Diplomarbeit

Titel der Arbeit
Validierung des HAPT 4-6 an Präferenz- und Performanztests der Händigkeit

Verfasserin
Cora Feichtinger

Angestrebter akademischer Grad
Magistra der Naturwissenschaften (Mag. rer. nat.)

Wien, 2012

Studienkennzahl lt. Studienblatt: 298
Studienrichtung lt. Studienblatt: Psychologie
Betreuerin: Ass.-Prof. Dr. Pia Deimann
Vielen Dank...

... meinen Diplomarbeitsbetreuerinnen Ass.-Prof. im Dr. im Pia Deimann und Ass.-Prof. im Dr. im Ursula Kastner-Koller für ihre Unterstützung!

... Dr. im Bruckner für die Betreuung meines Praktikums!

... allen MitarbeiterInnen der Kindergärten für ihre Mitwirkung an der Untersuchung!

... allen teilnehmenden Kindern und ihren Eltern für ihre Mitarbeit!

... Ariane Hell für die kollegiale Zusammenarbeit bei der Datenerhebung!

... ganz besonders meiner Familie für ihre Unterstützung!
Inhaltsverzeichnis

Einleitung..1

A Theoretischer Teil..3

1 Händigkeit und Lateralität..5
 1.1 Handpräferenz und Handperformanz..6
 1.2 Richtung, Grad, Stärke, Konsistenz...8
 1.3 Verteilung der Händigkeit..9
 1.4 Entwicklung der Händigkeit ...10
 1.5 Zusammenfassung..15

2 Händigkeit und das Gehirn...17
 2.1 Die zerebrale Steuerung der Hände..17
 2.2 Zerebrale Lateralität und Händigkeit..18
 2.2.1 Sprachlateralisation..18
 2.2.2 Sprachlateralisation und Händigkeit..20
 2.2.3 Andere funktionelle zerebrale Asymmetrien..21
 2.2.4 Neuroanatomische Asymmetrien und Händigkeit...............................22
 2.3 Zusammenfassung..25

3 Erfassung der Händigkeit bei Kindern...28
 3.1 Erfassung der Handpräferenz..29
 3.1.1 Beobachtungsverfahren..29
 3.1.1.1 WatHand Cabinet Test (WHCT)..30
 3.1.1.2 Hand Preference Demonstration Test (HPDT)..........................31
 3.1.1.3 Preschool Handedness Inventory (PHI).....................................32
 3.1.1.4 Handpräferenztest für 4-6-jährige Kinder (HAPT 4-6)..............32
 3.1.2 Verfahren zum Midline-Crossing...32
 3.1.2.1 Preferential Reaching Task...32
 3.1.2.2 Quantification of Hand Preference (QHP) Task..........................33
 3.1.3 Fragebogenverfahren...34
 3.1.3.1 Edinburgh Handedness Inventory (EHI).................................34
 3.1.3.2 Waterloo Handedness Questionnaire (WHQ).........................35
3.2 Erfassung der Handperformanz

3.2.1 Punktiertest und Leistungs-Dominanztest für Kinder (5-12 Jahre) (PTK-LDT)

3.2.2 Hand-Dominanz-Test (H-D-T)

3.2.3 Test zur Händigkeit des Schulanfängers (THS)

3.2.4 Finger Tapping

3.2.5 Peg-Moving Task

3.3 Zusammenfassung

4 Händigkeit und Entwicklung

4.1 Richtung der Händigkeit

4.2 Unklare oder gemischte Händigkeit

4.3 Konsistenz innerhalb einer Tätigkeit

4.4 Midline-Crossing

4.5 Zusammenfassung

5 Validität

5.1 Inhaltsvalidität

5.2 Konstruktvalidität

5.3 Kriteriumsvalidität

5.4 Augenscheinvalidität

5.5 Validitätsbefunde zum HAPT 4-6

5.6 Zusammenfassung

6 Empirischer Teil

7 Zielsetzung und Fragestellungen

8 Durchführung der Untersuchung

8 Beschreibung der eingesetzten Verfahren

8.1 Handpräferenztest für 4-6-jährige Kinder (HAPT 4-6)

8.1.1 Items des HAPT 4-6

8.1.2 Durchführung des HAPT 4-6

8.1.3 Auswertung des HAPT 4-6

8.2 Quantification of Hand Preference (QHP) Task

8.3 Peg-Moving Task
9 Beschreibung der Stichprobe
 9.1 Geschlecht und Alter der Kinder
 9.2 Kindergartenbesuch
 9.3 Die Händigkeit der Kinder
 9.3.1 Elternurteil zur Händigkeit
 9.3.2 Händigkeit laut HAPT 4-6
 9.3.3 Zusammenhang HAPT 4-6 und Elternurteil
 9.3.4 Händigkeit laut QHP Task
 9.3.5 Händigkeit laut Peg-Moving Task
10 Validierung des HAPT 4-6
 10.1 Analysen zur Zuteilung zu den Händigkeitsgruppen
 10.2 Analysen zu Lateralitätsquotient und Händigkeitskonsistenz
 10.2.1 Analysen zum Lateralitätsquotienten
 10.2.2 Analysen zur Händigkeitskonsistenz
 10.3 Zusammenfassung
11 Diskussion
Zusammenfassung
Abstract
Literaturverzeichnis
Abbildungs- und Tabellenverzeichnis
Anhang
Lebenslauf
Einleitung

Eine besondere Herausforderung ist die Erfassung der Händigkeit bei jüngeren Kindern. Bei diesen ist die Händigkeit oft noch schwächer ausgeprägt und ein Einsatz vieler gängiger Verfahren (z. B. Fragebögen) nicht möglich. Allerdings ist gerade in diesem Alter die Erfassung wichtig, um Zusammenhänge zu Entwicklungsvariablen zu erforschen, eine adäquate Förderung zu ermöglichen (z. B. Identifizieren von Kin-
Einleitung

dern mit erhöhtem Risiko für Entwicklungsverzögerungen), und gegebenenfalls Hilfestellung bei der Wahl der Schreibhand zu leisten.

A Theoretischer Teil
1 Händigkeit und Lateralität

Coren (2002) beschreibt, dass Menschen nicht nur Vorlieben für eine Seite im motorischen Bereich zeigen, sondern auch in der Verwendung paarig angelegter Sinnesorgane (*sensorische Asymmetrien*). Äugigkeit zeigt sich beispielsweise, wenn durchgängig das rechte oder linke Auge gewählt wird, um durch ein kleines Loch zu
blicken. Ohrigkeit äußert sich etwa in der Bevorzugung eines Ohres beim Hören eines leisen Tickens einer Uhr.

Auch die beiden Hemisphären des Großhirns unterliegen Asymmetrien (zerebrale Asymmetrien, zerebrale Lateralität, s. Kap. 2). Die Gehirnhälften zeigen spezifische Stärken und Ausrichtungen in der Verarbeitung, z. B. von Sprache (Hellige, 2010).

Praktische Bedeutung hat die Lateralität unter anderem in Beruf, Sport, Verkehr, Pädagogik, Medizin (Reiss & Reiss, 1999) und Rechtsmedizin (Reiß & Reiß, 1998).

1.1 Handpräferenz und Handperformanz

Die meisten AutorInnen (z. B. Beukelaar & Kroonenberg, 1983; Kraus, 2006; McManus & M. P. Bryden, 1992; Reiss & Reiss, 2000; Schilling, 2006) unterscheiden zwei Aspekte der Händigkeit:

- Die **Handpräferenz** (Präferenzhändigkeit, Präferenzdominanz, Bevorzugungshändigkeit, hand preference) bezieht sich auf die bevorzugte Verwendung einer Hand,

- die **Handperformanz** (Leistungshändigkeit, Performanzhändigkeit, Leistungsdominanz, Handgeschicklichkeit, hand skill, hand proficiency, hand performance) bezieht sich auf Unterschiede in der Leistungsfähigkeit der beiden Hände.

Reiss und Reiss (2000) definieren Präferenzhändigkeit als „spontane Bevorzugung einer Hand bei bestimmten Aufgabenstellungen“ (S. 72). Eine analoge Beschreibung der Handpräferenz findet sich auch bei Nalçaci, Kalaycioglu, Çiçek und Genç (2001): „Hand preference is usually defined as the tendency to perform several tasks with one hand rather than the other“ (S. 493).

1.2 Richtung, Grad, Stärke, Konsistenz

Viele AutorInnen nehmen, neben der Unterscheidung von Handpräferenz und Handperformanz, noch weitere Differenzierungen vor, wobei sich häufig keine einheitlichen Bezeichnungen durchgesetzt haben.

Bishop, Ross, Daniels und Bright (1996) beschreiben drei verschiedene Aspekte der Händigkeit, denen – je nach theoretischer Position – neuropsychologische Bedeutung zugeschrieben wird:

- Die Richtung (direction) der Händigkeit gibt an, ob die meisten Tätigkeiten mit der rechten oder linken Hand ausgeführt werden.

- Der Grad (degree) der Händigkeit bezieht sich darauf, in welchem Ausmaß bei unterschiedlichen Tätigkeiten eine Hand bevorzugt wird (Konsistenz zwischen verschiedenen Tätigkeiten).

- Die Stärke (strength) der Händigkeit beschreibt die Konsistenz innerhalb einer Tätigkeit, also inwieweit bei einer bestimmten Tätigkeit immer dieselbe Hand verwendet wird.

Eine entsprechende Einteilung mit teilweise abweichender Terminologie nehmen auch McManus et al. (1988) vor. Sie beschreiben, dass die Begriffe Grad (degree) und Konsistenz (consistency) häufig fälschlicherweise synonym verwendet werden (S. 258). Grad beziehe sich auf das Ausmaß, in dem eine Hand für verschiedene Tätigkeiten verwendet wird (also eine analoge Definition zu Bishop et al., 1996), Konsistenz meine das Ausmaß, indem eine bestimmte Tätigkeit mit einer Hand ausgeführt werde (bei Bishop et al., 1996, als Stärke bezeichnet).

In Bezug auf die Erfassung der Händigkeit (z. B. mit Fragebögen) kritisieren sowohl Bishop et al. (1996, s. auch Bishop, 2005) als auch McManus et al. (1988), dass meist aggregierte Werte gebildet werden, die zwischen den Aspekten Grad und Stärke/Konsistenz nicht unterscheiden.
Bruckner, Deimann und Kastner-Koller (2011a) bezeichnen als

- Ausprägungsgrad der Handpräferenz, ob jemand „über verschiedene Tätigkeiten hinweg eine klare Präferenz für eine Hand zeigt“ (S. 32), als
- Händigkeitskonsistenz eine klare Bevorzugung einer Hand „innerhalb der Tätigkeiten“ (S. 33).

1.3 Verteilung der Händigkeit

Händigkeit und Lateralität

Die Erfassung der Handpräferenz bei vielen Personen ergibt üblicherweise eine J-förmige Verteilung (Annett, 1972). Die meisten Personen bevorzugen für alle oder fast alle Tätigkeiten die rechte Hand, sehr wenige zeigen für gleich viele Tätigkeiten eine Präferenz für die linke wie für die rechte Hand. Der Anteil derer, die die linke Hand für die Mehrzahl oder für alle Tätigkeiten bevorzugen, ist wiederum etwas höher (Annett, 1972).

1.4 Entwicklung der Händigkeit

Marschik et al. (2008) führten eine Untersuchung zum Zusammenhang des Greifverhaltens im Alter von 5 Monaten mit der Händigkeit im Vorschulalter (5;7 Jahre) durch. Den 5 Monate alten Säuglingen wurde jeweils eines von vier Objekten auf einem Tisch dargeboten, wobei die Position der Objekte variiert wurde: Sie wurden entweder im linken Gesichtsfeld des Kindes (also links der Körpermitte), auf der Mittellinie oder im rechten Gesichtsfeld (rechts der Körpermitte) präsentiert (s. Midline-Crossing, Kap. 3.1.2). Pro Kind wurde jeder Gegenstand an allen drei Positionen dargeboten (also insgesamt 12 Durchgänge). Es wurde jeweils erhoben, ob das Kind mit der linken Hand, der rechten Hand oder beidhändig nach dem Objekt griff.

19 der 20 Kinder zeigten überwiegend (bei mindestens 7 der 12 Durchgängen) einhändiges Greifen. Fünf Kinder griffen vorwiegend (bei mindestens drei von vier Durchgängen) beidhändig, wenn der Gegenstand auf der Mittellinie präsentiert wurde, eines dieser fünf Kinder auch bei Darbietung im linken Gesichtsfeld.

Weiters wurden die Daten danach ausgewertet, mit welcher Hand die Kinder in Abhängigkeit von der Position der Gegenstände (links, Mitte, rechts) vorwiegend (bei mindestens drei von vier Durchgängen) nach diesen griffen, wobei Fälle, in denen Kinder überwiegend beidhändig griffen, nicht weiter berücksichtigt wurden. Bei Präsentation auf der Mittellinie zeigte sich ein häufigerer Gebrauch der rechten Hand (4
Kinder) als der linken Hand (1 Kind); häufig war auch ein inkonsistenter Handgebrauch (weder linke noch rechte Hand häufiger verwendet; 10 Kinder) zu beobachten. Wurden Objekte in der linken Gesichtsfeldhälftte dargeboten, zeigten die meisten Kinder (14) ein inkonsistentes Greifverhalten. Bei Präsentation in der rechten Hälfte griffen 16 Kinder vorwiegend mit der rechten Hand, es wurde also ein klarer ipsilateraler Handgebrauch beobachtet.

Ein Überkreuzen der Mittellinie (kontralateraler Handgebrauch) zeigte sich relativ selten: Nur fünf Kinder kreuzten die Mittellinie bei mindestens der Hälfte der Versuche, bei denen das Objekt links oder rechts präsentiert wurde.

Im Vorschulalter (5;7 Jahre) wurde die Handpräferenz der Kinder durch die Beobachtung einer Reihe motorischer Tätigkeiten (z. B. Zähne putzen, Ball werfen) erhoben und der relative Anteil des Gebrauchs der rechten Hand ermittelt. Alle bis auf ein Kind waren rechtshändig. Kinder, die beim Test mit 5 Monaten mit der rechten Hand dominant auf die rechte Seite gegriffen hatten, hatten im Vorschulalter einen höheren Wert für den relativen Anteil des Gebrauchs der rechten Hand als solche, die inkonsistent auf die rechte Seite gegriffen hatten. Kinder, die auf die linke Seite vorwiegend mit der linken Hand gegriffen hatten, hatten einen niedrigeren Wert als solche, die inkonsistent auf die linke Seite gegriffen hatten.

Nach Öztürk et al. (1999, S. 677) ist weitgehend akzeptiert, dass die Präferenzhändigkeit mit etwa 3 oder 4 Jahren entwickelt ist. In Übereinstimmung damit meinen

Auch Tan (1985) stellte in der Präferenzhändigkeit bei 48-60 Monate alten Kindern einen geschlechtsspezifischen Unterschied fest. Von 289 untersuchten Buben hatten...
Händigkeit und Lateralität

6.2 % eine unklare Händigkeit, von 223 Mädchen 2.2 % (p < .05). Nicht signifikant waren hingegen die Unterschiede im LinkshänderInnenanteil (Buben: 7.3 %, Mädchen: 9 %).

Im Alter von 1;0 Jahren hatten 10 % der Kinder eine Handpräferenz entwickelt. Dieser Anteil stieg mit dem Alter von 1;7 Jahren auf 25 % und mit 3;4 Jahren auf 50 %. Mit 5;8 Jahren zeigten 90 % der Kinder eine klare Handpräferenz.

Der Anteil an linkshändigen Kindern lag im Alter von 60-78 Monaten bei 9.4 %, wobei Öztürk et al. (1999) allerdings keine geschlechtsspezifischen Unterschiede feststellten. Das Alter, in dem 50 % der Kinder eine ausgeprägte Händigkeit zeigten, war in der Gruppe der LinkshänderInnen niedriger als in der Gruppe der RechtshänderInnen.

Händigkeit und Lateralität

Eintritt linkshändigen Kindern blieben 62.5 % in ihrer relativen Handgeschicklichkeit stabil, 28.1 % wechselten zu den RechtshänderInnen, 9.4 % zu den BeidhänderInnen. Die ursprünglich beidhändigen Kinder wechselten zu 80 % zu den RechtshänderInnen und zu 20 % zu den LinkshänderInnen. Bei Buben zeigte sich ein Wechsel der Händigkeit signifikant häufiger (15 %) als bei Mädchen (6.3 %).

1.5 Zusammenfassung

In der Forschung wird der Begriff der Händigkeit unterschiedlich definiert, wobei meist zwei Dimensionen unterschieden werden. Die erste bezieht sich darauf, welche Hand für verschiedene Tätigkeiten bevorzugt verwendet wird (Handpräferenz), die zweite befasst sich mit der unterschiedlichen Leistungsfähigkeit der beiden Hände (Handperformanz). Handpräferenz und Handperformanz hängen stark zusammen, d. h. im Allgemeinen wird die leistungsstärkere Hand auch bevorzugt verwendet.

