiadditive operator}).
λ clauses and PPIs

sicher, aber . . .
‘Why do you think Fritz failed?’ ‘I’m not sure, but . . .’

(18) #. . . wenn Fritz nicht einige Fragen beantwortet hätte, wäre er durchgefallen.
‘. . . if Fritz hadn’t answered several question, he would have failed.’

In its entirety, the presented data seems to confirm Schwarz’s (2004) and Schwarz and Bhatt’s (2006) position that the distribution of complexes of the type [neg > PPI] correlates with the distribution of LN: We saw that PPIs are grammatical in the scope of negation in all environments which also allow for LN, in technical terms, in all λ environments. Further, we found that environments that do not permit LN equally disallow complexes of the type [neg > PPI].

4.1.2 PPIs in the scope of other DE operators

In the previous section we showed that in all λ environments, PPIs can scope immediately under negation without inducing ungrammaticality. Are there other DE operators apart from negation that are incompatible with PPIs in their scope unless the whole configuration stands in the scope of a λ item? Schematically, are there other DE operators of which (19) holds?

(19) *(λ) > DE-Op > PPI

In the literature (Krifka 1991, Szabolcsi 2004) it has been argued that rescuing is indeed more general in that it may also involve other DE operators. For example, in English, PPIs can also be rescued from under the antiadditive elements without and never (Schwarz 2004, Schwarz and Bhatt 2006), as in (20). In (20-a) the PPI some is grammatical in the scope of without, and in (20-b) it is grammatical in the scope of never. Note that normally, some cannot scope immediately below these elements. The superordinate context which seems to be responsible for the exceptional grammaticality of the configuration [without/never > some] in these examples is clausal negation in (20-a), and the if-clause in (20-b).

(20) a. She doesn’t make her cakes without adding some butter.
b. If they had never brought some cookies, we would not have had desert.

(Schwarz and Bhatt 2006: 37)

However, already Ladusaw (1979) points out that by far not all antilicensers allow for PPIs in their scope to be rescued. (21) for example, shows that the negative quantifiers nobody and nothing do not permit rescuing of the PPIs already and sometimes in their scope, though the respective superordinate contexts (surprise

8When we say that an element is an antilicense for a certain PPI, we mean that the PPI cannot take scope immediately below this element. I.e., the notions antilicense and, correspondingly, antilicensing refer to those members of the set of DE elements with which a given PPI is incompatible. Note that antilicensing thus denotes an extrinsic property of a DE element, and not an operation.
and no one) principally qualify as rescuing contexts.

(21)
 a. ??I am surprised that nobody has already talked to you.
 (Ladusaw 1979: 175)
 b. ??There is no one here who nothing sometimes annoys.
 (Schwarz and Bhatt 2006: 6)

We note that corresponding examples are hard to obtain, and the judgments relatively unstable. Yet (20) suggests that in English there are at least some uncontroversial cases of rescuing where PPIs can be rescued from antilicensers other than negation.

In German the situation is different. Note that the German sentences in (22) and (23) featuring the PPIs ein bisschen ‘a bit’ and ein paar ‘a couple of, a few’ are worse than their English counterparts in (20).

(22)
 a. ??Sie macht ihre Torten nicht ohne ein bisschen Butter hinzu-
 zufügen. she makes her cakes not without a bit butter to-add
 b. ??.. ohne dass sie ein bisschen Butter hinzufügen
 würde. without that she a bit butter add would

We note variation between different PPIs even if they are traditionally grouped together. For example, ein paar undergoes rescuing more readily than the PPIs einige and schon.

(i)
 a. I was surprised that they never had some cookies.
 b. There was no one there who they never offered some cookies.
 (Schwarz and Bhatt 2006: 37)
mitgebracht hätte.
lit.: ‘Peter would have been upset if no one had brought a few bottles of wine.’

(25) (wenn) > kein > ein paar
a. *weil kein Gast ein paar Flaschen Wein mitgebracht hat
 lit.: ‘because no guest brought a few bottles of wine’
b. ??Peter wäre verärgert gewesen, wenn kein Gast ein paar Flaschen Wein mitgebracht hätte.
 lit.: ‘Peter would have been upset if no guest had brought a few bottles of wine.’

(26) (RelCl) > ohne > einige
a. *weil Christine ohne einige Flaschen Wein gekommen ist
 lit.: ‘because Christine arrived without several bottles of wine’
b. ??Peter lässt niemanden rein, der ohne einige Flaschen Wein kommt.
 lit.: ‘Peter lets nobody in who arrives without several bottles of wine.’

(27) (RelCl) > nie > ein paar
a. *weil Rita noch nie ein paar Ärzte zurate gezogen hat
 lit.: ‘because Rita has never consulted a few doctors.’
b. ??Das versteht niemand, der noch nie ein paar Ärzte zurate gezogen hat.
 lit.: ‘Nobody who has never consulted a few doctors understands this.’

From the data discussed in this section we conclude that the type of PPI rescuing discussed in Section 4.1.1 – i.e., rescuing of a PPI in the immediate scope of clausal negation – is the only regular case of rescuing in German.11 Our analysis will accordingly be directed towards cases of this type and ignore purported instances of rescuing which involves antilicensers other than clausal negation.

4.2 Analyses of PPI rescuing

4.2.1 PPI rescuing in a λ checking approach

We observed that German PPIs are systematically grammatical in the immediate scope of clausal negation if the configuration [NEG > PPI] stands in the scope of a λ item (Section 4.1.1). To incorporate this distributional match into our theory, we will make the grammaticality of PPIs under negation a side effect of λ checking.

Our argument is based on the special position of NEG in λ clauses. To wit, we contend that PPIs are sensitive to NEG only if NEG is a vP adjunct; if, as a

11This fact invalidates Schwarz and Bhatt’s (2006) criticism of a LN-oriented analysis of rescuing, which can only account for PPI rescuing from under NEG: the results obtained in this section suggest that an analysis which predicts PPIs to be rescued from under NEG but not from other DE operators is precisely what we want.
4.2 Analyses of PPI rescuing

Consequence of λ checking, NEG adjoins to TP, it will be too remote to have an adverse effect on PPIs in its scope. Thus, while the PPI *eine* is incompatible with NEG in (28-a) where NEG is a vP adjunct, the PPI remains unimpaired in (28-b) where NEG moves to adjoin to TP. The derivation of (28-b) is outlined in (29).

As an argument in support of the proposed parallelism between LN and PPI rescuing from under NEG, we note that clauses involving the rescuing configuration [NEG > PPI] share the semantic properties that are characteristic of corresponding LN clauses and distinguish both from ON clauses. We have already seen an instance of this correlation: like LN subjunctive conditionals, subjunctive conditionals featuring a PPI in the immediate scope of negation (cf. (18)) must receive a counterfactual interpretation. We will discuss these semantic properties, which seem to be related to the presence of a λ item in both cases, in more detail in Section 5.2.

(28) a. *weil Peter [vP nicht *eine* Mitreisende] kennt
 b. wenn Peter [TP nicht *eine* Mitreisende kennt]

12 In an NC approach to German as outlined in Section 3.3, we would argue that the grammaticality of PPIs in the scope of negation signals the presence of an intervener. Specifically, we would take λ-Op to shield PPIs from NEG-Op by means of intervening between them and NEG-Op. This is sketched in (i). Thus, though *nicht* could still be licensed by virtue of TP-movement, the intervention of λ-Op would prevent negative polarity from spreading over the whole clause. As a result, the PPI *eine* in the scope of *nicht* would remain unimpaired. Recall that λ-Op also acts as an intervener with respect to negative agreement, and prevents n-words to check their [uneg] feature against NEG-Op in case they remain in situ.

(i) a. $[CP \text{ NEG-Op } [C_0 \text{ *(\lambda-Op) }] \text{ nicht… } \text{ PPI… }]$
 b. $[CP \text{ NEG-Op } [C_0 \text{ wenn-*(\lambda-Op) }] \text{ [TP Peter, nicht… } t_i, [vP \text{ tj } \text{ tj } \text{ eine* Mitreisende } t_j] \text{ kennt t_j }]$

Note that PPIs are generally subject to intervention effects. Consider (ii), where an adverb, immer 'always', intervenes between the negation morpheme and the PPI *eine*, thus shielding the PPI from negative force.

