DIPLOMARBEIT

Titel der Diplomarbeit
Synthese von Prenyl-, Methyl- und Amino-Polyhydroxychalkonen

Verfasser
Florian STRASSER

angestrebter akademischer Grad
Magister der Naturwissenschaften (Mag. rer. nat.)

Wien, 2012

Studienkennzahl lt. Studienblatt: A 190 423 412
Studienrichtung lt. Studienblatt: Diplomstudium UF Chemie/Physik
Betreuerin / Betreuer: Prof. Dr. Annette Rompel
1. Kurzfassung .. 5
2. Theorie ... 6
 2.1 Die Flavonoide ... 6
 2.1.1 Struktur und Einteilung der Flavonoide ... 7
 2.2 Pharmakologische Eigenschaften der Chalkone ... 8
 2.2.1 Antioxidative Wirkung .. 9
 2.2.2 Tumorhemmende Wirkung .. 10
 2.2.3 Antivirale Wirkung ... 10
 2.2.4 Antiplasmoidale Wirkung .. 11
 2.2.5 Antibakterielle Wirkung .. 11
 2.3 Synthese von Chalkonen .. 13
 2.3.1 Synthese von Polyhydroxychalkonen ... 15
 2.3.1.1 Alternative Synthese von Polyhydroxychalkonen mit Lithiumbis(trimethylsilyl)amid (LiHMDS) .. 16
 2.3.2 Synthese von prenylierten und methylierten Derivaten von Polyhydroxychalkonen 16
 2.3.2.1 Alternative Möglichkeiten der Einführung der Prenylkette .. 18
 2.3.3 Synthesevorschlag für 2'-Amino-Polyhydroxychalkone ... 19
 3. Zielsetzung ... 20
 4. Resultate und Diskussion .. 21
 4.1 Synthese und Charakterisierung des Polyhydroxychalkons, PHC ... 21
 4.1.1 Darstellung des 2-Hydroxy-4,6-di(methoxymethoxy)acetophenons, I01 22
 4.1.1.1 Reaktionsschema ... 22
 4.1.1.2 1H-NMR-Spektrum ... 23
 4.1.2 Darstellung des 3,4-Di(methoxymethoxy)benzaldehyds, I02 .. 24
 4.1.2.1 Reaktionsschema ... 24
 4.1.2.2 1H-NMR-Spektrum ... 24
 4.1.3 Darstellung des 2'-Hydroxy-3,4,4',6'-tetra(methoxymethoxy)chalkons, V01 26
 4.1.3.1 Reaktionsschema ... 26
 4.1.3.2 1H-NMR-Spektrum ... 27
4.1 Diskussion