Während im Alltag für gewöhnlich dichotom zwischen Links- und Rechtshändigkeit unterschieden wird, geht man in der Forschung davon aus, dass es sich bei der Händigkeit um ein graduelles Phänomen handelt, das von starker Linkshändigkeit bis zu starker Rechtshändigkeit ausgeprägt sein kann (Grad der Händigkeit, vgl. Schilling, 2006; Pritzel, 2006). Häufig wird gefordert, gesondert zu betrachten, ob bei verschiedenen Tätigkeiten konsistent dieselbe Hand verwendet wird (Konsistenz zwischen verschiedenen Tätigkeiten), und ob ein- und dieselbe Tätigkeit konsistent mit derselben Hand ausgeführt wird (Konsistenz innerhalb einer Tätigkeit). Diese Forderung wird oft nicht umgesetzt.
1 Händigkeit und Lateralität

2 Händigkeit und das Gehirn

Da die Händigkeit mit funktionellen und morphologischen Asymmetrien des Gehirns zusammenhängt, wird sie als Indikator für die zerebrale Lateralisation (z. B. für die Hemisphärendominanz für Sprache) gesehen (Bishop et al., 1996; Reiss & Reiss, 2000). Nicht zuletzt darin begründet sich das große wissenschaftliche Interesse an der Händigkeit.

2.1 Die zerebrale Steuerung der Hände

Das Großhirn wird in die linke und der rechte Hemisphäre unterteilt, die durch den Balken (Corpus callosum) verbunden sind. Das Corpus callosum besteht aus etwa 200 Millionen Kommissurfasern, welche vorwiegend ähnliche Hirnareale der beiden Hirnhälften miteinander verbinden (vgl. Hülshoff, 2008, Kap. 6).

2 Händigkeit und das Gehirn

Brodmann-Feld 4 zugeordnet. Je wichtiger ein Körperteil für das Überleben ist, desto stärker ist er auf der Hirnrinde repräsentiert (Hülshoff, 2008). Der Hand sind überproportional große Gebiete zugeordnet; ansonsten wäre die differenzierte motorische Leistung der Hände nicht möglich (Hülshoff, 2008; Pritzel, 2006).

2.2 Zerebrale Lateralität und Händigkeit

Das Gehirn weist viele morphologische und funktionelle Asymmetrien zwischen den Hirnhemisphären auf. Es gibt Hirnfunktionen, die lateralisiert sind, also vorwiegend auf einer Hirnhälfte lokalisiert (vgl. z. B. Hellige, 2010; Hülshoff, 2008; Reiss & Reiss, 1999). Diese hemisphärische Spezialisierung ist nicht absolut, sondern kann in unterschiedlichen Graden vorliegen. Es bestehen individuelle Unterschiede hinsichtlich des Ausmaßes der zerebralen Asymmetrien, aber auch hinsichtlich der Richtung, also einer Lateralisation auf der linken oder rechten Hemisphäre (Hellige, 2010; Reiss & Reiss, 1999).

2.2.1 Sprachlateralisation

Durch bestimmte Formen der Reizdarbietung konnte Roger Sperry bei Patienten, bei denen aufgrund schwerer Epilepsien das Corpus callosum operativ durchtrennt worden war (Split-Brain-Patienten), die Fähigkeiten der beiden isolierten Hirnhälften testen (Hellige, 2010; s. dazu auch Springer & Deutsch, 1998/1998, Kap. 2).

Schließlich wurde es durch neue Verfahren (z. B. dichotische Hörtests, tachistoskopische gesichtsfeldabhängige Darbietung von verbalem Material, PET, fMRI, MEG, EEG) möglich, auch am gesunden Gehirn die Lateralisation von Funktionen sowie die Zusammenarbeit der Hirnhälften zu erforschen (Hellige, 2010; Jäncke, 2006a).
Weiters wurden Methoden (z. B. der Wada-Test) entwickelt, die temporär bestimmte Gehirngebiete außer Funktion setzen (Hellige, 2010).

Weiters wird angenommen, dass die beiden Hemisphären unterschiedliche, einander ergänzende Strategien in der Verarbeitung von Sprache verfolgen. Beispielsweise beschränkt sich die linke Hemisphäre auf die häufigste Bedeutung eines Wortes (z. B. Hahn: Tier), wohingegen die rechte Hemisphäre verschiedene mögliche Bedeutungen und assoziative Verbindungen (z. B. Hahn: Wasserhahn) ermittelt (Hellige, 2010).

2.2.2 Sprachlateralisation und Händigkeit

Nach Coren (2002, Kap. IV) ist bei linkshändigen Personen in etwa 70 % der Fälle die Sprache in der linken Hemisphäre lokalisiert, bei etwa 18 % rechtshemisphärisch und bei etwa 12 % bilateral (beidseitig). RechtshänderInnen hingegen zeigen zu etwa
97 % eine linkshemisphärische und zu etwa 3 % eine rechtshemisphärische Sprachrepräsentation. Sowohl bei linkshändigen als auch bei rechtshändigen Personen ist also in der überwiegenden Anzahl der Fälle die Sprache in der linken Hemisphäre lateralisiert. Die Wahrscheinlichkeit einer rechtshemisphärischen Sprachdominanz ist bei Linkshändigkeit allerdings erhöht (Knecht et al., 2000).

2.2.3 Andere funktionelle zerebrale Asymmetrien

Weitere Funktionen, die neben der Sprache typischerweise in der linken Hirnhälfte lokalisiert sind, sind z. B. komplexe willkürliche Bewegungen sowie logisch-analytisches Denken, logische Rechenoperationen (Hülshoff, 2008, Kap. 6) und die Kontrolle von Annäherungsverhalten (Davidson & Irwin, 1999).
2 Händigkeit und das Gehirn

Neuere Untersuchungen zeigen nach Reiss und Reiss (1999, S. 1010), dass sich die rechte und linke Hemisphäre hinsichtlich der Art der Informationsverarbeitung unterscheiden. Die AutorInnen beschreiben eine zeitlich-sequentielle Arbeitsweise bei der linken Hemisphäre, welche die Bedeutung dieser Hirnhälfte für Sprache, Rechnen u. ä. erklärt. Die rechte Hemisphäre ist durch eine holistische Art der Verarbeitung gekennzeichnet, was sie für Aufgaben wie räumliches Denken oder Erkennen und Äußern emotionaler Inhalte prädestiniert. Hülshoff (2008) beschreibt, dass die linke Hemisphäre eher analytisch, detailliert und sprachgebunden verarbeitet, die rechte holistisch und intuitiv.

2.2.4 Neuroanatomische Asymmetrien und Händigkeit

Die meisten nachfolgenden Forschungen, die sich mit anatomischen Asymmetrien der Hemisphären beschäftigten, konzentrierten sich auf Gebiete, die für die Sprache relevant sind (Pinel, 2009, S. 414). Obwohl eine klare Tendenz zu einem linkshe misphärischen Überwiegen von neuroanatomischen Strukturen, die mit Sprache verbunden sind, besteht, ist der Zusammenhang zwischen konkreten Strukturen und der funktionellen Sprachlateralisation nach wie vor unklar, und es konnte bisher kein eindeutiger neuroanatomischer Marker für die Sprachlateralisation gefunden werden (Propper et al., 2010).

In Bezug auf das Planum temporale wurde im Rahmen von post mortem-Untersuchungen bisher bei ca. 75\% der Gehirne eine linksgerichtete Asymmetrie festgestellt, bei etwa 13\% war das Areal auf der rechten Hemisphäre größer, bei den restlichen 12\% gab es keine Unterschiede (Jäncke, 2006b, S. 589).

Viele kognitive Funktionen, die von Hirngebieten um die Sylvi'sche Fissur (*perisylvische Hirngebiete*) gesteuert werden, sind lateralisiert. Daher wird vermutet, dass die Untersuchung der Sylvi'schen Fissur Kennwerte für die anatomische Grundlage funktioneller Asymmetrien des Gehirns liefern könnte (Jäncke, 2006b).

Jäncke (2006b) meint zusammenfassend zu den Asymmetrien des handmotorischen Areals, dass eine anatomische Vergrößerung kontralateral zur dominanten Hand vorliegt.

Weitere anatomische Asymmetrien betreffen das *Volumen und die Länge der Hemisphären* (Reiss & Reiss, 1999, S. 1013). Die okzipitale Region ist bei den meisten Menschen in der linken Hemisphäre stärker ausgeprägt, die frontale Region in der rechten Hirnhälfte (Hellige, 2002).

2.3 Zusammenfassung

Die Hirnhälften weisen zahlreiche *funktionelle* und *morphologische Asymmetrien auf* (*zerebrale Asymmetrien*). Die Lateralisation von Funktionen auf einer Hemisphäre ist individuell unterschiedlich und kann in verschiedenen Stärken vorliegen (vgl. Hellige, 2010; Reiss & Reiss, 1999).

Befunde zeigen, dass die Sprachlateralisation mit der Händigkeit einer Person zusammenhängt. Eine linkshemisphärische Repräsentation zeigt sich bei etwa 97 % der RechtshänderInnen und 70 % der LinkshänderInnen, eine rechtshemisphärische bei ca. 3 % der rechtshändigen und 18 % der linkshändigen Personen. Die restlichen 12 % der LinkshänderInnen weisen eine bilaterale Sprachrepräsentation auf (Coren, 2002). Weiter dürfte das Ausmaß der Lateralisation vom Grad der Händigkeit abhängig sein und davon, ob Sprache und Händigkeit von derselben Hemisphäre kontrolliert werden (Knecht et al., 2000).

Neben der Sprache sind in der linken Hemisphäre typischerweise z. B. komplexe willkürliche Bewegungen und logisches Denken repräsentiert, in der rechten z. B. visuell-räumliche Funktionen und musikalisches Empfinden (vgl. Hülshoff, 2008). Zudem unterscheiden sich die Hirnhälften in Bezug auf die Art, wie sie Informationen verarbeiten, wobei die linke eine zeitlich-sequentielle und analytische, und die rechte eine holistische Strategie aufweist (Hülshoff, 2008; Reiss & Reiss, 1999).

3 Erfassung der Händigkeit bei Kindern

3 Erfassung der Händigkeit bei Kindern

3.1 Erfassung der Handpräferenz

Reiss und Reiss (2000, S. 72) unterscheiden folgende Methoden zur Erfassung der Präferenzhändigkeit:

1. Selbstzuordnung zu einer Händigkeitsgruppe (Selbstklassifikation);
2. Familienmitglieder/Erziehungspersonen geben Auskunft über die Händigkeit einer Person;
3. Teilnehmende beantworten auf Fragebögen für verschiedene Tätigkeiten, mit welcher Hand sie diese ausführen;
4. Personen werden beim Ausüben bestimmter Tätigkeiten beobachtet (z. B. Werfen, Schneiden, Zeichnen, Faden einfädeln);
5. es wird aufgrund der Schreibhand eine Einteilung vorgenommen.

3.1.1 Beobachtungsverfahren

M. P. Bryden und Steenhuis (1991, S. 430) führen an, dass für jüngere Kinder Beobachtungsverfahren zur Erfassung der Händigkeit am besten geeignet sind. Bei diesen zeigen die Kinder verschiedene Tätigkeiten vor. Vorteilhaft an Beobachtungsver-
3 Erfassung der Händigkeit bei Kindern

3.1.1.1 WatHand Cabinet Test (WHCT)

Der WHCT (Bryden et al., 2007) besteht aus einer Box (Abmessungen: 15.5" x 12" x 24"; entspricht 39.4 cm x 30.9 cm x 61 cm), die in eine obere und eine untere Hälfte geteilt ist. Der obere Teil des Kastens ist mit einer Klappe verschlossen, die mit einem Griff an der Unterkante zu öffnen ist. An der Box sind an vorgegebenen Stellen verschiedene Gegenstände angebracht, mit denen das Kind acht verschiedene Tätigkeiten ausführt:

1. Klappe der Box öffnen (insgesamt viermalige Ausführung)
2. Spielzeughammer verwenden
3. Ring auf Haken platzieren
4. Ball auf eine Zielscheibe (Klettmaterial) werfen
5. Vorhängeschloss mit einem Schlüssel öffnen
6. Schraubenzieher benützen
7. kleinen Knopf auf einem Gerät drücken
8. Süßigkeitsspender hinter der Klappe nehmen

Aus den Items 2 bis 7 wird mit der Formel \((R-L)/(R+L) \times 100\) ein Wert für den Handgebrauch bei Tätigkeiten, die manuelle Geschicklichkeit verlangen (skilled
Erfassung der Händigkeit bei Kindern

score) berechnet. Positive Werte verweisen auf einen vermehrten Gebrauch der rechten Hand, negative auf eine bevorzugte Verwendung der linken Hand.

Ein Konsistenzwert (consistency score) wird ermittelt, indem erfasst wird, wie oft (von viermaliger Ausführung) das Kind die Klappe mit der rechten Hand hebt. Mit einem Wert für bimanuellen Handgebrauch (bimanual score) wird erhoben, ob die Hand, die das Tor beim ersten Mal öffnet, dieselbe ist, die das Tor öffnet, um an den Süßigkeitsspender zu kommen. Im Gesamtwert (total score) wird ein Lateralitätsquotient mit der Formel \[\frac{(R-L)}{(R+L)} \times 100 \] berechnet, in den alle Tätigkeiten bis auf das bimanuelle Item einfließen.

3.1.1.2 Hand Preference Demonstration Test (HPDT)

Im HPDT (Soper et al., 1986) wird die Handpräferenz mit acht Items erhoben. Um eine Beeinflussung zu vermeiden, werden die Stimuli beidhändig in der Mitte vor der Testperson präsentiert. Folgende Items werden je dreimal in quasi-zufälliger Reihenfolge vorgegeben (Soper et al., 1986):

1. mit einem Löffel essen
2. aus einer Tasse trinken, die mindestens zu einem Viertel gefüllt ist
3. Zähne putzen vorzeigen
4. mit einem Stift zeichnen
5. einen Ball werfen
6. mit einem Plastikhammer hämmern
7. ein Stück Essen aufheben (Zuckerl, Rosine)
8. ein 10-Cent Stück aufheben
3 Erfassung der Händigkeit bei Kindern

Durch die dreimalige Vorgabe jedes Items ist es möglich, die Konsistenz der Händigkeit zwischen verschiedenen Tätigkeiten und auch innerhalb einer Tätigkeit zu ermitteln.

3.1.1.3 Preschool Handedness Inventory (PHI)

3.1.1.4 Handpräferenztest für 4-6-jährige Kinder (HAPT 4-6)

Der HAPT 4-6 (Bruckner et al., 2011a) wird in der vorliegenden Untersuchung verwendet und ist in Kapitel 8.1 beschrieben.

3.1.2 Verfahren zum Midline-Crossing

3.1.2.1 *Preferential Reaching Task*

Im Preferential Reaching Task (P. J. Bryden, Pryde & Roy, 2000) sollen die Testpersonen mit Rundhölzern (10 cm lang, 5 cm breit) verschiedene Tätigkeiten ausführen: auf sie zeigen, sie aufnehmen, umstoßen, werfen, in eine Öffnung stecken. Die sieben Rundhölzer sind halbkreisförmig vor der Testperson angeordnet (von 90° links bis 90° rechts der Testperson). Position 4 befindet sich (von der Testperson aus gesehen) auf der Mittellinie, die Positionen 1 bis 3 im linken Gesichtsfeld und die Positionen 5 bis 7 im rechten Gesichtsfeld. Den Personen wird jeweils angegeben, mit welchem Rundholz sie welche Tätigkeit ausführen sollen, und der Handgebrauch wird jeweils erfasst.

3.1.2.2 *Quantification of Hand Preference (QHP) Task*

Der QHP Task (Bishop et al., 1996) wird in der vorliegenden Untersuchung verwendet und ist in Kapitel 8.2 beschrieben.
3.1.3 Fragebogenverfahren

3.1.3.1 Edinburgh Handedness Inventory (EHI)

Das EHI wurde 1971 von Oldfield entwickelt und hat weite Verbreitung gefunden. Es erfasst die Handpräferenz für zehn Tätigkeiten (Schreiben, Zeichnen, Werfen, mit Schere schneiden, Zahnbürste verwenden, mit Messer schneiden, Löffel benützen, Besen benützen, Streichholz anzünden, Behälter öffnen) und enthält zusätzlich je-

3.1.3.2 Waterloo Handedness Questionnaire (WHQ)

3.2 Erfassung der Handperformanz

Eine andere Herangehensweise zur Erfassung der Händigkeit besteht in der Verwendung von Performanzverfahren. Reiss und Reiss (2000, S. 73) führen aus, dass dabei

3.2.1 Punktietest und Leistungs-Dominanztest für Kinder (5-12 Jahre) (PTK-LDT)

Der PTK-LDT (Schilling, 2009) für Kinder im Alter von 5-12 Jahren ist ein Papier-Bleistift-Verfahren zur Ermittlung der Händigkeit und der feinmotorischen Leistung beider Hände. Der Test wird als Einzelverfahren vorgegeben, die Durchführung dauert 5-12 Minuten.