(ii) Peter hat nicht *(immer) eine* Flaschen Wein mit.
 'Peter does not (always) carry along several bottles of wine.'
4.2.2 Existing approaches towards rescuing

In this section we briefly discuss two approaches to the phenomenon of rescuing adopted by Szabolcsi (2004) and Ladusaw (1979), respectively. In line with Szabolcsi, we use the term rescuing to refer to the grammaticality of PPIs in the scope of DE elements with which they are normally incompatible. We will see that both approaches do not qualify as analyses for the German rescuing data.

Szabolcsi’s (2004) analysis is directed towards rescuing in English, but also takes into account Hungarian data. We need to bear in mind that rescuing applies in a more general fashion across English than across German: As noted in Section 4.1, English PPIs can be rescued in the scope of a variety of DE elements apart from negation, including without and never. German PPIs, on the other hand, can be rescued only from under negation. Therefore, we expect analyses of rescuing in English to be more general than analyses of rescuing in German.

Let us consider the main aspects of Szabolcsi’s proposal. Szabolcsi promotes a view of PPIs as double-NPIs. She states that PPIs have two NPI-features. One is a strong-NPI feature like that of yet and squat: it requires a clausemate antiadditive licensor, without intervention. The other is a weak-NPI feature like that of ever: it requires a Strawson-decreasing licensor (not necessarily clausemate but...
4.2 Analyses of PPI rescuing

without intervention). To understand the exact distribution of PPIs, let us develop a metaphor for expository purposes. I propose that these two features are normally ‘dormant’. A context that can license the strong-NPI feature ‘activates’ and, in the same breath, licenses that feature. What we have seen indicates, however, that the other, weak-NPI feature also gets activated at the same time – activated, but not licensed. Therefore, the emergent constellation is illegitimate, unless a licensor for the weak-NPI feature is provided. (Szabolcsi 2004: 429)

By way of evidence for such an approach, which effectively equates the availability of PPI rescuing with weak NPI licensing, Szabolcsi argues that “the exact same set [of NPI-licensers]” that licenses weak NPIs (e.g. ever) also rescues the otherwise ungrammatical configuration [AA-Op > PPI] provided that the NPI licensers are “added scopally immediately above it” (ibid.: 425).

However, making these assumptions, Szabolcsi ignores the mismatches in the distribution of (weak) NPIs and rescuing. Recall that German allows for rescuing in environments which do not license NPIs, e.g., in main clauses of conditionals. We have seen corresponding examples in Section 4.1.1. Example (30) demonstrates that the same is true for English. In turn, some NPI licensing environments, e.g. clausal complements of doubt, do not support rescuing. See examples (16-a)–(16-c) for German, and (31) for English.

(30) If there were no oil in the tank, the furnace wouldn’t sometimes start.
 (Schwarz 2004: 15)

(31) *Mary doubts that Peter doesn’t have some severe problems.

If we wanted to use Szabolcsi’s analysis to capture rescuing in German, we would need to change the substance of the proposal. Remember that German PPIs can only be rescued in the scope of clausal nicht. According to Szabolcsi, “[t]he essence of the proposal is that our PPIs have a combination of two NPI features” (429 f.). Certainly, Szabolcsi concedes that “[e]xactly what NPI features a PPI happens to have is of secondary importance […]. [i]t would be equally possible for a PPI to have a combination of two other NPI-features” (430). Theoretically, we could hence replace the first, strong NPI feature by one which is yet stronger and can only be satisfied by clausal negation. Thereby we could accommodate the fact that German PPIs can only be rescued in the scope of clausal negation. However, to make up for the mismatch in the distribution of NPIs and rescuing mentioned above, we would need to manipulate the second NPI feature as well and replace it by a [uλ] feature in order to tie rescuing to λ contexts. In summary, we would hence postulate a mysterious class of bipartite items that comprise within themselves a superstrong NPI feature [unpi] in addition to an uninterpretable λ feature [uλ].

13 According to a semantic theory of NPI licensing, such environments lack the critical monotonicity property required of NPI licensing contexts, i.e., they are not (Strawson-)decreasing.

14 This would entail changes in the architecture of λ items in that we could collapse λ items and their homophonous non-λ counterparts. All λ items would henceforth carry an interpretable [iλ] feature and could, but need not go along with LN.
Ladusaw’s (1979) analysis would be easier to reconcile with rescuing in German. In light of the fact that clausal negation in English is not always incompatible with PPIs in its immediate scope, Ladusaw introduces a second negation morpheme *not*₂ homophonous with default negation *not*₁; crucially, as opposed to default negation, *not*₂ is compatible with PPIs in its scope. This makes it possible to capture contrasts as in (32) (a similar contrast can be observed in German): the problematic sentence (32-a) is assumed to involve the default morpheme *not*₁, while (32-b) is taken to feature *not*₂, which does not pose a problem for the PPI *someone* in its scope.¹⁵

(32) a. ?Someone hasn’t already talked to you. \((not₁)\)
 b. I am surprised that someone hasn’t already talked to you. \((not₂)\)

(Ladusaw 1979: 174)

If we wanted to adopt Ladusaw’s analysis for rescuing in German, we could similarly assume that different negation morphemes \(\text{NEG}_2\) and \(\text{NEG}_1\), corresponding to *not*₂ and *not*₁, both spelling out as *nicht*, are employed in environments which allow for rescuing (i.e. \(\lambda\) environments) as opposed to the environments which don’t. \(\text{NEG}_2\), compatible with PPIs in its immediate scope, would be taken to carry an uninterpretable feature \([u\lambda]\) that needs to be checked by a \(\lambda\) item. \(\text{NEG}_1\) and \(\text{NEG}_2\) would be the only negative elements standing in such a relation, in consideration of the fact that German PPIs can only be rescued from under clausal negation. Note, however, that we lack strong evidence in favor of the existence of two negation morphemes \(\text{NEG}_1\) and \(\text{NEG}_2\) in German; an assumption along these lines would hence amount to a major stipulation.

4.3 Light negation as an instance of rescuing?

Let us reconsider the reasons for the ungrammaticality of LN, i.e. forms of the type *nicht d- NP* and *nicht ein NP*, in the absence of \(\lambda\) items and the operation of \(\lambda\) checking. Notably, the analysis we provided in Section 3.2 attributed the ungrammaticality of definite LN and indefinite LN to violations of different rules: Regarding definite LN, we made reference to scrambling and assumed that movement out of VP is mandatory for definite discourse-referent DPs. In addition, we claimed that \(\text{NEG}\) is by default a \(v\)P-adjunct. In the absence of special conditions overriding these requirements, this gives us strings of the type *d- NP nicht* described as definite

¹⁵To restrict the occurrence of PPI-friendly *not*₂, Ladusaw makes the tentative proposal that *not*₂ introduces a conventional implicature of denial to the effect “that someone has believed until recently that the proposition in its scope was true” (ibid.: 180) or “that someone believes or expects that the affirmative form of the negated sentence is true” (182). However, Ladusaw also concedes that “all ‘double negatives’[¹⁶] cannot be reanalyzed as cases of embedded denials” (184). To the same effect, Szabolcsi (2004) points out that the antilicensing of PPIs is not restricted to denial contexts.

¹⁶The term *double negatives* as used by Ladusaw (1979) is adopted from Baker (1970) and relates to cases where the behavior of PPIs deviates in the above-noted way or, in Ladusaw’s terms, to sentences where *not*₂ is present.
4.3 Light negation as an instance of rescuing?

ON. On the other hand, concerning indefinite LN, we argued that indefinite LN would be ruled out in non-\(\lambda\) clauses by the principle of morphological blocking and the condition that the most specific form – in this case \textit{kein} – has to be inserted.

However, we noticed that the DPs \textit{d- NP} and \textit{ein NP} are available in the syntactic scope of negation in the same environments in which PPIs are grammatical under negation. Considering this parallelism, is it possible that the definite (discourse-referent) and indefinite German determiners \(D_{\text{DEF}}\) and \(D_{\text{INDF}}\) themselves are PPIs? This would explain why they cannot normally scope directly below negation: analogous to canonical PPIs, e.g. \textit{einige}, \textit{schon}, \(D_{\text{DEF}}\) and \(D_{\text{INDF}}\) would have specific properties which are in conflict with such a position. A similar proposal has been made by vanden Wyngaerd (1999) for the Dutch indefinite determiner \textit{a}.

Note that, as a result, the phenomena of LN and rescuing could be collapsed into one, and the analysis of rescuing proposed in Section 4.2.1 could at the same time account for the exceptional realization of negation as LN.