4.1.1 Darstellung des 2'-Prenyloxy-acetophenons, I01

4.1.2 Darstellung des 4'-Prenyloxy-acetophenons, I02

4.1.3 Darstellung des 2,4-Di(prenyloxy)acetophenons, I03

4.1.4 Darstellung des 2',3,4,4'-Pentahydroxychalkons, V01

4.1.5 Diskussion

4.2 Synthese und Charakterisierung der prenylierten und methoxylierten Polyhydroxychalkone

4.2.1 Synthese des 2'-Methoxy-3,4,4',6'-tetra(methoxymethoxy)chalkons, V02

4.2.1.1 Darstellung des 2'-Methoxy-4,6-di(methoxymethoxy)acetophenons, I04

4.2.1.2 1H-NMR-Spektrum

4.2.1.3 Reaktionsschema

4.2.2 Synthese des 2'-Methoxy-3,4,4',6'-tetra(methoxymethoxy)chalkons, V03

4.2.2.1 Darstellung des 2'-Methoxy-4,4',6'-tetra(methoxymethoxy)chalkons, V04

4.2.2.2 1H-NMR-Spektrum

4.2.2.3 Reaktionsschema

4.2.3 Synthese des 3,4,4',6'-Tetra(methoxymethoxy)-2'-prenyloxychalkons, V05

4.2.3.1 Darstellung des 4,6-(Methoxymethoxy)-2'-prenyloxyacetophenons, I05

4.2.3.2 1H-NMR-Spektrum

4.2.3.3 Reaktionsschema

4.2.4 Synthese des 6'-Hydroxy-2',3,4,4'-tetra(methoxymethoxy)-3'-prenylchalkons, V06

4.2.4.1 Darstellung des 6-Hydroxy-2',4-di(methoxymethoxy)-3'-prenylacetophenons, I06

4.2.4.2 1H-NMR-Spektrum

4.2.4.3 Reaktionsschema
4.4 Alternative Syntheseansätze .. 53

4.4.2 Umprenylierung mit Montmorillonite ... 59

4.4.1 Chalkon .. 59

4.2 Synthese des 6’-Hydroxy-2’,4’,4-tri(methoxymethoxy)-3’-prenylchalkons, V07 54

4.2.5 Darstellung des 6’-Hydroxy-2’,4’,4-tri(methoxymethoxy)-3’-prenylchalkons, V07 54

4.2.6 Synthese des 6’-Methoxy-2’,4’,4-tri(methoxymethoxy)-3’-prenylchalkons, V08 66

4.3 Synthese und Charakterisierung des 2’-Amino-4’-methoxy-3,4-di(methoxymethoxy)chalkons, V09... 66

4.3.1 Darstellung des 2-Amino-4-methoxyacatophenons, I08.. 68

4.3.2 Darstellung des 2’-Amino-4’-methoxy-3,4-di(methoxymethoxy)chalkons, V09............. 68

4.4 Alternative Syntheseansätze .. 70

4.4.1 Chalkon-Synthese mit tBDMS-Schutzgruppe ... 70

4.4.2 Umprenylierung mit Montmorillonite ... 78
5. Zusammenfassung und Schlussfolgerungen ... 72

6. Experimenteller Teil ... 74

6.1 Geräte und Material .. 74

6.1.1 DC und SC ... 74

6.1.2 NMR ... 74

6.1 Synthesevorschriften ... 74

6.1.1 Darstellung von 2-Hydroxy-4,6-di(methoxymethoxy)acetophenon (I01) 74

6.1.2 Darstellung von 2-Hydroxy-4,6-O,O-Di(tert.-butyldimethylsilyloxy)acetophenon (I09) 75

6.1.3 Darstellung von 3,4-di(methoxymethoxy)benzaldehyd (I02) 76

6.1.4 Darstellung von 4-(Methoxymethoxy)benzaldehyd (I04) 77

6.1.5 Darstellung von 2-Methoxy-4,6-di(methoxymethoxy)acetophenon (I03) 77

6.1.6 Darstellung von 4,6-Di(methoxymethoxy)-2-prenyloxyacetophenon (I05) 78

6.1.7 Darstellung von 2-Prenyloxy-4,6-O,O-Di(tert.-butyldimethylsilyloxy)acetophenon (I10) ... 79

6.1.8 Darstellung von 6-Hydroxy-2,4-di(methoxymethoxy)-3-prenylacetophenon (I06) 80

6.1.9 Darstellung von 6-Hydroxy-2,4-di(methoxymethoxy)-5-prenylacetophenon (I11) 80

6.1.10 Darstellung von 6-Methoxy-4,6-di(methoxymethoxy)-3-prenylacetophenon (I07) 81

6.1.11 Darstellung von 2-Amino-4-methoxyacetophenon (I08) .. 82

6.1.12 Darstellung von 2’-Hydroxy-3,4,4’,6’-tetra(methoxymethoxy)chalkon (V01) 83

6.1.13 Darstellung von 2’-Methoxy-3,4,4’,6’-tetra(methoxymethoxy)chalkon (V03) 84

6.1.14 Darstellung von 2’-Methoxy-4,4’,6’-tri(methoxymethoxy)chalkon (V04) 84

6.1.15 Darstellung von 2’-Prenyloxy-3,4,4’,6’-tetra(methoxymethoxy)chalkon (V05) 84

6.1.16 Darstellung von 6’Hydroxy-2’,3,4,4’-tetra(methoxymethoxy)-3’-prenylchalkon (V06) 84

6.1.17 Darstellung von 6’Hydroxy-2’,4,4’-tri(methoxymethoxy)-3’-prenylchalkon (V07) 84

6.1.18 Darstellung von 6’Methoxy-2’,4,4’-tri(methoxymethoxy)-3’-prenylchalkon (V08) 85

6.1.19 Darstellung von 2’-Amino-4’-methoxy-3,4-di(methoxymethoxy)chalkon (V09) 85

6.1.20 Darstellung von 2’,3,4,4’,6’-Pentahydroxychalkon (V02) 86

Abkürzungen .. 87

Literaturverzeichnis .. 88
1. Kurzfassung

Die Chalkone, eine Untergruppe der Naturstoffklasse der Flavonoide, kommen in großer Vielfalt in der Natur vor und haben aufgrund ihrer zahlreichen pharmakologisch interessanten Wirkungen in den letzten Jahren große Aufmerksamkeit erregt. Es wurden unter anderem antivirale, antioxidative, antikarzinogene, entzündungshemmende sowie antibakterielle Wirkungen festgestellt.

Der synthetische Zugang zur Chalkon-Grundstruktur ist auf unterschiedliche Weisen möglich und vielfach erprobt, jedoch wird die Synthese mit zunehmender Anzahl an Substituenten schwieriger. Um das pharmakologische Potenzial der Chalkone voll ausschöpfen zu können, ist es notwendig auch für hochsubstituierte Chalkone zuverlässige und möglichst wirtschaftliche Synthesestrategien zu etablieren.

In dieser Diplomarbeit sollten bereits bekannte Synthesewege für Polyhydroxychalkone, deren prenylierte und methylierte Derivate sowie für 2'-Amino-Polyhydroxychalkone nachvollzogen und Verbesserungsmöglichkeiten untersucht werden. Die synthetisierten Verbindungen werden mittels NMR charakterisiert.

Das Kernstück der Synthese der Polyhydroxychalkone bildete dabei die basenkatalysierte Aldolkondensation eines entsprechend substituierten, kommerziell erhältlichen, Acetophenons mit einem Benzaldehyd. Die Hydroxylgruppen wurden zuvor mittels Methoxymethylether (MOM) geschützt, was mit der folgenden Schutzgruppenabspaltung eine 3-stufige Synthese für die Polyhydroxychalkone bedeutet.

Für die prenylierten und methylierten Derivate musste darüber hinaus noch das entsprechende Substitutionsmuster erzeugt werden, wodurch ein bis drei zusätzliche Syntheseschritte erforderlich wurden.

Bei den 2'-Amino-Polyhydroxychalkonen musste erst der benötigte Acetophenon als solcher durch Friedel-Crafts-Acetylierung eines entsprechend substituierten Amino-Phenols dargestellt werden.

Da das Abspalten der MOM-Gruppe große Probleme verursachte, wurde alternativ eine Kopplung mit LiHMDS als Kondensationsbase und tBDMS als Schutzgruppe untersucht.

Auch bei der Einführung der Prenylkette wurde eine alternative Variante mittels eines Phyllosilikat-Katalysators, genannt Montmorillonite K10®, erprobt.
2. Theorie

2.1 Die Flavonoide

Die Gruppe der Flavonoide, zu welchen die Chalkone gerechnet werden, zählt zu den sekundären Pflanzenstoffen, das heißt, sie haben keine unmittelbare Funktion im Energiestoffwechsel, im aufbauenden oder abbauenden Metabolismus der Pflanze und sind also in diesem Sinne nicht überlebensnotwendig für den jeweiligen Organismus. Nichtsdestotrotz sind sie in nahezu allen Pflanzen aller klimatischen Zonen vorhanden und zählen zu den am weitesten verbreiteten Naturstoffen.

Der Name Flavonoide leitet sich vom lateinischen *flavus* (gelb) ab und weist auf eine wichtige und charakteristische Eigenschaft der Flavonoide hin: Ihre teils intensive Farbe. Obwohl nicht alle Vertreter eindeutig gelb sind, weisen sie sämtlich intensive Absorptionsbanden im sichtbaren oder im UV-Bereich auf. Sie sind also natürliche Pigmente und dienen der Farbgebung in Pflanzen, um beispielsweise Bestäuber anzulocken. Darüber hinaus können sie verschiedene andere Funktionen für Pflanzen erfüllen, etwa bei der lichtinduzierten Genregulation oder als Fraßschutz vor Herbivoren. Ihre Eigenschaft als Radiakalfänger dient der Stabilisierung anderer funktioneller Verbindungen.

Während Menschen selbst, so wie auch tierische Organismen, keine Flavonoide bilden können, nehmen wir, aufgrund der weiten Verbreitung in Pflanzen und somit in pflanzlichen Lebensmitteln, beachtliche Mengen an Flavonoiden (1-2 g/Tag) zu uns. Flavonoide sind in hohen Konzentrationen beispielsweise in Apfel- und Zitrusfruchtschalen, in Tee, Kaffee, Wein oder Hopfen enthalten.

Schon in der Antike wurden Flavonoid-reiche Lebensmittel und Zubereitungen, wie etwa Propolis oder Honig als pharmakologisch wirksame Substanzen verabreicht. Auch viele in der Laienmedizin verwendete Substanzen, etwa Arnika, Ringelblumensalbe, Hopfenzäpfchen oder Hollunderblüten weisen hohe Konzentrationen an Flavonoiden auf.

Es nimmt daher nicht Wunder, dass auch die wissenschaftliche Pharmakologie und Chemie sich mit Flavonoiden beschäftigt. So wurden unter anderem antioxidative, tumorhemmende, entzündungshemmende, antivirale sowie antibakterielle Wirkungen bei Flavonoiden festgestellt.
2.1.1 Struktur und Einteilung der Flavonoide

Die chemische Struktur der Flavonoide zeichnet sich durch ein C6-C3-C6 Grundgerüst aus, wobei die C6-Einheiten in Form aromatischer Ringe, die C3-Einheit in den allermeisten Fällen in einem heterocyclischen, sauerstoffhaltigen Ring vorliegt.

