DIPLOMARBEIT

Titel der Diplomarbeit

„DER EINSATZ VON ENTDECKENDEM LERNEN IM BEREICH E-LEARNING“

Eine Umsetzung des Konzepts anhand von Anwendungsbeispielen zu Lernobjekten der eduBITE-Lektion „IT-Bausteine für SCM“

Verfasser

Christian Berndorfer

Angestrebter akademischer Grad

Magister der Sozial- und Wirtschaftswissenschaften (Mag. rer. soc. oec.)

Wien, im August 2012

Studienkennzahl lt. Studienblatt: 157
Studienrichtung lt. Studienblatt: Internationale Betriebswirtschaft
Betreuer/Betreuerin: ao. Univ.-Prof. Dr. Christine Strauß
Inhaltsverzeichnis

1 EINLEITUNG.. 7

2 ENTDECKENDES LERNEN – DAS KONZEPT... 11

2.1 Geschichtliche Entwicklung... 12

2.2 Begriffsbestimmung... 16

2.2.1 Lehre, Lernprozess oder Lernziel .. 17

2.2.2 Definition entdeckenden Lernens ... 18

2.3 Relevante lerntheoretische Modelle... 21

2.3.1 Kognitivismus... 21

2.3.1.1 Kognitivistische Lehr- und Lernauffassung... 21

2.3.1.2 Verbindung zu entdeckendem Lernen... 24

2.3.2 Konstruktivismus... 25

2.3.2.1 Konstruktivistische Lehr- und Lernauffassung... 25

2.3.2.2 Verbindung zu entdeckendem Lernen... 28

2.3.3 Lernen als Verhaltensänderung bzw. Wissenserwerb... 28

2.3.3.1 Lernen als Verhaltensänderung.. 29

2.3.3.2 Lernen als Wissenserwerb.. 29

2.3.3.3 Entdeckendes Lernen und Wissenserwerb... 31

3 CHARAKTERISTIKA ENTDECKENDEN LERNENS.. 33

3.1 Charakteristika nach Bruner... 33

3.1.1 Intuitives Denken... 34

3.1.2 Intrinsische Motivation.. 34

3.1.3 Transferförderung und Problemlösefähigkeit... 36

3.2 Merkmale entdeckenden Unterrichts... 37

3.2.1 Entdeckendes Lernen vs. darbietender Unterricht... 37

3.2.2 Freies Explorieren vs. gelenktes Entdecken.. 38

3.3 Entdeckende Lerntätigkeiten... 41

3.3.1 Stufe 1: Erforschung ↔ Explorative Tätigkeit... 42

3.3.2 Stufe 2: Erkenntnis ↔ Konstruktive Tätigkeit... 43

3.3.3 Stufe 3: Assimilation ↔ Reflexive Tätigkeit.. 44

3.3.4 Stufe 4: Generalisierung und Transfer ↔ Formative Tätigkeit............................ 45
4 EIN LERNPROZESS IN VIER SCHritten ... 46
4.1 Ablauf eines entdeckenden Lernprozesses .. 47
4.2 Umsetzung anhand der Übung „Bullwhip Effect und Beer Distribution Game“ ... 50
 4.2.1 Hintergrund der Übung .. 50
 4.2.2 Simulation des „Bullwhip Effects“ ... 52
 4.2.3 „Beer Distribution Game“ – Spielregeln ... 55
 4.2.4 Aufgabenstellung – Förderung entdeckender Lernschritte 57
 4.2.4.1 Stufe 1 – Erforschende Auseinandersetzung 57
 4.2.4.2 Stufe 2 – Entdeckung der neuen Erkenntnis 61
 4.2.4.3 Stufe 3 – Assimilation .. 63
 4.2.4.4 Stufe 4 – Generalisierung und Transfer .. 64
 4.2.4.5 Anmerkungen zum Lernverlauf .. 65
5 E-LEARNING ALS ANWENDUNGSFELD FÜR ENTDECKENDES LERNEN 66
5.1 Entdeckendes Lernen und Hypermedia .. 68
 5.1.1 Lernweg im Spiralencurriculum .. 68
 5.1.2 Hypertext als Entwicklungswerkzeug für Lernmedien 70
5.2 Determinanten einer entdeckenden Lernumgebung .. 71
 5.2.1 Situiertheit/Authentizität ... 72
 5.2.2 Interaktivität .. 73
 5.2.3 Multimedialität .. 74
 5.2.4 Lernerzentriertheit .. 76
5.3 Lernobjektentwicklung im Rahmen von eduBITE .. 77
 5.3.1 Konzeption der Übung „Bullwhip Effect und Beer Distribution Game“ 79
 5.3.2 Integration im Lernobjekt „Kommunikation innerhalb der Supply Chain“ .. 83
6 MEDIENWAHL UND LERNERFOLG ... 86
6.1 Medieneinsatz im Rahmen von eduBITE ... 86
 6.1.1 Reichhaltige Medien ... 87
 6.1.2 Medienreichhaltigkeit beim Design von E-Learning-Angeboten 89
 6.1.3 Evaluation von eduBITE ... 91
 6.1.3.1 Lernerfolg durch eduBITE .. 92
 6.1.3.2 Beurteilung der eduBITE-Lernobjekte .. 92
 6.1.3.3 Detailanalyse einzelner Lernobjektbeurteilungen 93
Kapitel 6.2 E-Learning in Zeiten des Web 2.0

6.2.1 Selbstgesteuertes vs. kooperatives E-Learning

6.2.1.1 Vergleichsstudie zur Effektivität von E-Learning-Tools

6.2.1.2 Implikationen für kooperatives entdeckendes Lernen

6.2.2 Mobile Learning mittels RSS

Kapitel 7 SChLUSSBETRACHTUNG

Quellenverzeichnis

Literatur

Internetquellen

ANHANG

Zusammenfassung

Abstract

Lebenslauf
Abbildungsverzeichnis

Abbildung 1: Sender-Empfänger-Modell .. 22
Abbildung 2: Die kognitivistische Lehr- und Lernauffassung ... 24
Abbildung 3: Die konstruktivistische Lehr- und Lernauffassung ... 27
Abbildung 4: Übung – Erstellung eines XML-Dokuments anhand einer DTD 40
Abbildung 5: Aufgabenstellung zum gelenkten Entdecken von XML 41
Abbildung 6: Stufen entdeckenden Lernens .. 47
Abbildung 7: „Peitschenschlagseffekt“ beim „Beer Distribution Game“ 51
Abbildung 8: Aufbau des „Beer Distribution Games“ ... 52
Abbildung 9: „Beer Distribution Game“ – Simulation 1 – Auswahlschirm 58
Abbildung 10: „Beer Distribution Game“ – Spielbildschirm .. 59
Abbildung 11: „Beer Distribution Game“ – Auswertungsbildschirm 61
Abbildung 12: „Beer Distribution Game“ – Simulation 2 – Auswahlschirm 63
Abbildung 13: Lernweg im Spiralencurriculum .. 69
Abbildung 14: Architektur der eduBITE E-Learning-Umgebung 78
Abbildung 15: Gliederungseinheiten des Inhalts in eduBITE .. 84
Abbildung 16: Lernobjekt „Kommunikation innerhalb der Supply Chain“ 85
Abbildung 17: Effektive Informationsverarbeitung .. 88
Abbildung 18: Lerneffizienz nach Media Richness Theory .. 90
Abbildung 19: Lernerfolg durch eduBITE .. 92
Abbildung 20: Beurteilung der Interaktivität .. 93
Abbildung 21: Interaktive Grafik zur Berechnung der Lagerhaltungskosten 95

Tabellenverzeichnis

Tabelle 1: Entdeckendes Lernen vs. darbietender Unterricht... 37
Tabelle 2: Lernschritte und entsprechende Aktivitäten... 42
Tabelle 3: „Beer Distribution Game“ – Spielablauf.. 56
Tabelle 4: Toolvergleich – SP vs. ISI... 99
Tabelle 5: Herleitung der Untersuchungsvariablen zur Medienreichhaltigkeit 101
Tabelle 6: Medienvergleich – SMS vs. E-Mail vs. RSS... 102
1 Einleitung

In den folgenden Jahren mussten Wachstumsprognosen für den E-Learning-Bereich nach unten revidiert werden, staatliche Förderungen wurden teilweise gekürzt und einige Forschungsberichte ließen Zweifel am effektiven Nutzen von elektronisch unterstützten, hypermedialen Lernprogrammen aufkommen. Inzwischen haben sich die Wachstumsraten der E-Learning-Branche zwar auf einem stabilen Niveau eingependelt, im Vergleich zur anfänglichen Euphorie ist allerdings eine gewisse Ernüchterung eingetreten. Das hat nicht zuletzt damit zu tun, dass bei all der Begeisterung für die Möglichkeiten, welche die moderne Informations- und Kommunikationstechnologie bietet, teilweise didaktische Überlegungen in den Hintergrund getreten sind. Gerade das mediendidaktische Design von Lernprogrammen ist jedoch entscheidend für die Qualität des Produktes und den Lernerfolg beim Abnehmer.
Aus diesem Grund wird in der vorliegenden Diplomarbeit auf ein pädagogisch-didaktisches Modell näher eingegangen, welches aufgrund seiner Charakteristika und Anforderungen an die Lernumgebung für den Einsatz im Bereich E-Learning prädestiniert erscheint.

Im Verlauf der vorliegenden Arbeit soll daher, basierend auf den theoretischen Annahmen und Konstrukten entdeckenden Lernens, dessen Eignung für den Einsatz im Bereich E-Learning anhand selbstentwickelter Anwendungsbeispiele schrittweise dargestellt und analytisch untersucht werden.

1 Ausubel, Novak, Hanesian (1980/81), S. 47f.

Im Anschluss an eine kurze Zusammenfassung dieser Konzepte und ihres wechselseitigen Einflusses wird entdeckendes Lernen anhand seiner charakteristischen Merkmale (Kap. 3) veranschaulicht. Im Zuge dessen findet auch eine kurze Betrachtung der Zielsetzungen dieses Lehr- und Lernprinzips statt. Da man je nach Intensität der Lenkungsmaßnahmen beim selbstständigen Entdecken zwischen verschiedenen

Formen unterscheiden kann, folgt eine Distinktion anhand des Freiheitsgrades. Die Erläuterung des Ablaufs eines idealtypischen entdeckenden Lernprozesses (Kap. 4) bildet den Abschluss der konzeptionellen Ausführungen und gleichzeitig die Überleitung vom traditionellen Präsenzunterricht zum Anwendungsbereich E-Learning (Kap. 5).

Die Bedeutung eines gezielten Einsatzes geeigneter Medien in Bezug auf Lernerfolg und Zufriedenheit mit dem Lernarrangement soll auf Basis der Medienreichhaltigkeitstheorie in Kapitel 6 analysiert werden. Der Fokus dieses Abschnitts im Hinblick auf Medienwahl und Beurteilung deren Effektivität findet auch Eingang in die Beleuchtung der Ergebnisse eines Evaluationsberichts zum Projekt eduBITE. Mit einem Studienvergleich zwischen Werkzeugen zum selbstgesteuerten E-Learning, wie im Rahmen von eduBITE, und aktuellen, kooperativen Umgebungen sowie einer Untersuchung zum Trend „Mobile Learning“ werden jene Entwicklungen im Bereich entdeckendes Lernen skizziert, die in Zeiten des Web 2.0 neue Transferkanäle zur Realisierung entsprechender Lernprozesse nutzbar machen.

Es ist Aufgabe des abschließenden Teils dieser Diplomarbeit (Kap. 7), sowohl Erkenntnisse der theoretischen Analyse als auch Ergebnisse der praktischen Umsetzung zusammenzufassen und daraus Schlussfolgerungen für die Praktikabilität von entdeckendem Lernen im Bereich E-Learning zu ziehen.
2 Entdeckendes Lernen – das Konzept

Entdeckendes Lernen ist ein Konzept, dass es einem Individuum ermöglicht, sich auf explorativem Weg Einsichten und Wissen zu erschließen und es dabei unterstützt, sich eigenständig in neue Themengebiete einzuarbeiten. Zu diesem Zweck macht sich dieses pädagogische Prinzip die besonders gut bei Kindern zu beobachtende intrinsische Motivation (vgl. dazu Kap. 3.1.2), die Welt zu erkunden und sich Handlungsräume zu erschließen, zu Nutze. Angeregt durch eine lebensnahe, komplexe Lernumgebung, sollen induktive Lernanlässe die Neugierde auf die Erkundung eines interessierenden Bereichs der Wirklichkeit wecken.

Im Zuge eines aktiven Erkenntnisprozesses machen sich Lernende selbstständig auf die Suche nach Fakten, Zusammenhängen und für sie neue Entdeckungen. Sie konsumieren keine vorgefertigten Lerninhalte, sondern setzen ihre Fähigkeiten aktiv zur Erweiterung ihrer Kenntnisse ein. Unter Einbeziehung des bestehenden Vorwissens werden persönlich bedeutsame Lernwege bei der reflektierenden Untersuchung des Lernmaterials beschritten, wodurch kognitive Denkschemata verändert und erweitert werden und damit individuelles Wissen konstruiert wird.

Auf diese Art und Weise erworbene Kenntnisse und kognitive Fertigkeiten sollen sich entsprechend der Zielsetzung entdeckenden Lernens besonders gut für einen Transfer auf neue Problemstellungen zu deren Lösung eignen. Darüber hinaus vermittelt dieses didaktische Konzept im Verlauf wiederholter Entdeckungsprozesse genau jene Fähigkeiten, die zum selbstständigen, sinnvollen und selbstorganisierten Lernen neuer

Inhalte notwendig sind. Mit seiner Anwendungs- und Problemlösungsorientierung als auch durch die Förderung eines eigenständigen Wissenserwerbs in explorativen, lebensnahen Umgebungen sollte entdeckendes Lernen also genau jene Ansprüche erfüllen, die an ein didaktisches Konzept im Zeitalter der Informationsgesellschaft gestellt werden. Grund genug, im Rahmen der folgenden Abschnitte Grundlagen, Entwicklung, charakteristische Merkmale sowie verschiedene Formen dieses lerntheoretischen Modells etwas genauer zu beleuchten.

2.1 Geschichtliche Entwicklung

Die Grundidee entdeckenden Lernens ist nicht auf die heutige hypermediale Informationstechnologie zurückzuführen, wenngleich dadurch dieser Ansatz im besonderen Ausmaß in den Mittelpunkt des didaktischen Interesses gerückt ist. Betrachtet man die Entwicklungsgeschichte dieses bildungstheoretischen Konzepts genauer, so lassen sich erste Ansätze in Richtung eines entdeckenden Lernvorganges bereits im Altertum festmachen.

1. Konfrontation mit der Problemstellung durch den Lehrer
2. Präsentation von Lösungsvorschlägen durch den Schüler
3. Jeweils gemeinsame Analyse und Bewertung der Vorschläge
5. Entdeckungshilfen durch den Lehrer und ev. gemeinsamer Aufbau eines Lösungsansatzes
6. Bestätigung des richtigen Lösungsversuches durch beide Beteiligten

389 n. Chr. schlussfolgerte St. Augustine, dass effektives Lehren nicht bloß durch den Transfer vorgetragener Ideen von Lehrer zu Student stattfinden kann. Vielmehr sollte danach getrachtet werden, die Schüler zum Lernen anzuregen. Die Rolle des Lehrers sah er in diesem Zusammenhang als Unterstützer individueller Überlegungen.