If the German determiners \(D_{\text{DEF}}\) and \(D_{\text{INDF}}\) are indeed PPIs, however, they must be of a weaker type than most PPIs. As we know, definite and indefinite DPs are perfectly normal in many antiadditive contexts (in the scope of \textit{kein, niemand, ohne} etc.), unlike most PPIs (cf. \textit{einige} in (33)-(35); antimorphic contexts – represented, above all, by clausal negation – are effectively the only contexts from which definite and indefinite DPs are usually excluded.

(33) (Why is Masha dissatisfied?)
Weil \textit{kein Gast} ihren Lieblingswein/Freunde/*\textit{einige Freunde} mitgebracht hat.
‘Because no guest brought along her favorite wine/friends/several friends.’

(34) Weil \textit{niemand} ihren Lieblingswein/Freunde/*\textit{einige Freunde} mitgebracht hat.
‘Because no one brought along her favorite wine/friends/several friends.’

(35) Weil ihr Bruder \textit{ohne} ihren Lieblingswein/Freunde/*\textit{einige Freunde} gekommen ist.
‘Because her brother arrived without her favorite wine/friends/several friends.’

The compatibility of definite and indefinite DPs with antiadditive contexts other than negation is one of the main differences between \(D_{\text{DEF}}\) and \(D_{\text{INDF}}\), and canonical PPIs. Crosslinguistically, there are hardly any canonical PPIs of the same weak sort as \(D_{\text{DEF}}\) and \(D_{\text{INDF}}\): Van der Wouden (1994) cites Dutch \textit{al} ‘already’ and \textit{nog} ‘still’ (apart from \textit{ooit} ‘ever’, which is simultaneously a weak NPI) as examples for PPIs which are ungrammatical only in antimorphic contexts. In German, the PPIs \textit{schon} ‘already’, \textit{noch} ‘still’, and \textit{je(mals)} ‘ever’17 might be similar in that they are ruled out in the scope of negation (cf. (36)), but are only slightly ungrammatical in other antiadditive contexts (cf. (37)-(38)); if \textit{schon}, \textit{noch}, and \textit{je} could be confirmed in their status as weak PPIs, \(D_{\text{DEF}}\) and \(D_{\text{INDF}}\) would not be the only exponents of the class of weak PPIs in German.

17Like Dutch \textit{ooit}, \textit{je(mals)} is at the same time a weak NPI.
What obscures the connection between LN and rescuing is the fact that, even in the absence of \(\lambda \) items, we have means to resolve the ungrammaticality produced by \(D_{\text{DEF}} \) or \(D_{\text{INDF}} \) in the scope of \(\text{nicht} \) – means which we lack in the cases of canonical PPIs in similar positions. To wit, \(D_{\text{DEF}} \) can outscope \(\text{nicht} \) by raising (together with the rest of the DP).\(^1\) \(\text{nicht ein} \), on the other hand, has a semantic equivalent \(\text{kein} \), which will be used in cases where \(\text{nicht ein} \) is ungrammatical.\(^2\) Canonical PPIs in German lack such obvious non-PPI equivalents.

Concerning \(D_{\text{INDF}} \) as a PPI, however, one remark is in order: Though it is impossible for \(\text{ein}-\text{DPs} \) to stand in the scope of \(\text{nicht} \) if both the DP and \(\text{nicht} \) remain in the middle field\(^3\), \(\text{ein}-\text{DPs} \) can be in the semantic scope of negation if A’-movement is involved. Apart from main clauses with a topicalized \(\text{ein}-\text{DP} \)\(^4\), we find \(\text{ein}-\text{DPs} \) scoping below negation in pseudo-cleft sentences\(^5\).\(^6\) cf. Schwarz (2004: 26).\(^7\)

\(^1\)As movement out of VP seems to be obligatory for definite DPs for independent reasons, it is hard to prove that \(D_{\text{DEF}} \) is in fact a PPI. Hence we might want to limit the extension of our PPI analysis to \(D_{\text{INDF}} \).

\(^2\)Unlike in previous approaches, in a PPI approach we do not assume that \(\text{nicht ein} \) competes with \(\text{kein} \) and is defeated by way of morphological blocking: note that the PPI status of \(\text{ein} \) will suffice as an explanation for its ungrammaticality in ON clauses.

\(^3\)In the German middle field, semantic scope is determined at the surface level by way of linear precedence.

\(^4\)In this regard, the behavior of \(\text{ein}-\text{DPs} \) or \(D_{\text{INDF}} \) cannot be checked against the behavior of the presumably weak PPIs \(\text{schon}, \text{noch}, \) or \(\text{je} \); there seems to be a strong pragmatic restriction against topicalization of these PPIs if they are in the semantic scope of negation. For definite DPs, no such
4.3 Light negation as an instance of rescuing?

(39) \(\text{LF: nicht} > \text{eine} \)
 a. Eine Vitamintablette hat er nicht genommen.
 a. vitamin-pill AUX he not taken
 b. Was er nicht genommen hat ist eine Vitamintablette.
 ‘What he didn’t take is a vitamin-pill.’
 (Schwarz 2004: 26)

This would be a strong argument against a PPI analysis of indefinite DPs: as PPI effects are, above all, semantic phenomena\(^{22}\), we would expect PPIs to retain their peculiar behavior at LF.

On the other hand, note that NEG-raising constructions pose a similar problem: In NEG-raising constructions, PPIs in the embedded clause (cf. schon in (40)) stand in the immediate scope of negation after negation has been reconstructed at LF.

(40) Mascha glaubt nicht, dass Lev schon angekommen ist.
 a. ‘Masha doesn’t believe that Lev has already arrived’ or
 b. ‘Masha believes that Lev hasn’t arrived yet’

We will not give a final answer to the question whether the German determiners \(D_{\text{DEF}} \) and \(D_{\text{INDF}} \) are PPIs. However, given \(\lambda \) checking as a core concept, we are able to derive the ON/LN split regardless of our answer to this question; as proven by our analysis in Section 3.2 (and the NC alternative in 3.3), our account of LN does not hinge on a view of \(D_{\text{DEF}} \) and \(D_{\text{INDF}} \) as PPIs and LN as an instance of rescuing.

\(^{22}\)Note that unlike NPI licensing, PPI antilicensing cannot easily be construed as the product of a syntactic requirement. Progovac’s (1994) binding-theoretic approach is an attempt in this direction.
5 Further issues in the domain of λ items

5.1 λ clauses and QPs

Schwarz and Bhatt (2006) observe that negation in LN clauses always takes widest scope in relation to other operators, in their terms, that “light negation is always in the immediate scope of its licenser” (23). This property of LN shall be the topic of the following discussion.

Let us start by considering the sentences in (1). They illustrate the interaction of LN with the indefinite expression jemand ‘someone’. In (1-a), negation scopes over jemand. In (1-b), the order is reversed and jemand takes scope over negation, which renders the sentence ungrammatical.

(1) a. Hat nicht jemand einem von uns das neue vegetarische Restaurant empfohlen?
 ‘Didn’t someone recommend the new vegetarian restaurant to one of us?’
 nicht not
 jemand someone
 einem one
 von von
 uns us
 das the
 neue new
 vegetarische vegetarian
 Restaurant restaurant
 empfohlen recommended

b. *Hat jemand nicht einem von uns das neue vegetarische Restaurant empfohlen?
 ‘Didn’t someone recommend the new vegetarian restaurant to one of us?’
 jemand someone
 nicht not
 einem one
 von von
 uns us
 das the
 neue new
 vegetarische vegetarian
 Restaurant restaurant
 empfohlen recommended

Unlike (1-b), (2) is fully grammatical, where a definite DP is used instead of jemand.

(2) Hat Peter nicht einem von uns das neue vegetarische Restaurant empfohlen?
 ‘Didn’t Peter recommend the new vegetarian restaurant to one of us?’
 Peter Peter
 nicht not
 einem one
 von von
 uns us
 das the
 neue new
 vegetarische vegetarian
 Restaurant restaurant
 empfohlen recommended

The observations made for jemand also hold for the universal quantifier jeder ‘every’. Consider the following examples. The object DPs in (3) are definite, and the object DP in (4) is indefinite.