Je nach Oxidationsgrad der Kohlenstoffatome des Hetero-Rings werden die Flavonoide in unterschiedliche Typen eingeteilt. Man unterscheidet zwischen Flavane (Abb.1), Flavanole, Flavandiole, Flavanone, Flavanonole (Abb. 2), Flavone, Flavonole und schließlich Anthocyanidine. (Abb. 3)

Neben den bisher genannten Verbindungsklassen werden auch die Aurone und die Chalkone zu den Flavonoiden gerechnet. Im Gegensatz zu ihnen weisen sie eine andere Ringstruktur auf. (Abb. 5) In vielen Fällen sind Chalkone eine Zwischenstufe in der Biosynthese anderer Flavonoide. Das alleine wäre schon ein guter Grund sich näher mit Chalkonen zu beschäftigen. Darüber hinaus verfügen Chalkone über ein ähnlich weitreichendes pharmakologisches Potenzial, wie dies für Flavonoide im Allgemeinen der Fall ist und bereits erwähnt wurde. Im Weiteren soll von diesen speziellen pharmakologischen Eigenschaften die Rede sein.

2.2 Pharmakologische Eigenschaften der Chalkone
Ähnlich wie für Flavonoide im Allgemeinen gilt auch für Chalkone im Speziellen, dass bestimmte Pflanzen, die hohe Konzentrationen an Chalkonen enthalten, schon seit der Antike als Ganzes oder in Form von Extrakten verabreicht wurden, um verschiedene Krankheiten oder Gebrechen zu behandeln. Auch viele heutzutage verwendete Arzneidrogen beinhalten unter anderem Chalkone als Wirksubstanzen, so enthalten Hopfenextrakte z.B. das Chalkon: Xanthohumol.8 Neben dem Erfahrungswissen über die Wirksamkeit Chalkon-enthaltender Pflanzen, die ja in der Regel eine große Vielzahl verschiedener Chalkone, anderer Flavonoide und weiterer Naturstoffe enthalten, gibt es zahlreiche chemisch-systematische Untersuchungen der pharmazeutischen Potenziale einzelner Chalkone.
2.2.1 Antioxidative Wirkung

Wie alle Polyphenole besitzen Chalkone Radikalfänger-Eigenschaften. Sie können über ihr ausgeprägtes π-Elektronen-System einzelne Elektronen derart stabilisieren, dass eine radikalische Kettenreaktion, die zu unerwünschten Oxidationsreaktionen führen kann, unterbrochen wird. Solche sogenannten freien Radikale können im Organismus durch äußere Einflüsse wie etwa UV-Licht oder durch erhöhte Konzentrationen reaktiver Sauerstoff- oder Stickstoffspezies (ROS bzw. RNS) entstehen und werden mit verschiedenen negativen Effekten, wie etwa Hautalterung, Entzündungen aber auch Tumorbildung in Zusammenhang gebracht.

Besonders ausgeprägt ist die Fähigkeit Radikale zu „fangen“ bei Chalkonen, die eine 3,4-Hydroxyfunktionalität am B-Ring tragen. Durch die Abgabe zweier einzelner Elektronen wird der 3,4-hydroxysubstituierte B-Ring in ein ortho-Catechol umgewandelt. Das Radikal nimmt ein solches Elektron auf und ist somit kein Radikal mehr.

In Abb. 6 ist der Mechanismus am Beispiel des 2',3,4,4',6'-Pentahydroxychalkons (PHC) dargestellt, wie er von Nishida et al. beschrieben wird; nach der Catecholisierung des B-Rings wird das Chalkon weiter in das entsprechende Auron (a) bzw. Flavan (b) umgewandelt.
2.2.2 Tumorhemmende Wirkung

Ein Angriffspunkt für die Tumorhemmung ist die Mitose, die Zellteilung, zu hindern. Tumorzellen, die sich besonders schnell teilen, sind davon dann besonders betroffen. Das auf dem Markt befindliche Antitumor-Medikament Combretastin A4 (siehe Abb. 7) etwa wirkt auf diese Weise. Für einige Chalkone wurde ebenfalls eine Mitose-hemmende Wirkung festgestellt; diese beruht, wie bei Combretastin A4, auf einer Hemmung der Tubulin Polymerisation. Zum Beispiel zeigten 2’-Aminochalkone signifikante zytotoxische Wirkung auf verschiedene Tumorzelllinien.10

![Struktur des Combretastin A4](image)

\textit{Abb. 7: Struktur des Combretastin A4; die strukturelle Ähnlichkeit zu Chalkonen ist deutlich sichtbar}

2.2.3 Antivirale Wirkung

Eine Möglichkeit Viren im Organismus medikamentös zu behandeln, ist Enzyme, die für die Virenreplikation essentiell sind, zu inhibieren. Viele am Markt befindliche Medikamente zur Bekämpfung von HI-Viren funktionieren auf diese Weise; indem sie das für die HI-Viren essentielle Enzym: \textit{Reverse Transcriptase}, bzw. das Enzym: \textit{Protease} inhibieren, verhindern sie eine Vermehrung des Virus und sorgen für eine Viruskonzentration im Blutserum, die nahe bei der von nicht erkrankten Menschen liegt. Eine solche Behandlung ist jedoch mit vielen Nebenwirkungen verbunden.11

Eine weiteres für den Replikationszyklus des HI-Virus essentielles Enzym ist die sogenannte \textit{Integrase}. Deng et al. untersuchten eine große Anzahl verschiedener Moleküle auf ihre Integrase-inhibierende und antivirale Wirkung. Von den getesteten Substanzen wies 3-Methoxy-2-hydroxychalkon (Abb. 8) die höchste antivirale bzw. Enzym-inhibierende Aktivität auf.11
2.2.4 Antiplasmoidale Wirkung

Frölich et al. konnten anhand von Untersuchungen an zwei Stämmen von *Plasmodium falciparum* zeigen, dass Xanthohumol (Abb. 9) und davon abgeleitete Verbindungen eine signifikante antiplasmoidale Aktivität aufweisen.\(^{14}\)

2.2.5 Antibakterielle Wirkung

Eines der ersten Chalkone bei dem eine antimikrobielle Wirkung festgestellt wurde, war das Licochalkon A (Abb. 10), das in Lakritze, auch Süßholz genannt (*Glycyrrhiza glabra*) in relativ hohen Konzentrationen vorkommt und aus diesem extrahiert werden kann.

Tsukiyama et al.\(^{12}\) untersuchten die Wirkung von Licochalkon A auf verschiedene Bakterien und konnten zeigen, dass es eine deutliche, das vegetative Zellwachstum hemmende Aktivität gegenüber den getesteten gram-positiven Bakterien (darunter *Bacillus subtilis*) aufweist.\(^{12}\)
Untersuchungen der Struktur-Aktivitäts-Wechselwirkungen anhand unterschiedlicher antibakteriell wirksamer Chalkone, konnten zeigen, dass die antibakterielle Wirkung in hohem Maße von der Position der phenolischen Hydroxylgruppen sowie der Position und Länge der Isoprenylkette abhängig ist.13

Neben den an den genannten Beispielen illustrierten pharmazeutisch interessanten Aktivitäten, weisen Chalkone auch antimykotische und entzündungshemmende Eigenschaften auf.37 Es gibt wohl wenige Substanzklassen, die ein derart vielfältiges Potenzial für pharmazeutische Anwendungen besitzen. Es kommt daher der Darstellung reiner Chalkone eine hohe Bedeutung zu.