Auf den Testbögen ist je eine Clownfigur (für die linke und rechte Hand spiegelverkehrt) abgebildet, an deren Umrisslinie insgesamt 150 kleine Kreise angeordnet sind. Das Kind soll mit einem Filzstift oder Fineliner so schnell und genau wie möglich Punkte in die Kreise machen.

In die Auswertung fließen Geschwindigkeit und Güte der Bearbeitung der Testvorlagen mit der rechten und linken Hand ein. Man erhält einen Motorikquotienten (M = 100) getrennt für die Leistung der rechten und linken Hand sowie für die Leis-
3 Erfassung der Händigkeit bei Kindern

tung beider Hände. Zusätzlich wird ein Dominanzindex berechnet, der den prozentualen Anteil der Rechtsleistung an der Gesamtleistung beider Hände angibt und auf einer Skala von 0-100 liegt.

Es liegen Normen für Kinder von 5-12 Jahren vor, getrennt nach Alter und Geschlecht. Die Normierung des Punktierstests wurde 1974 an einer Stichprobe von über 1200 Kindern erstellt. Die Retest-Reliabilität (nach 4 Wochen) für die Anzahl der richtigen Punkte pro Zeit ist mit \(r_t = .92 \) angegeben. Die Korrelation mit dem Elternurteil zur Händigkeit beträgt \(r = .75 \).

3.2.2 Hand-Dominanz-Test (H-D-T)

Der H-D-T besteht aus drei Untertests, für die die Bearbeitungszeit jeweils mit 30 Sekunden begrenzt ist. Beim Spurennachzeichnen (Tracing) sollen die Kinder mit einem Bleistift in vorgezeichneten Schlangenlinien entlang fahren, ohne die Begrenzungslinien zu berühren. Beim Kreispunktieren (Dotting) besteht die Aufgabe darin, Punkte in Kreise, die auf Zickzacklinien angeordnet sind, zu machen. Beim Quadratpunktieren (Tapping on squares) sollen Punkte in Kästchen gemacht werden, die in Reihen angeordnet sind.

3.2.3 Test zur Händigkeit des Schulanfängers (THS)

Im THS werden acht Bildvorlagen (einfache Grundformen wie Strich, Dreieck und Zeichnungen wie ein Fähnchen) jeweils mit beiden Händen abgezeichnet, wobei die zuerst abzeichnende Hand von Bild zu Bild wechselt (Trolldenier, 1993).
3 Erfassung der Händigkeit bei Kindern

3.2.4 Finger Tapping

3 Erfassung der Händigkeit bei Kindern

3.2.5 Peg-Moving Task

3.3 Zusammenfassung

Die Ansätze zur Erfassung der Händigkeit bei Kindern sind sehr unterschiedlich, was den Vergleich von Forschungsergebnissen erschwert. Welches Verfahren jeweils für geeignet gehalten wird, ist stark von theoretischen Positionen abhängig (vgl. Bishop et al., 1996). Es gibt nur wenige Verfahren, die normiert und als standardisierte Testverfahren erhältlich sind.

Bei Verfahren zum Midline-Crossing (z. B. QHP Task, Bishop et al., 1996; Preferential Reaching Task, P. J. Bryden et al., 2000) wird der Handgebrauch der Testperson in Abhängigkeit von der Lage von Gegenständen, die meist halbkreisförmig vor der Testperson angeordnet sind, beobachtet.

Händigkeit und Entwicklung

Auch Bishop et al. (1996) berichten von widersprüchlichen Ergebnissen in Studien, die Verbindungen der Händigkeit zu kognitiven Variablen untersuchen. Sie führen dies zum Teil darauf zurück, dass den Verfahren zur Erfassung der Händigkeit wenig Aufmerksamkeit geschenkt werde und die Frage der Validität der eingesetzten Verfahren von vielen als nebensächlich betrachtet werde, und meinen: „Most researchers use handedness inventories whose credibility is based solely on their longevity, and which have no theoretical basis or empirical validation“ (Bishop et al., 1996, S. 269).

Zudem ist der Vergleich der Studien durch den Einsatz von sehr unterschiedlichen Verfahren und durch verschiedene Kategorisierungen der Händigkeit erschwert. Reiss und Reiss (1999, S. 1016) meinen, dass ein international einheitliches Vorgehen beim Erfassen der Händigkeit notwendig wäre, um die Daten vergleichbar zu machen, halten diese Forderung aber für unrealistisch.
4 Händigkeit und Entwicklung

Im Folgenden werden Studien beschrieben, die sich mit dem Zusammenhang verschiedener Entwicklungsvariablen mit Aspekten der Händigkeit beschäftigen. Die Untersuchungen sind in der Darstellung danach eingeteilt, welche Aspekte der Händigkeit untersucht wurden, wobei aufgrund methodischer Unterschiede in den Studien nicht in allen Fällen eine eindeutige Zuordnung vorgenommen werden konnte.

4.1 Richtung der Händigkeit

Untersuchungen, in denen die Ausprägung verschiedener Leistungsvariablen bei linkshändigen und rechtshändig Kindern verglichen wurde, kamen zu widersprüchlichen Ergebnissen. Bei Vorliegen signifikanter Unterschiede zeigt meist die Gruppe der rechtshändig Kindern einen günstigeren Entwicklungsverlauf.

Händigkeit und Entwicklung

und der Gruppe der rechtshändigen Kinder keine signifikanten Unterschiede in den bei den Verfahren erzielten Gesamtscores.

Vlachos und Bonoti (2004a, 2004b) führten an einer Stichprobe von 91 rechtshändigen und 91 linkshändigen Kindern im Alter von 7 bis 12 Jahren eine Untersuchung durch. Die Kinder wurden nur dann der jeweiligen Handpräferenzgruppe zugeordnet, wenn sie bei allen Fragen des EHI (Oldfield, 1971, s. Kap. 3.1.3.1) einen Gebrauch derselben Hand (rechte bzw. linke) angaben.

Karapetsas und Vlachos (1997) untersuchten eine umfangreiche Stichprobe (je 420 linkshändige und rechtshändige Kinder im Alter von 5;6 bis 12;6 Jahren). Die Handpräferenz wurde anhand von fünf Tätigkeiten (Schreiben, Zeichnen, mit Schere schneiden, Streichholz anzünden, Behälter öffnen) ermittelt. Anhand der Ergebnisse wurde ein Lateralitätsquotient gebildet, der Werte von -100 (extrem linkshändig) bis +100 (extrem rechtshändig) annehmen kann. Als linkshändig wurden Kinder mit einem Lateralitätsquotienten von -100 bis -40 eingestuft, als rechtshändig Kinder mit
Werten von +40 bis +100. In mehreren Altersgruppen zeigten sich bessere Leistungen von rechtshändigen Kindern in einer visumotorischen Aufgabe (Nachzeichnen einer komplexen Figur).

4.2 Unklare oder gemischte Händigkeit

Die folgenden Studien haben gemein, dass sie neben Links- und RechtshänderInnen eine dritte Gruppe von Kindern differenzieren, deren Händigkeit wenig lateralisiert ist, die also eine ähnliche Leistungsfähigkeit beider Hände aufweisen bzw. einen inkonsistenten Handgebrauch zeigen. Die Inkonsistenz bezieht sich dabei entweder auf den wechselnden Handgebrauch zwischen verschiedenen Tätigkeiten, oder es wird in der Verrechnung nicht zwischen einer Konsistenz innerhalb einer Tätigkeit und zwi-
schen *verschiedenen* Tätigkeiten unterschieden. Die Kriterien für die Einteilung der Kinder in die Gruppe der gemischthändigen/beidhändigen Kinder bzw. der Kinder mit inkonsistenter/unklarer Händigkeit sind in den Studien sehr unterschiedlich breit angelegt.

Auch zwischen Rechtshändern und Linkshändern fanden sie keine Unterschiede in nonverbaler Intelligenz sowie der Leistung im Lesen und Rechtschreiben.

Händigkeit und Entwicklung

Gabbard, Hart und Gentry (1995) gaben 4- bis 6-jährigen Kindern drei Tätigkeiten (Schreiben, Ball werfen, Würfel stapeln) je zweimal vor. Ein zweimaliger Gebrauch der rechten Hand bei einer Tätigkeit wurde mit 2, ein wechselnder Handgebrauch mit 1 und zweimaliger Gebrauch der linken Hand mit 0 kodiert, die Kinder danach in linkshändige (0-1 Punkte), mischhändige/inkonsistente (2-4 Punkte) und rechtshändige (5-6 Punkte) eingeteilt (je 24 Kinder pro Gruppe). Die AutorInnen fanden hinsichtlich feinmotorischer Fähigkeiten (Geschwindigkeit beim Finger-Tapping) keinen Unterschied zwischen Kindern mit einer Präferenz für die linke Hand, für die rechte Hand und mit gemischter Händigkeit.
4 Händigkeit und Entwicklung

Goez und Zelnik (2008) untersuchten die Handpräferenz bei 98 Kindern mit Koordinationsstörungen (Alter: 5;6 bis 17 Jahre; 76 Buben, 22 Mädchen). Es wurden drei Tätigkeiten vorgegeben (Schreiben, Ball werfen, Löffel halten). Als beidhändig wurden die Kinder eingestuft, die mit beiden Händen schrieben. Linkshändige (30.6 %) und beidhändige (13.3 %) Kinder waren überrepräsentiert.

4.3 Konsistenz innerhalb einer Tätigkeit

In einigen Studien wurde die Konsistenz innerhalb einer Tätigkeit erfasst und die Relevanz dieser Variable für die Entwicklung belegt.

Nachzeichnen solche mit inkonsisterter Handpräferenz überrepräsentiert. Ebenfalls zeigte sich, dass Buben häufiger eine inkonsistente Handpräferenz aufwiesen als Mädchen.

4.4 Midline-Crossing

Bei Untersuchungen zum Midline-Crossing (s. Kap. 3.1.2) werden Gegenstände an unterschiedlichen Positionen im rechten und linken Gesichtsfeld dargeboten. Beobachtet wird der Handgebrauch der Kinder in Abhängigkeit von der Lage des Gegenstandes.

Bishop (2005) führte eine Studie mit 196 Zwillingspaaren durch. Sie fand bei Kindern mit Sprachstörungen eine geringere Tendenz, im QHP Task (Bishop et al., 1996; s. Kap. 8.2) mit der bevorzugten Hand über die Mittellinie zu kreuzen, also eine schwächer ausgeprägte Handpräferenz.

4.5 Zusammenfassung

In einer Studie von Karapetsas und Vlachos (1997) zeigten Kinder mit Präferenz für die rechte Hand bessere Leistungen in visumotorischen Aufgaben.

5 Validität

Meist werden drei grundsätzliche Aspekte der Validität unterschieden (z. B. Lienert & Raatz, 1998):

2. Konstruktvalidität. „Ein Test weist Konstruktvalidität auf, wenn der Schluss vom Verhalten der Testperson innerhalb der Testsituation auf zugrunde liegende psychologische Persönlichkeitsmerkmale („Konstrukte“, ‚latente Variablen‘, ‚Traits‘) wie Fähigkeiten, Dispositionen, Charakterzüge, Einstellungen aufgezeigt wurde. Die Enge
5 Validität

3. **Kriteriumsvalidität (kriterienbezogene Validität, empirische Validität)**. Kriteriums-
validität bedeutet nach Hartig et al. (2008), „dass von einem Testergebnis auf ein für
diagnostische Entscheidungen praktisch relevantes Kriterium außerhalb der Testsit-
tuation geschlossen werden kann“ (S. 156).

Die Validität ist also ein breit angelegtes Kriterium und bezieht sich auf unterschied-
liche Aspekte eines Tests. Daher ist eine Fülle verschiedener Validitäten möglich, die
jeweils durch empirische Ergebnisse und/oder theoretische Argumente gestützt wer-
den können (Hartig et al., 2008, Kap. 7.1; Moosbrugger & Kelava, 2008). Treffend
derhalb angemessener, die Validität (Gültigkeit) verschiedener möglicher Interpretatio-
nen von Testergebnissen zu betrachten“ (S. 136). Die Gesamtheit der Validitäten
belegt, inwieweit ein Test das misst, was er messen soll (Moosbrugger & Kelava,
2008).

5.1 **Inhaltsvalidität**

Kubinger (2009) definiert: „Von Inhaltlicher Gültigkeit eines Tests ist zu sprechen,
wen dieser selbst, quasi definitionsgemäß, das optimale Kriterium des interessieren-
den Merkmals darstellt“ (S. 55). Nach Bühner (2011) liegt Inhaltsvalidität vor, „wen-
ein Test (bzw. seine Testitems im Gesamten) und auch jedes einzelne Item das zu
messende Merkmal wirklich bzw. hinreichend präzise erfasst. Präzise meint hier
nicht den Aspekt der Messgenauigkeit, sondern präzise bezieht sich auf die Abbil-
dung des Konstrukts durch das Item“ (S. 61-62).

Nach Hartig et al. (2008, S. 141-142) muss zur Feststellung der Inhaltsvalidität unter-
sucht werden, ob die Testitems eine repräsentative Stichprobe aus der Grundmenge

5.2 Konstruktvalidität

Zur Konstruktvalidierung werden aus der Theorie über das Konstrukt Hypothesen abgeleitet, die dann empirisch überprüft werden, wobei die zu validierenden Verfahren zum Einsatz kommen (Lienert & Raatz, 1998).

Oft beziehen sich diese a priori formulierten Erwartungen auf Zusammenhänge des zu validierenden Verfahrens mit anderen Tests, die konstruktverwandt oder konstrukt fremd sein können (Bühner, 2011, S. 63).

Auch die Prüfung der faktoriellen Struktur eines Tests ist eine Möglichkeit zur Konstruktvalidierung. Nach Meyer (2004, S. 271) werden mit Hilfe der Faktorenanalyse Annahmen überprüft, die sich auf die Anzahl und inhaltliche Bedeutung der Faktoren, die den Testresultaten zugrunde liegen, beziehen. Werden die Annahmen über
die Dimensionsstruktur gestützt, wird dies manchmal als *faktorielle Validität* bezeichnet (Hartig et al., 2008).

5.3 Kriteriumsvalidität

Für die praktische Testanwendung ist die *Kriteriumsvalidität* der wichtigste Validitätsaspekt (Lienert & Raatz, 1998). Die Ergebnisse psychologischer Tests fließen in der psychologischen Diagnostik in Entscheidungen mit ein, die zum Teil weitreichende Konsequenzen für die Testpersonen haben. Ein Testergebnis kann nur dann Basis für valide Entscheidungen sein, wenn die Testwerte praktische Relevanz besitzen, also mit Kriterien außerhalb der Testsituation, die für die Entscheidungen rele-

Je nachdem, ob das Außenkriterium zeitlich parallel oder in der Zukunft erhoben wird, unterscheidet man

- Übereinstimmungsvalidität (konkurrente Validität, gleichzeitige Validität) und
• Vorhersagevalidität (prognostische Validität)

(z. B. Hartig et al., 2008; Kubinger 2003; Lienert & Raatz, 1998; Meyer 2004; Moosbrugger & Kelava, 2008).

Die Vorhersagevalidität bezieht sich auf die Vorhersage einer Merkmalsausprägung in der Zukunft (z. B. zukünftiges Verhalten, zukünftige Leistung); die Kriterienwerte fallen später an als die Testwerte (Hartig et al., 2008; Lienert & Raatz, 1998; Meyer, 2004). Vor allem, wenn das Potenzial von Personen beurteilt werden soll (z. B. bei der Schullaufbahnberatung), ist sie von Bedeutung (Hartig et al., 2008).

Lienert und Raatz (1998, S. 222-223) beschreiben als weitere Einteilungsmöglichkeit der Validität die Unterscheidung von

• innerer Validität und

• äußerer Validität.

5.4 Augenscheinvalidität

5.5 Validitätsbefunde zum HAPT 4-6

Als Beleg für die Kriteriumsvalidität des HAPT 4-6 (Bruckner et al., 2011a, Kap. 4.3) führen die Testautorinnen an, dass die Auswahl der Testitems theoriegeleitet und unter Berücksichtigung empirischer Befunde erfolgte (s. Kap. 8.1).