(3) a. Hat nicht jeder Konferenzteilnehmer aus Wien den internationalen Sprechern das neue vegetarische Restaurant empfohlen?
 ‘Didn’t every conference-participant from Vienna the international speakers the new vegetarian restaurant empfohlen?’
 nicht not
 jeder every
 Konferenzteilnehmer conference-participant
 aus from
 Wien Vienna
 den the
 internationalen international
 Sprechern speakers
 das the
 neue new
 vegetarische vegetarian
 Restaurant restaurant
 empfohlen recommended
empfohlen?
recommended
‘Didn’t every participant from Vienna recommend the new vegetarian
restaurant to the international speakers?’
b. *Hat jeder Konferenzteilnehmer aus Wien den internationalen
AUX every conference-participant from Vienna the international
Sprechern nicht das neue vegetarische Restaurant empfohlen?
speakers not the new vegetarian restaurant recommended

(4) a. Hat nicht jeder Vortragende einen Philosophen zitiert?
AUX not every speaker a philosopher quote
‘Didn’t every speaker quote some philosopher?’
b. *Hat jeder Vortragende nicht einen Philosophen zitiert?
AUX every speaker not a philosopher quote

(5) describes the underlying syntactic structure of λ clauses containing QPs. The
structures in (5) feature jeder as a quantified subject, negation nicht, and the λ
item YN-Op_\[uλ\]. (5-a) represents grammatical examples like (1-a), (3-a) and (4-a)
whereas (5-b) stands for ungrammatical examples like (1-b), (3-b) and (4-b)

As suggested by (5-b) we assume that in examples like (1-b), (3-b) and (4-b), the
QP interrupts the agreement relation between the λ item, e.g. YN-Op_\[uλ\], and nicht,
with the result that [uλ] cannot be checked.

However, we should ask why λ checking is sensitive to an intervening quantifier in
the first place. This question cannot easily be answered. Note that a λ item cannot
be viewed as a true operator along the lines of e.g. the wh-operator, given that a
λ item never binds a variable. This means that we cannot explain the blocking of
λ checking in structures like (5-b) by the fact that the intervening quantificational
operator will always be a closer c-commander for nicht (the goal in λ checking)
than the λ item itself (along the lines of Relativized Minimality), as the λ item and
the quantificational operator are obviously not of the same type. For the moment,
we hence view it as an idiosyncratic property of λ checking that it cannot straddle
QPs.¹

For reasons of comparison, note that the same elements that undermine λ check-

¹Alternatively, the ungrammaticality of λ clauses where QPs take scope over clausal negation
could be the product of a constraint on TP-internal movement of QPs. (5-b) shows that we assume
such movement to be part of corresponding derivations.

Besides, note that it would be equally difficult to account for the intervention facts under a (strict)
NC view of German. Recall that under the assumption of strict NC, we abandoned the concept of
λ checking and took LN merely to reflect the impact which the presence of a λ-Op has on negative
agreement. We argued that negative agreement between the negation marker nicht and the NEG-
Op can bridge the λ-Op as long as nicht undergoes raising to TP. The QP intervention facts seem
to suggest that it is, however, impossible for negative agreement to overcome the intervention of a
further operator in addition to λ-Op.
ing also block covert wh-movement (and wh-related movement; see Beck 1996). As an example of blocking in double wh-questions, consider (6). The lower wh-phrase *wo is assumed to undergo wh-movement at LF. Crucially, under the first reading where both wh-phrases take scope over the universal quantifier *jeder* such that the quantifier intervenes between the covertly moved lower wh-phrase and its trace, the example is ungrammatical.

whom AUX everyone where seen

a. *Who was seen where by everyone? *wh > every
b. For each person x: whom did x see where? every > wh

2However, the QP can undergo QR at LF and adjoin to CP on top of the wh-operator, yielding the reading in (6-b) In this case no intervention effects obtain. Crucially, we do not have evidence that this option is available in corresponding LN constructions, as shown by the ungrammaticality of (1-b) (3-b) (4-b) and the PQ in (i-b) (Example (iii) shows that once (i-b) is turned into a positive declarative clause, QR of the existential operator across the universal operator is possible and the sentence takes on the expected ambiguity.)

(i) a. jeder > ein, ein > jeder
Hat nicht jeder Organisator einem Konferenzgast die Brauerei gezeigt?
AUX not every organizer a conference-guest the brewery shown
‘Didn’t every organizer take some conference guest to the brewery?’
b. *jeder > ein, *ein > jeder
*Hat jeder Organisator einem Konferenzgast nicht die Brauerei gezeigt?
AUX every organizer a conference-guest not the brewery shown

(ii) jeder > ein, ein > jeder
Ich erinnere mich an einen Fall, wo jeder Organisator einem Konferenzgast die
brazurei gezeigt hat.
AUX cardinal given me an example where every organizer a conference-guest the
brewery shown
‘I remember one case where every organizer took some conference guest to the brewery.’
(For the narrow scope reading of jeder, imagine a case where each time a conference guest came to Vienna, the guest was taken to the brewery by the respective organizer.)

What is the reason for this difference, i.e., why is it possible to QR across a wh-operator, though not across a λ item? As one explanation, QR in λ clauses such as (1-b) (3-b) and (4-b) might be disallowed and the ungrammaticality of corresponding examples hence irreparable because QR must not be semantically vacuous. Note that in order for QR of QPs to be semantically non-vacuous, there must be at least another QP, call it QP2, which takes surface scope over QP1. QR of QP1 across QP2 would have the desired effect of reversing the scopal relationship between the two QPs. However, adding QP2 also creates the problem that, being quantificational, QP2 intervenes in λ checking, just as QP1 does before outscoping the λ item; see (iii). For this reason, it is impossible to tell whether λ checking genuinely differs from covert wh-movement and whether QR to the left edge of CP is disallowed for reasons specific to λ checking; i.e., the unavailability of QR in LN constructions could equally well be a consequence of economy principles governing QR, in particular, the ban on semantically vacuous QR (cf. Fox 1995).

(iii) LF: [CP QP1i [CP YN-OP[AL] [C Hat] [TP QP2 [TP ti [TP nicht . . .]]]]
5.2 The semantics of λ clauses

To account for the distribution of LN as well as for its realization, we assumed that a number of lexical items is equipped with an uninterpretable feature $[u\lambda]$. We introduced the term λ item to refer to these items. All λ items are realized either as heads or as Specs of CP. Checking of $[u\lambda]$ takes place via adjunction of NEG to TP.

To get a full picture of the semantics of λ clauses, on the one hand, we would need to explore the semantic import of high NEG realization. On the other hand, we would need to determine whether there is a semantic property which is shared by all λ items. Only with this knowledge we can get to the core of the dependency relation between λ items and NEG, and understand why NEG in particular is designated as a goal for λ items. Moreover, this knowledge will make it easier to understand why, crosslinguistically, the same set of items gives rise to exceptions in various domains interacting with negation.

In this work, however, we will restrict our investigation of the semantics of λ clauses to individual λ environments; a unification of the semantic properties of λ clauses will be left for future work. In the following examination, we will use LN clauses as testing environments. To determine their special semantics, we will compare them to their non-LN counterparts.

Let us first look at bevor- and bis-clauses. In both environments, LN is semantically expletive. As an example consider (7). The truth conditions for the sentence are almost identical with and without nicht.

(7) Maria wird sich nicht setzen, bevor sie ihm (nicht) ein Glas Wein angeboten hat.
 ‘Maria won’t sit down before/until she has offered him a glass of wine.’

LN in bevor- and bis-clauses seems to depend on a conditional interpretation of the matrix and the embedded event. Consider (8). Note that the presence of LN renders (8) infelicitous: the conditional reading associated with LN does not make sense in the given context, yet it cannot be canceled.

(8) Ich kam nicht mehr zur Schutzhütte, bevor (#nicht) das Unwetter losbrach.
 ‘I didn’t reach the shelter before the thunderstorm started.’

(Weisgerber 1960, in Krifka 2010: 3)

By contrast, if a conditional reading arises in connection with non-negative bevor- and bis-clauses, it seems to be merely the product of a conversational implicature,

3We speak of “non-LN” rather than “ON” counterparts, since for certain types of LN clauses – i.e. those where LN is expletive – the closest correspondent lacking LN is a positive clause rather than one featuring ON.
which can be canceled.4,5 The same is true of LN in \textit{solange}-clauses: the presence of LN in \textit{solange}-clauses puts the events expressed by the matrix clause and the subordinate clause into a conditional relationship. Crucially, due to the core lexical properties of \textit{solange}, this contribution is less obvious in the case of \textit{solange} than in the cases of \textit{bevor} and \textit{bis}: Note that even for ordinary, i.e. positive or ON \textit{solange}-clauses, a conditional interpretation is extremely salient. However, as conditionality is not part of the lexical meaning of \textit{solange}, it can still be canceled in the absence of LN, in full analogy to non-LN \textit{bevor}- and \textit{bis}-clauses. This is illustrated by (9), where pragmatic factors rule out a conditional interpretation of the two events and nevertheless the

\begin{itemize}
\item[(i)] Peter verließ Potsdam nicht, bevor (nicht) das Projekt im ruhigen Fahrwasser war.
\text{’Peter didn’t leave Potsdam before the project was running smoothly.’}
\text{(Krifka 2010: 3)}
\end{itemize}

Note that the availability of a conditional interpretation in examples like this is accounted for if we view it as the product of a conversational implicature.