Wiewohl viele Chalkone aus Pflanzen extrahiert und vermittels präparativ-chromatographischer Methoden als Reinstoffe dargestellt werden können, ist es, um das volle Potenzial der Chalkone ausschöpfen zu können, erforderlich über entsprechende Methoden zu verfügen Chalkone auf organisch-synthetischem Wege darzustellen. Es sind so einerseits Chalkone darstellbar, die nicht in der Natur vorkommen, andererseits ist es in vielen Fällen aus wirtschaftlichen Gründen von Vorteil Chalkone zu synthetisieren anstatt aus Naturextrakten zu gewinnen.

Es nimmt somit nicht Wunder, dass in dem Maße, wie die pharmacologische Bedeutung der Chalkone zunimmt auch das Interesse an möglichst einfachen, vielfältig einsetzbaren und wirtschaftlichen Synthesestrategien zur Darstellung ebendieser zunimmt. Zur Illustration dieser Tatsache sei hier darauf verwiesen, dass viele Edukte für die Chalkonsynthese, die
noch in den 1990er Jahren selbst im Labor hergestellt werden mussten, heute kommerziell leicht erhältlich sind, was in vielen Fällen die Synthese erheblich vereinfacht und verkürzt.

2.3 Synthese von Chalkonen
Die zurzeit etablierteste Methode der Chalkonsynthese ist die der Aldolkondensation eines das gewünschte Substitutionsmuster tragenden Acetophenons und eines dementsprechenden Benzaldehyds. Genau betrachtet stellt die Reaktion damit eine Sonderform der Aldolkondensation, die Claisen-Schmidt-Kondensation, dar, die sich dadurch kennzeichnet, dass nur einer der beiden Reaktionspartner eine Enolform ausbilden kann\(^\text{31}\) (Mechanismus siehe Abb.11).

Es ist die Claisen-Schmidt-Kondensation als Basen- wie als Säure-katalysierte Variante möglich, wobei im Falle der Chalkone die Basen-katalysierte Variante im Allgemeinen bessere Ausbeuten liefert.

\[\text{O} \quad \text{O} \quad \text{O} \quad \text{O} \]

\[\text{CH}_3 \quad \text{H}_2\text{O} \quad \text{H}_2\text{O} \quad \text{OH}^- \]

\[\text{CH}_3 \quad \text{H}_2\text{O} \quad \text{OH}^- \]

\[\text{Abb. 11: Mechanismus der Basen-katalysierten Claisen-Schmidt-Kondensation}\]
Diese relativ einfache, einstufige Synthese funktioniert gut für nicht-substituierte Chalkone, ist für Hydroxylgruppen-tragende Chalkone aber so nicht anwendbar. Dies ist auf die desaktivierende Wirkung der Hydroxylgruppen zurückzuführen, wie es am Beispiel des 4-Hydroxy-Benzaldehyds in Abb. 12 gezeigt ist.

Abb. 12: Desaktivierung des 3-Hydroxybenzaldehyds durch Anion-Stabilisation

In den meisten Fällen wird es keine Schutzgruppe geben, die alle Anforderungen zu 100% erfüllt und es kommt auf die jeweilige Synthesesituation an, welche Schutzgruppe die geeignetste ist.

Für die Synthese von Hydroxychalkonen ist die Methoxymethyl-Ether-Schutzgruppe (MOM) die in den letzten Jahren gebräuchlichste. Sie ist unter den Standardbedingungen der Claisen-Schmidt-Kondensation für Hydroxychalkone (50%ige KOH(aq) oder 3 M NaOH(aq), EtOH, R.T.) stabil, allerdings ist sowohl das Einführen als auch das Abspalten der Schutzgruppe mit eher mäßiger Ausbeute behaftet (Details siehe Abb. 13). Nichtsdestotrotz hat sich bis dato die MOM-Schutzgruppe als die am ehesten geeignete erwiesen.

Im Folgenden sollen die Reaktionsschemata für die Synthese von Polyhydroxychalkonen, deren am A-Ring prenylierte und methylierte Derivate sowie für 2′-Aminochalkone beschrieben werden. Es handelt sich dabei jeweils um die in der Literatur derzeit am prominentesten vertretene Variante.
2.3.1 Synthese von Polyhydroxychalkonen

Das Einführen der Schutzgruppe erfolgt sowohl beim Acetophenon als auch beim Benzaldehyd durch nucleophile Substitution unter leicht basischen Bedingungen. Als Reagens dient Bromomethyl-methylether (MOM-Br).

Bedingt durch die relativ geringen Ausbeuten beim Schützen des Acetophenons sowie - noch bedeutender - bei der Entschtzung, ergibt sich eine Gesamtausbeute, die mit 15 – 25 % durchaus optimierungsbedürftig ist.
2.3.1.1 Alternative Synthese von Polyhydroxychalkonen mit Lithiumbis(trimethylsilyl)amid (LiHMDS)

In der Literatur werden zahlreiche alternative Möglichkeiten der Chalkonsynthese beschrieben: Säurekatalysierte, etwa mit SOCl\textsubscript{2}/EtOH20, solche mit Lewis-Säuren, zum Beispiel BF\textsubscript{3}·EtOH21, oder auch mit anderen Katalysatoren, wie Iod auf Aluminiumoxid und Mikrowellenbestrahlung22 oder LiHMDS.23

Die meisten davon weisen für die Synthese von Polyhydroxychalkonen keine entscheidenden Vorteile gegenüber der unter 2.3.1 beschriebenen Methode auf, da sie entweder ebenfalls die MOM-Schutzgruppe benötigen (oder eine ähnlich schwer abzusplitternde) oder für Polyhydroxychalkone nicht geeignet sind. Eine Variante, die einigermaßen vielversprechend scheint, ist eine Synthese mit LiHMDS (IUPAC: Lithium bis(trimethylsilyl)azanid). Der Vorteil dieser relativ milden Base als Kondensationsreagenz ist, dass sie den Einsatz labilerer Schutzgruppen ermöglicht. So sind etwa Silylether-Schutzgruppen wie tBDMS (tert-butyldimethylsilyl) unter den Reaktionsbedingungen einer Aldolkondensation mit LiHMDS stabil (was sie bei den in Abb.13 beschriebenen Kopplungsbedingungen nicht sind). Im Gegensatz zur MOM-Schutzgruppe, kann die tBDMS-Schutzgruppe hochspezifisch mit Tetra-n-Butylammoniumfluorid (Bu\textsubscript{4}N+F−) unter sehr milden Bedingungen abgespalten werden.24 Da auch das Anbringen der tBDMS-Schutzgruppe in hohen Ausbeuten durchführbar ist, wären die Verluste durch Anbringen und Abspalten der Schutzgruppe deutlich geringer als mit MOM-Schutz.