Wissenschaftszweige als Zusammenfassung allen menschlichen Wissens, dem sich der Lernende mittels eigener Erfahrungen annähern soll und wobei ihn die künstliche Einteilung in Lernfächer sowie Lehrer, welche die natürliche Neugierde betäuben, nur hindern. Zusammen mit seinem Schüler Kilpatrick (1871-1965) entwickelte Dewey die sogenannte „Projektmethode“, „in der Schülerinnen und Schüler selbständig, eigenverantwortlich, planvoll und zielgerichtet arbeiten, verschiedene Wege ausprobieren, Thesen aufstellen, die geprüft und notfalls wieder geändert werden“.

Verschiedene Ansätze, die unter dem Oberbegriff „Reformpädagogik“ zusammengefasst werden können, zeigen auch in Deutschland um die Jahrhundertwende einzelne Anhaltspunkte für entdeckendes Lernen.

16 Zu Piagets Theorie der genetischen Epistemologie vgl. Kap. 2.3.1 Kognitivismus und Kap. 2.3.2 Konstruktivismus.
Am Ende dieses kurzen Rückblickes auf die Entwicklungsgeschichte von entdeckendem Lernen soll darauf hingewiesen werden, das dessen Ideen keineswegs immer auf positive Resonanz in der Gesellschaft gestoßen sind. Im Gegenteil, die meisten Ansätze wurden entweder zu einem Nischendasein gezwungen oder sogar offen unterdrückt. Der Widerstand gegen eine Bildung, die auf Entdeckung, selbstständiger Erforschung und individueller Erfahrung beruht, hatte vielfältige Ursachen, die von grundsätzlichen Auffassungsunterschieden betreffend den Ablauf eines Lernprozesses, über Ablehnung einer lernerzentrierten Sichtweise bis hin zu gegensätzlichen bildungspolitischen Zielen (Erziehung zu Konformismus) reichte.

2.2 Begriffsbestimmung

So kontrovers die Diskussionen um entdeckendes Lernen seit den 60er Jahren verlaufen sind, so unterschiedliche Begriffe werden teilweise dem von Bruner geprägten und unter dem Namen „learning by discovery“ oder auch „discovery learning“ bekannten Konzept zugeordnet. Oft werden Bezeichnungen wie exploratives, forschendes oder autonomes Lernen als Synonyme herangezogen, wenngleich sie meist einen bestimmten Teilaspekt stärker betonen oder sogar als eigenes Modell angesehen werden können. Schulmeister unterscheidet beispielsweise zwischen „entdeckendem Lernen“, wo es gilt, die Entdeckung kognitiver Konzepte durch den Schüler mittels geeigneter Problemstellungen zu fördern und „forschendem

Lernen“, das die aktive Wahl eines Problems, selbstständige Entwicklung einer Lösungsstrategie und wissenschaftlich fundierte Überprüfung in den Vordergrund stellt. In diesem Abschnitt soll daher der Versuch unternommen werden, zum Verständnis der Bedeutung dieses Terminus beizutragen.

2.2.1 Lehrmethode, Lernprozesses oder Lernziel

Wie aus den obigen Erörterungen hervorgeht, kann eine einheitliche und klare Definition schon deswegen nicht angeführt werden, weil der Begriff „entdeckendes Lernen“ nicht nur für die Bezeichnung eines innerlichen psychischen Lernprozesses herangezogen wird, sondern auch eine bestimmte Lehrmethode oder ein Lernziel darunter verstanden werden kann. Dabei ist es für die in der Literatur oft stattfindende Bewertung der Sinnhaftigkeit und Effektivität von entdeckendem Lernen von erheblicher Bedeutung, ob man darin eine bestimmte Unterrichtsmethode sieht oder die im Zuge des Lernprozesses zu erlangende Entdeckungs- und Problemlösefähigkeit als Lernziel betrachtet.

Abhängig vom Ausmaß der Lenkungs- und Strukturierungsmaßnahmen durch Lehrperson bzw. Lernumgebung, kann außerdem zwischen verschiedenen Freiheitsgraden von entdeckendem Lernen unterschieden werden (siehe Kap. 3.2.2). Trotz des schwer eingrenzbaren Begriffs soll im folgenden Abschnitt auf einige ausgewählte Definitionen hingewiesen werden, die versuchen, die Kernaussage entdeckenden Lernens zu umschreiben.

2.2.2 Definition entdeckenden Lernens

Klewitz und Mitzkat kritisieren diese sehr vage Beschreibung entdeckenden Lernens als Lernprozess wegen ihrer Unbestimmtheit, was nicht zur Klärung des Sachverhaltes beigetragen habe. Sie verstehen unter dem Begriff eine Unterrichtsmethode, „die

\[25\] Bruner (1973a), S. 16.
\[26\] Ebd.
\[27\] Zur Theorie der Kognition vgl. Kap. 2.3.1.
dem Kind gestattet, weitgehend selbstständig Erfahrungen zu machen, Probleme zu lösen und Begriffe zu erarbeiten29.

Schulmeister betont die Brückenfunktion, die entdeckendes Lernen zwischen den Paradigmen Kognitivismus und Konstruktivismus einnimmt. Auf der epistemologischen (= erkenntnistheoretischen) Theorie der Kognition beruhend, stehen für ihn „der an der Heuristik menschlichen Denkens orientierte Erkenntnisprozeß, der konzeptgeleitete Denkprozeß und das konstruktive Problemlösen im Vordergrund30, wodurch entdeckendes Lernen eine wesentliche Grundlage für den Konstruktivismus darstelle.31

Eine etwas konkretere Beschreibung des Prozesses der Entdeckung findet sich bei Winter, der betont, dass Lernen ein aktiver Vorgang ist, der vom vorhandenen Wissen bestimmt wird:

„die Idee nämlich, daß Wissenserwerb, Erkenntnisfortschritt und die Ertüchtigung in Problemlösefähigkeiten nicht schon durch Information von außen geschieht, sondern durch eigenes aktives Handeln unter Rekurs auf die schon vorhandene Kognitive Struktur, allerdings in der Regel angeregt und somit erst ermöglicht durch äußere Impulse.32"

Entdeckendes Lernen stellt für ihn ein theoretisches Konstrukt dar, welches mit der konstruktiven biologischen „Erkenntnistheorie“ von Maturana und Varel, wonach ein Subjekt sich im Erkenntnisakt ein Bild der Realität konstruiert, korreliert.33 Durch diese Aussagen stellt er, ebenso wie Schulmeister, eine Verbindung zur kognitivistischen als auch zur konstruktivistischen Auffassung von Lehren und Lernen her, die unter Kap. 2.3 näher erläutert werden.

Ein Kritiker Bruners und Hauptkontrahent in der wissenschaftlichen Auseinandersetzung ist Ausubel, der entdeckendes Lernen vorrangig als Unterrichtsmethode betrachtet, die er dem „rezeptiven Lernen“ gegenüberstellt.34 Wichtigstes Unterscheidungsmerkmal und wesentliches Kennzeichen entdeckenden Lernens ist für ihn „die

\begin{footnotesize}
\begin{enumerate}
\item Klewitz, Mitzkat (1977), S. 8.
\item Schulmeister (1997), S. 71.
\item Vgl. Schulmeister (1997), S. 71ff.
\item Winter (1989), S. 2.
\item Vgl. Winter (1989), S. 2f.
\item Vgl. Klewitz, Mitzkat (1977), S. 153f.
\end{enumerate}
\end{footnotesize}
Tatsache, daß der Hauptinhalt dessen, was gelernt werden soll nicht gegeben ist, sondern vom Schüler entdeckt werden muß."\(^{35}\) Bevor ein Schüler die entdeckten Informationen in seine kognitive Struktur integrieren und diese zur Erreichung des Ziels umorganisieren kann, muss er sie erst neu ordnen. Dieser komplexe Prozess und der damit verbundene Zeitaufwand bezeichnet Ausubels wichtigstes Argument gegen entdeckendes Lernen und zugunsten eines vorwiegend auf rezeptivem Lernen aufbauenden, „darbietenden Unterrichts“.\(^{36}\)

Im Gegensatz zu Ausubel sieht Foster in entdeckendem Lernen keine feste Unterrichtsmethode, sondern ein bestimmtes Erziehungs- und Unterrichtsprinzip, das in verschiedene Methoden integriert werden kann.\(^{37}\) Dadurch erweitert er die Anwendungsmöglichkeiten und beschreibt die erfolgreiche Umsetzung dieses Konzepts folgendermaßen:

„Wo es tiefgreifende Erfahrungen, lebendige Anregungen und phantasievolle Ermunterungen durch den Lehrer gegeben hat, wo Probleme auf kreative Weise gelöst und Alternativen durchgespielt worden sind, ehe nach sorgfältiger Überlegung Schlußfolgerungen gezogen wurden, da sind die Prinzipien entdeckenden Lernens verstanden worden.“\(^{38}\)

Ute Zocher betont, dass der Begriff einer ständigen Weiterentwicklung unterworfen ist, verweist aber auf einige in den 80er Jahren von Karin Ernst geprägte und bis heute gültige Kernaussagen entdeckenden Lernens. Darunter findet sich auch eine Definition, die Lernen in einem schulischen Zusammenhang unter nachstehendem Aspekt betrachtet:

„als persönlich bedeutsamer Aneignungsprozess in einem sozialen Kontext .. der durch eine anregende Lernumgebung, die vielfältige Zugänge zur Welt ermöglicht und eine dialogische Lernbegleitung unterstützt wird.“\(^{39}\)

Diese Begriffsbestimmung weist einige Parallelen zur konstruktivistischen Auffassung von „situierten Lernumgebungen“ auf, die in Kap. 2.3.2.1 näher beleuchtet werden.

38 Foster (1993), S. 36.
2.3 Relevante lerntheoretische Modelle

2.3.1 Kognitivismus

2.3.1.1 Kognitivistische Lehr- und Lernauffassung

Durch die Sichtweise des Lernvorganges als Informationsverarbeitungsprozess, ähn-
lich einem Computer, fand auch das „Sender-Empfänger-Modell“ Anwendung als kognitionspsychologische Erklärung für eine mögliche Funktionsweise der Instruktion.

Bei dem in Abbildung 1 dargestellten Kommunikationsmodell überträgt ein Sender (Lehrender) eine kodierte Botschaft (z. B. als interaktiver Videoclip) über ein Medium (z. B. Computer) an den Empfänger (Lerner), wo das Symbolsystem mit Hilfe der zur Verfügung stehenden Informationen und internen Schemata dekodiert und die Botschaft verarbeitet wird. Die übermittelten Informationen werden dabei im Gehirn des Empfängers (Lerners) unter Heranziehung innerer Wissensstrukturen, beispielsweise in Form von Schemata oder mentalen Modellen, mittels interner kognitiver Prozesse erfasst, verarbeitet und internalisiert. Resultat dieser Sichtweise des Lernens, als aktiven Vorgang der Informationsaufnahme und -verarbeitung, ist eine veränderte kognitive Struktur des Individuums, in der Wissen und Erfahrungen organisiert gespeichert werden und die wiederum eine wesentliche Bedingung für zukünftige Lernprozesse darstellt.

Die Übertragung des Kommunikationsmodells auf den Instruktionsvorgang\(^{46}\) hat die Entwicklung der Modelle des „Instructional Designs“\(^{47}\) (ID) stark beeinflusst und prägte die kognitivistische Auffassung des Lehrens und Lernens mit ihrem streng regelhaft ablaufenden und eindeutig beschreib- sowie steuerbaren Prozess des Wissenserwerbs. ID-Modelle, deren Wurzeln im „Behaviorismus“ liegen, haben sich zum Ziel gesetzt, Planung, Organisation und Steuerung des Unterrichts, also die Instruktion des Lehrenden, zu optimieren. Dabei unterstützen ihn Instruktionspläne bei der Auswahl der geeigneten Lehrmethoden, um durch systematisches, schrittweises Vorgehen die vorher definierten Lernziele zu erreichen. Der Lernende nimmt in diesem Prozess eine weitgehend passive Rolle ein, da es Aufgabe des Unterrichtenden ist, die Lerninhalte möglichst optimal für eine kognitive Verarbeitung vorzugeben. Edelmann (1996) spricht in diesem Zusammenhang auch von einer prinzipiellen Asymmetrie zwischen Lehrer und Schüler und zitiert dabei Gagné (1969), der eine Hauptaufgabe des Unterrichts darin sieht, die äußeren Bedingungen so zu gestalten, dass sie möglichst optimal den inneren Lernvoraussetzungen entsprechen.\(^{48}\) Nach Ausubels Definition handelt es sich bei dieser Form des Wissenserwerbs um einen rezeptiven Prozess, sofern das Lernmaterial in fertiger Form dargeboten wird, wobei für ihn die bestehende kognitive Struktur des Lernenden den wichtigsten Faktor im Lerngeschehen darstellt.\(^{49}\)

Wendet man diese vom „Primal der Instruktion“ gekennzeichneten Leitlinien des Lehrens und Lernens auf die Gestaltung von Lernumgebungen an, so favorisieren diese „gegenstandszentrierte Lernumgebungen“. Kennzeichnend für diese Form des Unterrichts sind neben der bereits beschriebenen Rollenverteilung ein systematisch-schrittweises Vorgehen, Frontalunterricht, strenge Fächergrenzen und Evaluation des Fortschritts in Form von Lernerfolgskontrollen. Zielsetzung einer derart gestalteten Lernumgebung ist es, den Gegenstand des Lehrens und Lernens als fertiges System zu vermitteln, sodass der Lernende schließlich den dargebotenen Wissensausschnitt in

ähnlicher Form besitzt wie der Lehrende.50

Abbildung 2 fasst die bisher besprochene, vom „Instructional Design“ geprägte, kognitivistische Position zum Lehren und Lernen zusammen und stellt diese im Überblick dar:

\begin{center}
\includegraphics[width=\textwidth]{image2.png}
\end{center}

\textit{Abbildung 2: Die kognitivistische Lehr- und Lernauffassung}51

\subsection*{2.3.1.2 Verbindung zu entdeckendem Lernen}

Im Gegensatz zum Einfluss des Kognitivismus auf die Entwicklung eines streng regelhaft ablaufenden Prozesses des Wissenserwerbs im Rahmen von „gegenstands-

\begin{footnotesize}
\begin{itemize}
\item Vgl. Reinmann-Rothmeier, Mandl (2001), S. 606.
\item In Anlehnung an Reinmann-Rothmeier, Mandl (2001), S. 606.
\end{itemize}
\end{footnotesize}

2.3.2 Konstruktivismus

2.3.2.1 Konstruktivistische Lehr- und Lernauffassung

Wie beim „Kognitivismus“ stehen auch beim „Konstruktivismus“ die inneren Verstehensprozesse im Vordergrund, wobei Konstruktivisten den Informationsverarbeitungsansatz ablehnen und diesem individuelle Wahrnehmung, Interpretation und Konstruktion entgegen setzen.\(^{56}\) Nach konstruktivistischer Ansicht ist die Wirklichkeit beobachterabhängig und wird von verschiedenen Individuen unter-

\(^{52}\) Vgl. Edelmann (1996), S. 8.
\(^{54}\) Edelmann (1996, S. 172, 219) versteht in Anlehnung an Ausubels „Assimilationstheorie“ darunter eine Verankerung des neuen Wissens im Vorwissen bzw. in der kognitiven Struktur.
\(^{55}\) Die Aussagen dieses Absatzes stützen sich auf Schulmeister (1997), S. 71f.
\(^{56}\) Vgl. Tulodziecki (1996), S. 46.
Entdeckendes Lernen – das Konzept

Überträgt man die konstruktivistisch geprägte Lehr-Lernauffassung auf die Gestaltung

60 Schulmeister (1997), S. 73.

Zur Verdeutlichung der wesentlichen Aspekte ist an dieser Stelle Abbildung 3 eingefügt, welche die besprochene konstruktivistische Position zum Lehren und Lernen im Überblick darstellt:

2.3.2.2 Verbindung zu entdeckendem Lernen

2.3.3 Lernen als Verhaltensänderung bzw. Wissenserwerb

Im Anschluss an die Erläuterung der relevanten Lehr- und Lernparadigmen wird an dieser Stelle eine spezifische Definition des Lernens genauer beleuchtet und, angelehnt an die Einteilung von Steiner (2001), zwischen zwei verschiedenen Formen unterschieden. Seiner Auffassung nach kann man Lernen entweder als andauernde Verhaltensänderung betrachten oder eine Art des Wissenserwerbs darunter verstehen. Eine so klare Trennung ist zwar nicht immer möglich und oft auch nicht wünschenswert, dient hier allerdings als Gliederungsmaßnahme, um die unterschiedlichen Auffassungen, die den Theorien zugrunde liegen, besser illustrieren zu können.\(^{69}\)

\(^{67}\) Vgl. Schulmeister (1997), S. 71.