Eine erste Validierungsstudie zum HAPT 4-6 (Bruckner et al., 2011a) wurde 2007 veröffentlicht (Kastner-Koller et al., 2007). Bei 120 Kindergartenkindern im Alter von 4.0 bis 6.5 Jahren wurde die Handpräferenz mit dem HAPT 4-6 erfasst. Die Stichprobe war so zusammengesetzt, dass sich in jeder Altersgruppe (in Halbjahres- schritten) zwölf Mädchen und zwölf Buben befanden. Neben einem globalen Elternurteil zur Händigkeit ihres Kindes wurde von den Eltern ein kurzer Fragebogen für
eine differenzierte Einschätzung ausgefüllt. Dazu stuften die Eltern auf einer
fünfstufigen Skala den Handgebrauch ihres Kindes bei fünf Tätigkeiten (Zeichnen,
Werfen, mit einer Schere schneiden, Zähne putzen, Löffel halten beim Essen einer
Suppe) ein. Weiters wurde, unabhängig von der Testung mit dem HAPT 4-6,
beobachtet, mit welcher Hand das Kind zeichnete. Die Testergebnisse im HAPT 4-6
korrelierten zu jeweils $r = .72$ ($p = .000$) mit der beobachteten Zeichenhand des
Kindes und dem globalen Elternurteil; mit der Einschätzung der Händigkeit mittels
Fragebogen zeigte sich ein Zusammenhang von $r = .50$ ($p = .000$). Die Autorinnen
interpretierten diese mittleren bis hohen Korrelationen als Beleg für die
Übereinstimmungsvalidität des HAPT 4-6. In Bezug auf die Inhaltsvalidität führten
sie an, dass durch die Konzeption des HAPT 4-6 als Präferenztest das Ergebnis nicht
von motorischer Geschicklichkeit beeinflusst wird (Kastner-Koller et al., 2007).

Im Manual des HAPT 4-6 (Bruckner et al., 2011a) finden sich ebenfalls Angaben zu
statistischen Überprüfungen der Validität des Verfahrens, die im Folgenden darge-
stellt werden.

Zur Überprüfung der konvergenten Validität wurden

1. die Zuordnung zu den Handpräferenzgruppen (links oder rechts) anhand des
 Ergebnisses des HAPT 4-6,
2. das Globalurteil der Eltern zur Händigkeit des Kindes, das auf der Einver-
 ständnisserklärung für die Testung erhoben wurde (LinkshänderIn, Rechtshän-
 derIn) und
3. die Zeichenhand des Kindes, die im Rahmen der Testung mit dem Wiener
 Entwicklungstest (WET, Kastner-Koller & Deimann, 2002) erfasst wurde,
 verwendet.
5 Validität

Das Globalurteil der Eltern zeigte einen hoch signifikanten Zusammenhang von $r = .97 \ (p < .01, \ n = 343)$ mit der Zeichenhand. Bruckner et al. (2011a) ziehen aus diesem Ergebnis den Schluss, dass das Elternurteil zur Händigkeit fast vollständig aufgrund der beim Zeichnen verwendeten Hand gebildet wird. Die Zuordnung zu den Handpräferenzgruppen mit dem HAPT 4-6 korrelierte mit $r = .76 \ (p < .01, \ n = 369)$ mit dem Globalurteil der Eltern und mit $r = .75 \ (p < .01, \ n = 354)$ mit der Zeichenhand. Die Autorinnen interpretieren diesen hohen, aber nicht perfekten Zusammenhang als Beleg für die konvergente Validität des Verfahrens und als Hinweis darauf, dass mit dem HAPT 4-6 auch Aspekte der Händigkeit erfasst werden, die über die Handpräferenz beim Zeichnen hinausgehen.

Zur Überprüfung der diskriminanten Validität zogen Bruckner et al. (2011a) als Maße

1. die Zuordnung zu den Handpräferenzgruppen im HAPT 4-6 und
2. einen Sprachscore, der aus Leistungen in vier Subtests des WET (Kastner-Koller & Deimann, 2002), die sprachliche Entwicklung erfassen, gebildet wurde,

heran.

Entsprechend den Erwartungen zeigte sich kein Zusammenhang zwischen der Handpräferenz des Kindes und dem Wert für die Sprachentwicklung (Korrelationen um Null), was Bruckner et al. (2011a) als Bestätigung der diskriminanten Validität des HAPT 4-6 interpretieren.

5.6 Zusammenfassung

Das Testgütekriterium der Validität gibt das Ausmaß an, in welchem ein Test das, was er zu messen beabsichtigt, misst (Bühner, 2011). Es gibt für einen Test nicht eine Validität, sondern verschiedene mögliche Validitäten, die sich auf unterschiedliche
Aspekte des Testverfahrens beziehen (vgl. Hartig et al., 2008; Moosbrugger & Kelava, 2008).

Die Prüfung der Inhaltsvalidität bezieht sich darauf, ob die Inhalte der einzelnen Items bzw. des gesamten Tests das zu messende Merkmal erfassen (Hartig et al., 2008, S. 140). Das bedeutet, dass einerseits die Testitems Teil des Itemuniversums (Grundmenge der möglichen Items) sein müssen, andererseits die Auswahl der Items repräsentativ sein muss (Repräsentationsschluss), sodass eine Verallgemeinerung der Testergebnisse zulässig ist (Hartig et al., 2008). Eine häufige Methode zur Überprüfung der Inhaltsvalidität ist das Experten-Rating.

Bei Überlegungen zur Kriteriumsvalidität stehen pragmatische Aspekte im Vordergrund (Lienert & Raatz, 1998). Sie bezieht sich auf die Korrelation eines Tests mit
5 Validität

Eine erste Validierungsstudie zum HAPT 4-6 (Bruckner et al., 2011a) wurde 2007 veröffentlicht (Kastner-Koller et al.). Bei 120 Kindern im Alter von 4,0 bis 6,5 Jahren wurde die Handpräferenz mit dem HAPT 4-6, einem globalen Elternurteil zur Händigkeit des Kindes, einem Fragebogen, und durch Beobachtung der Zeichenhand ermittelt. Die Ergebnisse des HAPT 4-6 zeigten hoch signifikante Korrelationen zur beobachteten Zeichenhand, zum globalen Elternurteil und zum Ergebnis des Fragebogens.

Im Manual des HAPT 4-6 (Bruckner et al., 2011a) finden sich Angaben zur konvergenten Validität. Bei einer Stichprobe von 343 Kindern zeigten sich hoch signifikante Korrelationen zwischen der Zuordnung zu den Handpräferenzgruppen mit dem HAPT 4-6 und dem Globalurteil der Eltern zur Händigkeit ihres Kindes \(r = .76 \) sowie der Zeichenhand \(r = .75 \). Als Beleg der diskriminanten Validität wird eine Korrelation um Null mit einem Wert zur sprachlichen Entwicklung angeführt.
B Empirischer Teil
6 Zielsetzung und Fragestellungen

Aufgrund der Zusammenhänge der Händigkeit mit der Lateralisation des Gehirns (s. Kap. 2) und mit Entwicklungsvariablen (s. Kap. 4) ist die Diagnostik der Händigkeit für die individuelle Förderung eines Kindes und für die Forschung von Bedeutung. Mit dem an der Fakultät für Psychologie der Universität Wien entwickelten und 2011 erschienen Handpräferenztest HAPT 4-6 (Bruckner, Deimann & Kastner-Koller, 2011a) liegt ein standardisiertes und normiertes Verfahren zur Erfassung der Händigkeit von Kindern im Alter von 4 bis 6 Jahren vor. Mit dem HAPT 4-6 werden verschiedene Aspekte (s. Kap. 1.2) der Präferenzhändigkeit erfasst: Die Richtung und der Grad der Handpräferenz und die Konsistenz des Handgebrauchs innerhalb einer Tätigkeit (Stärke der Handpräferenz).

Da sowohl der HAPT 4-6 als auch der QHP Task das Konstrukt Händigkeit/Handpräferenz erfassen, werden positive Zusammenhänge zwischen den Ergebnissen der beiden Verfahren erwartet. In Bezug auf die konvergente Validität des HAPT 4-6 ergeben sich folgende Fragestellungen:

- Gibt es einen positiven Zusammenhang zwischen der Einteilung in Händigkeitsgruppen (Richtung der Handpräferenz) durch den HAPT 4-6 und den QHP Task?
- Gibt es einen positiven Zusammenhang zwischen dem Maß für Richtung und Grad der Handpräferenz aus dem HAPT 4-6 (Lateralitätsquotient [LQ]) und
6 Zielsetzung und Fragestellungen

dem Maß für Richtung und Grad/Stärke der Handpräferenz im QHP Task (Laterality/Bishop [LATB])?

- Gibt es einen positiven Zusammenhang zwischen dem Maß für die Konsistenz innerhalb einer Tätigkeit (Stärke der Handpräferenz) im HAPT 4-6 (Händigkeitskonsistenz [HK]) und den Maßen für Grad/Stärke der Handpräferenz aus dem QHP Task (LATB und Anzahl Midline-Crossing, [TOT CROS])?

Auch zwischen Ergebnissen des HAPT 4-6 und des Peg-Moving Tasks werden positive Zusammenhänge erwartet, da beide Verfahren das Konstrukt Händigkeit erfassen. Es handelt sich hierbei ebenfalls um eine Überprüfung der konvergenten Validität. Die Fragestellungen lauten wie folgt:

- Gibt es einen positiven Zusammenhang zwischen der Einteilung in Händigkeitsgruppen (Richtung der Handpräferenz) durch den HAPT 4-6 und den Peg-Moving Task?
- Gibt es einen positiven Zusammenhang zwischen dem Maß für Richtung und Grad der Handpräferenz aus dem HAPT 4-6 (LQ) und dem Maß für Richtung und Grad der Handperformanz aus dem Peg-Moving Task (right minus left percent [R-L%])?

Weiters ist die Berechnung eines multiplen Validitätskoeffizienten aus Maßen des QHP Tasks und Peg-Moving Tasks vorgesehen. In diesem Zusammenhang ergibt sich folgende Fragestellung:

- Gibt es einen positiven Zusammenhang zwischen dem Maß für Richtung und Grad der Händigkeit aus dem HAPT 4-6 (LQ) und den Maßen für Richtung und Grad aus QHP Task (LATB) und Peg-Moving Task (R-L%)?
Da der HAPT 4-6 die Handpräferenz erfasst, wird im Sinne eines Nachweises der diskriminanten Validität erwartet, dass sich zu dem Verfahren zur Handpräferenz (QHP Task) höhere Zusammenhänge zeigen als zu dem Verfahren zur Handperformanz (Peg-Moving Task), woraus sich folgende Fragestellung ergibt:

- Sind die Zusammenhänge (in der Zuteilung zu den Händigkeitsgruppen und in den Maßen für Richtung und Grad der Händigkeit) zwischen dem HAPT 4-6 und dem QHP Task höher als zwischen dem HAPT 4-6 und dem Peg-Moving Task?
7 Durchführung der Untersuchung

Insgesamt wurden etwa 200 Einverständniserklärungen retourniert, aus denen die Auswahl der Stichprobe erfolgte. Um einen ausreichend hohen Anteil an linkshändigen Kindern für die Untersuchung zu erhalten, wurden alle von den Eltern als linkshändig (21) oder beidhändig (10) eingeschätzten Kinder sowie jene, bei denen die Angaben zur Händigkeit auf der Einverständniserklärung unklar waren (3), in die Stichprobe aufgenommen. Die Aufnahme der laut Elternurteil rechtshändigen Kinder
(164) erfolgte einerseits dahingehend, ein weitgehend ausgeglichenes Verhältnis nach Alter und Geschlecht in der Stichprobe zu erreichen und andererseits nach situativen Gegebenheiten (z. B. Anwesenheit im Kindergarten am Testtag). Bei fehlender oder fraglicher Zustimmung der Eltern zu dem für die parallele Diplomarbeit stattfindenden Elterninterview (9) wurden als rechtshändig eingeschätzte Kinder nicht in die Stichprobe aufgenommen.

Da die Anzahl der laut HAPT 4-6 linkshändigen Kinder in der über die Kindergärten rekrutierte Stichprobe geringer als erwartet war, wurde zusätzlich über den Bekanntenkreis der Diplomandinnen nach eventuell linkshändigen Kindern in der entsprechenden Altersgruppe gesucht. Es wurden 5 weitere Kinder in die Stichprobe aufgenommen.

Die Durchführung der Erhebungen erfolgte im Zeitraum von Juni bis Oktober 2010. Testort war in den meisten Fällen ein Raum des jeweiligen Kindergartens, in einigen Fällen wurde die Testung bei den Kindern zu Hause vorgenommen. Um für die Untersuchungen in den Kindergärten einen kürzeren Zeitraum zu beanspruchen und so möglichst viele Kinder vor den Schließmonaten im Sommer zu testen, wurden die Erhebungen von beiden Diplomandinnen (Ariane Hell und Cora Feichtinger) gemeinsam durchgeführt (zum Ausgleich wurden die für Ariane Hells Diplomarbeit durchzuführenden Elterninterviews ebenfalls zwischen den Diplomandinnen aufgeteilt). Bei Erhebungen im Kindergarten wurden meist zwei Kinder parallel getestet. Dabei gab jede Testleiterin einem Kind die drei Verfahren (HAPT 4-6, QHP Task, Peg-Moving Task) vor, wobei die Testleiterinnen im selben Raum arbeiteten. Bei Erhebungen zu Hause nahm eine Diplomandin die Untersuchung mit dem Kind vor, während die andere das Elterninterview durchführte. Die Eltern der getesteten Kinder erhielten Rückmeldung über das Ergebnis des HAPT 4-6 (meist im Rahmen der Elterninterviews).
8 Beschreibung der eingesetzten Verfahren

Neben dem HAPT 4-6 und dem Elternurteil zur Händigkeit ihres Kindes (RechtshänderIn – LinkshänderIn – BeidhänderIn, s. Anhang A) sollte ein weiteres Verfahren zur Erfassung der Handpräferenz und eines zur Erfassung der Handperformanz eingesetzt werden. Für die Auswahl dieser beiden Verfahren wurden folgende Kriterien aufgestellt, wobei die Verfahren möglichst viele davon erfüllen sollten:

- Eignung für die Altersgruppe der 4- und 5-jährigen Kinder
- Verfügbarkeit des Verfahrens
- standardisierte Vorgabe möglich
- Berechnung von folgenden Maßen möglich:
 - Richtung der Händigkeit
 - kontinuierliches Maß zur Ausprägung des Händigkeitsgrades
 - bei Präferenzverfahren: Berechnung der Händigkeitskonsistenz innerhalb einer Tätigkeit (Stärke)
- Bewährung des Verfahrens (Bekanntheit, häufiger Einsatz)
- vorhandene Normierung

Die eingesetzten Verfahren werden im Folgenden dargestellt.

8.1 Handpräferenztest für 4-6-jährige Kinder (HAPT 4-6)

Die Informationen für die folgende Darstellung sind, wenn nicht anders angegeben, dem Manual des HAPT 4-6 (Bruckner et al., 2011a) entnommen.

Der HAPT 4-6 dient der Erfassung der Handpräferenz bei Kindern im Alter von 4 bis 6 Jahren und ist als Beobachtungsverfahren (s. Kap. 3.1.1) konzipiert. Eingebettet in

8.1.1 Items des HAPT 4-6

Die Konstruktion des HAPT 4-6 erfolgte, indem zu folgenden aus der Theorie abgeleiteten Komponenten der Handpräferenz Items entwickelt wurden:

- Greifen nach bzw. Aufnehmen eines Gegenstandes (Krombholz, 1993),
- einhändiges oder beidhändiges Manipulieren (Fagard & Marks, 2000),
- Tätigkeiten, bei denen Bewegungen von Arm, Schulter und/oder Rumpf beteiligt sind,

Ebenso berücksichtigt wurden faktorenanalytische Ergebnisse von Steenhuis und M. P. Bryden (1989, s. Kap. 3.1.3.2), indem jeweils zwei präzise und zwei automatisierte Handlungen zu jeder der vier oben genannten Komponenten aufgenommen wurden.

Von den so entstandenen 16 Items wurden aufgrund geringer Trennschärfeindizes zwei Items entfernt, sodass das Verfahren aus 14 Items besteht, die je dreimal vorgegeben werden:

1. Ball werfen
2. Boden kehren (mit Handbesen und -schaufel)
3. Winken
4. Kreuz zeichnen
5. Stempeln
6. Würfeln
7. Holzperle aufnehmen
8 Beschreibung der eingesetzten Verfahren

8. Kette aufnehmen
9. Belohnung (z. B. Gummibärchen) aufnehmen
10. Sticker aufnehmen
11. Fisch angeln (magnetisches Angelspiel)
12. Dose öffnen (Dose ohne Gewinde)
13. Lichtschalter betätigen
14. Reißverschluss öffnen (loser Reißverschluss)

8.1.2 Durchführung des HAPT 4-6

Vor der Testdurchführung wird das Testmaterial nach den Vorgaben aus dem Manual auf einem niedrigen Tisch und am Boden des Untersuchungsraums angeordnet (s. Abbildung 1). Danach wird gemeinsam mit dem Kinder der Raum exploriert und die Materialien werden benannt. Die Instruktion an das Kind lautet:

Abbildung 1: Anordnung des Testmaterials im HAPT 4-6 (aus: Bruckner, Deimann & Kastner-Köller, 2011a, S. 27)
Danach wird eine CD gestartet, die die Instruktionen für das Kind enthält. Die Materialien werden so präsentiert, dass sie sich zentriert vor dem Kind befinden. Der Handgebrauch des Kindes für jedes Item wird auf einem Protokollbogen festgehalten. Das Manual enthält detaillierte Anweisungen, welcher Aspekt der jeweiligen Tätigkeit zu protokollieren ist.