2.3.2 Synthese von prenylierten und methylierten Derivaten von Polyhydroxychalkonen

Während eine große Anzahl an verschiedenen Hydroxy-Acetophenonen kommerziell erhältlich ist, ist dies für Acetophenone, die darüber hinaus Prenyl- bzw. Methoxy-Gruppen tragen, nicht der Fall. Es muss also vor der Claisen-Schmidt-Kondensation das entsprechende Substitutionsmuster hergestellt werden. (Abb.14). Die Kondensation selbst und das Entschützen verläuft analog zu den Polyhydroxychalkonen.
Abb. 14: Reaktionsschema gemäß Literatur für die Darstellung von prenylierten bzw. methoxyierten Acetophenonen am Beispiel des 6-Methoxy-2,4-dihydroxy-3-prenylacetophenons.8,25

Zuerst wird, wie bei den Polyhydroxychalkonen eine Schützung der OH-Gruppen durchgeführt. Im nächsten Schritt wird - die freie OH-Gruppe ausnutzend - die Prenylfunktionalität durch nucleophile Substitution eingeführt (O-Prenylierung). Es erfolgt dies unter ähnlichen Bedingungen wie die Schützung und mit recht guten Ausbeuten. Mittels einer thermischen Umlagerungsreaktion bei 180°C wird die Prenylkette in die para-Position (6-Hydroxy-2,4-di(methoxymethoxy)-3-prenylacetophenon) überführt. Eine Überführung in die ortho-Position (6-Hydroxy-2,4-di(methoxymethoxy)-5-
prenylacetophenon) kann nicht beobachtet werden. Um auch diese Position mit einer Prenylfunktionalität versehen zu können sind andere Reaktionsbedingungen erforderlich (siehe Kapitel 2.3.2.1). Auch hinsichtlich der relativ geringen Ausbeute bei der thermischen Umlagerung besteht Optimierungsbedarf.

2.3.2.1 Alternative Möglichkeiten der Einführung der Prenylkette

Wie bereits erwähnt verläuft die thermische Umlagerung der Prenylkette mit recht geringen Ausbeuten und es liegt nahe diesbezügliche Verbesserungsmöglichkeiten zu untersuchen. Eine Einführung der Prenylfunktionalität direkt am aromatischen Ring ist zwar grundsätzlich möglich, liefert aber aufgrund der vielen Nebenprodukte noch schlechtere Ausbeuten, als die in Abb. 14 beschriebene Variante.

Sugamoto et al. berichten über eine Umlagerung der Prenylfunktionalität mittels eines Phyllosilikats ((Na,Ca)\textsubscript{0.33}(Al,Mg)\textsubscript{2}(Si\textsubscript{4}O\textsubscript{10})(OH)\textsubscript{2}·nH\textsubscript{2}O), dem sogenannten Montmorillonite K10®, bei der – ebenfalls von der O-prenylierten Spezies ausgehend – sowohl para- (25%) als auch ortho-Produkt (53%) entsteht. Damit wäre einerseits auch der 6-Methoxy-2,4-dihydroxy-5-prenylacetophenon zugänglich, anderseits ist bei dieser Reaktionsführung, sofern man an beiden Verbindungen interessiert ist, die Gesamtausbeute höher.
2.3.3 Synthesevorschlag für 2'-Amino-Polyhydroxychalkone

In der Literatur findet sich zu 2'-Amino-Polyhydroxychalkonen deutlich weniger, als dies für die prenylierten oder methoxylierten Polyhydroxychalkone der Fall ist. Es sind auch nur sehr wenige 2-Aminooacetophenone kommerziell erhältlich, darunter keine 2-Amino-hydroxyacetophenone, wie sie für eine zu 2.3.1 analoge Synthese erforderlich wären. Mittels Friedel-Crafts-Acetylierung kann aber in vielen Fällen aus einem entsprechend substituierten Benzolring der passende Acetophenon hergestellt werden.\(^\text{28}\)

Von besonderer Bedeutung ist in diesem Zusammenhang die modifizierte Friedel-Crafts-Acetylierung, bei der durch Bortrichlorid als zusätzlicher Katalysator und Acetonitril als Elektrophil ein relativ hohes Maß an Regioselektivität besteht. Durch die Ausbildung eines Übergangszustands, bei dem das Bor sowohl an den Stickstoff der Amino-Funktionalität, als auch an den des Acetonitrils koordiniert, wird bevorzugt das zur Amino-Gruppe ortho-ständige Acetylierungsprodukt gebildet.\(^\text{35}\)

Xia et al.\(^\text{10}\) beschreiben die Kondensation einiger, substituierter 2'-Aminochalkone, darunter aber keine, die mehr als eine Hydroxy- oder Methoxy-Gruppe tragen.\(^\text{10}\) Die dort (nicht sehr ausführlich) beschriebenen Kondensationsbedingungen werden hier auf 2'-Amino-Polyhydroxychalkone umgelegt. Insbesondere die Tatsache, dass die basenkatalysierte Kondensation (3M NaOH\(_{aq}\)) nach Xia et al. ohne Schutz der Aminogruppe erfolgen kann, ist von Bedeutung.

Der zuvor hergestellte Acetophenon wird mit einem wie in 2.3.1 beschriebenen, geschützten Benzaldehyd kondensiert.\(^\text{10}\) Bezüglich der Entschädigung eines 2'-Amino-Polyhydroxychalkons findet sich in Literatur kein vergleichbares Prozedere. Es gibt aber keinen offensichtlichen Grund, warum die freie Aminogruppe mehr Probleme verursachen
sollte, als es die freie OH-Gruppe bei den Polyhydroxychalkonen tut. Einer Entschätzung, wie sie in 2.3.1. beschrieben ist, scheint aus theoretischer Sicht nichts entgegen zu stehen.

Abb. 16.: vorgeschlagener Syntheseweg für 2'-Aminochalkone am Beispiel des 2'-Amino-3,4-hydroxy-4'-methoxychalkons anhand der Literatur10, 28, 17. Die Kondensationsreaktion, wie sie in Abb. 16 gezeigt ist, sowie das Entschützen sind bis dato nicht literaturbekannt. Die Reaktionsbedingungen entstammen Vorschriften, die ähnliche Verbindungen behandeln.

3. Zielsetzung

Erstes Ziel dieser Arbeit war es, das Polyhydroxychalkon, 2',3,4,4',6'-Pentahydroxychalkon, V02, quasi als Leitsubstanz, herzustellen und zu charakterisieren.

Es sollten folgende Verbindungen synthetisiert werden:

- 2\'-Methoxy-3,4,4',6'-tetra(methoxymethoxy)chalkon (V03),
- 2\'-Methoxy-4,4',6'-tri(methoxymethoxy)chalkon (V04),
- 3,4,4',6'-Tetra(methoxymethoxy)-2\'-prenyloxychalkon (V05),
- 6'-Hydroxy-2\',3,4,4'-tetra(methoxymethoxy)-3\'-prenylchalkon (V06),
- 6'-Hydroxy-2\',4,4'-tri(methoxymethoxy)-3\'-prenylchalkon (V07) und
- 6'-Methoxy-2\',4',4'-tri(methoxymethoxy)-3\'-prenylchalkon (V08).

Wobei für V05 und V06 bisher noch keine Synthese beschrieben wurde.

Drittens sollte das 2\'-Amino-4\'-methoxy-3,4-di(methoxymethoxy)chalkon, V09, synthetisiert und charakterisiert werden. Es stellt dies ebenfalls eine Verbindung dar, für die bisher noch keine Synthese beschrieben wurde.

Schließlich sollten als viertes Ziel eine alternative Schutzgruppe (tBDMS) auf ihre Tauglichkeit für die hier verwendete Synthese prenylierter Chalkone untersucht werden.

Und fünftens sollte eine alternative Umlagerungsreaktion zur Einführung der Prenyl-Funktionalität an den aromatischen Ring mittels eines Phyllolikut-Katalysators untersucht werden.