5There is a general tendency for expletive negation to surface as LN. The only exceptions are ON \textit{bevor}-clauses: for many speakers, expletive \textit{bevor}-clause featuring ON are not significantly worse than their LN counterparts. Consider \[\text{[i-a]}\] for the contrast between indefinite LN and indefinite ON, and \[\text{[i-b]}\] for the contrast between definite LN vs. definite ON, with negation being semantically expletive in all cases. (The bracketed instances of \textit{nicht} are mutually exclusive. The first \textit{nicht} is associated with LN, the second one with ON.)

\begin{itemize}
\item[(i)] a. Wir können nicht mit der Zubereitung beginnen, bevor er nicht Tomaten/?keine Tomaten gekauft hat.
\text{’We cannot start cooking before he has bought tomatoes.’}
\item[(i)] b. Wir können nicht mit der Zubereitung beginnen, bevor wir (nicht) den Tisch (?nicht) freigeräumt haben.
\text{’We cannot start cooking before we have cleaned the table.’}
\end{itemize}

In the literature, opinions on this matter diverge: while for Krifka (2010), “\textit{kein} after ‘expletive’ negation is not ruled out” (4), Schwarz and Bhatt (2006) state of corresponding constructions that they “lead […] to semantic anomaly”, as “negation which is not light cannot be expletive” (18). \textit{bis}-clauses, on the other hand, never allow for expletive negation to be expressed by ON, cf. \[\text{[ii]}\].

\begin{itemize}
\item[(ii)] a. Lea gibt nicht auf, bis sie nicht eine/?*keine Lösung gefunden hat.
\text{’Lea doesn’t/won’t give up until she has found a solution.’}
\item[(ii)] b. Lea kann nicht ruhig schlafen, bis sie (nicht) die korrekte Lösung (*nicht) gefunden hat.
\text{’Lea cannot sleep (easy) until she has found the correct solution.’}
\end{itemize}

Interestingly, \textit{bevor} and \textit{bis} are the only productive \textit{λ} items that combine with expletive negation and, at the same time, they are the only \textit{λ} items with NPI properties. Further research would be needed to determine whether this correlation is significant.

4This is in line with Weisgerber (1960, in Krifka 2010), who “argued that \textit{bevor} with what he calls ‘pleonastic’ negation is a temporal conjunction with a conditional meaning, whereas regular \textit{bevor} has a purely temporal meaning” (Krifka 2010: 2f.). Krifka’s observation that conditionality in \textit{bevor}-clauses is not contingent on LN does not speak against this, either. To wit, Krifka shows that \[\text{[i]}\] might receive a conditional interpretation (whereby “it was a reason for Peter to stay in Potsdam as long as it was necessary to secure that the project is doing well” (ibid.: 3)) even in the absence of LN.

5This is in line with Weisgerber (1960, in Krifka 2010), who “argued that \textit{bevor} with what he calls ‘pleonastic’ negation is a temporal conjunction with a conditional meaning, whereas regular \textit{bevor} has a purely temporal meaning” (Krifka 2010: 2f.). Krifka’s observation that conditionality in \textit{bevor}-clauses is not contingent on LN does not speak against this, either. To wit, Krifka shows that \[\text{[i]}\] might receive a conditional interpretation (whereby “it was a reason for Peter to stay in Potsdam as long as it was necessary to secure that the project is doing well” (ibid.: 3)) even in the absence of LN.

Note that the availability of a conditional interpretation in examples like this is accounted for if we view it as the product of a conversational implicature.
Further issues in the domain of λ items

example is fine.

(9) Solange ich studiert habe, hat es Studiengebühren gegeben.
 as long as I studied AUX AUX EXPL tuition fees existed

With respect to subjunctive conditionals, we already noted that LN must go along with a counterfactual interpretation (see (33), Ch. 2). The semantic consequences of LN for indicative conditionals are less clear, as are those for purpose clauses.

In relatives, LN must correlate with a “new non-accidental generalization” (Schwarz and Bhatt 2006: 35). To understand what is meant by that, consider the LN example (10-a) and its ON counterpart (10-b). (10-a) suggests that the entailment relation holding between the set of applicants who did not speak a foreign language and those who were rejected is causal. In the case of (10-b) on the other hand, this relation might be purely accidental; the sentence could, for example, be uttered by a speaker who knows the outcome of the admission procedure, though not the details on which the admission decision has been based.

(10) a. Wir haben jeden abgelehnt, der nicht eine Fremdsprache kann.
 ‘We rejected everyone who does not know a foreign language.’
 b. Wir haben jeden abgelehnt, der keine Fremdsprache kann.
 (Schwarz and Bhatt 2010: 34)

To corroborate their point about the consequence of LN for the semantics of relatives, Schwarz and Bhatt point out that LN relatives cannot be presented as inferences drawn on the basis of previous statements. This is so as inferences never constitute new non-accidental generalizations. For this reason, (11-b) can be felicitously uttered as an inference based on the statement (11-a) if it contains ON, though not if it contains LN.

(11) a. Wir haben jeden abgelehnt.
 b. Wir haben jeden abgelehnt, der keine/#nicht eine Fremdsprache kann.
 (Schwarz/Bhatt 2006: 35)

In PQs, LN necessarily correlates with a positive bias. The speaker of a LN PQ (cf. Outer Negation Polar Questions in Büring and Gunlogson (2000)) believes in the truth of the proposition \(p \) in the scope of negation and, uttering the PQ, seeks confirmation for this proposition. In ON PQs (cf. Inner Negation Polar Questions, ibid.), on the other hand, the speaker seeks confirmation for \(\neg p \) as a recently drawn inference; in order to refute this inference, specific contrastive items must be used, e.g. doch or oja, as shown for the ON PQ in (12). For a discussion of the semantics and pragmatics of negative PQs in English and German see Büring and Gunlogson (2000).

(12) a. Besitzt Tanjas Familie keine Datscha im Umland von Moskau?
 possesses Tanya’s family no datcha in the suburbs of Moscow
b. Nein/*(O)ja.

The semantic contribution of LN in exclamatives is unclear. The difference between LN and positive exclamatives might be purely stylistic. Recall that LN in exclamatives is expletive.

5.3 λ clauses and NPIs

In Chapter 4, we showed that in λ clauses PPIs are systematically grammatical in the scope of \(\text{neg} \). In this section, we will see that NPIs cannot be licensed by \(\text{neg} \) in λ clauses.

Consider the PQ in (13). Note that to determine whether or not it contains a λ item, we need to look at its semantic properties (cf. Section 5.2). Recall that we assumed a bias towards the positive proposition of the PQ to be the primary semantic property distinguishing LN PQs from ON PQs. Crucially, under such a reading (cf. (13-a)), the NPI \textit{mehr} in (13) is ungrammatical. Put differently, the presence of the NPI in this question inevitably triggers the reading (13-b), where negation forms part of the propositional core of the question. From this we conclude that λ PQs do not license NPIs. The inability of positively biased negative PQs to license NPIs has already been noted in Büring and Gunlogson (2000).

(13) War Tanja zu diesem Zeitpunkt nicht \textit{mehr} in der Ukraine?
was Tanya at that moment not anymore in the Ukraine
(Nein,/*Ja.)

a. *‘Wasn’t Tanya still in the Ukraine (at that time)’?

b. ‘Was Tanya not in the Ukraine anymore (at that time)’?

In (14) to (16) we can see examples of λ environments where negation is expletive. Again, the NPIs in these example cannot be licensed, even though they stand in the immediate scope of \textit{nicht}.

(14) *Wir beginnen nicht mit der Planung, bevor wir nicht \textit{auch nur eine einzige} Zusagen haben.
Intended: ‘We won’t start planning before we have received at least one positive answer.’

(15) *Lea hat nicht aufgegeben, bis sie nicht \textit{auch nur eine einzige} Frage beantwortet hat.
Intended: ‘Lea didn’t give up until she had answered at least one question.’