8.1.3 Auswertung des HAPT 4-6

Zur Auswertung wird, in Anlehnung an Oldfield (1971, vgl. Kapitel 3.1.3.1), ein Lateralitätsquotient (LQ) mit der Formel $100 \times \frac{(SR-SL)}{(SR+SL)}$ gebildet ($SR =$ Summe der mit der rechten Hand ausgeführten Tätigkeiten, $SL =$ Summe der mit der linken Hand ausgeführten Tätigkeiten). Der LQ „gibt das relative Ausmaß der Bevorzugung einer Hand an“ (Bruckner et al., 2011a, S. 32) und liegt auf einer Skala von -100 (alle Tätigkeiten mit der linken Hand ausgeführt) bis +100 (alle Tätigkeiten mit der rechten Hand ausgeführt). Bei einem $LQ \leq 0$ wird das Kind der Handpräferenzgruppe für die linke Hand zugeordnet, ein $LQ > 0$ bedeutet eine Präferenz für die rechte Hand.

Mit Hilfe von Normentabellen (zur Verfügung stehen Tabellen für die Gesamtstichprobe sowie getrennt nach Mädchen und Buben) kann dem LQ ein Prozentrang zugeordnet werden, der den relativen Anteil an Kindern in der Vergleichsstichprobe angibt, die einen gleich hohen oder niedrigeren LQ aufweisen.

Ebenso kann mit Hilfe des LQ der Ausprägungsgrad der Handpräferenz im Vergleich zu Kindern gleichen Geschlechts und gleicher Händigkeitsgruppe ermittelt werden. Es stehen dazu vier Normentabellen zur Verfügung (Mädchen/Präferenz links, Mädchen/Präferenz rechts, Buben/Präferenz links, Buben/Präferenz rechts). Der ermittelte C-Wert gibt an, ob ein Kind zwischen verschiedenen Tätigkeiten die gleiche Hand bevorzugt.

Weiters wird in der Auswertung ein Wert zur Händigkeitskonsistenz (HK) gebildet,
Beschreibung der eingesetzten Verfahren

indem die Anzahl der konsistent (also dreimal mit derselben Hand) durchgeführten Tätigkeiten (0-14) ermittelt wird. Diesem Wert wird mit Hilfe von vier Normentabellen (Buben/Präferenz links, Buben/Präferenz rechts, Mädchen/Präferenz links, Mädchen/Präferenz rechts) ein C-Wert zugeordnet, der angibt, ob das Kind im Vergleich zu anderen Kindern gleichen Geschlechts und gleicher Handpräferenzgruppe einen konsistenten Handgebrauch innerhalb einer Tätigkeit aufweist.

8.2 Quantification of Hand Preference (QHP) Task

mit der mittleren Karte (Position 4). Es wird jeweils protokolliert, mit welcher Hand das Kind die Karte nimmt.

Abbildung 2: QHP Task mit Nummerierung der Positionen (am Bild hinzugefügt, Fotografie und Bearbeitungen von Feichtinger, 2012)

Die Instruktion an die Kinder bei der Testdurchführung wurde folgendermaßen formuliert:
„Jetzt spielen wir ein lustiges Kartenspiel. Schau dir mal diese Karten an; da sind verschiedene Sachen drauf (Karten einzeln benennen). Ich sage dir jetzt eine Karte an, die du bitte nimmst. Und diese legst du dann in diese goldene Schachtel.“

Zur Auswertung (s. z. B. Calvert & Bishop, 1998; Carlier et al., 2006) wurde der relative Anteil des Gebrauchs der rechten Hand -0.50 berechnet. Es ergibt sich ein kontinuierliches Maß von -0.50 (alle Karten mit der linken Hand genommen) bis +0.50 (alle Karten mit der rechten Hand genommen). Wie bei Carlier et al. (2006) wird dieses Maß in der vorliegenden Arbeit als LATB (Laterality/Bishop) bezeichnet. Bei LATB < 0 wird das Kind als linkshändig eingestuft, bei LATB > 0 als rechtshändig (s. Carlier et al., 2006). LATB entspricht rechnerisch dem LQ / 200.

Ebenso wird zur Auswertung die Anzahl des Kreuzens der Mittellinie (TOT CROS) herangezogen. Dieses von Carlier et al. (2006) verwendete Maß wird von diesen als (von der Richtung der Händigkeit unabhängiger) Indikator für den Grad der Händigkeit interpretiert. Der Wert für TOT CROS kann zwischen 0 und 18 liegen. Ein Wert von 0 wird erzielt, wenn kein Kreuzen der Mittellinie auftritt, also alle Karten an den
Beschreibung der eingesetzten Verfahren

Positionen 1 bis 3 mit der linken Hand und alle Karten an den Positionen 5 bis 7 mit der rechten Hand aufgenommen werden. Ein Wert von 18 wird hingegen erreicht, wenn in allen möglichen Fällen die kontralaterale Hand verwendet wird, also die Karten an den Positionen 1 bis 3 mit der rechten und an den Positionen 5 bis 7 mit der linken Hand aufgenommen werden.

8.3 Peg-Moving Task

Abbildung 3: Steckbrett des Peg-Moving Tasks (Fotografie von Feichtinger, 2012)

Die Instruktion (Annett, 1970, 2002) wurde ins Deutsche übersetzt und an die Vorgabe bei Kindern angepasst und lautete wie folgt:

Zur Auswertung (Annett, 2002, S. 58) werden für die rechte Hand und linke Hand die durchschnittlich benötigten Zeiten berechnet. Von dem Durchschnittswert für die linke Hand (L) wird der Durchschnittswert für die rechte Hand (R) subtrahiert (L-R). Diese Differenz wird in Beziehung zur benötigten Gesamtzeit gesetzt und ergibt das Maß *right minus left percent* (R-L%), das folgendermaßen berechnet wird:

\[
\frac{(L-R)}{(R+L)} \times 100
\]

Negative Werte verweisen auf Linkshändigkeit, positive Werte auf Rechtshändigkeit.
9 Beschreibung der Stichprobe

Insgesamt wurden die Verfahren zur Händigkeit 66 Kindern vorgegeben. Da sich 2 Kinder während der Testvorgabe häufig kratzten, wodurch ein Einfluss auf die Testergebnisse zu befürchten war, wurden sie nicht in die im Folgenden beschriebene Stichprobe \((N = 64) \) aufgenommen.

9.1 Geschlecht und Alter der Kinder

In der Stichprobe befinden sich 33 Mädchen und 31 Buben (s. Tabelle 1). Zum Testzeitpunkt fielen 37 Kinder in die Altersgruppe der 4-Jährigen, 27 Kinder in die Altersgruppe der 5-Jährigen. Die Buben und Mädchen verteilten sich gleichmäßig auf die Altersgruppen \((\chi^2 = 0.02, \text{df} = 1, p = .968, \text{zweiseitige Testung}) \).

Tabelle 1: Verteilung der Mädchen und Buben der Stichprobe auf die Altersgruppen

<table>
<thead>
<tr>
<th>Altersgruppe</th>
<th>Mädchen</th>
<th>Buben</th>
<th>gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>4;0-4;11</td>
<td>19</td>
<td>18</td>
<td>37</td>
</tr>
<tr>
<td>5;0-5;11</td>
<td>14</td>
<td>13</td>
<td>27</td>
</tr>
<tr>
<td>gesamt</td>
<td>33</td>
<td>31</td>
<td>64</td>
</tr>
</tbody>
</table>

Anmerkung: \(\chi^2 = 0.02, \text{df} = 1, p = .968 \) (2-seitig).

9.2 Kindergartenbesuch

Der Großteil der Kinder \((n = 61) \) besuchte einen von 11 Kindergärten in der Gemeinde Klosterneuburg. Zusätzlich wurden 5 Kinder aus dem Raum Niederösterreich und Wien getestet. Tabelle 2 zeigt die Verteilung der getesteten Kinder auf die Kindergärten.
9 Beschreibung der Stichprobe

Tabelle 2: Kindergartenbesuch der getesteten Kinder

<table>
<thead>
<tr>
<th>Kindergarten</th>
<th>Anzahl der Kinder</th>
<th>Stichprobe %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anton-Bruckner-Gasse</td>
<td>5</td>
<td>7.8</td>
</tr>
<tr>
<td>Gugging</td>
<td>3</td>
<td>4.7</td>
</tr>
<tr>
<td>Höflein</td>
<td>4</td>
<td>6.3</td>
</tr>
<tr>
<td>Käferkreuzgasse</td>
<td>7</td>
<td>10.9</td>
</tr>
<tr>
<td>Kierling 1</td>
<td>8</td>
<td>12.5</td>
</tr>
<tr>
<td>Kierling 2</td>
<td>2</td>
<td>3.1</td>
</tr>
<tr>
<td>Kritzendorf</td>
<td>2</td>
<td>3.1</td>
</tr>
<tr>
<td>Langstörgasse</td>
<td>7</td>
<td>10.9</td>
</tr>
<tr>
<td>Markgasse</td>
<td>17</td>
<td>26.6</td>
</tr>
<tr>
<td>Stolpeckgasse</td>
<td>1</td>
<td>1.6</td>
</tr>
<tr>
<td>Weidling</td>
<td>3</td>
<td>4.7</td>
</tr>
<tr>
<td>sonstige</td>
<td>5</td>
<td>7.8</td>
</tr>
<tr>
<td>gesamt</td>
<td>64</td>
<td>100</td>
</tr>
</tbody>
</table>

9.3 Die Händigkeit der Kinder

Bei den folgenden Darstellungen ist zu berücksichtigen, dass die Auswahl der Kinder für die Stichprobe dahingehend erfolgte, einen möglichst hohen Anteil linkshändiger Kinder zu erfassen.

9.3.1 Elternurteil zur Händigkeit

Von ihren Eltern wurden 21 Kinder (33 %) der Stichprobe auf der Einverständniserklärung als linkshändig eingestuft, 10 Kinder (16 %) als beidhändig und 30 Kinder (47 %) als rechtshändig. Zu 3 Kindern (5 %) gaben die Eltern keine klare Angabe über ihre Einschätzung der Händigkeit des Kindes. Buben und Mädchen sowie Kinder in den Altersgruppen 4 und 5 Jahre verteilten sich gleichmäßig auf die durch das
9 Beschreibung der Stichprobe

Elternurteil gebildeten Händigkeitsgruppen (s. Tabellen 3 und 4).

Tabelle 3: *Elternurteil zur Händigkeit und Geschlecht der Kinder*

<table>
<thead>
<tr>
<th>Elternurteil zur Händigkeit</th>
<th>linkshändig</th>
<th>beidhändig</th>
<th>rechtshändig</th>
<th>sonstiges</th>
<th>gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mädchen</td>
<td>12</td>
<td>4</td>
<td>16</td>
<td>1</td>
<td>33</td>
</tr>
<tr>
<td>Buben</td>
<td>9</td>
<td>6</td>
<td>14</td>
<td>2</td>
<td>31</td>
</tr>
<tr>
<td>gesamt</td>
<td>21</td>
<td>10</td>
<td>30</td>
<td>3</td>
<td>64</td>
</tr>
</tbody>
</table>

Tabelle 4: *Elternurteil zur Händigkeit und Altersgruppe der Kinder*

<table>
<thead>
<tr>
<th>Altersgruppe</th>
<th>Elternurteil zur Händigkeit</th>
<th>linkshändig</th>
<th>beidhändig</th>
<th>rechtshändig</th>
<th>sonstiges</th>
<th>gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>4;0-4;11</td>
<td></td>
<td>11</td>
<td>7</td>
<td>18</td>
<td>1</td>
<td>37</td>
</tr>
<tr>
<td>5;0-5;11</td>
<td></td>
<td>10</td>
<td>3</td>
<td>12</td>
<td>2</td>
<td>27</td>
</tr>
<tr>
<td>gesamt</td>
<td></td>
<td>21</td>
<td>10</td>
<td>30</td>
<td>3</td>
<td>64</td>
</tr>
</tbody>
</table>

Anmerkung. Exakter Test nach Fisher: $\chi^2 = 1.721, p = .665$ (2-seitig).

9.3.2 Händigkeit laut HAPT 4-6

Mit dem HAPT 4-6 wurden 17 Kinder (27 %) als linkshändig klassifiziert (LQ ≤ 0), die restlichen 47 Kinder (73 %) als rechtshändig (LQ > 0). Hinsichtlich des Geschlechts und des Alters der Kinder (s. Tabellen 5 und 6) zeigten sich keine Unterschiede in der Zuteilung zu den Handpräferenzgruppen.
9 Beschreibung der Stichprobe

Tabelle 5: Handpräferenzgruppe laut HAPT 4-6 und Geschlecht der Kinder

<table>
<thead>
<tr>
<th></th>
<th>Handpräferenzgruppe HAPT</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>links</td>
<td>rechts</td>
<td>gesamt</td>
<td>gesamt</td>
</tr>
<tr>
<td>Mädchen</td>
<td>10</td>
<td>23</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>Buben</td>
<td>7</td>
<td>24</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>gesamt</td>
<td>17</td>
<td>47</td>
<td>64</td>
<td>64</td>
</tr>
</tbody>
</table>

Anmerkung. $\chi^2 = .489, df = 1, p = .485$ (2-seitig).

Tabelle 6: Handpräferenzgruppe laut HAPT 4-6 und Alter der Kinder

<table>
<thead>
<tr>
<th>Altersgruppe</th>
<th>Handpräferenzgruppe HAPT</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>links</td>
<td>rechts</td>
<td>gesamt</td>
<td>gesamt</td>
</tr>
<tr>
<td>4;0-4;11</td>
<td>11</td>
<td>26</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>5;0-5;11</td>
<td>6</td>
<td>21</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>gesamt</td>
<td>17</td>
<td>47</td>
<td>64</td>
<td>64</td>
</tr>
</tbody>
</table>

Anmerkung. $\chi^2 = .451, df = 1, p = .502$ (2-seitig).

Für den *Lateralitätsquotienten (LQ)* wurden Werte von -90.48 bis +100 ($M = 36.94, SD = 58.10$) beobachtet. Abbildung 4 zeigt die Verteilung des Lateralitätsquotienten in der Stichprobe. Für die *Händigkeitskonsistenz (HK)* zeigten sich Werte von 5 bis 14 ($M = 10.45, SD = 2.17$; s. Abbildung 5).

Abbildung 4: Verteilung des Lateralitätsquotienten (LQ)
9.3.3 Zusammenhang HAPT 4-6 und Elternurteil

Der Zusammenhang zwischen dem *Elternurteil zur Händigkeit* und der Zuteilung zu den Handpräferenzgruppen mit dem *HAPT 4-6* ist in Tabelle 7 dargestellt. Von den 21 laut Elternurteil linkshändigen Kindern wurden mit dem Handpräferenztest 15 als linkshändig diagnostiziert, 6 als rechtshändig. Kinder, die von den Eltern als beid- oder rechtshändig eingestuft wurden und solche, bei denen die Eltern unklare/keine Angaben zu ihrer Einschätzung gemacht hatten, wurden im HAPT 4-6 zum Großteil als rechtshändig eingestuft.

<table>
<thead>
<tr>
<th>Elternurteil</th>
<th>links</th>
<th>beidhändig</th>
<th>rechts</th>
<th>sonstiges</th>
<th>gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAPT 4-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>links</td>
<td>15</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>rechts</td>
<td>6</td>
<td>9</td>
<td>29</td>
<td>3</td>
<td>47</td>
</tr>
<tr>
<td>gesamt</td>
<td>21</td>
<td>10</td>
<td>30</td>
<td>3</td>
<td>64</td>
</tr>
</tbody>
</table>
9 Beschreibung der Stichprobe

Zur statistischen Prüfung des Zusammenhangs der Zuteilung in die Händigkeitsgruppen durch Elternurteil und HAPT 4-6 wurden die Fälle mit unklarem Elternurteil ausgeschlossen. Der exakte Test nach Fisher fällt signifikant aus und verweist somit auf eine Abhängigkeit der beiden Variablen ($\chi^2 = 29.518$, $p = .000$, zweiseitige Testung). Der Korrelationskoeffizient nach Spearman beträgt $r = .656$ und fällt ebenfalls signifikant aus ($p = .000$, zweiseitige Testung).

Eine signifikante Korrelation besteht auch zwischen dem Elternurteil und der im HAPT 4-6 verwendeten Hand beim Item *Kreuz Zeichnen* (Korrelationskoeffizient nach Spearman $r = .834$, $p = .000$, zweiseitige Testung).

9.3.4 Händigkeit laut QHP Task

Anhand der Testung mit dem *QHP Task* wurden 25 Kinder (39 %) als linkshändig (LATB < 0) und 39 Kinder (61 %) als rechtshändig (LATB > 0) eingestuft. Hinsichtlich des Geschlechts und des Alters der Kinder (s. Tabellen 8 und 9) zeigten sich keine Unterschiede in der Zuteilung zu den Handpräferenzgruppen.