4. Resultate und Diskussion

4.1 Synthese und Charakterisierung des Polyhydroxychalkons, PHC

Es wurde das Polyhydroxychalkon: 2',3,4,4',6'-Pentahydroxychalkon mittels der in 2.3.1 beschriebenen Methode hergestellt.

Dazu wurden zuerst 3,4-Dihydroxybenzaldehyd sowie 2,4,6-Trihydroxyacetophenon geschützt. Anschließend erfolgte die Kondensation der Beiden und schließlich die Abspaltung der MOM-Schutzgruppe.

Die Reaktionsverläufe wurden mit Dünnschichtchromatographie (DC) verfolgt und die entstandenen Rohprodukte mittels Säulenchromatographie oder Umkristallisation gereinigt. Die so gewonnenen Produkte wurden mit 1H-NMR-Spektroskopie charakterisiert.
4.1.1 Darstellung des 2-Hydroxy-4,6-di(methoxymethoxy)acetophenons, I01

4.1.1.1 Reaktionsschema

Aus den in 2.3.1 genannten Gründen wurden die OH-Gruppen des Acetophenons vor der Kondensationsreaktion mit der MOM-Schutzgruppe versehen. Es erfolgte dies mit MOM-Br.

4.1.1.2 1H-NMR-Spektrum

![NMR-Spektrum des 2-Hydroxy-4,6-dimethoxymethoxacetophenons, I01 in CDCl₃](image)

Abb. 18.: 1H-NMR-Spektrum des 2-Hydroxy-4,6-dimethoxymethoxyacetophenons, I01 in CDCl₃

Tab. 1: Peaks des 1H-NMR-Spektrums von I01 in CDCl₃:

<table>
<thead>
<tr>
<th>δ [ppm]</th>
<th>Intensität</th>
<th>Signaltyp</th>
<th>Kopplungskonstante, J, [Hz]</th>
<th>Protonenuzuordnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.69</td>
<td>1H</td>
<td>Singulett</td>
<td>-</td>
<td>OH</td>
</tr>
<tr>
<td>6.25</td>
<td>1H</td>
<td>Dublett</td>
<td>2.5</td>
<td>Aromat: H-C₃/H-C₅</td>
</tr>
<tr>
<td>6.23</td>
<td>1H</td>
<td>Dublett</td>
<td>2.5</td>
<td>Aromat: H-C₃/H-C₅</td>
</tr>
<tr>
<td>5.24</td>
<td>2H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH₂-O</td>
</tr>
<tr>
<td>5.16</td>
<td>2H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH₂-O</td>
</tr>
<tr>
<td>3.51</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH₃</td>
</tr>
<tr>
<td>3.46</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH₃</td>
</tr>
<tr>
<td>2.64</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>CO-CH₃</td>
</tr>
</tbody>
</table>

Man sieht im tiefen Feld bei 13.69 ppm das Proton, der bei der Schützung frei gebliebene 6-OH Gruppe als etwas breiteres Singulett, dessen Integral-Wert nicht ganz 1 beträgt, was für Protonen von Heteroatomen durchaus üblich ist. Im Bereich 6.25 und 6.23 ppm sind 2 nahe beieinander liegende Dubletts der aromatischen Protonen: H-C₃ und H-C₅. Diese weisen eine für die aromatische meta-Kopplung charakteristische Kopplungskonstante, J, von 2.5 Hz auf.

An den beiden 2H-Singuletts bei 5.24 und 5.16 ppm sowie den 3H-Singuletts bei 3.51 und 3.46 ppm lässt sich sehr gut das Vorhandensein der MOM Schutzgruppen nachweisen.

4.1.2 Darstellung des 3,4-Di(methoxymethoxy)benzaldehyds, I02

4.1.2.1 Reaktionsschema

Wie beim Acetophenon, mussten auch die Hydroxylgruppen des 3,4-Dihydroxybenzaldehyds vor der Kondensationsreaktion mit Methoxymethylether geschützt werden. Es erfolgt dies völlig analog zur Acetophenon-Schützung.

4.1.2.2 1H-NMR-Spektrum
Tab. 2: Peaks des 1H-NMR-Spektrums von I02 in CDCl$_3$:

<table>
<thead>
<tr>
<th>δ [ppm]</th>
<th>Intensität</th>
<th>Signaltyp</th>
<th>Kopplungskonstante, J, [Hz]</th>
<th>Protonenzuordnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.87</td>
<td>1H</td>
<td>Singulett</td>
<td>-</td>
<td>CO-H</td>
</tr>
<tr>
<td>7.68</td>
<td>1H</td>
<td>Dublett</td>
<td>1.9</td>
<td>Aromat: H-C2</td>
</tr>
<tr>
<td>7.51</td>
<td>1H</td>
<td>Dublett von Dubletts</td>
<td>8.2 bzw. 1.9</td>
<td>Aromat: H-C6</td>
</tr>
<tr>
<td>7.28</td>
<td>1H</td>
<td>Dublett</td>
<td>8.2</td>
<td>Aromat: H-C5</td>
</tr>
<tr>
<td>5.33</td>
<td>2H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_2$-O</td>
</tr>
<tr>
<td>5.29</td>
<td>2H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_2$-O</td>
</tr>
<tr>
<td>3.53</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_3$</td>
</tr>
<tr>
<td>3.52</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_3$</td>
</tr>
</tbody>
</table>

Das Proton mit der geringsten Abschirmung, das also im tiefsten Feld zu finden ist, ist bei I02 das Aldehyd-Proton, das als 1H-Singulett bei 9.87 ppm zu sehen ist. Im aromatischen Bereich sind die für das Substitutionsmuster typischen Peaks zu sehen. Ein 1H-Dublett bei 7.68 ppm mit kleiner, meta-Kopplungstypischer Kopplungskonstante (1.9 Hz), das somit eindeutig dem H-C2 zugeordnet werden kann. Bei 7.51 ppm befindet sich ein 1-H-Dublett von Dumblets (J = 1.9 bzw. 8.2 Hz); dieses Signal kann dem H-C6 zugeordnet werden, da dieses Proton sowohl ein ortho- (starke Kopplung, J= 8.2 Hz) als auch ein meta-nachbartes Proton (schwache Kopplung, J=1.9 Hz) aufweist. Eine Kopplung zu einem para-ständigem Proton ist gewöhnlich sehr klein und kann in den meisten Fällen nicht beobachtet werden. H-C5 koppelt mit seinem ortho-Nachbarn, H-C6, und erscheint als weites Dublett (J = 8.2 Hz) bei
7.28 ppm. Im eher hohen Feld, bei 5.33 und 5.29 ppm bzw. 3.53 und 3.52 ppm sind wiederum die Schutzgruppen-Protonen zu erkennen. Es stimmen die ermittelten NMR Daten mit theoretischen Überlegungen und der Literatur sehr gut überein.8,33 Das Spektrum lässt auf etwa 98\%ige Reinheit schließen.

Das Produkt konnte somit erfolgreich als I02 identifiziert werden. Die Ausbeuten bewegten sich zwischen 55 und 60\% und waren damit signifikant niedriger als in der Literatur.33 Ein Grund dafür könnte die, aufgrund eines schwer abtrennbaren Nebenproduktes, recht komplizierte SC-Reinigung sein.