(16) *Wer aller nicht \textit{je} eigenhändig einen Fisch gefangen hat!
who all not ever with his own hands a fish caught has
Intended: ‘Who hasn’t already caught fish (himself) (at least once)’!
5 Further issues in the domain of \(\lambda \) items

In (17) LN is contained in a relative clause and is semantically active, but *nicht* still does not license the NPI *je*.

\[
\begin{align*}
\text{(17)} & \quad *\text{Wir haben jeden genommen, der nicht (*je) eine Fremdsprache}
\quad \text{we aux everyone accepted rel not ever a foreign language}
ge\text{lernt hat.}
\quad \text{learned aux}
\quad \text{‘We accepted everyone who has never learned a foreign language.’}
\end{align*}
\]

For now, we remain agnostic as to whether the incapacity of *neg* to license NPIs in \(\lambda \) clauses is related to its higher, TP-adjoined position, or whether some other property of \(\lambda \) clauses interferes with its role as an NPI licenser.

However, examples (14) and (17) suggest that *neg* is not the only canonical NPI licenser which is disabled in \(\lambda \) clauses: Note that the the NPIs *auch nur eine einzige* in (14) and *je* in (17) stand in environments which normally count as (non-negative) NPI-licensing contexts, i.e. in a *bevor*-clause and in the restrictor of a universal quantifier, respectively, but are infelicitous regardless of this fact. (Schwarz and Bhatt (2006) briefly mention this circumstance.) To explain this intuitively obvious, but no less technically surprising fact, we can exploit our assumption that all \(\lambda \) items are homophones of elements which lack \([u\lambda]\). Specifically, we can argue that the latter – i.e., *bevor*, *solange*, *yn*-Op etc. – are lexically specified for licensing NPIs (probably by way of a feature \([\text{npi}]\), or a polarity operator in CP along the lines of Progovac (1994)), whereas the homophones \(\lambda \) items – *bevor*[u\lambda], *solange*[u\lambda], *yn*-Op[u\lambda] etc. – lack this specification.\(^6\)

Of course, the assumed differences between the lexical entries of \(\lambda \) items and their non-\(\lambda \) homophones do not explain why there are no elements that carry both \([\text{npi}]\) and \([u\lambda]\), i.e. why NPIs and phenomena induced by \(\lambda \) items are mutually exclusive. This fact is even more confusing considering that \([\text{npi}]\) and \([u\lambda]\) stand for intuitively opposing phenomena, but nevertheless appear on homophonous elements.\(^7\) A clarification of the relationship between \(\lambda \) items and NPI licensing will require more research into the semantics of \(\lambda \) clauses.

5.4 Crosslinguistic evidence for the class of \(\lambda \) items

In this section we will look at some elements in English and Russian – PPIs, as well as Russian *nibud’*-indefinites – which are normally excluded from the scope of clausemate negation. However, as in the case of German PPIs (Chapter 4), this rule is subject to exceptions, and there are environments where these elements can

\(^6\)Note that this does not preclude the existence of \(\lambda \) items whose homophones are not NPI licensers. One such example is the operator pair \text{fact}-Op/\text{fact}-Op[u\lambda] used as C heads in exclamatives, where neither one licenses NPIs.

\(^7\)Note that the fact that NPIs and LN are mutually exclusive provides additional support to the conclusion reached in Chapter 2 that, in a two-morpheme approach, light *neg* cannot be an NPI irrespective of the distributional parallels between LN and NPIs.
stand in the immediate scope of negation. We will show that the environments encouraging these exceptions correspond to the set of \(\lambda \) environments in German.

5.4.1 PPI rescuing in English

Let us have a look at the distribution of PPI rescuing in English. In Section 4.1.2 it was noted that English PPIs undergo rescuing more readily than German PPIs: whereas German PPIs can be rescued systematically only from under clausal negation (\textit{nicht}), in English also the negative elements \textit{without} and \textit{never} allow for rescuing of PPIs in their scope (Section 4.1.2, example (20)). Naturally, the analysis we gave for rescuing in German needs to be modified to capture this aspect of rescuing in English. At the same time, the elements that trigger rescuing seem to be the same in English as in German (at least with respect to \([\textit{neg} > \text{PPI}]\) rescuing, which is the type of rescuing documented best). In other words, the distribution of \textit{some} as well as other PPIs in negative contexts seems to be identical to the distribution of LN and \([\textit{nicht} > \text{PPI}]\) in German. Consider the following examples. (18)

\[(18) \quad \text{*They didn’t bring some cookies.} \quad \neg > \exists \]

(19) a. If they hadn’t brought some cookies, we would not have had desert.

 (Schwarz 2004: 21)

 b. There was no one there who didn’t bring some cookies.

 c. Didn’t you bring some cookies?

Apart from the fact that the contexts which support rescuing in German also support rescuing in English, we can find the same mismatches between the distribution of rescuing and NPIs in English as in German (cf. Schwarz 2004). Consider, for example, (20-a), which features rescuing of \textit{some} in the main clause of a subjunctive conditional; in the same position, the NPI \textit{any} cannot be licensed, cf. (20-b).

\[(20) \quad \text{a. If all of them disliked deserts, I wouldn’t have brought some cookies.} \quad \neg > \exists \]

 (Schwarz 2004: 21)

 b. *If all of them disliked deserts, I would have brought any starters.

This parallelism between German and English may not seem surprising in the context of this work. Nevertheless it has important implications for our theory of \(\lambda \) items: it confirms suggests the relevance of the class of \(\lambda \) items as a crosslinguistic category.

We will not discuss the syntactic details of rescuing in English in this work.
5.4.2 nibud’-indefinites under clausemate negation in Russian

In this section, we will consider Russian clauses whose heads can be viewed as the equivalents of German λ items or their non-λ homophones. We will use the name potential λ clauses or potential λ environments to refer to these clauses. Russian potential λ clauses differ from other clauses in the distribution of nibud’-indefinites under negation – a fact which reminds us of the indefinite ON/LN alternation in German.

In general, the distribution of indefinites under negation in Russian is the following: NIs marked by the prefix ni- are licensed by clausemate negation. ni-items compete with (weak) NPIs of the nibud’-series. nibud’-items are designated for the broader set of DE environments. So-called “general indefinites” (Penka 2011) marked by the suffix -to are excluded from negative contexts altogether, which is why they are normally analyzed as PPIs.

By default, only ni-items are grammatical under clausemate negation. That is, though nibud’-items are tied to DE contexts, they are incompatible with a subset thereof and cannot normally occur in the immediate scope of negation. This phenomenon has been typed the Bagel Problem by Pereltsvaig (2004). Consider the following sentences taken from Brown and Franks (1995: 244), which illustrate the default distribution of ni-items and nibud’-items under clausal negation.

(21) a. Clausemate negation
Fedja ne ljubit nikogo/*kogo-nibud.
Fedja NEG likes ni-who/*who-nibud’
‘Fedja doesn’t like anybody.’

b. Superordinate negation
Fedja ne skazal, čto on čto-nibud’/*ničego znaet ob ětom.
Fedja NEG said that he what-nibud’/*ni-what knows about that
‘Fedja didn’t say that he knows anything about that.’

In potential λ environments, however, the conditions of use for nibud’-items are relaxed: in all potential λ environments, nibud’-items are grammatical in the immediate scope of negation.

9Below we will argue that Russian λ items are similar to German λ items in that all of them have non-λ homophones. However, while introducing the data, we remain neutral as to whether a sentence is headed by a λ item or its non-λ homophone.

10The fact that nibud’-items are (weak) NPIs and underlie certain licensing requirements themselves is evidenced by their ungrammaticality in strictly positive contexts.

(i) *Maša uvidela kogo-nibud’.
Maša saw.PFV who-nibud’
Intended: ‘Masha saw somebody.’

Apart from their use as indefinites, nibud’-items can also be used as free-choice items.

11Indefinite paradigms in Ukrainian and Serbian/Croatian exhibit the same distribution as their Russian counterparts.

84
Let us have a closer look at these environments, beginning with temporal CPs headed by *poka* ‘until’. Like German *bevor* - and *bis*-clauses, *poka*-clauses may involve semantically expletive negation expressed by the negation clitic *ne*. The distribution of indefinites in *poka*-clauses with expletive negation is surprising: *nibud’*-items are perfectly fine in the scope of *ne*, whereas *ni*-items are ruled out; see (22).

(22) . . . *poka* ne poluˇ cu kakogo-nibud’/*nikakogo otveta.
 . . . *until* not receive which-*nibud’*/ni-which answer

Similar to LN in German *bevor*-clauses, negation in *poka*-clauses is semantically never really vacuous, but contributes a conditional component. This is the reason why the Russian rendering (23) of the LN version in (8) sounds just as odd as its German counterpart.