\(^{68}\) Vgl. Schulmeister (1997), S. 73.

\(^{69}\) Die Überlegungen dieses Kapitels stützen sich, sofern keine anderen Quellenangaben gemacht wurden, auf Steiner (2001), S. 137-205.
2.3.3.1 Lernen als Verhaltensänderung

2.3.3.2 Lernen als Wissenserwerb

Im Unterschied dazu versteht man unter Lernen im Sinne von Wissenserwerb den Aufbau und die fortlaufende Modifikation von Wissensrepräsentationen.\(^{72}\) Hierbei stehen jene komplexen Prozesse im Vordergrund, die beim Lernenden im Zuge der Verarbeitung von Informationen ablaufen. Besonders für Anhänger des „Kognitivismus“ sind die Denk- und Verstehensprozesse bei der Bildung und Veränderung von Wissensstrukturen, wie beispielsweise Schemata, semantische Netzwerke oder mentale Modelle, Gegenstand der wissenschaftlichen Untersuchungen. Charakteristische Teilprozesse beim Lernen sind dabei etwa „chunking“\(^{73}\), das Zusammenfassen

\(^{70}\) Vgl. Steiner (2001), S. 140.

\(^{72}\) Vgl. Steiner (2001), S. 164.

\(^{73}\) Vgl. Steiner (2001), S. 167: Durch diese Zusammenfassung werden Informationen verdichtet, beanspruchen dadurch weniger Verarbeitungskapazität und können leichter verknüpft, weiter

Der Transferforschung wird seit langem große wissenschaftliche Beachtung entgegengebracht, wenngleich die Empirie den erhofften „Wissenstransfer“ nur selten bestätigen konnte, was zu kontroversen Diskussionen über diese Theorie mit ihren komplexen Einflussfaktoren geführt hat. Da dieses Ziel des Gebrauchs von vorhandenem Wissen beziehungsweise der Aktivierung von Vorwissen zur Lösung aktueller Problemstellungen der pädagogischen Forderung nach Anwendbarkeit von in Schule oder Studium erworbenen Kenntnissen auf praktische Problemstellungen entspricht, erscheint die intensive wissenschaftliche Auseinandersetzung mit diesem Thema gerechtfertigt.
2.3.3.3 Entdeckendes Lernen und Wissenserwerb

Untersucht man den Ablauf eines entdeckenden Lernprozesses hinsichtlich seiner lern-theoretischen Merkmale, so wird deutlich, dass sowohl Elemente der kognitivistischen als auch der konstruktivistischen Auffassung von Wissenserwerb zugeordnet werden können. Der genaue Verlauf eines entdeckenden Lernvorganges wird in Kap. 4.1 ausführlicher behandelt, an dieser Stelle genügt die Aufzählung der vier involvierten Stufen:

1. Erforschende Auseinandersetzung mit Lerninhalt bzw. Lernsituation
2. „Entdeckung“ der neuen Erkenntnis / Auffinden von Zusammenhängen
3. Assimilation der Erkenntnis in die zuvor aktivierten Wissensstrukturen
4. Generalisierung und Transfer auf verwandte Problemstellungen

Ad 1.: Bei der erforschenden Auseinandersetzung mit Lerninhalten sind viele kognitive Aspekte von Bedeutung, wie beispielsweise der Einsatz von vorhandenen Schemata als Erkenntnisinstrument zur Wahrnehmung von Umwelt oder Problem-situationen. Allerdings stellt der Aufbau dieser Strukturen der Wissensrepräsentation einen aktiven, selbstgesteuerten Konstruktionsvorgang dar, was eine überwiegende Nähe zum konstruktivistischen Wissenserwerb andeutet.

Ad 2.: Im Zuge des Auffindens von Zusammenhängen spielt die kognitive Aktivität des Lernenden bei der Informationsstrukturierung, Hypothesenbildung sowie -überprüfung die entscheidende Rolle. Anhand der Theorie des „Problemlösenlernens“ wird deutlich, dass aber auch auf dieser Stufe entdeckenden Lernens konstruktivistische Elemente zur Bewältigung einer Aufgabe zum Einsatz kommen können.

Ad 3.: Die Assimilation der Erkenntnis in zuvor aktivierte Wissensstrukturen kann man als kognitive Leistung betrachten. Steiners Begriff des „Verstehens“ ließe sich in

Entdeckendes Lernen – das Konzept

Ad 4.: Die Generalisierung vom Einzelfall ins Allgemeine und der erleichterte Transfer auf verwandte Problemstellungen werden immer wieder als Vorzüge konstruktivistischen Wissenserwerbs angeführt und stellen schließlich die vierte Stufe und damit eine Zielsetzung „sinnvollen“ entdeckenden Lernens dar.

3 Charakteristika entdeckenden Lernens

3.1 Charakteristika nach Bruner

3.1.1 Intuitives Denken

3.1.2 Intrinsische Motivation

In dem Anliegen, eine effektive kognitive Aktivität zu fördern, hat sich Bruner auch mit dem Bereich der Motivation beim Lernvorgang beschäftigt. Im Gegensatz zur behavioristischen Sichtweise eines Lernprozesses als Verhaltensänderung, welcher durch Konditionierungsmechanismen steuerbar ist, wollte er „daß das Lernen aus der unmittelbaren Reizkontrolle befreit wird“. Lernaktivitäten werden demnach nicht

86 Soweit keine anderen Quellenangaben gemacht wurden, beziehen sich die Aussagen zu „intuitivem Denken“ auf Bruner (1973b), S. 70ff.
87 Bruner (1973a), S. 16.
90 Bruner (1973a), S. 23.
durch Belohnungen und Bestrafungen kontrolliert, sondern der Lernende soll zu einem „Zustand der Innengeleitetheit“ übergehen und seine „Befriedigung aus der Bewältigung von Problemen“ gewinnen.\(^91\) Diese „intrinsische Motivation“ erhält ihren Antrieb aus dem Umstand, dass die Entdeckung selbst als Belohnung des Lernvorganges empfunden wird und dem Bedürfnis, mit der Umgebung fertig zu werden.\(^92\) Edelmann unterscheidet dabei drei Arten der intrinsischen Motivation:\(^93\)

- **Neugiermotivation**
- **Anreizmotivation**
- **Erfolgsorientierung**

Im Einklang mit Piagets „Erkenntnistheorie“ (siehe dazu Kap. 2.3.1.2) gehen auch Verfechter der **Neugiermotivation** von einer Dissonanz zwischen neuer Information und bestehenden kognitiven Schemata aus. Dieser Konflikt wirkt für das Individuum als Triebfeder beim Lernen, da es die Diskrepanz auflösen möchte und nach einem neuen Gleichgewicht strebt.\(^94\) Die **Anreiztheoretische Auffassung** betont emotionale Faktoren einer Situation, denen ein Aufforderungscharakter innewohnt und die dadurch latente Motive in aktuelle Motivation umwandeln können.\(^95\) **Erfolgsorientierung** stellt schließlich neben der Anstrengungsbereitschaft das zentrale intrinsische Merkmal der Leistungsmotivation dar. Dieser Sichtweise folgend, kann die Aussicht auf Erfolg respektive die Furcht vor Misserfolg eine motivierende bzw. demotivierende Wirkung auf den Lernenden ausüben.\(^96\) Gemeinsam ist allen drei Fällen, dass die Aktivierung des Entdeckungsvorganges vom untersuchten Sachverhalt ausgeht und eine Lernaktivität aus eigenem Antrieb, losgelöst von Belohnung und Zwang angespornt wird.\(^97\)

\(^{92}\) Vgl. ebd., S. 21f.
\(^{93}\) Vgl. Edelmann (1996), S. 382f.
\(^{96}\) Vgl. ebd., S. 376ff.
\(^{97}\) Vgl. ebd., S. 383.
3.1.3 Transferförderung und Problemlösefähigkeit

Zwei weitere Prinzipien, denen Bruner große Bedeutung beimißt und die für entdeckendes Lernen charakteristisch sind, werden von Edelmann unter den Begriffen „Transferförderung“ und „Problemlösefähigkeit“ zusammengefasst.\(^98\) Wenngleich beide typische Merkmale eines entdeckenden Lernprozesses darstellen, sollen sie doch im Rahmen dieser Arbeit in erster Linie als dessen Zielsetzung betrachtet werden. Schließlich bezeichnen diese Charakteristika auch pädagogische Ziele, die erreicht beziehungsweise Fertigkeiten, welche vom Lernenden im Zuge des Entdeckungsvorganges erworben werden sollen.\(^99\)

Aktuelle Forderungen aus dem Bereich wirtschaftlicher Interessensvertreter aber auch von bildungspolitischen Akteuren verlangen eine Ausbildung, die größeren Wert auf die praktische Anwendbarkeit von theoretisch erworbenem Wissen legt. Traditionelle Unterrichtsmethoden, welche den Gegenstand des Lehrens und Lernens nach Fächergrenzen getrennt, als Endprodukt in Form eines „Wissenstransports“\(^100\) vermitteln möchten, werden in Frage gestellt. Stattdessen sollen im Rahmen des Unterrichts jene Fähigkeiten gelehrt werden, welche die Lernenden ermächtigen, ihr Wissen durch eigene Aktivitäten aufzubauen und zur Erweiterung ihrer Kenntnisse einzusetzen. Dadurch kann man die Bildung von „trägem Wissen“\(^101\), das in realen Alltagssituationen nicht zur Anwendung kommt, vermeiden und die Entwicklung einer Problemlösekompetenz fördern.

Diese Ansprüche an eine Gestaltung der Lehre, die sich daran orientiert, anwendbares Wissen und Fertigkeiten zu selbstständigem, problemlösenden Lernen zu vermitteln, haben auch die Diskussionen darüber wieder aufleben lassen, ob entdeckendes Lernen ein geeignetes Modell ist, um die genannten Ziele zu erreichen.\(^102\) Inwiefern Bruners Konzept den Transfer von Wissen und die Ausbildung einer Problemlösefähigkeit unterstützt, soll jedoch hier nicht näher beleuchtet werden, da es den Rahmen der

\(^100\) Vgl. Reinmann-Rothmeier, Mandl (2001), S. 606.
Arbeit sprengen würde. Stattdessen liegt der Fokus der folgenden Kapitel auf der Bestimmung entscheidender Faktoren für eine erfolgreiche Umsetzung im Anwendungsbereich E-Learning, um die an dieser Stelle postulierten Ziele als höchste Stufe entdeckenden Lernens zu erreichen.\footnote{Zu den Stufen eines entdeckenden Lernprozesses siehe Kap. 4.1.}

3.2 Merkmale entdeckenden Unterrichts

3.2.1 Entdeckendes Lernen vs. darbietender Unterricht

<table>
<thead>
<tr>
<th>Darbietender Unterricht</th>
<th>Entdeckendes Lernen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrer als Darbietender des Lernstoffes</td>
<td>Lehrer als Begleiter und Unterstützer des Lernprozesses</td>
</tr>
<tr>
<td>Schüler ist überwiegend rezeptiver Zuhörer</td>
<td>Schüler übernimmt aktive Rolle bei der Ausgestaltung des Unterrichts</td>
</tr>
<tr>
<td>In vorher festgelegten Unterrichtsschritten wird Lerninhalt vermittelt</td>
<td>Eine komplexe Lernumwelt und Anregungen durch den Lehrer sollen individuelle Lernprozesse aktivieren</td>
</tr>
<tr>
<td>Organisationsform und Ablauf des Unterrichts sind geplant</td>
<td>Organisationsform und Ablauf sind flexibel und nehmen auf individuelle Lernfortschritte Rücksicht</td>
</tr>
<tr>
<td>Bewertung des vermittelten Wissens nach einheitlichen Standards</td>
<td>Beurteilung der Lernfortschritte kontinuierlich auf individueller Basis</td>
</tr>
</tbody>
</table>

\textit{Tabelle 1: Entdeckendes Lernen vs. darbietender Unterricht}\footnote{In Anlehnung an Bruner (1973), S. 17 und Klewitz, Mitzkat (1977), S. 25f.}
Zum Vergleich in Tabelle 1 ist anzumerken, dass dabei nicht beschrieben wird, wie Unterricht in der einen oder anderen Form stattzufinden hat, sondern dass diese Gegenüberstellung zweier Extrempositionen die Identifikation charakteristischer Merkmale erleichtern soll.\(^{109}\)

3.2.2 Freies Explorieren vs. gelenktes Entdecken

Betrachtet man die praktische Umsetzung eines Unterrichtskonzepts, so kann anhand des Ausmaßes der externen Lenkung und Steuerung des Lernprozesses zwischen zwei polaren Auffassungen von Instruktion unterschieden werden, wobei die reine Entdeckungsmethode ohne Eingriffe auf den Lernprozess eine laut Neber (1973, 2002) im Unterricht kaum verwirklichte Extremform darstellt.\(^{110}\) Erschweren oder verhindern dagegen ausgeprägte Strukturierungsmaßnahmen einen individuellen Entdeckungsprozess, nähert man sich dem entgegengesetzten lehrmethodischen Extrem, der direkten Instruktion an.\(^{111}\) In letzterem Fall verlässt man demnach das Kontinuum, auf dem entdeckendes Lernen per definitionem stattfinden kann und unterrichtet nach Maßgabe der darbietenden Methode.\(^{112}\)

Je nach Intensität und Sequenz der Lenkungsmaßnahmen durch die Lehrperson oder die Lernumgebung lassen sich verschiedene Formen entdeckenden Lernens nach deren Freiheitsgrad unterscheiden. Dearden (1977, S. 69f) identifiziert fünf Typen (A - E) geeigneter Unterrichtsstrategien, die sich durch ihren ansteigenden Lenkungs- bzw. abnehmenden Freiheitsgrad unterscheiden. Während eine entdeckende Unterrichtsmethode vom Typ A darauf fokussiert, geeignete und anregende Materialien für eine aktive Erkundung bereitzustellen, markiert die in Kapitel 2.1 beschriebene „Sokratische Methode“ mittels Dialogform und gezielt gestellten Leitfragen zum Erkenntnisgewinn das andere Ende des Spektrums, hier Typ E genannt.\(^{113}\) In der gängigen Literatur wird zumeist eine Unterrichtsstrategie aus der Mitte (Typ C oder

\(^{112}\) Zu ausgewählten Definitionen entdeckenden Lernens vgl. Kapitel 2.2.2. Der darbietende Unterricht wird unter Punkt 3.2.1 dargestellt, vgl. dazu auch Bruner (1973a), S. 17.