4.1.3 Darstellung des 2\:''-Hydroxy-3,4,4\'',6\''-tetra(methoxymethoxy)chalkons, V01

4.1.3.1 Reaktionsschema

Die beiden geschützten Edukte wurden nun, wie in 2.3.1 beschrieben durch basenkatalysierte Claisen-Schmidt-Kondensation gekoppelt. Als Base diente 50\%ige KOH.

Die Produktbildung ließ sich bei dieser Reaktion schon alleine an der tiefgelben Färbung der Reaktionsmischung erahnen. Die DC-Reaktionskontrolle zeigte neben einem einzigen, gelben
Peak, der dadurch dem Produkt zugeordnet werden konnte, 2 weitere farblose Peaks, die den Edukten zugeordnet werden konnten. Eine weitere Verlängerung der Reaktionsdauer zeigte aber keinen weiteren Umsatz.

Bei der Aufarbeitung der Reaktionsmischung zeigte sich eine hohe Kristallisationsneigung des Produktes und es wurde daher mittels Umkristallisation gereinigt, was gegenüber der SC-Reinigung den Vorteil geringeren Arbeits- und Kostenaufwands hat. Außerdem ist es oft schwierig Produkte, die eine hohe Kristallisationsneigung haben, auf die Säule aufzutragen, ohne dass sie dabei auskristallisieren. Auch Detsi et al. beschreiben eine Umkristallisation zur Reinigung von V01.

Vom gereinigten Produkt wurde nach Entfernen von Lösungsmittelresten eine NMR-Probe gemessen.

4.1.3.2 1H-NMR-Spektrum

![Abb. 22: 1H-NMR-Spektrum des 2'-Hydroxy-3,4,4',6'-tetra(methoxymethoxy)chalkons, V01 in CDCl$_3$](flst011.001.esp)

<table>
<thead>
<tr>
<th>δ [ppm]</th>
<th>Intensität</th>
<th>Signaltyp</th>
<th>Kopplungskonstante, J, [Hz]</th>
<th>Protonenzuordnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.93</td>
<td>1H</td>
<td>Singulett</td>
<td>-</td>
<td>-OH</td>
</tr>
<tr>
<td>7.86</td>
<td>1H</td>
<td>Dublett</td>
<td>15.5</td>
<td>H-Beta</td>
</tr>
<tr>
<td>7.74</td>
<td>1H</td>
<td>Dublett</td>
<td>15.5</td>
<td>H-Alpha</td>
</tr>
<tr>
<td>7.51</td>
<td>1H</td>
<td>Dublett</td>
<td>1.9</td>
<td>Aromat: H-C2</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>---------</td>
<td>-----</td>
<td>-------------</td>
</tr>
<tr>
<td>7.21</td>
<td>1H</td>
<td>Dublett von Dubletts</td>
<td>8.5 bzw. 1.9</td>
<td>Aromat: H-C6</td>
</tr>
<tr>
<td>7.18</td>
<td>1H</td>
<td>Dublett</td>
<td>8.5</td>
<td>Aromat: H-C5</td>
</tr>
<tr>
<td>6.31</td>
<td>1H</td>
<td>Dublett</td>
<td>2.5</td>
<td>Aromat: H-C3'/H-C5'</td>
</tr>
<tr>
<td>6.27</td>
<td>1H</td>
<td>Dublett</td>
<td>2.5</td>
<td>Aromat: H-C3'/H-C5'</td>
</tr>
<tr>
<td>5.30</td>
<td>2H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH₂-O</td>
</tr>
<tr>
<td>5.28</td>
<td>2H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH₂-O</td>
</tr>
<tr>
<td>5.19</td>
<td>2H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH₂-O</td>
</tr>
<tr>
<td>3.55</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH₃</td>
</tr>
<tr>
<td>3.54</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH₃</td>
</tr>
<tr>
<td>3.53</td>
<td>3H</td>
<td>Singulett</td>
<td>.</td>
<td>O-CH₃</td>
</tr>
<tr>
<td>3.49</td>
<td>3H</td>
<td>Singulett</td>
<td>.</td>
<td>O-CH₃</td>
</tr>
</tbody>
</table>

Im tiefen Feld bei 13.93 ppm ist das Proton der freien OH-Gruppe (in Abb. 22 nicht zu sehen). An den beiden sehr weit aufgespaltenen Dubletts (J = 15.5 Hz) bei 7.86 und 7.74 ppm lässt erkennen, dass eine trans-Doppelbindung ausgebildet wurde. Die aromatischen Protonen des B-Rings erscheinen in dem erwarteten Peak-Muster eines engen Dubletts (J = 1.9 Hz) bei 7.51 ppm, eines Dubletts von Dubletts (J = 8.5 bzw. 1.9 Hz) bei 7.21 ppm und eines weiten Dubletts (J = 8.5 Hz) bei 7.18 ppm. Zusammen mit den beiden aromatischen Protonen des A-Rings, die als Dubletts bei 6.31 und 6.27 ppm zu sehen sind, und den vollständig vorhandenen Schutzgruppen-Peaks zeigen sie die erfolgreiche Synthese von V01 an. Die gemessenen spektralen Daten stimmen mit der Literatur überein. Mit 70% war die Ausbeute im Bereich der Literatur.¹⁷

4.1.4 Darstellung des 2',3,4,4',6-Pentahydroxychalkons V02

4.1.4.1 Reaktionsschema

Im letzten Schritt wurden die Schutzgruppen, wie in 2.3.1 beschrieben, entfernt. Es erfolgt dies in HCl-saurer, Methanollösung.
Bei der Zugabe der HCl-Lösung zeigte sich sehr rasch eine Änderung des Farbeindrucks von tief-gelb auf tief-orange, wobei die Farbintensität noch zunahm.

Auch das entschützte Rohprodukt kristallisierte bei der Aufarbeitung aus. Eine Umkristallisation wurde in diesem Fall nicht versucht, da bei der Entschützung Nebenprodukte entstanden, die sich aufgrund ihrer ähnlichen Polarität und Kristallisationsneigung nicht durch Umkristallisation separieren ließen. Ein Hinweis auf das Vorhandensein eines oder mehrerer ähnlicher Nebenprodukte war das Dünnenschichtchromatogramm der Reaktionsmischung, das keine eigentlichen Peaks, sondern eine verschmierte gelbe Linie zeigte, die vom Auftragungspunkt wegführte. Die Trennleistung der DC konnte durch unterschiedliche Laufmittel nicht verbessert werden.

Es stellt ein solcher dünnenschichtchromatographischer Befund natürlich auch für eine säulenchromatographische Reinigung alles andere als eine optimale Voraussetzung dar.

Nichtsdestotrotz wurde aus Mangel an Alternativen eine SC-Reinigung mit dem am ehesten als geeignet befundenen Laufmittel (DCM:MeOH = 95:5) durchgeführt. Es zeigte sich, dass die einzelnen Fraktionen aus der Säule mit Dünnenschichtchromatographie nicht zuordenbar waren, da sie ebenfalls keine Peaks, sondern nur eine verschmierte Linie zeigten. Mittels UV/VIS Messungen wurde versucht die einzelnen Fraktionen unterschiedlichen Verbindungen zuzuordnen. Von diesen wurden dann nach Entfernen des Lösungsmittels NMR-Proben genommen und die Produktfraktion identifiziert.