(23) #My *ne* dobralis’ domoj poka ne nachalas’ groza.
 we not reached home *until* not started thunderstorm
 ‘We didn’t reach the shelter before the thunderstorm started.’

In those rare cases where *poka*-CPs involve *ni*-items, negation must be interpreted, analogous to German ON in *bevor*- and *bis*-CPs. Consider (24).

(24) ?*Ja* budu starat’*sja*, poka ne ostanetsja nikakogo vyxoda.
 I will try *until* not remains *ni*-which way-out
 ‘I will persevere *until* there is no way out.’
 ‘Ich werde mich bemühen, bis es keinen Ausweg mehr gibt.’

nibud’-items in the scope of negation are also available in conditional antecedents. They trigger a counterfactual interpretation of the conditional, just as LN in German, and PPIs under negation in German and English.

(25) Esli by ona ne čitala kakix-nibud’/*nikakix romanov, nam ne o
 if *SBJ*V she not read which-*nibud’*/ni-which novels us.DAT no about
 čem bylo by govorit’.
 thing was *SBJ*V speak
 ‘If she didn’t read some/any novels, we would have nothing to talk about.’

Though hard to find, here is a sentence where a *nibud’*-item occurs under negation

12 Apart from its role as a complementizer, *poka* can function as an adverb meaning ‘so far’.
13 *ne* is canonically analyzed as a head.
14 According to an informant, non-expletive occurrences of *poka* . . . *ne* are marginal.
Further issues in the domain of λ items

in the main clause of a conditional.

(26) Esli že on est’ vozdux, to on ne byl č’im-nibud’ otcom i ne if MP he is air then he not was whose-nibud’ father and not rozdal kakoj-nibud’ sučnosti.
gave birth which-nibud’ entity
‘If he is air, he was not anyone’s father and didn’t give birth to any entity.’
(Ioann Zlatoust: Beseda na psalom 415)

Purpose clauses allow both for nibud’-items and ni-items in the scope of negation. Depending on the construction, one might be preferred over the other, cf. (29). What determines the choice between them is unclear. To answer this question, we would need to look at the semantics of these clauses in more detail.

(27) Nado vnimateln’o čitat’ tablički, čtoby ne propustit’
need carefully read signs so-that not miss
kakie-nibud’/nikakie interesnye mesta.
which-nibud’/ni-which interesting places
‘One has to carefully read the road signs so as not to miss some/any interesting places.’

(28) Nado sledit’ čto govoriš, čtoby kogo-nibud’/nikogo ne obidet’.
need watch what speak-2SG so-that who-nibud’/ni-who not offend
‘You need to watch what you say so as not to offend somebody/anybody.’

(29) a. Ja sprjatalsja čtoby nikogo ne videt’.
I hid-away so-that ni-who not see.IPfv
‘I hid away so as not to see anybody.’
b. ??… čtoby kogo-nibud’ ne uvidet’.
so-that who-nibud’ not see.PFv
‘… so as not to see somebody.’

The choice between nibud’- and ni-items in negative PQs makes a difference for their interpretation similar to the difference between German LN and ON PQs. Negative PQs featuring nibud’-items always carry a positive implicature and must receive a reading “double-checking p” (cf. Romero and Han 2004), where p is the proposition modulo negation. See (30). Negative PQs containing ni-items, on the other hand, always trigger a negative implicature, cf. (31).

(30) Ne znaet (li) kto-nibud’/*nikto iz vas, kak ěto delaet’sja?
NEG know (Q) who-nibud’/*ni-who of you how this is done?
‘Doesn’t anyone of you know how this is done?’
[‘Weiß nicht jemand von euch, wie das gemacht wird?’]
(Brown and Franks 1995: 271, English translation adjusted)

Interestingly, the position of the negation morpheme ne has an impact on the avail-
5.4 Crosslinguistic evidence for the class of λ items

ability of $nibud'$- and ni-items in PQs. Negative PQs where the $[ne + V^0]$ complex has moved to C^0 only admit $nibud'$-items, as shown in (30). By contrast, negative PQs where the verb plus negation stay in situ are compatible with ni-items, see (31) and (32) and variably license $nibud'$-items, see (31) vs. (33).

(31) Nikto/*kto-nibud’ iz vas ne znaet, kak èto delaetsja?!
 ni-who/*$who-nibud’$ of you NEG know how this is done
 ‘None of you know how this is done?’ (Ibid.)

(32) A nikogo drugogo iz podpol’ščikov ty ne znaeš’?
 and ni-who other from undergrounders you NEG know
 ‘So you don’t know anyone else from the underground?’
 (Brown and Franks 1995: 275)

(33) A kogo-nibud’ drugogo iz podpol’ščikov ty ne znaeš’?
 and $who-nibud’$ other of undergrounders you NEG know
 ‘So don’t you know any others from the underground?’
 (Ibid.)

Finally, also why-questions license $nibud'$-items in the scope of clausemate negation.

(34) Počemu ja, durak, ne poslal srazu rukopis’ v kakiju-nibud’
 why I idiot NEG sent immediately manuscript to which-$nibud’$
 redakciju?
 publisher
 ‘Why was I so stupid as not to send the paper to some publisher immediately?’
 (Abels 2005: 54)

Though we have not cited all Russian equivalents of the λ environments attested in German (e.g., we left out exclamatives and CP complements of DE predicates), the distributional parallels which have so far been detected between Russian $nibud'$-items under negation and (the Russian equivalents of) German λ environments are convincing. The fact that, in (26), the configuration $ne \ldots -nibud’$ is contained in the main clause of a conditional indicates that, just like German LN, the configuration does not behave like an NPI. In fact, its grammaticality in this clause, which is not an NPI licensing context, makes a strong case for the generalization of the concept of λ items to Russian. On this view, the availability of the configuration $ne \ldots -nibud’$ depends on the presence of elements which correspond to members of the German set of λ items. Let us call these Russian elements λ items, in analogy to their German counterparts.

To explain the reason for the greater flexibility of $nibud'$-items in clauses containing λ items, we first need to understand why $nibud'$-items are normally ungrammatical in the scope of negation. In line with Penka (2011), we assume that the ungrammaticality of $nibud'$-items in negation contexts is a consequence of morphological blocking. Penka argues that

[a]s sentential negation is a special instance of a DE-environment, [ni]-NIs are more specific for the use in the context of sentential negation.
Further issues in the domain of λ items

[than nibud’-NPIs]. Their existence thus precludes using less specified NPIs in the context of sentential negation.[16] (Penka 2011: 220)

On this line of reasoning, nibud’-items should be allowed under negation in clauses where ni-items as semantically equivalent, though morphologically more specific elements are for some reason unavailable. We will show that λ clauses are precisely of this type.

Consider that Russian is a strict NC language, and that negative force is carried by a covert negative operator NEG-Op. The presence of NEG-Op is expressed by the negation marker ne.17 ni-items are licensed under agreement with NEG-Op. We argue that in clauses featuring λ items, however, ni-items are ungrammatical despite the presence of NEG-Op. We utilize part of the analysis provided for German LN under a NC view of German (Section 3.3) and propose that all Russian λ items select an operator λ-Op. We assume that λ-Op intervenes in the agreement relation between NEG-Op and the ni-item and that, consequently, the ni-item is ruled out in corresponding clauses. This proposal is sketched out below.

(35) [CP NEG-Op[ineg]] [C0 (*poka-λ-Op)] [TP [NEG P t4 ne [vP ni-[ineg]]]]

At the same time, the fact that ni-items are grammatical in sentences such as (25), (27) or (31) indicates that Russian λ items resemble German λ items in that all of them have non-λ homophones, which are present in these sentences.

In contrast to our approach, Brown and Franks (1996) correlate the grammaticality of nibud’-items under clausemate negation with semantically expletive occurrences of negation. This view is contradicted by the data: note that in the majority of the environments cited above, negation is semantically active.

Regarding the semantics of Russian λ clauses, we already mentioned that clauses where nibud’-items are licit under clausemate negation resemble corresponding λ clauses in German. This parallelism supports the view that at the core of all λ items lies a crosslinguistic feature [λ] whose semantic content is consistent across languages. To accommodate the fact that, on the one hand, λ items are most probably subject to different syntactic requirements in German and Russian (note that in our primary analysis of German LN, the λ item has an uninterpretable feature and is subject to agreement, whereas Russian λ items are syntactically independent), while on the other hand, their semantic contribution is the same in both languages, we propose that the [λ] feature is actually bipartite and consists of an (un)valued and an (un)interpretable component. We assume that the [λ] feature is always interpretable, i.e., [iλ]. However, we suggest that λ items differ with respect to the unvalued/valued parameter of their feature in line with the different syntactic requirements of λ items in German and Russian: while German λ items come with an unvalued feature [__iλ] and are subsequently valued by NEG, Russian λ items are inherently valued and do not rely on agreement with an external element.