\(^{113}\) Vgl. Dearden (1977), S. 69f.
D) des Kontinuums als effektivste Lehrform favorisiert und unter dem Begriff „gelenktes Entdecken“ subsumiert.114

Ohne die Ausführungen des Kapitels 5 zum Anwendungsbereich E-Learning vorwegnehmen zu wollen, soll an dieser Stelle dennoch eine entsprechende Umsetzungsmöglichkeit für gelenktes Entdecken aufgezeigt werden. Das vom Autor dieser Arbeit erstellte \textit{Lernobjekt}115 „XML als Integrationswerkzeug“ beschreibt die Meta-Auszeichnungssprache XML („eXtensible Markup Language“) als Integrationswerkzeug für heterogene Systeme innerhalb einer Supply-Chain und vermittelt Kenntnisse über deren Aufbau und Funktionsweise.

115 Zur Lernobjektentwicklung siehe Kap. 5.3.
3 Charakteristika entdeckenden Lernens

3.3 Entdeckende Lerntätigkeiten

In Anknüpfung an die kurze Darstellung der einzelnen Prozessschritte unter Punkt 2.3.3.3 (eine ausführliche Behandlung der Phasen entdeckenden Lernens erfolgt im anschließenden 4. Kapitel) wird nun eine Verbindung zu Hameyers Formen entdeckenden Lernens hergestellt.116 Hameyer hat verschiedene Teilaspekte des

Entdeckungsvorganges nach der damit einhergehenden Aktivität des Lernenden unterschieden und zu eigenständigen Typen ausgearbeitet117. Er hat seine vier Entdeckungsformen als Bezugsrahmen für den Unterricht konzipiert, welcher im folgenden Teil mit den einzelnen Lernschritten verknüpft werden soll.

<table>
<thead>
<tr>
<th>Stufen entdeckenden Lernens</th>
<th>Formen entdeckenden Lernens</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Erforschende Auseinandersetzung</td>
<td>⇔ Explorative Tätigkeit</td>
</tr>
<tr>
<td>2. „Entdeckung“ der neuen Erkenntnis</td>
<td>⇔ Konstruktive Tätigkeit</td>
</tr>
<tr>
<td>3. Assimilation in Wissensstruktur</td>
<td>⇔ Reflexive Tätigkeit</td>
</tr>
<tr>
<td>4. Generalisierung und Transfer</td>
<td>⇔ Formative Tätigkeit</td>
</tr>
</tbody>
</table>

Tab. 2: Lernschritte und entsprechende Aktivitäten118

Die Zuordnung in Tabelle 2 schlägt für die einzelnen Stufen jeweils die Fokussierung auf eine entsprechende Sichtweise entdeckenden Lernens vor. Mit Hilfe dieser Verknüpfung sollen jene Aktivitäten aufgezeigt werden, die zur Förderung des Lernfortschritts in den spezifischen Phasen besonders geeignet erscheinen.

3.3.1 Stufe 1: Erforschung ⇔ Explorative Tätigkeit

117 Vgl. Hameyer (2002b), S. 28-35.

3.3.2 Stufe 2: Erkenntnis ⇔ Konstruktive Tätigkeit

Im Mittelpunkt der folgenden Phase eines entdeckenden Lernprozesses stehen das Auffinden von Zusammenhängen und schließlich die Entdeckung einer subjektiv neuen Erkenntnis. Aus Hameyers „Formenkreis“ entdeckenden Lernens bietet sich die Ausprägung als „konstruktive Tätigkeit“121 an, um einen aktiven Erkenntnisprozess zu unterstützen. Gemäß dieser Sichtweise lernen Schüler vor allem, indem sie konstruktiv gestalten. Das ermöglicht es den Lernenden, ihrer Kreativität freien Lauf

3.3.3 Stufe 3: Assimilation ⇔ Reflexive Tätigkeit

3.3.4 Stufe 4: Generalisierung und Transfer ⇔ Formative Tätigkeit

Zielsetzung jedes entdeckenden Lernprozesses ist es, aus den am konkreten Einzelfall gemachten Erfahrungen allgemeingültige Aussagegefüge ableiten zu können und dieses Wissen für spätere Lernvorgänge einzusetzen. Durch diese höchste Stufe unterscheidet sich entdeckendes Lernen vom bloßen Wiedererkennen eines Sachverhaltes, indem es transferierbares Wissen und eine allgemeine Fertigkeit zu selbstständigem Problemlösen beim Lernenden aufbaut. Korrespondierend sieht die vierte Form nach Hameyer im Lernen eine „formative Tätigkeit“ und bezieht sich auf die individuelle Heuristik, die der Lernende seiner subjektiven Route der Erkenntnis zugrunde legt. Dabei verändern Umstrukturierungsprozesse aufgrund neuer Einsichten den persönlichen Blick auf die Wirklichkeit und beeinflussen auch die Vorgehensweise, nach der ein Entdecker sein Wissen erweitert. Die zum entdeckenden Lernen herangezogenen Methoden und Techniken werden also nicht in Form von allgemeingültigen Regeln vorgegeben, sondern vom Lernenden individuell erarbeitet und sind ständiger Erweiterung sowie Vertiefung unterworfen.

Ein Lernprozess in vier Schritten

4 Ein Lernprozess in vier Schritten

Im Anschluss an die Vorstellung charakteristischer Merkmale entdeckenden Lernens im Allgemeinen sowie eines diesen Prinzipien entsprechenden Unterrichts, ist das folgende Kapitel einer detaillierten Beschreibung des Entdeckungsvorganges gewidmet. Die Erläuterung beginnt mit der Darstellung eines idealtypisch ablaufenden Lernprozesses. Dieser verläuft, um von erfolgreichem entdeckendem Lernen sprechen zu können, in vier aufeinander aufbauenden Schritten, welche verschiedene Aktivitäten beinhalten.126 Zielsetzung eines solchen Lernvorganges ist es, die im Zuge einer aktiven Exploration entdeckten Zusammenhänge und Erkenntnisse mit der eigenen kognitiven Struktur zu verknüpfen und das auf diese Weise um Problemlösungen samt dazugehöriger Lösungsmethoden erweiterte Wissen zu einem allgemeingültigen Aussagengefüge kombinieren und auch im Hinblick auf neue Inhalte oder Situationen nutzen zu können.127 Damit der dargestellte Ablauf dem Leser nicht ausschließlich als theoretische Abhandlung der einzelnen Stufen präsentiert wird, erfolgt im zweiten Teil dieses Kapitels eine anwendungsorientierte Darstellung des Entdeckungsansatzes. Anhand der Übung „Bullwhip Effect und Beer Distribution Game“, Teil des Lernobjekts „Kommunikation innerhalb der Supply Chain“, wird erörtert, inwiefern

126 Diese Einteilung orientiert sich an Brunner, Zeltner (1980), S. 57.
dieser stufenweise Aufbau eines entdeckenden Lernprozesses bei der Entwicklung multimediaer Lernmaterialien zu berücksichtigen ist und dessen Prinzipien adäquat umgesetzt werden können.

4.1 Ablauf eines entdeckenden Lernprozesses

Entdeckendes Lernen ist ein in verschiedenen Phasen ablaufender Vorgang, bei dem ein Individuum im Zuge des Lernprozesses vier aufeinander aufbauende Stufen absolviert. Diese Unterteilung in einzelne Lernschritte erhöht die Transparenz, zeigt Optionen für mögliche Unterstützungsmaßnahmen auf und erleichtert Rückschlüsse, falls ein entdeckender Lernprozess nicht erfolgreich verlaufen sollte. An dieser Stelle soll der stufenweise Aufbau daher grafisch durch Abbildung 6 illustriert werden, bevor eine kurze Erläuterung der einzelnen Lernschritte folgt.

Abbildung 6: Stufen entdeckenden Lernens

Ad 1.: Entdeckendes Lernen beginnt idealerweise mit Interesse an einer Sache, welches auch durch die Lehrperson beziehungsweise eine anregende Lernumgebung geweckt werden kann. Dabei stellt die in Kap. 3.1.2 näher ausgeführte „intrinsische Motivation“, die Welt zu erkunden und sich Handlungsräume zu erschließen eine

Ad 3.: Sobald ein Lernender im Verlauf einer erforschenden Auseinandersetzung mit einem Inhalt zu einer neuen Erkenntnis gelangt ist, hat er, laut Ausubel, die erste Phase eines entdeckenden Lernprozesses absolviert. Von einem „sinnvollen“ entdeckenden Lernen kann allerdings erst dann gesprochen werden, wenn im nächsten Schritt das neue Wissen in der kognitiven Struktur verankert, also assimiliert.

4.2 Umsetzung anhand der Übung „Bullwhip Effect und Beer Distribution Game“

Im Rahmen der Einleitung wurde bereits kurz darauf hingewiesen, dass es Aufgabe des Praxisteils dieser Diplomarbeit war, Lernobjekte zur eduBITE-Lektion „IT-Bausteine für SCM“ zu entwickeln, die den Prinzipien entdeckenden Lernens möglichst gut entsprechen sollten. Um die theoretischen Erläuterungen des Konzepts und ihre Bedeutung für die DV-gestützte Entwicklung von Lernmaterialien zu illustrieren, wird an dieser Stelle dessen Umsetzung anhand der Übung „Bullwhip Effect und Beer Distribution Game“ erörtert. Diese Übung ist Teil des Lernobjekts „Kommunikation innerhalb der Supply Chain“ und eignet sich aufgrund ihres simulationsartigen Charakters besonders gut, um den Ablauf eines entdeckenden Lernprozesses zu veranschaulichen.

4.2.1 Hintergrund der Übung

Informationstransparenz identifizieren, aufgrund derer die einzelnen Marktteilnehmer versuchen, voneinander unabhängig auf lokaler Ebene ein Optimum zu erreichen, welches im Wesentlichen auf der Nachfrage ihres direkten Kunden basiert (siehe dazu auch Abbildung 7).\footnote{Vgl. Duijts (2001), S. 9f.} Als Folge davon kommt es zu Ineffizienzen in der Supply-Chain, die sich vor allem in zunehmenden Problemen bei der Erstellung von Prognosen, in Lieferschwierigkeiten sowie hohen Sicherheitsbeständen entlang der Wertschöpfungskette äußern.\footnote{Vgl. Nienhaus, Ziegenbein, Duijts (2003), S. 2.}

![Abbildung 7: „Peitschenschlageffekt“ beim „Beer Distribution Game“][1]

\footnote{In Anlehnung an Kilger (1998); Universität Klagenfurt: Der Bullwhip-Effekt.}
Liefermengen, kommt es in der Regel zu denselben Effekten, die auch in der wirtschaftlichen Praxis unter dem Namen „Bullwhip Effect“ zu beobachten sind.149 In Abbildung 8 ist der Aufbau des „Beer Games“ inklusive angedeutetem Waren- und Informationsfluss dargestellt.

![Abbildung 8: Aufbau des „Beer Distribution Game“150]

\textbf{4.2.2 Simulation des „Bullwhip Effects“}

Bereits 1993 gaben Michael R. Goodman, Brian W. Kreutzer, John D. Sterman und David P. Kreutzer einen Überblick zu computerbasierten Umsetzungen des Brettspiels „Beer Distribution Game“, welche seit den späten 80er Jahren entstanden sind und präsentierten gleichzeitig eine eigene Version („GKA-IA Electronic Beer Game“).151 Motivation zu deren Entwicklung war das Bestreben, die grundsätzlichen Zusammenhänge und das Entscheidungsverhalten in komplexen, dynamischen „Systemen“152 noch besser untersuchen und beleuchten zu können, sowie den Zugang für Studenten und Manager so einfach und anspornend wie möglich zu gestalten.153

149 Vgl. Sterman (1992).
150 In Anlehnung an Milling, Größler (2001), S. 7.
151 Vgl. Martinez-Moyano, Rahn, Spencer (2005), S. 27; Goodman et al. (1993).
152 Als „System“ kann laut Alpar et al. (1998, S. 18) eine Menge von Elementen bezeichnet werden, die bestimmte Eigenschaften besitzen, mittels Beziehungen miteinander verknüpft sind und sich insgesamt von ihrer Umgebung abgrenzen lassen.
153 Vgl. Goodman et al. (1993), S. 184.
Goodman et al. (1993, S. 184f) unterscheiden die am Markt verfügbaren Simulationen nach zwei möglichen Ausprägungen im Hinblick auf das Design: Jene netzwerkbasierten Varianten, die sich nahe am Brettspiel orientieren, mit dem Ziel dieses zu ersetzen und andererseits Umsetzungen, die Aspekte betonen, welche vom originalen Brettspiel nicht abgedeckt werden können. Unter die letztgenannte Gruppe fallen beispielsweise computergestützte Simulationsspiele, die als Single-Player-Varianten einzelnen Spielern, unabhängig von der Verfügbarkeit gewillter Mitspieler, das Erforschen der systemdynamischen Zusammenhänge ermöglichen.