Tabelle 8: Handpräferenzgruppe laut QHP Task und Geschlecht der Kinder

<table>
<thead>
<tr>
<th>Handpräferenzgruppe QHP Task</th>
<th>links</th>
<th>rechts</th>
<th>gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mädchen</td>
<td>14</td>
<td>19</td>
<td>33</td>
</tr>
<tr>
<td>Buben</td>
<td>11</td>
<td>20</td>
<td>31</td>
</tr>
<tr>
<td>gesamt</td>
<td>25</td>
<td>39</td>
<td>64</td>
</tr>
</tbody>
</table>

Anmerkung. $\chi^2 = .323$, $df = 1, p = .570$ (2-seitig).
Beschreibung der Stichprobe

Tabelle 9: Handpräferenzgruppe laut QHP Task und Alter der Kinder

<table>
<thead>
<tr>
<th>Altersgruppe</th>
<th>Handpräferenzgruppe laut QHP Task</th>
<th>links</th>
<th>rechts</th>
<th>gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>4;0-4;11</td>
<td></td>
<td>15</td>
<td>22</td>
<td>37</td>
</tr>
<tr>
<td>5;0-5;11</td>
<td></td>
<td>10</td>
<td>17</td>
<td>27</td>
</tr>
<tr>
<td>gesamt</td>
<td></td>
<td>25</td>
<td>39</td>
<td>64</td>
</tr>
</tbody>
</table>

Anmerkung. $\chi^2 = .080, df = 1, p = .777$ (2-seitig).

Für das Maß LATB wurden Werte von -.50 bis +.50 beobachtet ($M = .0655$, $SD = .2926$). Die Verteilung von LATB ist in Abbildung 6 dargestellt.

Abbildung 6: Verteilung von LATB

Beschreibung der Stichprobe

Die Häufigkeit eines Kreuzens der Mittellinie (TOT CROS) ist in Abbildung 8 dargestellt. Es wurden Werte von 0 bis 10 beobachtet ($M = 5.03$, $SD = 2.867$).

Abbildung 8: Anzahl des Kreuzens der Mittellinie (TOT CROS) im QHP Task

Insgesamt kreuzten 43 Kinder die Mittellinie nur mit einer Hand, 4 Kinder zeigten kein Midline-Crossing. Auffallend war, dass 17 Kinder (27 %) mit beiden Händen mindestens einmal über die Mittellinie griffen. Das erscheint für die Aussagekraft des
9 Beschreibung der Stichprobe

Wertes TOT CROS als Maß für Grad/Stärke der Handpräferenz problematisch, da das Maß nicht zwischen einem einheitlichen und einem wechselnden Handgebrauch unterscheidet.

9.3.5 Händigkeit laut Peg-Moving Task

Im Verfahren zur Performanzhändigkeit wurden 28 Kinder (44 %) als linkshändig (R-L% < 0) und 36 Kinder (56 %) als rechtshändig (R-L% > 0) eingestuft. Buben und Mädchen sowie Kinder in den Altersgruppen 4 und 5 Jahre verteilten sich in der Stichprobe gleichmäßig auf die Händigkeitsgruppen (s. Tabellen 10 und 11).

Tabelle 10: Händigkeitsgruppe laut Peg-Moving Task und Geschlecht der Kinder

<table>
<thead>
<tr>
<th>Händigkeitsgruppe Peg-Moving Task</th>
<th>links</th>
<th>rechts</th>
<th>gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mädchen</td>
<td>11</td>
<td>22</td>
<td>33</td>
</tr>
<tr>
<td>Buben</td>
<td>17</td>
<td>14</td>
<td>31</td>
</tr>
<tr>
<td>gesamt</td>
<td>28</td>
<td>36</td>
<td>64</td>
</tr>
</tbody>
</table>

Anmerkung. $\chi^2 = 3.004, df = 1, p = .083$ (2-seitig).

Tabelle 11: Händigkeitsgruppe laut Peg-Moving Task und Alter der Kinder

<table>
<thead>
<tr>
<th>Altersgruppe</th>
<th>Händigkeitsgruppe Peg-Moving Task</th>
<th>links</th>
<th>rechts</th>
<th>gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>4;0-4;11</td>
<td>16</td>
<td>21</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>5;0-5;11</td>
<td>12</td>
<td>15</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>gesamt</td>
<td>28</td>
<td>36</td>
<td>64</td>
<td></td>
</tr>
</tbody>
</table>

Anmerkung. $\chi^2 =0.009, df = 1, p = .924$ (2-seitig).

Für das Maß R-L % wurden Werte von -8.57 bis +16.11 ($M = 1.83, SD = 6.508$) beobachtet (s. Abbildung 9).
Abbildung 9: Verteilung der Werte für R-L%
10 Validierung des HAPT 4-6

10.1 Analysen zur Zuteilung zu den Händigkeitsgruppen

Zunächst wurde ermittelt, inwieweit die Kinder mit dem HAPT 4-6 der gleichen Händigkeitsgruppe zugeordnet wurden wie mit dem QHP Task bzw. mit dem Peg-Moving Task.

Tabelle 12 gibt einen Überblick über die Händigkeit laut HAPT 4-6 und QHP Task. Es wurden 75 % der Kinder von beiden Verfahren der gleichen Händigkeitsgruppe zugeordnet: 20 % wurden als linkshändig eingestuft, 55 % als rechtshändig. Bei 25 % der Stichprobe unterschied sich die Klassifikation durch die beiden Verfahren: 19 % wurden im HAPT 4-6 als rechtshändig klassifiziert und im QHP Task als links- händig, bei 6 % war es umgekehrt. Der Korrelationskoeffizient nach Spearman verweist auf eine hoch signifikante Korrelation zwischen der Händigkeit laut HAPT 4-6 und laut QHP Task (r = .461, p < .01; s. Tabelle 13).

Auf deskriptiver Ebene sind die größten Abweichungen in Zuteilungen zu den Händigkeitsgruppen bei Kindern, die laut QHP linkshändig sind, zu finden. Von diesen wurden 52 % im HAPT 4-6 als linkshändig, 48 % als rechtshändig eingestuft.
Tabelle 12: Händigkeit der Kinder laut HAPT 4-6 und laut QHP Task

<table>
<thead>
<tr>
<th></th>
<th>QHP Task</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>links</td>
<td>rechts</td>
</tr>
<tr>
<td>HAPT 4-6 links</td>
<td>Anzahl</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>% innerhalb von HAPT</td>
<td>76.5</td>
<td>23.5</td>
</tr>
<tr>
<td></td>
<td>% innerhalb von QHP</td>
<td>52.0</td>
<td>10.3</td>
</tr>
<tr>
<td></td>
<td>% der Gesamtzahl</td>
<td>20.3</td>
<td>6.3</td>
</tr>
<tr>
<td>HAPT 4-6 rechts</td>
<td>Anzahl</td>
<td>12</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>% innerhalb von HAPT</td>
<td>25.5</td>
<td>74.5</td>
</tr>
<tr>
<td></td>
<td>% innerhalb von QHP</td>
<td>48.0</td>
<td>89.7</td>
</tr>
<tr>
<td></td>
<td>% der Gesamtzahl</td>
<td>18.8</td>
<td>54.7</td>
</tr>
<tr>
<td>gesamt Anzahl</td>
<td></td>
<td>25</td>
<td>39</td>
</tr>
</tbody>
</table>

Anmerkung. \(\chi^2 = 13.609, df = 1, p = .000 \) (1-seitig).

Tabelle 13: Korrelationen (nach Spearman) zwischen der Händigkeit laut HAPT 4-6, QHP Task und Peg-Moving Task.

<table>
<thead>
<tr>
<th></th>
<th>HAPT 4-6</th>
<th>QHP Task</th>
<th>Peg-Moving</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAPT 4-6</td>
<td>---</td>
<td>.461**</td>
<td>.468**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(p = .000)</td>
<td>(p = .000)</td>
</tr>
<tr>
<td>QHP Task</td>
<td>.461**</td>
<td>---</td>
<td>.391**</td>
</tr>
<tr>
<td></td>
<td>(p = .000)</td>
<td></td>
<td>(p = .001)</td>
</tr>
<tr>
<td>Peg-Moving</td>
<td>.468**</td>
<td>.391**</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>(p = .000)</td>
<td>(p = .001)</td>
<td></td>
</tr>
</tbody>
</table>

Anmerkung: ** \(p < .01 \) (1-seitig).

Bei Diagnostik der Händigkeit mittels HAPT 4-6 und dem Performanzverfahren Peg-Moving Task wurden 74 % der Stichprobe der gleichen Gruppe zugeordnet (s. Tabelle 14). Davon wurden 22 % der Kinder als linkshändig eingestuft und 52 % von beiden Verfahren als rechtshändig. Bei 27 % der Kinder unterschied sich die Klassifikation: 22 % wurden im HAPT 4-6 als rechtshändig und im Peg-Moving Task als links-händig diagnostiziert, 5 % im Peg-Moving Task als rechtshändig und im HAPT 4-6
als linkshändig. Der Korrelationskoeffizient nach Spearman (s. Tabelle 13) beträgt $r = .468$ und verweist auf einen hoch signifikanten Zusammenhang zwischen den Klassifikationen ($p < .01$).

Abweichungen in den Zuteilungen treten, deskriptiv betrachtet, vermehrt in der Gruppe der laut Peg-Moving Task linkshändigen Kinder auf. Diese wurden vom HAPT 4-6 zur Hälfte als LinkshänderInnen, zur Hälfte als RechtshänderInnen diagnostiziert.

<table>
<thead>
<tr>
<th>HAPT 4-6</th>
<th>Peg-Moving Task</th>
<th>links</th>
<th>rechts</th>
<th>gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>links</td>
<td>Anzahl</td>
<td>14</td>
<td>3</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>% innerhalb von HAPT</td>
<td>82.4</td>
<td>17.6</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>% innerh. Peg-Moving</td>
<td>50.0</td>
<td>8.3</td>
<td>26.6</td>
</tr>
<tr>
<td></td>
<td>% der Gesamtzahl</td>
<td>21.9</td>
<td>4.7</td>
<td>26.6</td>
</tr>
<tr>
<td>rechts</td>
<td>Anzahl</td>
<td>14</td>
<td>33</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>% innerhalb von HAPT</td>
<td>29.8</td>
<td>70.2</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>% innerh. Peg-Moving</td>
<td>50.0</td>
<td>91.7</td>
<td>73.4</td>
</tr>
<tr>
<td></td>
<td>% der Gesamtzahl</td>
<td>21.9</td>
<td>51.6</td>
<td>73.4</td>
</tr>
<tr>
<td>gesamt</td>
<td>Anzahl</td>
<td>28</td>
<td>36</td>
<td>64</td>
</tr>
</tbody>
</table>

Anmerkung: $\chi^2 = 14.018$, $df = 1$, $p = .000$ (1-seitig).

In der Zuteilung zu den Händigkeitsgruppen laut QHP Task und laut Peg-Moving Task zeigt sich ebenfalls eine hoch signifikante Korrelation von $r = .391$ ($p < .01$, s. Tabelle 13). Eine ausführliche Tabelle der Zuordnungen zu den Händigkeitsgruppen durch HAPT 4-6, QHP Task und Peg-Moving Task findet sich in Anhang B.

Auf deskriptiver Ebene zeigt sich, dass im QHP Task und im Peg-Moving Task mehr Kinder der Stichprobe als linkshändig eingestuft wurden als im HAPT 4-6 (Peg-Moving Task: 44 %, QHP Task: 39 %, HAPT 4-6: 27 %). Um zu überprüfen, ob die
Häufigkeitsverteilungen (für die Zuordnungen zu den Händigkeitsgruppen) in QHP Task und Peg-Moving Task signifikant von der Häufigkeitsverteilung im HAPT 4-6 abweichen, wurden Chi-Quadrat-Tests durchgeführt. Für die erwarteten Werte wurden die im HAPT 4-6 beobachteten Häufigkeiten eingetragen. Sowohl mittels QHP Task ($\chi^2 = 5.126$, $df = 1$, $p = .024$) als auch mittels Peg-Moving Task ($\chi^2 = 9.692$, $df = 1$, $p = .002$) wurden signifikant mehr Kinder als linkshändig eingestuft als mit dem HAPT 4-6.

10.2 Analysen zu Lateralitätsquotient und Händigkeitskonsistenz

Hierbei wurde untersucht, wie stark die durch HAPT 4-6, QHP Task und Peg-Moving Task ermittelten Werte für das Ausmaß der Händigkeit zusammenhängen. Dafür wurden folgende Maße herangezogen:

- aus dem HAPT 4-6:
 - LQ für Richtung und Grad der Handpräferenz,
 - HK für Konsistenz innerhalb einer Tätigkeit (Stärke) der Handpräferenz;

- aus dem QHP Task:
 - LATB für Richtung und Grad/Stärke der Handpräferenz,
 - TOT CROS für Grad/Stärke der Handpräferenz;

- aus dem Peg-Moving Task:
 - R-L% für Richtung und Grad der Performanzhändigkeit.

Bei Berechnungen von Korrelationen von Maßen, die Grad bzw. Stärke der Händigkeit unabhängig von der Richtung der Händigkeit erfassen (HK, TOT CROS), mit solchen, die die Richtung der Händigkeit berücksichtigen (LQ, LATB, R-L%), wurden von letzteren die Absolutwerte gebildet.

Aufgrund der eingeschränkten Aussagekraft des Maßes TOT CROS bei Kindern, die die Mittellinie mit beiden Händen kreuzen (s. Kap. 9.1.4), wurden Berechnungen mit
10 Validierung des HAPT 4-6

diesem Maß jeweils unter Ausschluss dieser Gruppe wiederholt.

Da die Voraussetzung für parametrische Verfahren erfüllt sind (s. Normalverteilungs-
prüfungen Anhang C), wurden jeweils Korrelationen nach Pearson berechnet.

10.2.1 Analysen zum Lateralitätsquotienten

Zunächst wurde der Lateralitätsquotient mit den Maßen aus QHP Task und Peg-Moving Task korreliert, die Richtung und Grad/Stärke der Händigkeit erfassen (s. Tabelle 15 und Streudiagramme in Anhang D). Es zeigen sich hoch signifikante Zusammenhänge zu LATB (\(r = .493, p < .01 \)) und R-L\% (\(r = .679, p < .01 \)). LATB und R-L\% korrelieren ebenfalls hoch signifikant (\(r = .522, p < .01 \)).

<table>
<thead>
<tr>
<th></th>
<th>LQ</th>
<th>LATB</th>
<th>R-L%</th>
</tr>
</thead>
<tbody>
<tr>
<td>LQ</td>
<td>---</td>
<td>.493** (p = .000)</td>
<td>.679** (p = .000)</td>
</tr>
<tr>
<td>LATB</td>
<td>.493** (p = .000)</td>
<td>---</td>
<td>.522** (p = .000)</td>
</tr>
<tr>
<td>R-L%</td>
<td>.679** (p = .000)</td>
<td>.522** (p = .000)</td>
<td>---</td>
</tr>
</tbody>
</table>

Anmerkung. ** \(p < .01 \) (1-seitig).

Ein interessantes Ergebnis bezüglich des Zusammenhangs von LQ mit LATB zeigt sich bei einer Aufteilung der Stichprobe nach (laut HAPT 4-6) linkshändigen und rechtshändigen Kindern. Für die Teilstichprobe der linkshändigen Kinder ergibt sich eine signifikante Korrelation von \(r = .458 \), für die der rechtshändigen Kinder zeigt sich mit \(r = .076 \) kein bedeutender Zusammenhang. Zwischen LQ und R-L\% ergeben sich für beide Teilstichproben hoch signifikante Korrelationen (LinkshänderInnen: \(r = .667 \), RechtshänderInnen: \(r = .525 \)).

Weiters wurde der Absolutwert des LQ mit der Anzahl des Greifens über die Mittellinie im QHP Task korreliert. Es zeigt sich kein signifikanter Zusammenhang ($r = .132, p = .150$) zwischen den Variablen $|LQ|$ und TOT CROS.

Auch in der Teilstichprobe der Kinder, die die Mittellinie im QHP Task nicht mit *beiden* Händen kreuzten ($n = 47$), zeigt sich keine signifikante Korrelation zwischen $|LQ|$ und TOT CROS ($r = .186, p = .105$).

10.2.2 Analysen zur Händigkeitskonsistenz

Um die Händigkeitskonsistenz in Beziehung zu den Ergebnissen des QHP Tasks zu setzen, wurde sie mit dem Absolutwert $|LATB|$ und dem Wert TOT CROS korreliert (s. Tabelle 16). Zu $|LATB|$ zeigt sich ein signifikanter Zusammenhang ($r = .229, p < .05$). Die Korrelation zwischen HK und TOT CROS fällt nicht signifikant aus. Des Weiteren zeigt sich, dass HK signifikant mit dem Absolutwert $|R-L\%|$ korreliert ($r = .262, p = .036$, zweiseitige Testung).