16 This hypothesis functions as an explanation of the bagel-like distribution of negative indefinites, e.g. Russian ni- and nibud’-items.

17 In theoretical terms, we assume ne to head a phrase NEG P. We take NEG-Op to originate as SpecNEG P and to raise subsequently to adjoin to CP.
5.4 Crosslinguistic evidence for the class of λ items

Table 5.1 gives an overview of the syntactic phenomena discussed in this work and their relation to the presence of a λ item in the clause in different languages.

<table>
<thead>
<tr>
<th></th>
<th>no λ item</th>
<th>λ item</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>ON</td>
<td>*ON</td>
</tr>
<tr>
<td></td>
<td>*LN</td>
<td>LN</td>
</tr>
<tr>
<td></td>
<td>nicht $>$ NPI</td>
<td>*nicht $>$ NPI</td>
</tr>
<tr>
<td></td>
<td>*nicht $>$ PPI</td>
<td>nicht $>$ PPI (rescuing)</td>
</tr>
<tr>
<td>English</td>
<td>*not $>$ PPI</td>
<td>not $>$ PPI (rescuing)</td>
</tr>
<tr>
<td>Russian</td>
<td>ne $>$ ni-</td>
<td>*ne $>$ ni-</td>
</tr>
<tr>
<td></td>
<td>*ne $>$ -nibud’</td>
<td>ne $>$ -nibud’</td>
</tr>
</tbody>
</table>

Table 5.1: Syntactic specifics of λ clauses across languages
Conclusion

We observed that in certain environments the syntactic behavior of definites, indefinites, and polarity items in interaction with clausemate negation is peculiar across languages. As a starting point, we took the fact that in German specific syntactic contexts accommodate the normally ungrammatical forms nicht d- NP and nicht ein NP. We called these forms LN, and the environments hosting them LN environments.

We reasoned that the availability of LN is diagnostic of the presence of elements of a specific class, so-called λ items, located in C₀ or SpecCP. We argued that German λ items carry an unchecked feature [uλ]. We assumed that they trigger movement of the neg morpheme to TP to check their feature [uλ] against a corresponding feature [iλ] on neg. The surface form of LN was regarded as a direct result of the higher neg position in clauses featuring λ checking.

Subsequently, we showed that the presence of λ items and λ checking also has an impact on other elements closely interacting with negation, to wit, PPIs, NPIs, and QPs. We made the higher neg position responsible for the fact that PPIs are grammatical in the scope of neg in λ clauses. Furthermore, we suggested that NPIs might be excluded from λ clauses because TP-adjoined neg is not capable of licensing NPIs, and because λ items systematically lack NPI licensing properties – unlike their non-λ homophones. Finally, we argued that QPs cannot take wider scope than neg in λ clauses, as the involved quantifiers would otherwise interrupt the agreement relation between the λ item in SpecCP and neg.

We proposed to generalize the concept of λ items to other languages. We based our proposal on the observation that the same environments which support LN and rescuing in German permit PPIs in the scope of negation in English and prompt a shift in the distribution of ni- and nibud'-indefinites in Russian. We concluded that the inventory of λ items is consistent across languages, while the precise design of their [λ] feature might be subject to crosslinguistic variation.

The topic of LN and λ items still holds plenty of unanswered questions. The arrangement of λ items into a class is so far purely descriptive. The λ feature or λ operator posited as a common denominator of the members of this class had to be stipulated, as had the notion that neg acts as a goal in λ checking in German. Though in most environments, the semantic disparity between a clause containing LN and its non-LN counterpart is evident, the description we gave of the semantic specifics of λ clauses is only rudimentary. However, semantics might in the end prove crucial in the assortment of λ items: recall that the only possible syntactic general-
ization over λ environments was a negative one (and not impeccable as such).\footnote{That, apart from main clauses of conditionals, λ clauses are never root declarative clauses.} For this reason, filling in the blank spots on the semantic side of λ clauses should be the main concern of future work on the topic. Once we have explored the semantic import of high \textsc{neg} realization in German, we should strive to explain in which respect λ clauses as opposed to others are in accordance with this import. The theory of NPI licensing might function as a model for an explanatory theory of λ items: in the same way as the property of being decreasing in NPI licensing contexts was found to satisfy exhaustivity (cf. Chierchia 2006) or comply with scalar assertion in the presence of NPIs (Krifka 1995), there must be a property particular to λ items which complements the semantic and pragmatic implications of high \textsc{neg} realization. The fact that the inventory of λ items is stable across languages confirms the need for a theory which singles out the members of this class based on their unique properties.
Bibliography

Büring, Daniel & Christine Gunlogson. 2000. Aren’t positive and negative polar questions the same? ms. UCSC/UCLA.

Schwarz, Bernhard. 2004. How to rescue positive polarity items. ms. University of Texas at Austin.

A Abstract (German)

In this work I investigate exceptional syntactic configurations in German, which involve the presence of the negation morpheme \textit{nicht}. \textit{nicht} takes widest scope in these constructions, which is why I refer to negation in these constructions as \textit{clausal negation}. The peculiarities of these constructions become apparent in the context of DPs: Definite DPs in the scope of clausal negation by default precede \textit{nicht}; however, in the syntactic environments examined in this work this order is reversed. In the same environments the behavior of indefinite DPs is also special: Though under clausal negation, the indefinite determiner \textit{ein} is normally replaced by the negative determiner \textit{kein} on the highest indefinite, this is not the case in the environments under discussion. Due to them being coextensive, I group these exceptional realizations of negation together and unite them under the name of \textit{Light Negation} (LN), following Schwarz and Bhatt (2006). In Chapter 1 I summarize existing data and provide new data to give an accurate picture of the distribution of LN. As a simple equation of LN with semantically expletive negation would fail to account for part of the data, in Chapter 2 I try to approach the phenomenon from a different perspective and apply to it the theory of Negative Polarity Items (NPIs). Since such an approach turns out to be descriptively inadequate as well, in Chapter 3 I start from scratch and propose a new analysis. My analysis is set in a minimalist framework and takes an operation of feature checking to be involved in the derivation of LN. At the heart of my analysis lie a number of lexical items which represent the syntactic environments that correlate with LN. I assume that these items, subsequently called \textit{\lambda} \textit{items}, carry an uninterpretable feature. Moreover, I suggest that the German \textit{neg} morpheme underlying \textit{nicht} is endowed with a corresponding interpretable feature. I argue that in the presence of clausal negation, the uninterpretable feature on the \textit{\lambda} item induces a checking operation between the \textit{\lambda} item and \textit{neg}. If the feature on the \textit{\lambda} item remains unchecked, the derivation will fail. In Chapter 4 I explore the connection between LN and certain unexpected effects in the domain of Positive Polarity Items (PPIs). In Chapter 5 I highlight some additional aspects of LN: I examine the interaction of LN with quantificational phrases and NPIs, and give an outline of the semantic characteristics of LN in individual environments. Finally, based on data from English and Russian, I argue that the class of \textit{\lambda} items – the origin of German LN – is of a crosslinguistic nature and can also be assumed to exist in other languages.
C Curriculum Vitae

Ausbildung

2007–2013 Studium der Allgemeinen Sprachwissenschaft an der Universität Wien
2007–2013 Studium der Slawistik mit Schwerpunkt Russisch an der Universität Wien
WS 2009 Joint-Study-Studienaufenthalt an der Russischen Staatlichen Humanistischen Universität (RGGU) in Moskau
2007 Matura am Musikgymnasium Wien mit Auszeichnung

Lehrtätigkeit

WS 2012 Tutorium zu den Proseminaren “Sprachwissenschaft” und “Literaturwissenschaft” am Institut für Slawistik, Universität Wien
WS 2011 Tutorium zum Proseminar “Sprachwissenschaft” am Institut für Slawistik, Universität Wien
SS 2011 Tutorium zur Vorlesung “Einführung in die slawistische Sprachwissenschaft” am Institut für Slawistik, Universität Wien
Seit 2010 Lektorin für Deutsch als Fremdsprache bei ActiLingua, Wien 3

Stipendien

2011 Leistungsstipendium der Universität Wien
2010 Leistungsstipendium der Universität Wien
2009 Leistungsstipendium der Universität Wien
2009 Joint-Study-Stipendium der Universität Wien