„Bullwhip-Effekt“, steht vor allem das Erlernen von Strategien zu einem besseren Management der Supply-Chain im Vordergrund des didaktischen Interesses.157

Zielsetzung der \textit{konzeptionellen Überlegungen}158 für eine eigene Umsetzung war es daher nicht, eine weitere Simulation in Konkurrenz zu den bereits existierenden Varianten zu entwickeln. Vielmehr galt es, sich die von Anhängern der Systemdynamik hervorgehobene, besonders gute Eignung des „Beer-Game“-Szenarios zu einer auf persönlicher Erfahrung beruhenden Heranführung an die Thematik des „Peitschenschlageffekts“ mittels motivierender Lernumgebung zunutze zu machen.159

Eine Umsetzung als computergestützte Simulation bietet zudem ein hohes Maß an Interaktivität zur Förderung selbstgesteuerter Lernprozesse und sollte damit entdeckendem Lernen entgegenkommen.160

158 Zur Konzeption der Übung „Bullwhip Effect und Beer Distribution Game“ siehe Kapitel 5.3.1.
159 Vgl. Martinez-Moyano, Rahn, Spencer (2005), S. 4; Goodman et al. (1993), S. 184.
160 Vgl. Schulmeister (2001), S. 229.
161 Vgl. Steinberger, Ortner (2003), S. 4f.
4.2.3 „Beer Distribution Game“ – Spielregeln

164 Die Anleitung zu dieser „Beer Game“-Variante soll den Lernenden mit dem Spielprinzip vertraut machen. Für nähere Erläuterungen zum Spieldesign siehe Kapitel 5.3.1.
Ein Lernprozess in vier Schritten

Beer Distribution Game - Spielablauf

| Spielziel | Als Ziel dieser Simulation sollen Sie versuchen, die insgesamt anfallenden Lagerkosten zu minimieren und dennoch lieferfähig zu bleiben. Zu diesem Zweck müssen Sie zwei Kostenarten berücksichtigen:
- Lagerkosten: € 1,– pro Einheit und Runde
- Lieferrückstandskosten: € 2,– pro Einheit und Runde

Können Sie in einer Periode den Bedarf Ihres Kunden nicht decken, so entsteht ein Lieferrückstand (negativer Lagerbestand), der (wie oben ersichtlich) mit doppelt so hohen Kosten "bestraft" wird und welcher in den folgenden Runden zusätzlich zur jeweils aktuellen Nachfrage auszugleichen ist. |

| Anfangszustand | Die folgenden Angaben sind als Anfangszustände für alle Teilnehmer der Lieferkette vorgegeben:
- 15 = Lagerbestand
- 15 = Lagerkosten der 1. Runde
- 5 = In Bearbeitung befindliche Bestellung beim Lieferanten
- 5 = Transport
- 5 = Wareneingang |

Tabelle 3: „Beer Distribution Game“ – Spielablauf

In dieser computerbasierten Simulation übernehmen Sie als Spieler die Rolle des Einzelhändlers. Dadurch soll sichergestellt werden, dass der Spieler aus Sicht eines ursächlich Beteiligten mit der mangelnden Informationstransparenz konfrontiert wird.
Im Zuge des Spielverlaufs sowie der anschließenden Ergebnisauswertung entdeckt der Lernende, welche Auswirkungen seine Handlungen auf die gesamte Wertschöpfungskette haben und wie durch lokale Optimierungen das eigentliche Ziel des Spiels, die Gesamtkosten aller Supply-Chain-Partner zu minimieren, meist verfehlt wird.165

4.2.4 Aufgabenstellung – Förderung entdeckender Lernschritte

4.2.4.1 Stufe 1 – Erforschende Auseinandersetzung

Diese Phase eines entdeckenden Lernprozesses baut auf der natürlichen Neugier, welche die menschliche Spezies besonders im Kindes- und Jugendalter, aber auch weit darüber hinaus auszeichnet, auf.166 Ein interessantes wirtschaftliches Phänomen wie der „Bullwhip Effect“ ist in der Lage, dieses Potenzial für Lernzwecke zu nutzen, die intrinsische Motivation eines Individuums anzusprechen und einen aktiven sowie selbstgesteuerten Prozess in Gang zu setzen, um einer konkreten Fragestellung in einer erforschenden Auseinandersetzung auf den Grund zu gehen.167 Damit man ein

solches Interesse wecken beziehungsweise verstärken kann, ist bei der Entwicklung der Lernumgebung und Formulierung der Aufgabenstellungen darauf zu achten, dem Individuum genügend Freiraum zur selbstgesteuerten Erforschung zu lassen und gleichzeitig aktives Fragen, Ausprobieren und Beobachten anzuregen.\(^\text{168}\)

Nach der Eingabe eines frei wählbaren Namens für den *Einzelhändler*, dessen Alter Ego der Spieler übernimmt und nach Auswahl des gewünschten Nachfrageverhaltens, wechselt die Simulation in den Spielbildschirm.

![Abbildung 10: „Beer Distribution Game“ – Spielbildschirm](image)

Beim Versuch anhand seiner herangezogenen Konzepte und zurechtgelegten Strategien die vorgegebene Problemstellung zu lösen, wird der Spieler des Öfteren auf Diskrepanzen zwischen der erwarteten und der tatsächlich eintretenden Reaktion des

Distributionssystems stoßen. Durch Modifikation der Eingabeparameter kann der Lernende aktiv verschiedene Lösungswege erproben und anhand der beobachtbaren Reaktionen Rückschlüsse über Funktionsweise und Dynamik des Systems ziehen. ¹⁷⁰

4.2.4.2 Stufe 2 – Entdeckung der neuen Erkenntnis

Abbildung 11: „Beer Distribution Game“ – Auswertungsbildschirm

In je einem Liniendiagramm zu Bestellverhalten respektive Lagerbestand kann anhand der unterschiedlichen Farben, die den Teilnehmern zugeordnet sind, der Verlauf der Kurven, die Stärke der Amplituden sowie das für den „Bullwhip Effect“ typische, zeitversetzte Auftreten der steigenden Schwankungen nachvollzogen werden, wie aus Abbildung 11, nach einem exemplarischen Spielverlauf, ersichtlich ist. Der Spieler wird im Rahmen der Aufgabenstellung angewiesen, besonderes Augenmerk auf diese Aspekte zu legen und Vergleiche zwischen Bestell- und Lagermengen der Supply-Chain-Partner zu unterschiedlichen Zeitpunkten zu ziehen. Überdies soll er die von ihm erwirtschafteten Kosten des Einzelhändlers sowie die daraus resultierenden Gesamtkosten dem Auswertungsbildschirm entnehmen und für spätere Vergleichszwecke notieren.

Im Zuge dieser fortschreitenden Exploration der Lernumgebung sollte es dem Spieler gelingen, eventuell auftretende Unklarheiten sowie Irritationen zu beseitigen und durch die aktive Auseinandersetzung mit dem Phänomen „Bullwhip Effect“ Wissen über dessen Ursachen und Funktionsweisen zu erlangen und in eine erweiterte Erkenntnis umzuwandeln.173

172 Von Periode $i = 1 - 6$ schwankt die Nachfrage zwischen 4 und 6 Einheiten, für $i = 7 - 12$ sowie $i = 19 - 24$ zwischen 10 und 15 Bierfässern und im Zeitraum $i = 13 - 18$ belaufen sich die Bestellungen des Kunden auf 5 – 10 nachgefragte Einheiten.

4.2.4.3 Stufe 3 – Assimilation

Als dritte Stufe im Verlauf eines entdeckenden Lernprozesses gilt die Assimilation der erlangten Erkenntnis in zuvor aktivierte Wissensstrukturen. Grundvoraussetzung dafür ist, dass der Lernende das Problem selbstständig gelöst hat, Lösung sowie Lösungsmethode versteht und beides „sinnvoll“ in das bisherige Wissen integrieren kann.174 Zur Unterstützung dieses Schrittes wird im nächsten Teil der Aufgabenstellung nochmals die Bedeutung mangelnder Informationstransparenz im Zusammenhang mit der Entstehung des „Bullwhip Effects“ hervorgehoben.175 Wählt der Spieler „Simulation 2“ sowie zum Zwecke der Vergleichbarkeit der Ergebnisse am Auswahlbildschirm in Abbildung 12 „lineare Nachfrage“, dann verhält sich die vom Computer simulierte Supply-Chain \emph{beim richtigen Lösung}176 so, wie dies unter völliger Informationstransparenz der Fall wäre.

\begin{center}
\textbf{Simulation bei Informationstransparenz (kein "bullwhip effect")}
\end{center}

Geben Sie bitte einen Namen ein, unter dem Sie als Einzelhändler auftreten möchten (max. 20 Zeichen):

\begin{center}
\begin{tabular}{c}
\hspace{2cm}
\end{tabular}
\end{center}

Wählen Sie aus folgender Einstellungsmöglichkeit die gewünschte Option aus:

- lineare Nachfrage
- variable Nachfrage

(c) edUBITE

\textit{Abbildung 12: „Beer Distribution Game“ – Simulation 2 – Auswahlbildschirm}

\begin{flushleft}
175 Vgl. Duijts (2001), S. 9f.
\end{flushleft}
Das bedeutet eine ausschließliche Orientierung des Bestellverhaltens aller Teilnehmer an der Endkundennachfrage und nicht wie bei „Simulation 1“ an den meist ungenauen Nachfrageprognosen für den jeweils unmittelbar vorgelagerten Abnehmer. Ist es dem Spieler gelungen, im vorhergehenden Teil der Aufgabenstellung die Zusammenhänge dieses wirtschaftlichen Phänomens für sich selbst zu entdecken, so sollte es nicht schwer fallen, die optimale Bestellstrategie herauszufinden, welche zu minimalen Kosten von € 210,- für den Einzelhändler bezugsweise € 970,- für die gesamte Wertschöpfungskette führt. Die richtige Lösung dieser Spielanregung dient demnach nicht nur zur Konsolidierung der neu erworbenen Einsichten, sondern kann gleichzeitig auch zur Selbkontrolle des Lernerfolges herangezogen werden.

4.2.4.4 Stufe 4 – Generalisierung und Transfer

Die Anwendung des Gelernten auf verwandte Problemstellungen beziehungsweise im Hinblick auf neue Inhalte wird als „Transfer“ bezeichnet.181 Zwar ist es bisher aufgrund des komplexen Forschungsgebietes häufig nicht gelungen, einen erfolgreichen „Lern-“ oder „Wissenstransfer“ empirisch nachzuweisen,182 dennoch stellt die Nutzung erworbenen Wissens für spätere Lernvorgänge ein wichtiges Ziel entdeckenden Lernens dar.183 Unter diesem Gesichtspunkt kann das „Beer Distribution Game“ als Einführung in das Systemdenken betrachtet werden, welches zukünftigen Managern die Bedeutung des Informationsaustausches innerhalb einer Supply-Chain sowie die Konsequenzen ihrer Entscheidungen erfahrbar macht.184 Die entdeckten Zusammenhänge und davon abgeleitete, selbst entwickelte Theorien sollen vom Lernenden schließlich als aktivierbares Vorwissen beziehungsweise in Form von Problemlösestrategien abrufbar sein und zur Bewältigung ähnlicher, in der Praxis auftretender Phänomene herangezogen werden.185 Selbst wenn sich persönliche Erkenntnisse aufgrund der Einschränkungen des Modells nur bedingt als unternehmerisches Entscheidungsverhalten umsetzen lassen, können die gemachten Erfahrungen das Verhalten eines Individuums in kontextuell verwandten Situationen positiv beeinflussen und somit zu einem erfolgreichen „Transfer“ beitragen.186

4.2.4.5 Anmerkungen zum Lernverlauf

Wie bereits eingangs des Kapitels 4.2.4 erwähnt wurde, steht die Förderung entdeckender Lernschritte im Mittelpunkt der Aufgaben zum „Beer Distribution Game“, was allerdings nicht bedeutet, dass erfolgreiches entdeckendes Lernen die vorgeschlagene sequentielle Abarbeitung erfordert. Dem Lernenden steht es offen, die angebotenen Simulationsvarianten beliebig oft beziehungsweise auch in unterschiedlicher Reihenfolge durchzuspielen respektive zu wiederholen. Dem individuellen Lernverlauf entsprechend und vom aktivierten Vorwissen abhängig, variiert der persönliche Zeitbedarf für die einzelnen Phasen des entdeckenden Lernprozesses. Es

184 Vgl. Duijts (2001), S. 8; Sterman (1992).

5 E-Learning als Anwendungsfeld für entdeckendes Lernen

Die Integration Neuer Medien als Hilfsmittel für die Gestaltung und Durchführung von Lehr- und Lernprozessen an Hochschulen wurde bereits Mitte der 90er Jahre des vergangenen Jahrtausends gefordert. Im Rahmen dieser Grundfunktion sollten Informations- und Kommunikationstechnologien vor allem zum Zugriff auf Wissensbestände, für die Telekommunikation und zur Entwicklung computerunterstützter Lernumgebungen eingesetzt werden. Als wichtige Zielsetzung in Bezug auf die Mediendidaktik galt damals wie heute eine Verbesserung der Qualität bei gleichzeitiger Steigerung der Effektivität der Lehre.

Selbst wenn manche Prognosen zu optimistisch in Hinblick auf die Geschwindigkeit der technologischen Entwicklung und ihrer Umsetzung im didaktischen Bereich waren, halten multimediale Lehr- und Lernmittel vermehrt Einzug in unterschiedliche Bildungsangebote. Hemmende Faktoren, wie die Beharrlichkeit und teilweise

mangelnde Computer-Kompetenz des lehrenden Personals, eher geringe Umsatzwartungen und die tendenzielle Überschätzung potentiell virtualisierbarer Bereiche haben dazu beigetragen, dass aktuell von einer allgemeinen „Virtualisierung der Lehre“ nicht gesprochen werden kann. Gezielter, didaktisch sorgfältig aufbereiteter Medieneinsatz in und begleitend zur Präsenzlehre kann deren bislang unterschätzten sozialen Stellenwert beispielsweise um interaktive Angebote zum Selbstdstudium bereichern oder in gewissen Disziplinen auch zur Entwicklung gänzlich virtueller Lehrveranstaltungen genutzt werden.\(^{191}\)

Der in diesem Zusammenhang häufig verwendete Terminus „E-Learning“ kann als Oberbegriff für alle Varianten Internet-basierter Lehr- und Lernangebote angesehen werden.\(^{192}\) Dazu zählen neben im Internet bereitgestellten Informationsangeboten beispielsweise auch Übungssoftware zum Selbstdlernen oder das kooperative Lernen in Netzwerken.\(^{193}\) Der letzte, auch unter der Abkürzung CSCL (= *computer-supported cooperative/collaborative learning*) bekannte Forschungsbereich, fokussiert auf den Wissenserwerb von und in Gruppen und wurde erst durch eine verbesserte informations- und kommunikationstechnologische Infrastruktur ermöglicht. Auf deren Basis können Lernprozesse realisiert werden, die eine geografisch verteilte und zeitlich asymmetrische Wissenskommunikation zwischen mehreren Personen ermöglichen. Damit stellt CSCL auch eine wesentliche Grundlage für virtuelles Lernen in einem sozialen Kontext dar.\(^{194}\)

\(^{193}\) Für eine Typologie der Einsatz- und Nutzungsformen „Neuer Medien“ vgl. Schulmeister (2001), S. 44.

Durch den Einsatz hypermedialer Navigations- und Vernetzungsmethoden, einen hohen Interaktionsgrad und die Offenheit des Designs, fördern nach diesen Paradigmen gestaltete Umgebungen einen aktiven, selbstständigen Lernprozess mit genügend Raum für individuelles Entdecken.195

5.1 Entdeckendes Lernen und Hypermedia

5.1.1 Lernweg im Spiralencurriculum

Werden selbstständige Aneignungsprozesse des Wissens genauer analysiert, so lässt sich feststellen, dass gerade bei komplexeren Aufgaben kein linearer Lernverlauf,199

Abbildung 13: Lernweg im Spiralencurriculum

205 In Anlehnung an Kerres (2001), S. 218. Die Spiralform resultiert aus eigentlich unmöglichen Rückwärtsbewegungen auf der Zeitachse (t).
5.1.2 Hypertext als Entwicklungswerkzeug für Lernmedien

Betrachtet man die soeben beschriebenen Charakteristika dieses spiralförmigen Aneignungsprozesses, so wird deutlich, weshalb gerade eine Strukturierung von Lernangeboten mittels Hypertext bzw. „Hypermedia“206 naheliegend erscheint, um diesen möglichst effektiv zu unterstützen.207 Es wird in Hypertext-Anwendungen kein linearer Lernpfad vorgegeben, sondern der Nutzer kann frei navigieren und selbst entscheiden, ob und zu welchem Zeitpunkt er den angebotenen Verzweigungen folgen möchte.208 In Bezug auf den Aufbau handelt es sich bei Hypertext grundsätzlich um gut organisierte Datenbanken mit so genannten „Knoten“ als Informationseinheiten sowie „Links“, die als Verbindungen zwischen diesen Knoten dienen.209 Durch die Implikationen dieser Struktur im Hinblick auf freies Explorieren, findet das Prinzip von Hypertext vermehrt Anwendung bei der Entwicklung von Bildungsmedien.210

hohen Grad an Selbstkontrolle durch den Lernenden, birgt ohne die Implementierung
von Navigationshilfen allerdings auch die Gefahr der Orientierungslosigkeit
(Stichwort: „lost-in-hyperspace“). Inwiefern ein gewisses „Sich-Verlieren“ einen
wichtigen Bestandteil entdeckenden Lernens ausmacht und in welchem Umfang
Strukturierungshilfen angeboten werden, wird durch die pädagogische Grundhaltung
bestimmt. Prinzipiell sollten sich eher flach gegliederte Lerninhalte, die im Rahmen
einer informellen Lernsituation vermittelt werden, für eine Umsetzung mittels
logischer, netzwerkartiger Struktur eignen. Das Zielpublikum von Hypertext-Systemen
ist typischerweise inhomogen, intrinsisch motiviert und lernt bei einem hohen Grad
an Vorwissen vorzugsweise selbstständig.