Die Berechnungen wurden für die Teilstichprobe, die im QHP Task die Mittellinie nicht mit *beiden* Händen gekreuzt hatte ($n = 47$), wiederholt. Es zeigt sich für die Teilstichprobe eine signifikante Korrelation zwischen HK und TOT CROS ($r = .264, p = .036$). Zwischen HK und $|LATB|$ zeigt sich in der Teilstichprobe ebenfalls ein signifikanter Zusammenhang von $r = .281 \ (p = .028)$.
Tabelle 16: Korrelationen (nach Pearson) zwischen Händigkeitskonsistenz (HK), dem Absolutwert des Maßes Laterality/Bishop (|LATB|) und der Anzahl des Midline Crossing (TOT CROS)

| | HK | |LATB| | TOT CROS |
|--------|------|---------|-------|----------|
| HK | --- | .229* | .194 |
| | | p = .034| p = .062| |
| |LATB| | --- | .836** |
| | .229* | | p = .034| p = .000|
| TOT CROS| .194 | .836** | |
| | p = .062| p = .000| |

Anmerkung. * p < .05 (1-seitig), ** p < .01 (1-seitig).

10.3 Zusammenfassung

Die Ergebnisse stützen die konvergente Validität des HAPT 4-6 in Bezug auf Verfahren zur Erfassung der Handpräferenz (QHP Task) und Handperformanz (Peg-Moving Task). Die Zusammenhänge zwischen dem HAPT 4-6 und den anderen Verfahren fallen überwiegend hoch signifikant aus.

Bezüglich der Richtung und des Grades der Händigkeit (Lateralitätsquotient) zeigen sich zum Peg-Moving Task ($r = .679; p < .01$) und zum QHP Task ($r = .493; p < .01$) hoch signifikante Korrelationen in mittlerer Höhe. Für den multiplen Validitätskoeffizienten (gebildet aus den Hauptmaßen des QHP Tasks und des Peg-Moving Tasks) ergibt sich $R = .698 (p = .000)$.

Die Zusammenhänge zwischen dem Lateralitätsquotienten und der Anzahl des Midline-Crossings im QHP Task fallen nicht signifikant aus.

In der Einteilung in die Händigkeitsgruppen links und rechts zeigen sich zwischen dem HAPT 4-6 und den anderen beiden Verfahren hoch signifikante Korrelationen,
deren Höhe als gering bis mittel einzustufen ist \((r = .461 \text{ mit QHP Task}, r = .468 \text{ mit Peg-Moving Task})\). Mit den beiden anderen Verfahren werden signifikant mehr Kinder als linkshändig eingestuft als mit dem HAPT 4-6. Zwischen der Händigkeitsgruppe laut QHP Task und Peg-Moving Task besteht ein hoch signifikanter, geringer Zusammenhang \((r = .391; p < .01)\).

Die Händigkeitskonsistenz im HAPT 4-6 korreliert mit dem Absolutwert des relativen Handgebrauchs aus dem QHP Task gering, aber signifikant \((r = .229, p < .05)\). Kinder mit einer höheren Anzahl konsequent gelöster Items im HAPT 4-6 zeigen eine ausgeprägtere Lateralität im QHP Task.

Zur Anzahl des Kreuzens der Mittellinie im QHP Task korreliert die Händigkeitskonsistenz in der Gesamtstichprobe nicht signifikant. In der Teilstichprobe der Kinder, die die Mittellinie nicht mit beiden Händen gekreuzt hatten, zeigt sich ein geringer, signifikanter Zusammenhang \((r = .264, p < .05)\).

Im Hinblick auf die diskriminante Validität des HAPT 4-6 waren höhere Zusammenhänge zum Verfahren zur Handpräferenz (QHP Task) als zum Verfahren zur Handperformanz (Peg-Moving Task) erwartet worden. Entgegen diesen Erwartungen fallen die Korrelationen zum Performanzverfahren höher bzw. gleich hoch aus wie zum Präferenzverfahren.
11 Diskussion

Die Erfassung der Händigkeit im Kindergartenalter ist für eine adäquate Förderung eines Kindes und für die Forschung von Bedeutung. Mit dem Handpräferenztest HAPT 4-6 (Bruckner, Deimann & Kastner-Koller, 2011a) liegt ein standardisiertes und normiertes Verfahren zur Erfassung der Präferenzhändigkeit bei Kindern im Alter von 4;0 bis 5;11 Jahren vor. Ziel der vorliegenden Arbeit war es, den HAPT 4-6 an anderen Verfahren zur Händigkeit zu validieren.

Im Folgenden wird hinsichtlich der konvergenten Validität des HAPT 4-6 die Gültigkeit der Einteilung in die Händigkeitsgruppen, des Lateralitätsquotienten und der Händigkeitskonsistenz diskutiert. Besprochen wird ebenfalls der Zusammenhang zwischen dem Elternurteil zur Händigkeit ihres Kindes und den Ergebnissen des HAPT 4-6. In Bezug auf die diskriminante Validität werden die Zusammenhänge zum Präferenzverfahren QHP Task im Vergleich zum Performanzverfahren Peg-Moving Task besprochen.
Bezüglich der Gültigkeit der Einteilung in die Handpräferenzgruppen *links* und *rechts* mittels HAPT 4-6 zeigt sich zum *QHP Task* ein hoch signifikanter, geringer bis mittlerer Zusammenhang ($r = .46$). Kinder, die aufgrund ihres Handgebrauchs bei verschiedenen Tätigkeiten (im HAPT 4-6) als links- bzw. rechtshändig klassifiziert werden, werden überzufällig häufig derselben Händigkeitsgruppe zugeordnet, wenn die Einteilung anhand des Handgebrauchs beim Greifen an verschiedene Positionen des Gesichtsfeldes erfolgt (QHP Task). Ein häufiger Gebrauch der linken (rechten) Hand bei verschiedenen Tätigkeiten geht also mit einem häufigeren Gebrauch der linken (rechten) Hand an verschiedenen Positionen des Gesichtsfeldes einher.

Unterschiede in der Klassifikation der Händigkeit durch den HAPT 4-6 und den QHP Task gibt es vor allem bei Kindern, die im QHP Task als linkshändig diagnostiziert werden. Etwa die Hälfte der Kinder, die beim Aufnehmen von Karten an verschiedenen Positionen häufiger die linke Hand verwenden, zeigt beim Durchführen verschiedener Tätigkeiten einen häufigeren Gebrauch der rechten Hand. Insgesamt wurden im QHP Task signifikant mehr Kinder als linkshändig eingestuft als im HAPT 4-6.

Für den mittels HAPT 4-6 ermittelten *Lateralitätsquotienten (LQ)* als Maß für Richtung und Grad der Handpräferenz und dem Hauptmaß für Richtung und Grad/Stärke der Handpräferenz aus dem QHP Task (LATB) besteht ein hoch signifikanter Zusammenhang geringer bis mittlerer Höhe ($r = .49$). Ein höherer Grad der Linkshändigkeit (Rechtshändigkeit) im HAPT 4-6 geht mit zunehmender Verwendung der linken (rechten) Hand an verschiedenen räumlichen Positionen einher, eine geringer ausgeprägte Handpräferenz bei verschiedenen Tätigkeiten mit einer geringerem Lateralisation beim Greifen an verschiedene Stellen. Auch für die Teilstichprobe der laut HAPT 4-6 linkshändigen Kinder ist dieser Zusammenhang nachweisbar, nicht allerdings für die Teilstichprobe rechtshändiger Kinder.

Insgesamt fallen die Zusammenhänge für Richtung und Grad der Händigkeit zwischen dem HAPT 4-6 und dem QHP Task damit zwar hoch signifikant, doch etwas niedriger als erwartet aus. Möglicherweise liegt dies daran, dass den beiden Verfah-
ren unterschiedliche Konzeptionen zugrunde liegen, obwohl beide den Präferenzverfahren zuzurechnen sind. Im QHP Task ist eine Tätigkeit durchzuführen, wobei der Einfluss der räumlichen Position der Karten auf den Handgebrauch untersucht wird. Im HAPT 4-6 wird der bevorzugte Handgebrauch bei 14 verschiedenen Tätigkeiten erhoben; die Gegenstände werden jeweils in der Mitte vorgegeben, um einen Einfluss der räumlichen Position zu vermeiden.

Hill und Khanem (2009, S. 106) vermuten, dass jüngere Kinder bei Verfahren zum Midline-Crossing stark durch die räumliche Position beeinflusst werden oder einen zufälligeren Handgebrauch zeigen, was die vorliegenden Ergebnisse erklären könnte. Eine geringere Tendenz zum Kreuzen der Mittellinie bei (je nach Untersuchung) 3-6-jährigen als bei älteren Kindern findet sich in mehreren Studien (Carlier et al., 2006; Doyen, Dufour, Caroff, Cherfouh & Carlier, 2008; Hill & Khanem, 2009; Pryde, P. J. Bryden & Roy, 2000).

Hinsichtlich der Einteilung in Links- und RechtshänderInnen mit QHP Task und einem Fragebogenverfahren (welches, wie der HAPT 4-6, die Präferenz bei verschiedenen Tätigkeiten erfasst) finden sich interessante, der vorliegenden Untersuchung entsprechende Daten bei Carlier et al. (2006): Bei 3-5-Jährigen wurden deutlich mehr Kinder mittels Midline-Crossing als linkshändig klassifiziert als mit dem Fragebogen (s. Carlier et al., 2006, Tab. 1, S. 256).

Eine weitere Erklärungsmöglichkeit für Unterschiede in der Klassifikation zwischen HAPT 4-6 und QHP Task liegt in der Art der Vorgabe des Verfahrens zum Midline-Crossing in der vorliegenden Untersuchung: Die Testleiterin saß jeweils seitlich (je nach räumlichen Gegebenheiten rechts oder links) des Testmaterials. Es wäre denkbar, dass sich die Kinder in Richtung der Testleiterin orientierten, wodurch ein Einfluss auf den Handgebrauch der Kinder möglich wäre.

Zwischen dem im HAPT 4-6 ermittelten Wert für die Händigkeitskonsistenz (HK) und dem Ausmaß der Bevorzugung einer Hand im QHP Task (Absolutwert von LATB) besteht ein geringer, signifikanter Zusammenhang ($r = .23$). Ein konsistenter Handgebrauch innerhalb einer Tätigkeit beim HAPT 4-6 geht mit einer stärkeren La-
teralisation beim Greifen nach Karten an unterschiedlichen Positionen einher, eine
gerengere Händigkeitskonsistenz im HAPT 4-6 mit einer schwächeren Bevorzugung
einer Hand im QHP Task.

Hierbei ist zu berücksichtigen, dass im HAPT 4-6 und im QHP Task die Händigkeits-
konsistenz auf unterschiedliche Weise ermittelt wird. Zur Berechnung von HK im
HAPT 4-6 wird erfasst, wie viele von 14 Tätigkeiten immer mit derselben Hand
durchgeführt werden, |LATB| gibt Auskunft über den konsistenten Handgebrauch bei
einer Tätigkeit (an verschiedenen Positionen). Zudem besteht die Schwierigkeit, ob
|LATB| als Maß für den Grad oder die Stärke der Handpräferenz zu interpretieren ist.

Im Zuge der Literaturrecherche wurden nur sehr wenige Studien gefunden, die sich
mit dem Zusammenhang von Midline-Crossing und der Händigkeitskonsistenz inner-
halb einer Tätigkeit beschäftigen. Bei einer Stichprobe von erwachsenen Rechtshän-
derInnen fanden Bishop et al. (1996) keinen signifikanten Unterschied im QHP Task
zwischen Personen, die laut Fragebogen innerhalb einer Tätigkeit stark rechtshändig
waren und solchen, die eine schwächer ausgeprägte Rechtshändigkeit aufwiesen.
Kraus (2006) hingegen fand einen Zusammenhang zwischen der (mit einem Beob-
achtungsverfahren) ermittelten Händigkeitskonsistenz (innerhalb einer Tätigkeit) und
dem Handgebrauch im Midline-Crossing bei linkshändigen Kindern im Alter von 5
bis 7 Jahren, nicht aber bei rechtshändigen.

Die Maße LQ und HK wurden noch mit einem weiteren Maß aus dem QHP Task in
Zusammenhang gebracht, der Anzahl des Midline-Crossings (TOT CROS), das den
Grad bzw. die Stärke der Handpräferenz erfasst. In der vorliegenden Untersuchung
ist, entgegen den Erwartungen, kein Zusammenhang nachweisbar. Kinder mit höher
ausgeprägtem Lateralisationsgrad beim Ausführen verschiedener Tätigkeiten unter-
scheiden sich nicht signifikant in der Anzahl des Greifens über die Mittellinie. Zwi-
schen der mit dem HAPT 4-6 ermittelten Händigkeitskonsistenz und der Anzahl des
Midline-Crossings im QHP Task besteht ebenfalls kein signifikanter Zusammenhang.

Die Eignung von TOT CROS als Maß für den Grad bzw. die Stärke der Handpräfe-
renz erscheint in der vorliegenden Untersuchung für die Altersgruppe der 4-5-jähri-

Auch durch den HAPT 4-6 und den Peg-Moving Task werden Kinder überzufällig häufig derselben Händigkeitsgruppe zugeordnet, wobei die Höhe des Zusammenhangs im geringen bis mittleren Bereich liegt ($r = .47$). Eine Bevorzugung der linken (rechten) Hand bei den Tätigkeiten des HAPT 4-6 geht also mit einer Überlegenheit der linken (rechten) Hand einher.

Wesentlich in diesem Zusammenhang ist es, festzuhalten, dass zwar sowohl im QHP Task als auch im Peg-Moving Task deutlich mehr Kinder als linkshändig eingestuft werden als im HAPT 4-6, die Korrelation in der Zuordnung zu den Händig-
Diskussion

keitsgruppen zwischen diesen beiden Verfahren allerdings nur gering, wenn auch signifikant, ausfällt \(r = .39 \).

Über die Fragestellungen hinaus zeigt sich auch zwischen der *Händigkeitskonsistenz (HK)* und dem Absolutwert der Leistungsdifferenz der beiden Hände (|R-L\%|) ein geringer, aber signifikanter Zusammenhang \(r = .26 \). Eine höhere Händigkeitskonsistenz geht mit einer stärkeren Lateralisierung der Leistungsfähigkeit der beiden Hände einher. Dies passt zu den Ergebnissen von P. J. Bryden et al. (2007), die eine Korrelation ähnlicher Höhe zwischen dem Peg-Moving Task und dem Konsistenzwert (innerhalb einer Tätigkeit) aus dem WHCT (P. J. Bryden et al., 2007, s. Kap. 3.1.1.1) fanden, die allerdings nur für die Gesamtstichprobe \(r = .341 \) signifikant war, nicht jedoch für die Gruppe der 3-5-Jährigen \(r = .303 \).
Ein aus R-L% (Peg-Moving Task) und LATB (QHP Task) ermittelter *multipler Validitätskoeffizient* für LQ (HAPT 4-6) fällt hoch signifikant aus und liegt im mittleren bis hohen Bereich ($R = .698$), ist aber nur geringfügig größer als der Zusammenhang zwischen LQ und der Leistungsdifferenz der Hände im Peg-Moving Task.

Zwischen dem *Elternurteil zur Händigkeit ihres Kindes* und der Klassifikation mittels HAPT 4-6 besteht ein hoch signifikanter Zusammenhang mittlerer Höhe ($r = .66$). Dieser liegt etwas niedriger als der im Manual des HAPT 4-6 beschriebene Wert ($r = .76$; Bruckner et al., 2011a, S. 26); allerdings wurde dort das Elternurteil dichotom, in der vorliegenden Untersuchung dreikategoriell erhoben.

Von Eltern als *beidhändig* eingestufte Kinder wurden im HAPT 4-6, in dem eine zweikategorielle Klassifikation vorgenommen wurde, in 9 von 10 Fällen als rechts­händig diagnostiziert. Möglicherweise fällt Eltern ein Gebrauch der linken Hand beim Kind stärker auf als ein Gebrauch der rechten Hand. Zusätzlich bevorzugt fast ein Drittel der laut Elternurteil linkshändigen Kinder im HAPT 4-6 die rechte Hand. Fast alle dieser Kinder verwenden beim Item *Kreuz zeichnen* innerhalb der Testung mit dem HAPT 4-6 die linke Hand. Der hohe Zusammenhang zwischen dem Elternurteil und der im HAPT 4-6 verwendeten Hand zum Zeichnen ($r = .83$) untermauert die Annahme, dass die Eltern die Händigkeit ihres Kindes vor allem anhand der Zeichenhand einschätzen (s. Bruckner et al., 2011a, S. 26; M. P. Bryden & Steenhuis, 1991).