5.2 Determinanten einer entdeckenden Lernumgebung

Folgt man den Prinzipien entdeckenden Lernens, so lässt sich im Vorhinein nicht
festlegen, welche kognitiven Prozesse zur Aneignung bestimmter Lerninhalte
notwendig sind. Unter Einbeziehung geeigneter didaktischer Mittel können Unterricht
beziehungsweise „Bildungsmittel“ bestenfalls ein möglichst adäquates Angebot
bereitstellen, um den aktiven Aneignungsprozess der Lernenden zu unterstützen.
Dennoch ist es kein Widerspruch, planmäßig gestaltete Lernarrangements als wesentlichen
Bestandteil von Bildungskonzepten anzusehen, die sich am entdeckenden
Lernen orientieren, sofern der konkrete Denk- und Lernweg nicht vorweg genommen
wird.

Generelle Zielsetzung medialer Lernumgebungen ist die Schaffung möglichst lern-
förderlicher Bedingungen auf Grundlage technischer Medien. Bereits der Begriff
„Lernumgebung“ bringt zum Ausdruck, dass es dabei unterschiedliche Kontext-

didaktischen Kontexten subsumiert werden, „die für Prüfungen, zur Veranschaulichung oder zu
Übungszwecken Lehrenden und Lernenden zur Verfügung stehen“.

\section*{5.2.1 Situiertheit/Authentizität}

5.2.2 Interaktivität

228 Vgl. Seel (2003), S. 346f.

5.2.3 Multimodalität

Zu diesem Zweck bedienen sich Medien eines bestimmten Symbolsystems, in welchem die übermittelte Botschaft kodiert wird. Will man den Medieneinsatz optimieren, so gilt es die wesentlichen Merkmale kognitiver Lernprozesse zu eruieren und auf Basis eines geeigneten Mediums den Lerninhalt in ein Symbolsystem zu übertragen, das den Fähigkeiten des Lerners entspricht und die Wissensaneignung fördert.239

Um diesen Anforderungen gerecht zu werden, sollte das Multimedium zu bestimmten Lernaktivitäten motivieren. Da die psychologische Einstellung des Lernenden zum Medium Einfluss auf die investierten Anstrengungen bei der Informationsverarbeitung hat, ist es ratsam, diesen Faktor bei der Gestaltung des Lernarrangements zu berücksichtigen und Anreize zu einer Auseinandersetzung zu schaffen.240 Ein attraktives Design, das von der Multikodierung des Computers Gebrauch macht, kann zusammen mit einer klaren Aufgabenorientierung in authentischen, problemorientierten Umgebungen die Verarbeitungstiefe durch den Lernenden positiv beeinflussen.241 Da die Intensität der Verarbeitung für Unterschiede in der Behaltensleistung verantwortlich gemacht wird, sollte das Multimedium dem Interessierten eine Auswahl an verschiedenen Darstellungen sowie Aufgaben anbieten und zu einer weiterführenden Auseinandersetzung mit der Materie animieren.242

Zwar soll das Lernangebot medial möglichst reichhaltig gestaltet werden, allerdings ist auf eine sachlogische Strukturierung zu achten, weil ein rascher Wechsel von multikodalen und multimodalen Reizen die Gefahr birgt, den Lernenden mental zu überfordern und abzulenken.243 Da explorative Umgebungen typischerweise viel Freiraum im Hinblick auf den Abruf von Informationen bieten, darf auch auf die Einbindung von Orientierungs- und Navigationshilfen für den Benutzer nicht vergessen werden. Werden Lernangebote solcherart unter Beachtung der didaktischen Zielsetzung strukturiert, fördert man die kognitive Aktivität beim Lernenden und den individuellen Weg zur Erkenntnis von Zusammenhängen.244

239 Vgl. Weidenmann (2001), S. 421-423.
241 Vgl. Weidenmann (2001), S. 427-430.
243 Vgl. Weidenmann (2001), S. 431.
244 Vgl. Kerres (2001), S. 224f; Weidenmann (2001), S. 431f; Brunner, Zeltner (1980), S. 57.
5.2.4 Lernerzentriertheit

249 Vgl. ebd. S. 452ff.
erreichter Lernhilfen, wirken sich förderlich auf die Lernanstrengungen aus. Außerdem sollte der Fokus weg von der Ergebnisorientierung in Richtung Prozessorientierung des Lernens gelenkt werden, bei der auch die aus Irrwegen gewonnenen Rückschlüsse und Erfahrungen wertvoll sind. Faktoren, die sich negativ auf ein freies Explorieren auswirken können, wie Stress oder Angst vor Überforderung, gilt es zu vermeiden bzw. abzubauen. Dagegen wirkt sich der Einbau von Diskussionsforen und Kooperationsplattformen positiv auf den individuellen Lernfortschritt und die Erweiterung der kognitiven Konzepte durch den zwischenmenschlichen Austausch und Vergleich aus.

Die Fähigkeit zur Selbstkontrolle und zu einem aktiven, selbstgesteuerten Lernen ist durch die bisher im Schulwesen angewandten Konzepte der Wissensvermittlung und die gängige Prüfungspraxis eher gering verbreitet. Zielsetzung entdeckenden Lernens ist es jedoch auch, durch die vermehrte Exploration gleichzeitig die dazu nötigen Kompetenzen und metakognitiven Fertigkeiten zu erwerben und in künftigen Anwendungssituationen einsetzen zu können.

5.3 Lernobjektentwicklung im Rahmen von eduBITE

Im Rahmen einer Initiative zum Einsatz Neuer Medien in der Lehre war es Zielsetzung des Projekts „eduBITE“ (= Educating Business and Information Technologies) Hochschullehrern aus dem Fachbereich Wirtschaftsinformatik multimediales Lehr- und Lernmaterial zum Design ihrer Kurse zur Verfügung stellen. Lerninhalte, die im Zuge dieser E-Learning-Initiative erstellt wurden, sind durch modularen Aufbau und den Anspruch, über einen hohen Grad an Wiederverwendbarkeit zu verfügen, gekennzeichnet. Dadurch wollte man eine individuelle, auf die jeweiligen didakti-

Abbildung 14: Architektur der eduBITE E-Learning-Umgebung260

258 Nähere Informationen zum Tool „eduWeaver“ bietet die Webseite http://www.eduweaver.net/.

259 Sofern keine anderen Quellenangaben gemacht wurden, beziehen sich die Aussagen dieses Absatzes auf Bajnai, Steinberger (2003), S. 659ff; Universität Wien (2008), S. 13ff.

260 Steinberger, Bajnai, Ortner (2005), S. 1066.
Die Entwicklung der Lehr-Lerninhalte erfolgte in der Regel nicht mit Hilfe des Web-Dienstes „eduWeaver“, sondern lokal an den Rechnern der jeweiligen eduBITE-Inhaltsentwickler unter Verwendung von Autorensoftware wie z.B. Dreamweaver, Flash, Hot Potatoes etc.\(^{261}\) Zwar bietet auch eduWeaver im Rahmen seines Funktionsumfanges Editoren mit gewissen Grundfunktionen diesbezüglich, „die Rolle eines Mittlers zwischen Inhalt (HTML, PDF, Powerpoint, Audio- oder Video-Dateien) und Learning Management Systemen (LMS)“\(^{262}\) steht aber klar im Vordergrund. Vorgegebene HTML-Templates und im Rahmen des Autorenleitfadens definierte Anweisungen und Standards für die Lernobjektentwicklung sollen schließlich die Wiederverwendbarkeit und Austauschbarkeit von Lernobjekten als zentrale Zielsetzungen des eduBITE-Projekts sicherstellen.\(^{263}\)

5.3.1 Konzeption der Übung „Bullwhip Effect und Beer Distribution Game“

\(^{261}\) Vgl. Bajnai, Steinberger (2003), S. 661f.

\(^{262}\) Universität Wien (2008), S. 16.

- **Plattform- und Serverunabhängigkeit**
 Die zu entwickelnde Simulation ist Bestandteil eines eduBITE-Lernobjekts, das nach Fertigstellung metaindexiert und in den Lernobjektpool von eduWeaver hochgeladen wird. Über diesen Pool verfügbar, sollen eduBITE-Materialien von Dozenten im Rahmen unterschiedlicher Lernszenarien und auf verschiedenen Informationssystemen eingesetzt werden. Daraus ergibt sich in Bezug auf die technische Realisierung der „Beer Game“-Simulation die Anforderung nach Plattform- und Serverunabhängigkeit.

- **Single-Player-Variante des „Beer Games“**
 Kommunikationskanäle oder Werkzeuge zur digitalen Kooperation der Schulungsteilnehmer wurden im Rahmen der eduBITE-Lernumgebung nicht realisiert. Daher folgt die Ausrichtung auf das Selbststudium vor einem Rechner in Form einer Single-Player-Variante.

- **Ansprechende Benutzeroberfläche**
 Da entdeckende Lernprozesse auf intrinsischer Motivation beruhen, müssen Medien Anreize enthalten, um erstere zu initiieren und zu unterstützen. Eine ansprechende grafische Benutzeroberfläche, die auf interaktivem, spielerischem

264 Zielsetzung des didaktischen Designs der „Beer Game“-Simulation, welches in Kapitel 4.2 beschrieben wird, war es, unter besonderer Beachtung der in den vorangegangenen Punkten 5.1 und 5.2 erläuterten Charakteristika hypermedialer, entdeckender E-Learning-Umgebungen, alle vier Stufen eines entdeckenden Lernprozesses möglichst gut zu unterstützen.

265 Die Aussagen dieses Absatzes stützen sich auf Steinberger, Ortner (2003), S. 4f.

Wege zur Auseinandersetzung mit der Aufgabenstellung anisiert, sollte dazu geeignet sein.

- **Nachvollziehbare Bestellstrategie des Computers**

  ```java
  temp = (demandWholesaler[round+1] - averageDemand)
  orderWholesaler[round+1] = (demandWholesaler[round+1] + Math.round();temp / 2)
  // Bestellung = Nf + ((Nf - ∅ Nf) / 2)
  ```

 Diese Ausschnitte des Quellcodes der „Beer Game“-Simulation zur Bestellmengenberechnung des Großhändlers illustrieren die überhöhte Bestellung, im Fall einer positiven Nachfrageentwicklung. Bei einem Nachfragerückgang wird der Sicherheitsbestand mit halb so großer Rate reduziert ((Nf - ∅ Nf) / 4), um dem Sicherheitsgedanken Rechnung zu tragen, der aus den doppelt so hohen Kosten für negative Lagerbestände resultiert.

 Die alternative Variante („Simulation 2“) gibt die Bestellmengen des menschlichen Spielers unverändert entlang der Supply-Chain weiter, sodass ein Systemverhalten wie unter Informationstransparenz erreichbar ist.

- **Grafische Auswertung der Ergebnisse**
 Eine grafische Auswertung des Spielgeschehens nach Abschluss der letzten Runde dient als wichtige Analysekomponente. Die eigene Bestellstrategie sowie illustrierte Reaktionen des computersimulierten Produktions- und Distributionssystems geben Rückschlüsse auf das Systemverhalten und sollen dadurch die Entdeckung der subjektiv neuen Erkenntnis fördern.

• **Leichte Zugänglichkeit**

• **Entwicklungsumgebung**

5.3.2 Integration im Lernobjekt „Kommunikation innerhalb der Supply Chain“

Durch die Aneinanderreihung mehrerer frei kombinierbarer Lernobjekte in Form einer didaktisch strukturierten Lektion, werden Lernprozesse einer Unterrichtseinheit modelliert. Im Rahmen der nächsthöheren modularen Ebene lassen sich Lektionen, mit ihrer jeweiligen Unterrichtszeit von ca. 45 – 90 Minuten, zu thematisch zusammenhängenden, chronologisch ablaufenden Modulen bündeln. Auf der höchsten Abstraktionsstufe, sofern man eine mögliche übergeordnete Kurslandkarte ausklammert, werden inhaltlich passende Module zu einem Kurs kombiniert. Diese Ebenen zur Gliederung der Lerninhalte von eduBITE-Materialien sind anhand von Abbildung 15 ersichtlich.\(^{274}\)

\(^{274}\) Soweit keine anderen Quellenangaben gemacht wurden, beziehen sich die Aussagen dieses Absatzes auf Weber (2004), S. 1ff; Bajnai, Steinberger (2003), S. 662f; Universität Wien (2008), S. 7ff.
Bezieht man diese Struktur auf das Lernobjekt „Kommunikation innerhalb der Supply Chain“, so ist dieses, basierend auf entsprechenden Vorlagen, in Form eines HTML-Dokuments mit verschiedenen, teils interaktiven Elementen realisiert worden. Jene „Information Objects“, wie die entwickelte „Beer Game“-Simulation, Animationen, Bilder und Texte, wurden in die Webseite integriert und mittels Hyperlinks vernetzt. Diese Strukturierung von Lernangeboten mittels Hypertext bzw. Hypermedia soll einen spiralförmigen, an der Heuristik menschlichen Denkens orientierten Erkenntnisprozess fördern.\(^{276}\)

\(^{275}\) Weber (2004), S. 1.

„Bullwhip Effect und Beer Distribution Game“. So genannte „Assessment Items“ enthalten multimediale Elemente zur Selbstkontrolle (wie z.B. Kreuzworträtsel, Multiple Choice Quiz, Zuordnungsübungen etc.) sowie umfangreichere Aufgabenstellungen, die es dem Lernenden ermöglichen sollen, die Lernfortschritte eigenständig zu überprüfen. Abbildung 16 stellt die Übersichtsseite zum Lernobjekt „Kommunikation innerhalb der Supply Chain“ aus Illustrationszwecken dar.

6 Medienwahl und Lernerfolg

6.1 Medieneinsatz im Rahmen von eduBITE

279 Für eine kurze Definition zu „Web 2.0“ siehe Kap. 6.2.
280 Vgl. dazu die Ausführungen in Kapitel 5.3 und Steinberger, Bajnai, Ortner (2005), S. 1066f.