Hinsichtlich der *diskriminanten Validität* des HAPT 4-6 bezüglich des Präferenzverfahrens QHP Task und des Performanzverfahrens Peg-Moving Task zeigen sich erwartungswidrige Ergebnisse. Die Korrelationen mit dem Performanzverfahren fallen gleich hoch bzw. höher aus als die Zusammenhänge mit dem Verfahren zur Handpräferenz. Begründet liegt dies vor allem darin, dass die Zusammenhänge zum QHP Task niedriger als erwartet sind. Anscheinend erfasst dieser, wie bereits ausgeführt, teilweise andere Aspekte der Präferenzhändigkeit als der HAPT 4-6. Für die Interpre-
Der Peg-Moving Task stellt für die untersuchte Altersgruppe relativ hohe visumotorische Anforderungen. Die meisten Kinder konnten diese gut bewältigen. Manche Kinder hatten bei der Durchführung allerdings Schwierigkeiten (ließen z. B. einen Holzstift fallen), sodass teilweise mehrere Durchgänge wiederholt werden mussten. In diesen Fällen war häufig der Einsatz von Belohnungen (z. B. kleine Süßigkeiten)
notwendig, um die Motivation zur Mitarbeit aufrecht zu erhalten, wodurch ein Einfluss auf die Testergebnisse nicht auszuschließen ist.

Zusammenfassend lässt sich sagen, dass die überwiegend hoch signifikanten Zusammenhänge zwischen dem HAPT 4-6 und den anderen Verfahren zur Erfassung der Händigkeit einen deutlichen Beleg für die Übereinstimmungsvalidität des HAPT 4-6 liefern. Hinsichtlich der diskriminanten Validität fielen die Ergebnisse erwartungswidrig aus. Hier wären weitere Studien wünschenswert, die Präferenzverfahren mit verschiedenen Tätigkeiten einschließen, um einen genaueren Einblick zu erlangen.

Bezüglich der Händigkeitskonsistenz aus dem HAPT 4-6 wurden nur geringe Zusammenhänge zu Werten aus anderen Verfahren gefunden. Offensichtlich wird mit dieser eine in der Forschung bisher weitgehend vernachlässigte Variable erfasst. Aufgrund der Hinweise auf Zusammenhänge der Händigkeitskonsistenz innerhalb einer Tätigkeit mit Entwicklungsvariablen (s. Kap. 4.3) erscheint die Erfassung der Konsistenz dringend angebracht.
Zusammenfassung

Ziel der vorliegenden Arbeit war die Validierung des Handpräferenztests HAPT 4-6 (Bruckner, Deimann & Kastner-Koller, 2011a) an Verfahren zur Präferenz- und Leistungshändigkeit.

Die Ergebnisse stützen die Übereinstimmungsvalidität des HAPT 4-6 mit den beiden anderen Verfahren. Für den Lateralitätsquotienten ($r = .679$ mit Peg-Moving Task, $r = .493$ mit QHP Task) und die Einteilung in die Händigkeitsgruppen ($r = .468$ mit Peg-Moving Task, $r = .461$ mit QHP Task) zeigen sich hoch signifikante Korrelationen. Die Händigkeitskonsistenz im HAPT 4-6 korreliert signifikant, aber gering mit
Zusammenfassung
dem Handgebrauch im QHP Task ($r = .229$). Keine Zusammenhänge ergeben sich für
die Gesamtstichprobe zwischen dem HAPT 4-6 und der Anzahl des Midline-
Crossings im QHP Task. Hinsichtlich der diskriminanten Validität zeigen sich erwar-
tungswidrige Ergebnisse, da die Zusammenhänge zum Performanzverfahren Peg-
Moving Task gleich hoch bzw. höher ausfallen als zum Präferenzverfahren QHP
Task.

Der Fokus der Diskussion liegt auf Erklärungsmöglichkeiten für Unterschiede in den
Ergebnissen zwischen den drei Verfahren. Es wird besprochen, inwieweit diese ver-
schiedene Aspekte der Händigkeit messen. Vor allem mit der Händigkeitskonsistenz
innerhalb einer Tätigkeit erfasst der HAPT 4-6 anscheinend eine bisher weitgehend
vernachlässigte Variable.
Abstract

The aim of this study was to contribute to the validation of the Hand Preference Test for 4- to 6-year-olds (HAPT 4-6, Bruckner, Deimann & Kastner-Koller, 2011a).

The theoretical part of this thesis describes handedness as an aspect of lateral asymmetry. Relations to brain asymmetry (e.g. language lateralization) are presented. Various aspects of handedness (preference, proficiency, degree, strength, consistency) are specified. One chapter gives an overview of different methods of the assessment of handedness in children. Correlations between handedness and developmental aspects are described. The final part of the theoretical section deals with validity and describes former results regarding the validity of the HAPT 4-6.

For the purpose of validation of the HAPT 4-6 a sample of 64 children (4 and 5 years old) was tested for hand preference with the HAPT 4-6 and the Quantification of Hand Preference Task (QHP Task, Bishop, Ross, Daniels & Bright, 1996), and for hand proficiency with the Peg-Moving Task (Annett, e.g. 1970, 1985, 2002). Left-handed children were overrepresented in the sample.

The results of the study substantiate the convergent validity of the HAPT 4-6. The laterality quotient is significantly correlated with both the Peg-Moving Task ($r = .679$) and the QHP Task ($r = .493$). The classification as left- or right-handed also correlates significantly with the Peg-Moving Task ($r = .468$) and with the QHP Task ($r = .461$). The consistency of handedness (HAPT 4-6) is weakly, but significantly linked to the QHP Task ($r = .229$). Results regarding discriminant validity are not in accordance with expectations, as correlations between the HAPT 4-6 and the Peg-Moving Task (hand proficiency) are equal or above those between the HAPT 4-6 and the QHP Task (hand preference).
Abstract

The discussion focuses on differences in the results between the three procedures. It is discussed that they assess partly different aspects of handedness. Particularly, consistency within a given activity as measured by the HAPT 4-6 seems to be a distinct and under-researched aspect.
Literaturverzeichnis

Literaturverzeichnis

Literaturverzeichnis

123
Literaturverzeichnis

Abbildungs- und Tabellenverzeichnis

Abbildung 1: Anordnung des Testmaterials im HAPT 4-6..76
Abbildung 2: QHP Task mit Nummerierung der Positionen.................................79
Abbildung 3: Steckbrett des Peg-Moving Tasks...80
Abbildung 4: Verteilung des Lateralitätsquotienten (LQ).......................................86
Abbildung 5: Verteilung der Werte für die Händigkeitskonsistenz.......................87
Abbildung 6: Verteilung von LATB...89
Abbildung 7: Anteil des Gebrauchs der rechten Hand beim Aufnehmen der Karte
 in Abhängigkeit von der Lage der Karte ...90
Abbildung 8: Anzahl des Kreuzens der Mittellinie (TOT CROS) im QHP Task......90
Abbildung 9: Verteilung der Werte für R-L%...92

Tabelle 1: Verteilung der Mädchen und Buben der Stichprobe auf die
Altersgruppen...83
Tabelle 2: Kindergartenbesuch der getesteten Kinder...84
Tabelle 3: Elternurteil zur Händigkeit und Geschlecht der Kinder......................85
Tabelle 4: Elternurteil zur Händigkeit und Altersgruppe der Kinder.................85
Tabelle 5: Handpräferenzgruppe laut HAPT 4-6 und Geschlecht der Kinder.....86
Tabelle 6: Handpräferenzgruppe laut HAPT 4-6 und Alter der Kinder..............86
Tabelle 7: Händigkeit der Kinder laut HAPT 4-6 und laut Elternurteil..............87
Abbildungs-und Tabellenverzeichnis

Tabelle 8: Handpräferenzgruppe laut QHP Task und Geschlecht der Kinder.....88
Tabelle 9: Handpräferenzgruppe laut QHP Task und Alter der Kinder..............89
Tabelle 10: Händigkeitgruppe laut Peg-Moving Task und Geschlecht der Kinder...91
Tabelle 11: Händigkeitgruppe laut Peg-Moving Task und Alter der Kinder.......91
Tabelle 12: Händigkeit der Kinder laut HAPT 4-6 und laut QHP Task..........94
Tabelle 13: Korrelationen (nach Spearman) zwischen der Händigkeit laut HAPT 4-6, QHP Task und Peg-Moving Task...94
Tabelle 14: Händigkeit der Kinder laut HAPT 4-6 und laut Peg-Moving Task....95
Tabelle 15: Korrelationen (nach Pearson) zwischen dem Lateralitätsquotienten (LQ), dem Maß Laterality/Bishop (LATB) und right minus left percent (R-L%)...97
Tabelle 16: Korrelationen (nach Pearson) zwischen Händigkeitskonsistenz (HK), dem Absolutwert des Maßes Laterality/Bishop (|LATB|) und der Anzahl des Midline Crossing (TOT CROS)...99
Anhang

Anhang A: Text des Elternbriefs und der Einverständniserklärung128

Anhang B: Zuteilung der Kinder zu den Händigkeitsgruppen laut HAPT 4-6, QHP Task und Peg-Moving Task ...129

Anhang C: Prüfungen auf Normalverteilung ..130

Anhang D: Streudiagramme ...131

Anhang E: Prüfung der Voraussetzungen für multiple Regression132
Anhang A: Text des Elternbriefs und der Einverständniserklärung

Liebe Eltern!

Wir sind Studentinnen der Psychologie an der Universität Wien und schreiben derzeit unsere Diplomarbeiten im Arbeitsbereich Entwicklungspsychologie bei Frau Dr. Pia Deimann und Frau Dr. Ursula Kastner-Koller.

Unsere Diplomarbeiten beschäftigen sich mit der Erfassung der Händigkeit von Vorschulkindern. Das Wissen um die Händigkeit eines Kindes ist für eine adäquate Unterstützung im Erwerb von Kulturtechniken (z.B. Schreiben) und in der Entwicklung visuomotorischer Fähigkeiten von Bedeutung. In unserer Studie soll die Gültigkeit (Validität) des an unserem Institut entwickelten Handpräferenztests (HAPT 4-6, Bruckner, Deimann & Kastner-Koller) geprüft werden.

Zudem soll ein Elternfragebogen zur Erhebung relevanter Einflussfaktoren der Händigkeit entwickelt werden. Im Rahmen der Untersuchung wollen wir einerseits den Kindern auf das Alter abgestimmte, spielerisch gestaltete Verfahren zur Erfassung der Händigkeit vorgeben, und andererseits mit Ihnen ein Elterninterview durchführen. Die Testung der Kinder findet im Kindergarten während der Betreuungszeiten statt und macht den Kindern erfahrungsgemäß viel Spaß. Das Elterninterview wird zu einem mit Ihnen vereinbarten Termin (Ort und Uhrzeit) stattfinden und ca. 30 Minuten dauern.

Alle Daten werden selbstverständlich vertraulich behandelt. Wir geben Ihnen auf Wunsch auch gerne Rückmeldung bezüglich der Ausprägung der Händigkeit Ihres Kindes. Wir würden uns freuen, wenn Sie und Ihr Kind an der Untersuchung teilnehmen! Vielen Dank für Ihre Mitarbeit und Unterstützung!

Mit freundlichen Grüßen

Cora Feichtinger Ariane Hell

Einverständniserklärung

Ich bin einverstanden, dass mein Kind ...,geboren am ..., an der Untersuchung teilnimmt.
Ich denke mein Kind ist ◊ RechtshänderIn ◊ LinkshänderIn ◊ BeidhänderIn
Ich erkläre mich bereit, an dem Elterninterview teilzunehmen.
Name: ..
Telefonnummer/E-Mail zur Kontaktaufnahme: ...

Unterschrift des/der Erziehungsberechtigten
Anhang B: Zuteilung der Kinder zu den Händigkeitsgruppen laut HAPT 4-6, QHP Task und Peg-Moving Task

<table>
<thead>
<tr>
<th>QHP Task</th>
<th>Peg-Moving Task</th>
<th>HAPT 4-6</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>links</td>
<td>links</td>
<td>rechts</td>
</tr>
<tr>
<td>links</td>
<td>Peg-Moving Task</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>rechts</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>rechts</td>
<td>Peg-Moving Task</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>rechts</td>
<td>2</td>
<td>26</td>
</tr>
<tr>
<td>QHP Task gesamt</td>
<td></td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>Peg-Moving Task gesamt</td>
<td></td>
<td>4</td>
<td>35</td>
</tr>
<tr>
<td>HAPT 4-6 gesamt</td>
<td></td>
<td>17</td>
<td>47</td>
</tr>
</tbody>
</table>
Anhang C: Prüfungen auf Normalverteilung

Tabelle C 1: Überprüfung der Normalverteilung der kontinuierlichen Variablen aus HAPT 4-6, QHP Task und Peg-Moving Task für die Gesamtstichprobe (N = 64) mit dem Kolmogorov-Smirnov-Test

| | LQ | |LQ| | HK | LATB | |LATB| | TOT CROS | R-L% | |R-L%|
|---|-----|---|---|---|---|---|---|---|---|---|---|---|
| Z | 1.338 | 1.114 | 0.747 | 0.724 | 1.083 | 1.183 | 0.719 | 0.905 |
| p (2-seitig) | .056 | .167 | .299 | .671 | .192 | .122 | .680 | .385 |

Anmerkungen. LQ = Lateralitätsquotient; HK = Händigkeitskonsistenz; LATB = Laterality/Bishop; TOT CROS = Anzahl des Kreuzens der Mittellinie; R-L% = right minus left percent.

Tabelle C 2: Überprüfung der Normalverteilung der kontinuierlichen Variablen aus HAPT 4-6, QHP Task und Peg-Moving Task für Teilstichprobe (Kinder, die Mittellinie im QHP Task nicht mit beiden Händen kreuzten, n = 47) mit dem Kolmogorov-Smirnov-Test

| | LQ | |LQ| | HK | LATB | |LATB| | TOT CROS | R-L% | |R-L%|
|---|-----|---|---|---|---|---|---|---|---|---|---|---|
| Z | 1.085 | 1.034 | 0.890 | 0.955 | 1.229 | 1.219 | 0.774 | 0.802 |
| p (2-seitig) | .190 | .235 | .407 | .321 | .097 | .103 | .587 | .541 |

Anmerkungen. LQ = Lateralitätsquotient; HK = Händigkeitskonsistenz; LATB = Laterality/Bishop; TOT CROS = Anzahl des Kreuzens der Mittellinie; R-L% = right minus left percent.

Tabelle C 3: Überprüfung der Normalverteilung von LQ, LATB und R-L% für die Teilstichproben der laut HAPT 4-6 linkshändigen (n = 17) bzw. rechtshändigen (n = 47) Kinder mit dem Kolmogorov-Smirnov-Test

<table>
<thead>
<tr>
<th></th>
<th>Teilstichprobe der laut HAPT 4-6 linkshändigen Kinder</th>
<th>Teilstichprobe der laut HAPT 4-6 rechtshändigen Kinder</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LQ</td>
<td>LATB</td>
</tr>
<tr>
<td>Z</td>
<td>.799</td>
<td>.590</td>
</tr>
<tr>
<td>p (2-seitig)</td>
<td>.547</td>
<td>.877</td>
</tr>
</tbody>
</table>

Anmerkungen. LQ = Lateralitätsquotient; LATB = Laterality/Bishop; R-L% = right minus left percent.
Anhang D: Streudiagramme

Abbildung D1: Streudiagramm von LQ (Lateralitätsquotient) und LATB (Laterality/Bishop)

Abbildung D1: Streudiagramm von LQ (Lateralitätsquotient) und R-L% (right minus left percent)
Anhang E: Prüfung der Voraussetzungen für multiple Regression

Tabelle E 1: Prüfung auf Autokorrelation

<table>
<thead>
<tr>
<th>Modell</th>
<th>Durbin-Watson-Statistik</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.861</td>
</tr>
</tbody>
</table>

Tabelle E 2: Prüfung der Normalverteilung der standardisierten Residuen (ZRE) mit Kolmogorov-Smirnov-Test

<table>
<thead>
<tr>
<th>ZRE</th>
<th>Z</th>
<th>p (2-seitig)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.688</td>
<td>.731</td>
</tr>
</tbody>
</table>

Tabelle E 3: Prüfung auf Multikollinearität

<table>
<thead>
<tr>
<th>Modell</th>
<th>Kollinearitätsstatistik</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Toleranz</td>
</tr>
<tr>
<td>1</td>
<td>LATB</td>
</tr>
<tr>
<td></td>
<td>R-L%</td>
</tr>
</tbody>
</table>

Anmerkungen. LATB = Laterality/Bishop, R-L% = right minus left percent.

Abbildung E 1: Streudiagramm zur Überprüfung der Homoskedastizität (LQ = Lateralitätsquotient)
Lebenslauf

Persönliche Daten

Name: Cora Feichtinger
Geburtsdatum und -ort: 10.6.1977, Wr. Neustadt
Staatsbürgerschaft: Österreich
E-Mail: cora-feichtinger@gmx.at

Ausbildung und facheinschlägige Tätigkeiten

seit 2010: Arbeit mit Kindern mit Lese- und Rechtschreibstörung im Hilfswerk Schwechat
2009: Fachpraktikum am Institut für Entwicklungspsychologie und Psychologische Diagnostik
1995: Diplomstudium Psychologie Erstzulassung
1995: Matura (mit gutem Erfolg)
1991-1995: BRG Neunkirchen