6.1.1 Reichhaltige Medien

284 Zu den Determinanten entdeckender Lernumgebungen siehe Kap. 5.2.
Fokus) wurden unternehmensweit gängige Kommunikationskanäle in ein hierarchisches Kontinuum eingeordnet. Als reichhaltigstes Medium wird die Kommunikation von Angesicht zu Angesicht angeführt, am anderen Ende der Skala rangieren nicht adressierte Standarddokumente.289 Das präsentierte Informationsverarbeitungsmodell (siehe Abbildung 17) stellt einen direkten Zusammenhang zwischen der Komplexität sowie Mehrdeutigkeit einer Kommunikationsaufgabe einerseits und der erforderlichen Reichhaltigkeit des Mediums andererseits her. Zur Lösung unklarer Problemstellungen, die mehrere Deutungsmöglichkeiten zulassen, empfiehlt sich demnach der Einsatz eines reichhaltigen Kommunikationsmediums. Einfache bzw. klar verständliche Aufgaben oder Routineangelegenheiten legen die Wahl von Medien mit geringer Reichhaltigkeit nahe, da ansonsten die Gefahr einer unnötigen Verkomplizierung besteht.290

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{diagram.png}
\caption{Effektive Informationsverarbeitung291}
\end{figure}

289 Vgl. Daft, Lengl, Trevino (1987), S. 358f.

291 In Anlehnung an Daft, Lengl (1984), S. 14.
In nachfolgenden Arbeiten wurden sowohl Organisationsstrukturen als auch Neue Medien in Bezug auf deren Unterstützung einer reichhaltigen Kommunikation untersucht und dementsprechend hierarchisch klassifiziert.292 Newberry (2001, S. 4) bewertete anhand oben genannter Kriterien von Daft und Lengl beispielsweise auch Videokonferenzen, E-Mail, textbasierten Chat sowie Threaddiskussionen und ordnete insgesamt sieben Medien in einer Matrix zum Vergleich nach deren Reichhaltigkeit ein.293 Wenig überraschend steht auch hier die Kommunikation von Angesicht zu Angesicht an der Spitze einer Rangreihe zur Medienreichhaltigkeit, gefolgt von Videokonferenzsystemen und synchroner Audiokommunikation, wogegen asynchrone Technologien am unteren Ende der Auflistung zu finden sind.294 Diese Klassifizierungen erfüllen den Zweck, als Entscheidungshilfe bei der Wahl eines geeigneten Mediums in Bezug zur anstehenden Aufgabe zu dienen und infolgedessen eine effektive Informationsverarbeitung sicherzustellen.295 Allerdings gibt es auch Kritik an den präsentierten Medienhierarchien. Insbesondere die ursprünglichen Kriterien für Reichhaltigkeit erscheinen nach Ansicht mancher Autoren nur bedingt zur Anwendung auf Neue Medien geeignet und ergänzende Kriterien wurden vorgeschlagen.296

6.1.2 Medienreichhaltigkeit beim Design von E-Learning-Angeboten

Beschränkte man sich zunächst auf das Anwendungsgebiet der unternehmensinternen Kommunikation und der daraus abgeleiteten Organisationsgestaltung, so wurde die Medienreichhaltigkeitstheorie später auch auf das didaktische Design und insbesondere auf den Bereich E-Learning übertragen.297 Dieser Transfer erscheint naheliegend, da nach der kognitivistischen Auffassung ein Lernvorgang häufig als Informationsverarbeitungsprozess unter Heranziehung des „Sender-Empfänger-

293 Vgl. dazu die Matrix „Table 1: Relative richness of different media types according to four criteria“ bei Newberry (2001, S. 4).

294 Vgl. Newberry (2001), S. 4f.

296 Vgl. Yu (1997), Punkt 2.3.2: Insbesondere zur Beurteilung elektronischer Medien sollen die aufgelisteten zusätzlichen Kriterien „multiple addressability“, „externally recordable“, „computer processable memory“ und „concurrency“ beitragen.

297 Vgl. dazu beispielsweise den Artikel von Sun, Cheng (2007).
Modells“ angesehen wird.298 Eine Theorie, welche anhand der Komplexität der zu lösenden Aufgabe den Einsatz zuvor klas- sifizierter, unterschiedlich reichhaltiger Medien nahe legt, um eine effektive Informationsverarbeitung sicherzustellen, sollte nach dem „Primat der Instruktion“ auch den Lernerfolg von Individuen positiv beeinflussen können.299 Dies soll durch eine möglichst hohe Übereinstimmung zwischen den Charakteristika der Lernaufgabe in Bezug auf deren Komplexität sowie Mehrdeutigkeit einerseits und der Selektion oder Erstellung eines entsprechend reichhaltigen Mediums andererseits erreicht werden.300 Als Folge davon wird erwartet, dass sowohl der objektive Lernfortschritt, als auch die subjektive Zufriedenheit mit dem Lernmaterial einen positiven Effekt auf den Lernprozess ausüben. Dieser geschilderte Zusammenhang wird in Abbildung 18 zur Veranschaulichung grafisch dargestellt.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{media.png}
\caption{Abbildung 18: Lerneffizienz nach Media Richness Theory301}
\end{figure}

Die weiter oben hergeleitete Nähe zwischen der kognitivistischen Sichtweise eines Lernvorgangs als Informationsverarbeitungsprozess und der Medienreichhaltigkeitstheorie muss keinen Widerspruch zum entdeckenden Lernen darstellen, sofern man keine Handlungsanweisung zur Erstellung einer gegenstandszen- trierten Lernumgebung daraus ableitet.302 Stattdessen betonen auch Sun und Cheng (2007, S. 665)

\begin{thebibliography}{9}
\bibitem{301} Sun, Cheng (2007), S. 666.
\end{thebibliography}

die Rolle des individuellen Verstandes in Bezug auf Erfassung und Verarbeitung des Lernmaterials und unterstreichen damit die aktive Position des Lernenden. Die Form, in der jenes repräsentiert wird, hat allerdings Einfluss auf den Verlauf des Lernprozesses und damit auch auf den Lernerfolg.303 Die Reichhaltigkeit eines Mediums in Relation zur Aufgabenstellung sollte infolgedessen beim Design von E-Learning-Angeboten ebenso einfließen, wie andere didaktische Überlegungen, welche zusammen eine entdeckende Lernumgebung determinieren.304 Diesen Aspekt gilt es speziell bei der Entwicklung von multimedialen Elementen, welche einen hohen Interaktivitätsgrad aufweisen sollen, zu berücksichtigen. Da mit steigender Interaktivität tendenziell sowohl die Reichhaltigkeit eines Mediums als auch die Eignung für entdeckende Lernvorgänge zunehmen, lässt sich ein bevorzugter Einsatz von im Vergleich oft zeit- und ressourcenintensiv zu realisierenden entdeckenden Lernumgebungen besonders für die Vermittlung von komplexen und mehrdeutigen Lerninhalten rechtfertigen.305

6.1.3 Evaluation von eduBITE

304 Zu den Determinanten einer entdeckenden Lernumgebung vgl. Kapitel 5.2.

305 Diese Schlussfolgerung stützt sich auf Sun, Cheng (2007, S. 665f) und Schulmeister (2002b, S. 194).

6.1.3.1 Lernerfolg durch eduBITE

Zieht man die Ergebnisse der Tests zur Ermittlung des Lernerfolgs heran, so lässt sich feststellen, dass die Studenten aus beiden Hochschulen im Anschluss an die Bearbeitung der Lektionen via E-Learning signifikant besser abschneiden (siehe dazu Abbildung 19).

![Abbildung 19: Lernerfolg durch eduBITE](image)

Ein detaillierter Vergleich des Abschneidens von Wiener vs. Vorarlberger Studenten wird an dieser Stelle nicht angestellt, da dieser aufgrund des unterschiedlichen Stoffumfangs (12 vs. 21 Fragen) nur von geringer Aussagekraft wäre.

6.1.3.2 Beurteilung der eduBITE-Lernobjekte

Neben der Messung des objektiven Lernerfolgs sah das Forschungsdesign auch die Erhebung des subjektiven Eindrucks aller eduBITE-Schulungsteilnehmer mittels Fragebogen zu den Lernobjekten vor. Nach dem Bearbeiten eines Lernobjekts wurden die Teilnehmer aufgefordert, Fragen zu 13 unterschiedlichen Kategorien (wie Eindruck, Inhalt, Umfang, Interaktivität, Lerneffekt etc.) zu beantworten, indem sie

Diese auf einer Fünfer-Skala bewerteten. In Bezug auf die Beurteilung des Gesamteindrucks vergaben fast 2/3 der Befragten (n=308) die Schulnoten „Sehr gut“ (24,7%) bzw. „Gut“ (38,6%). Ebenso positive Ergebnisse lieferte das Feedback zur Frage nach der Erreichung der Lernziele (30,4% beurteilten diese als sehr gut und 36,2% als gut). Es kann also in Summe von einer hohen Zufriedenheit mit dem gebotenen Lernmaterial ausgegangen werden, welche auch für die Messung der Lerneffizienz im Sinne der Medienreichhaltigkeitstheorie von Interesse ist.308

6.1.3.3 Detailanalyse einzelner Lernobjektbeurteilungen

Abbildung 20: Beurteilung der Interaktivität309

309 Dieses Diagramm basiert auf Thiel, Mayer (2004), S. 21 und stellt hohe Einschätzungen zum Interaktivitätsgrad (1 + 2) den niedrigen (4 + 5) gegenüber.

Dieses realisierte „Information Object“ ermöglicht durch seine interaktive Gestaltung unmittelbares Feedback auf die Eingaben des Benutzers und das Medium ist demzufolge als reichhaltiger zu bewerten, als die Elemente der Lernobjekte 19, 20 und 21, wo ausschließlich verlinkter Hypertext, Bilder und eine Mindmap, als alternative Navigationshilfe, zum Einsatz kommen. Die in Relation geringere Zufriedenheit mit dem Lerneffekt der interaktiven Lernobjekte könnte also auch eine Folge der Verkomplizierung eines leicht verständlichen und klaren Sachverhalts durch die Integration von unnötig reichhaltigen Medieninhalten sein. Um dies zu verifizieren, wären allerdings weitere Untersuchungen der vermittelten Lektionen im Hinblick auf deren Komplexitätsgrad bzw. Mehrdeutigkeit erforderlich. Mit hoher Wahrscheinlichkeit haben der bedeutend größere Lernumfang, der als unübersichtlich empfundene Aufbau und eine nicht deutlich genug ausgefallene Formulierung der Lernziele zur schlechteren subjektiven Beurteilung des Lerneffekts beigetragen.

312 Fachhochschule Vorarlberg: EduBITE: IBIS.
315 Yu (1997) kritisiert unter anderem die mangelnde Operationalisierbarkeit des Aufgabenkriteriums „Mehrdeutigkeit“.
316 Die Vergleichbarkeit von Lernobjekten wird auch dadurch erschwert, dass unterschiedliche Autoren für deren Entwicklung verantwortlich waren.
6.2 E-Learning in Zeiten des Web 2.0

6.2.1 Selbstgesteuertes vs. kooperatives E-Learning

Betrachtet man die am Markt verfügbaren Werkzeuge zur elektronischen Unterstützung des Lehr-Lernprozesses, so lässt sich nach Hsieh und Cho (2011, S. 2025) die Mehrzahl davon einer der beiden Kategorien „self-paced“ (SP) oder „instructor-student interactive“ (ISI) zuordnen.

Unter *SP-Tools* werden dabei auf einem Computer lokal oder online via Internet ablaufende Lernprogramme verstanden, welche zu einem didaktisch aufbereiteten Themenbereich alle relevanten Informationsmaterialien und auch Mechanismen zur Selbstevaluation bereitstellen. Unabhängig von einem bestimmten Ort und zumeist nur an einen PC mit Internet-Zugang oder CD/DVD-Laufwerk gebunden, können Studenten in ihrem eigenen Tempo lernen und daneben den Lernfortschritt selbst

318 Zur Definition von „Mobile Learning“ siehe Kap. 6.2.2.

6.2.1.1 Vergleichsstudie zur Effektivität von E-Learning-Tools

Wie erwartet konnten sich die kooperativen Werkzeuge in fast allen Bereichen durchsetzen, nur in Bezug auf die Informationsqualität sind diese nicht besser zu bewerten, als Instrumente zum selbstgesteuerten Lernen.326

6.2.1.2 Implikationen für kooperatives entdeckendes Lernen

Es muss betont werden, dass im Sinne der gestaltungsorientierten Mediendidaktik die Adressierung eines Bildungsanliegens im Vordergrund steht. Demzufolge steht für die Gestaltung eines Lernangebots ein Fundus an verschiedenen lerntheoretischen Paradigmen zur Verfügung, die, den jeweiligen Anforderungen entsprechend, beim didaktischen Design berücksichtigt werden können. Dabei ist zu beachten, dass die Wahl eines lerntheoretischen Modells auch Implikationen beispielsweise in Bezug auf adäquate Lehr-Lernmethoden oder realisierbare Interaktionsformen nach sich zieht.327

Die Umsetzung des solcher Hand festgelegten didaktischen Konzepts in Form einer dementsprechend medial gestalteten Lernumgebung zur Erreichung des Bildungszieles ist in erster Linie für die Effektivität eines E-Learning-Angebots verantwortlich zu machen.328

Nichtsdestotrotz liefert die Vergleichsstudie von Hsieh und Cho (2011, S. 2025-2038) wichtige Hinweise zu Vorzügen und möglichen Einschränkungen bestimmter E-Learning-Werkzeuge in Bezug auf deren Einsatz im Rahmen eines didaktischen Konzepts. So lässt sich eine entdeckende Lernumgebung sowohl in Form eines selbstgesteuerten Lernarrangements als auch mit Hilfe von Instrumenten zum kooperativen bzw. kollaborativen Lernen umsetzen, sofern die entsprechenden Determinanten im

\begin{table}[htbp]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
Informationsqualität & Nutzwert & Lerneffekt & Zufriedenheit \\
\hline
SP/ISI & ISI & ISI & ISI \\
\hline
\end{tabular}
\caption{Tabelle 4: Toolvergleich – SP vs. ISI325}
\end{table}

325 In dieser Tabelle werden die Ergebnisse des Toolvergleichs zwischen SP („self-paced“) und ISI („instructor-student interactive“) von Hsieh, Cho (2011, S. 2033) dargestellt.

327 Vgl. Schulmeister (2001), S. 194.

328 Die Aussagen dieses Absatzes stützen sich, sofern keine anderen Quellenangaben gemacht wurden, auf Kerres (2001), S. 54.
Zuge des didaktischen Designs Berücksichtigung finden. ISI-Tools bieten den Lernenden jedoch zusätzlich Möglichkeiten, um durch hohe Interaktivität innerhalb von Lerngruppen sowie mit Dozenten den Lernweg zu individualisieren, personalisiertes Feedback zu liefern und außerdem mittels reichhaltiger Medien mehr Hinweisreize zu übertragen, was sich insgesamt positiv auf den aktiven Erkenntnisprozess auswirken sollte. Überträgt man ferner Hameyers „Formenkreis“ entdeckenden Lernens vom Präsenzunterricht auf E-Learning-Angebote, so bietet sich besonders die Reflexionsphase an, um die in Lernplattformen integrierten Instrumente zur Förderung der Assimilation des Herausgefundenen in das persönliche Wissensnetz zu nutzen. Ein entdeckender Lernprozess wird idealerweise von fix eingeplanten Terminen zur kognitiven Auseinandersetzung mit dem Entdeckungsvorgang begleitet, dies gilt insbesondere, wenn der „tätige Sinn für das Selbersuchen“ noch nicht so ausgeprägt ist. In sogenannten metainteraktiven Phasen können Kommunikationsmedian, wie Chat, Blogs, Foren etc.) zum Diskurs oder zur Selbstreflexion über Lernwege, Fortschritte und Probleme eingesetzt werden, mittels Evaluations- und Bewertungshilfen lässt sich die Lernaktivität im Kurs ermitteln sowie reflektieren und schließlich bieten sich Wikis, Glossare oder Datenbanken an, um die erfassten Entdeckungsmethoden, -ziele und Deutungsregeln interaktiv festzuhalten.

6.2.2 Mobile Learning mittels RSS

Mit zunehmender Verbreitung der Mobiltechnologie in unserem Alltag hat deren Einfluss inzwischen auch die Lerngewohnheiten der Menschen erreicht. Angelehnt an die Herleitung des Begriffs „E-Learning“, hat sich die Bezeichnung „Mobile Learning“ oder kurz „M-Learning“ eingebürgert, um je nach Auffassung eher die technologische Seite, also den Einsatz mobiler elektronischer Endgeräte (wie Tablet, PDA, Smartphone etc.) zum Zugriff auf Lernmaterial oder das Mobilitätsverständnis in Bezug auf dynamisch

329 Zu den Determinanten entdeckender Lernumgebungen vgl. Kapitel 5.2.
wechselnde Lernkontexte darunter zu subsumieren.335 Letztere Sichtweise betont demnach das geänderte Verhalten von Lernenden, welches mit der örtlichen und zeitlichen Flexibilität, verbesserten Kommunikations- und Kooperationsmöglichkeiten und neuen Lernszenarien, ermöglicht durch portable, drahtlos vernetzte Mobilgeräte, einhergeht.336 Wie diesen Ausführungen zu entnehmen ist, hat sich eine einheitliche und eindeutige Definition von „M-Learning“ bislang nicht etabliert, an dieser Stelle soll jedoch auf folgende Begriffsbestimmung verwiesen werden:

„Mobile learning meint Lernen mit mobiler Computer- und Telekommunikationstechnologie, sofern dabei Lehr-Lern-Szenarien zum Einsatz kommen, die speziell auf mobile Endgeräte angepasst sind.“337

<table>
<thead>
<tr>
<th>MRT criterion</th>
<th>Research variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feedback</td>
<td>⇒ Content timeliness</td>
</tr>
<tr>
<td>Multiple cues</td>
<td>⇒ Content richness</td>
</tr>
<tr>
<td>Language variety</td>
<td>⇒ Content accuracy</td>
</tr>
<tr>
<td>Personal focus</td>
<td>⇒ Content adaptability</td>
</tr>
</tbody>
</table>

\textit{Tabelle 5: Herleitung der Untersuchungsvariablen zur Medienreichhaltigkeit}339

335 Vgl. Frohberg (2008), S. 3ff.
336 Vgl. Frohberg (2008), S. 5ff; Lan, Sie (2010), S. 723.
337 Bartelsen (2011), S. 4.
338 Die Aussagen dieses Absatzes beziehen sich auf Lan, Sie (2010), S. 723-726.
339 Diese Tabelle basiert auf den Ausführungen von Lan, Sie (2010, S. 725f).
Dementsprechend misst die Variable „Content timeliness“, ob die Nachrichten-
zustellung zeitsensibel ist, „Content richness“ nimmt Bezug auf die inkludierten
Medientypen, „Content accuracy“ bezieht sich auf inhaltliche Richtig- bzw. Verständ-
nlichkeit und „Content adaptability“ bezeichnet schließlich die Möglichkeiten zur
Anpassung im Hinblick auf unterschiedliche Darstellungsformate.340

Im Zuge der Hypothesenerstellung mutmaßten Lan und Sie (2010, S. 726), dass RSS
in jeder der vier Kategorien den Informationskanälen SMS und E-Mail überlegen sein
würde. Im Ergebnis traf dies auf die beiden zuletzt angeführten Variablen von Tabelle
6 zu, in welcher das jeweils erstgereihte Medium pro Faktor dargestellt ist.

<table>
<thead>
<tr>
<th>Content timeliness</th>
<th>Content richness</th>
<th>Content accuracy</th>
<th>Content adaptability</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMS</td>
<td>E-Mail</td>
<td>RSS</td>
<td>RSS</td>
</tr>
</tbody>
</table>

\textit{Tabelle 6: Medienvergleich – SMS vs. E-Mail vs. RSS}341

Auf die Kumulierung der einzelnen Werte pro Medium über alle Kriterien hinweg, um
den insgesamt reichhaltigsten Transferkanal zu ermitteln und wie üblich eine
Rangreihung zu erstellen, haben die Autoren verzichtet. Stattdessen bieten sie
Empfehlungen für mögliche Einsatzszenarien von SMS, E-Mail und RSS, nach deren
abgeleiteter optimaler Eignung für den Bereich „M-Learning“.

Es lässt sich aus den veröffentlichten Ergebnissen schlussfolgern, dass der Einsatz von
RSS in mobilen Lernumgebungen dann besonders erfolgversprechend ist, wenn der
mediale Inhalt auf verschiedenen mobilen Endgeräten dargestellt und
dementsprechend angepasst werden soll. Die Reichhaltigkeit lässt sich insbesondere
durch die Inkludierung verschiedener Medientypen (z.B. Text, Bild, Animation, Audio
etc.) gezielt steuern. Ein installierter RSS-Reader ermöglicht den synchronen und
automatischen Empfang von abonnierten RSS-Feeds, sobald Dozenten neues
Lernmaterial bereitstellen und bietet zusätzliche Funktionen zur Filterung und

340 Vgl. Lan, Sie (2010), S. 726.

341 In dieser Tabelle werden die Ergebnisse des Medienvergleichs zwischen SMS, E-Mail und RSS von
Lan und Sie (2010, S. 728) dargestellt.
Organisation von Inhalten. *SMS* hat seine Stärken, wenn zeitsensitive Mitteilungen den Empfänger rasch erreichen sollen, um beispielsweise an bestimmte Fristen oder Termine zu erinnern. Dagegen finden *E-Mails* sinnvollerweise dann Anwendung, wenn es gilt, große Datenmengen mit reichhaltigen medialen Inhalten, wie beispielsweise komplette Skripten, zu übertragen.\(^{342}\)

Abschließend soll noch erwähnt werden, dass sowohl die Charakteristika der Lernumgebung, insbesondere das oftmals implizite lerntheoretische Paradigma, als auch die pädagogische Grundhaltung der Dozenten Einfluss auf das didaktische Design, die gebotenen Interaktionsmöglichkeiten sowie die mediale Ausgestaltung und damit auch auf die Reichhaltigkeit des Lernarrangements nehmen.\(^{343}\)

\(^{342}\) Vgl. Lan, Sie (2010), S. 727ff.

\(^{343}\) Vgl. Schulmeister (2001), S. 194; Lan, Sie (2010), S. 729f.
7 Schlussbetrachtung

Die Eignung eines Sachverhalts für die Vermittlung mittels entdeckenden Lernangeboten könnte sich aufgrund der im Rahmen dieser Arbeit offenbarten Zusammenhänge auch mittels Medienreichhaltigkeitstheorie herleiten lassen. Je komplexer eine Aufgabenstellung ist und je mehr unterschiedliche Interpretationsmöglichkeiten diese bietet, desto reichhaltiger sollte das gewählte Medium zur Informationsvermittlung sein, um beispielsweise entsprechend viele Hinweisreize übertragen zu können oder durch unmittelbares Feedback zum Verständnis beizutragen. Hier gibt es gewisse Parallelen zu den Determinanten Multimedialität, Interaktivität und Situiertheit/Authentizität, die Gegenstand einer zukünftigen Untersuchung sein könnten.

Die Eignung von entdeckendem Lernen für eine Anwendung im Bereich E-Learning sollte, zusammenfassend betrachtet, sowohl theoretisch ausreichend fundiert als auch mittels praktischer Umsetzung erwiesen sein. Moderne Lernplattformen, mit Instru-
menten zur Unterstützung von in Zukunft vermehrt mobil stattfindender Kommunikation und Kooperation, sollten sogar noch bessere Voraussetzungen schaffen, um entdeckendes Lernen kontextgebunden in einem sozialen Umfeld zu implementieren und entsprechende Lernprozesse zu fördern.
Quellenverzeichnis

Literatur

Internetquellen

Moodle: Pädagogik. URL: http://docs.moodle.org/23/de/P%C3%A4dagogik, Zugriff am 25.07.2012.

Thiel, Michael; Mayer, Horst O.: Produktevaluation von eduBITE. URL: http://edubite.dke.univie.ac.at/EvaluationedubITEAbschlussbericht.pdf, Zugriff am 17.01.2012.

Anhang

Zusammenfassung

Wie sich die Wahl der eingesetzten Medien auf den Lernerfolg und die Zufriedenheit mit E-Learning-Angeboten auswirkt, wird schließlich anhand der Medienreichhaltigkeitstheorie analysiert und auf den Bereich „Mobile Learning“ übertragen. Darüber hinaus wird in diesem abschließenden Teil auch ein Vergleich zwischen Werkzeugen zum selbstgesteuerten und kooperativen E-Learning, mit Implikationen in Bezug auf entdeckendes Lernen, gezogen.
Abstract

Education and training continue to gain in importance in times of global competition. This thesis presents “learning by discovery” as a didactic approach to implement active and self-directed learning processes within the scope of e-learning. In order to become familiar with the theoretical foundation, initially, the term “discovery learning” shall be defined and relevant paradigms as well as characteristics are presented. An illustration of discovery-based instruction completes the provided picture of this educational-didactic model, before it is used as a basis for creating a corresponding e-learning implementation.

The development of discovery-based learning objects in the course of the project eduBITE provides the necessary framework to explain the determinants of an appropriately designed environment. Based on the realized simulation game that is embedded in the exercise "Bullwhip Effect and Beer Distribution Game", knowledge of the whiplash effect is taught during the course of an explorative learning process.

How the choice of media affects learning success and satisfaction with e-learning courses, is finally analyzed using media richness theory and afterwards transferred to the scope of mobile learning. Moreover, in this final part, a comparison between tools for self-directed and collaborative e-learning, with implications regarding discovery learning shall be drawn.
Lebenslauf

Persönliche Daten

Name: Christian Berndorfer
Adresse: Brandstetten 6
4715 Taufkirchen
Telefon: +43 699 116 82 596
E-Mail: c.berndorfer@gmail.com
Geburtsdatum: 10. September 1975
Geburtsort: Grieskirchen, O.Ö.
Familienstand: Ledig

Berufserfahrung

10/06 – 10/10: **Innovationsassistent**, später **Senior Consultant**
process4.biz GmbH, Wien, Softwareentwicklung
Tätigkeitsschwerpunkte:
➢ Installation und Customizing der BPM-Software
➢ Schulung und Anwendertraining
➢ Methodische Beratung und Qualitätssicherung
➢ Analyse und Optimierung von Geschäftsprozessen
➢ Spezifikation von Feature-Requests

01/06 – 10/06: **Projektmitarbeiter**
isit consulting GmbH, Wien, Beratung
Projekte mit den Schwerpunkten Prozessmanagement und E-Learning

WS 03/04 – 05/06: **Tutor**
Universität Wien,
Fakultät für Wirtschaftswissenschaften und Informatik
Lehrveranstaltung: Business Process Management

03/04 – 12/05: **Salespromoter**
p.o.s. services LAN GmbH & Co KG, Wien, Werbung

10/02 – 02/04: **Salespromoter**
Global Logistic Solutions GmbH & Co KG, Bad Vöslau, Werbung

07/96 – 07/02: **Praktika** während der Ferien bei verschiedenen Unternehmen
(u.a. Sirius Camembert, A. Pöttinger Maschinenfabrik, Gemeinde Gallspach)
Auszug Projekte

05/09 – 05/10: AVL LIST GmbH
- Tool- und Methodenschulung der Key-User
- Spezifikation der Timeline-Funktionalität
- Qualitätssicherung

01/08 – 04/10: MLP Finanzdienstleistungen AG
- Roll-out und Migrationsplanung
- Vorlagenerstellung und DB-Anpassung zur Abbildung der Applikationslandschaft, Organisationsstruktur und Prozesshierarchy

07/08 – 08/09: Ecole hôtelière de Lausanne
- Einführung des Referenzmodells zum ERP-System Dynamics AX unter Berücksichtigung von SureStep

11/07 – 11/08: INTERCELL AG
- Konvertierung des IST-Prozessmodells von EPK nach RACI und Neumodellierung
- Analyse, Adaptierung, Qualitätssicherung und Risikobewertung live während Workshops mit Prozessverantwortlichen am schottischen Standort

03/07 – 04/07: EJPD (Eidg. Justiz- und Polizeidepartement)
- Einschulung, Erarbeitung der Methode und Erstellung des Methodenhandbuchs
- Abbildung der Schengen-Prozesse mit adaptierter BPMN-Methode

Aus- und Weiterbildung

10/10 – 09/12: Wiederaufnahme und Abschluss des Studiums
07.01.2011: Gewerbeanmeldung für IT-Dienstleistungen
16. – 18.10.07: Microsoft Visio 2007 MCP-Ausbildung in Zürich
11. – 13.06.07: Seminar „BPM Introduction“ der BPM-Akademie in Montabaur (inkl. „Change Management“)
10/96 – 06/03: Studium der Internationalen Betriebswirtschaft an der Universität Wien
10/95 – 05/96: Ableistung des Grundwehrdienstes in St. Pölten
13.06.1995: Matura mit Auszeichnung bestanden
09/90 – 06/95: Bundeshandelsakademie in 4910 Ried, O.Ö. Abschluss der BHAK mit Ausgezeichnetem Erfolg
09/86 – 07/90: Hauptschule in 4720 Neumarkt, O.Ö. Hauptschulabschluss mit Auszeichnem Erfolg
09/82 – 07/86: Volksschule in 4720 Neumarkt, O.Ö.
Studium

Schwerpunkte:
- Wirtschaftsinformatik (BPM)
- Internationales Management
- Umweltökonomie und International Energy Management
- Recht (Finanzrecht, Europarecht, Rechtsfragen des E-Commerce, Kartellrecht, Patent-, Marken-, Muster- und Ausstattungsrecht)
- Electronic Business

Diplomarbeit:
"Der Einsatz von entdeckendem Lernen im Bereich E-Learning" am Fachbereich Electronic Business, Institut für Betriebswirtschaftslehre, Universität Wien

Besondere Kenntnisse

EDV-Kenntnisse:
- BPM-Tools (process4.biz, Adonis, ARIS)
- Microsoft Visio (inkl. ShapeSheet-Programmierung)
- Microsoft Office (Word, PowerPoint, Excel, Access)
- Microsoft SQL Server
- Macromedia Dreamweaver & Flash

Fremdsprachen:
- Englisch (sehr gut)
- Französisch (gut)

Pädagogik:
Kognitiv und konstruktiv geprägte Lerntheorien im Zusammenhang mit E-Learning und entdeckendem Lernen

Taufkirchen, 01.08.2012