4.1.4.2 1H-NMR-Spektrum

Abb. 24a.: 1H-NMR-Spektrum des 2',3,4,4',6'-Pentahydroxchalkons, V02 in d-Aceton
Tab. 4: Peaks des ^1H-NMR-Spektrums von V02 in d-Aceton:

<table>
<thead>
<tr>
<th>δ [ppm]</th>
<th>Intensität</th>
<th>Signaltyp</th>
<th>Kopplungskonstante, J, [Hz]</th>
<th>Protonenzuordnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.95</td>
<td>1H</td>
<td>Singulett</td>
<td>-</td>
<td>-OH</td>
</tr>
<tr>
<td>9.14</td>
<td>1H</td>
<td>Singulett</td>
<td>-</td>
<td>-OH</td>
</tr>
<tr>
<td>8.38</td>
<td>1H</td>
<td>Singulett</td>
<td>-</td>
<td>-OH</td>
</tr>
<tr>
<td>8.08</td>
<td>1H</td>
<td>Singulett</td>
<td>-</td>
<td>-OH</td>
</tr>
<tr>
<td>8.05</td>
<td>1H</td>
<td>Dublett</td>
<td>15.8</td>
<td>H-Beta</td>
</tr>
<tr>
<td>7.94</td>
<td>1H</td>
<td>Singulett</td>
<td>-</td>
<td>-OH</td>
</tr>
<tr>
<td>7.68</td>
<td>1H</td>
<td>Dublett</td>
<td>15.8</td>
<td>H-Alpha</td>
</tr>
<tr>
<td>7.18</td>
<td>1H</td>
<td>Dublett</td>
<td>1.9</td>
<td>Aromat: H-C2</td>
</tr>
<tr>
<td>7.05</td>
<td>1H</td>
<td>Dublett von Dubletts</td>
<td>8.2 bzw. 1.9</td>
<td>Aromat: H-C6</td>
</tr>
<tr>
<td>6.87</td>
<td>1H</td>
<td>Dublett</td>
<td>8.2</td>
<td>Aromat: H-C5</td>
</tr>
<tr>
<td>5.94</td>
<td>2H</td>
<td>Singulett</td>
<td>-</td>
<td>Aromat: H-C3’/H-C5’</td>
</tr>
</tbody>
</table>

Die Peaks der Doppelbindung (bei 8.05 bzw. 7.68 ppm) sind gegenüber dem geschützten Produkt leicht geschiftet, ansonsten aber unverändert und zeigen somit, dass keine Veränderung an der Doppelbindung, wie etwa eine Ringschlussreaktion, stattgefunden hat. Auch die Peaks der aromatischen Protonen des B-Rings sind im Wesentlichen gegenüber dem Edukt-Spektrum unverändert. Die beiden Protonen des A-Rings sind bei V02 aus Symmetriegründen äquivalent und erscheinen daher erwartungsgemäß nicht mehr als zwei Dubletts, sondern als ein 2H Singulett. Darüber hinaus sind noch 5 Peaks, die einen etwas geringeren Integral-Wert als 1 aufweisen, bei 11.95, 9.14, 8.38, 8.08 und 7.94 ppm, zu sehen. Es würde dies von den Integralwerten und den Peak-Positionen sehr gut zu den 5 OH-
Protonen passen. Allerdings berichten Literaturquellen17, dass die OH-Peaks von V02 im 1H-NMR-Spektrum nicht sichtbar sind und weisen dementsprechend keine Vergleichswerte aus. Aufgrund der ansonsten perfekten Übereinstimmung mit den Literaturwerten17, wurde trotzdem darauf geschlossen, dass V02 synthetisiert wurde und die 5 überzähligen Peaks den, aus messtechnischen Gründen hier sichtbaren, OH-Protonen zugeordnet.

4.1.5 Diskussion

Das Einführen der MOM-Schutzgruppe gelang bei I01 in der Ausbeute, die in der Literatur angegeben wird, bei I02 war sie leicht darunter. Die Kondensation zu V01 lieferte auch in etwa die Literaturausbeute, welche mit ca. 80\% gut ist. Der finale Schritt der Entschützung aber kann nicht in den an sich schon recht bescheidenen Ausbeuten reproduziert werden, die in der Literatur beschrieben sind. Neben der Bildung einiger, schwer abzutrennender Nebenprodukte, ist es vor allem der Reinigungsschritt mittels Silicagel Säule an sich, der ungeheure Komplikationen verursacht und mit erheblichen Produktverlusten verbunden ist. Weder eine Verkleinerung der Säulendimension und der Gesamtproduktmenge noch eine Erhöhung der Laufmittelpolarität konnten an der Tatsache etwas ändern, dass erhebliche Teile des Rohproduktes in der Säule „hängen“ blieben und somit verloren wurden.

Zum anderen liegt es nahe, das Entschützungs-Prozedere derart zu ändern, dass weniger oder keine Nebenprodukte entstehen. In diesem Sinne wurde eine alternative Variante der Entschützung von einem anderen Mitglied der Arbeitsgruppe, Müller S., durchgeführt.30 Diese hat sich aber als noch unbrauchbarer erwiesen.

Eine weitere Möglichkeit den problematischen Entschützungsschritt zu umgehen, stellt eine Direkt-Synthese aus den ungeschützten Edukten dar. Es wurde beispielsweise eine Direktsynthese mittels konzentrierter Essigsäure als Katalysator von Müller untersucht. Aber auch dieser Ansatz lieferte keine brauchbaren Ergebnisse.30

Da die gravierenden Probleme beim Entschützen, trotz großer vorangegangener Bemühungen, somit als ungelöst betrachtet werden mussten, wurde bei der Synthese der weiteren Chalkone der problematische Entschützungsschritt vorerst nicht durchgeführt.

4.2 Synthese und Charakterisierung der prenylierten und methoxylierten Polyhydroxychalkone

Mit der in 2.3.2 beschriebenen Methode wurden folgende Chalkone bzw. ihre MOM-geschützten Äquivalente hergestellt: 2′-Methoxy-3,4,4′,6′-tetra(methoxymethoxy)chalkon (V03), 2′-Methoxy-4,4′,6′-tri(methoxymethoxy)chalkon (V04), 3,4,4′,6′-Tetra(methoxymethoxy)-2′-prenyloxochalkon (V05), 6′-Hydroxy-2′,3,4,4′-tetra(methoxymethoxy)-3′-prenylchalkon, (V06), 6′-Hydroxy-2′,4′,4-tri(methoxymethoxy)-3′-prenylchalkon (V07) und 6′-Methoxy-2′,4′,4-tri(methoxymethoxy)-3′-prenylchalkon (V08).

Dazu wurden zuerst, wie schon in 4.1.1 bzw. 4.1.2 beschrieben, der 3,4-Dihydroxybenzaldehyd sowie 2,4,6-Trihydroxyacetophenon geschützt. Darüber hinaus wurde auch der 4-Hydroxybenzaldehyd geschützt. Anschließend erfolgte das Herstellen des – für die jeweilige Verbindung benötigten – Substitutionsmusters des geschützten Acetophenons.

Die Reaktionsverläufe wurden mit DC verfolgt und die entstandenen Rohprodukte mittels SC gereinigt.

Die so gewonnenen reinen Produkte wurden mit 1H-NMR-Spektroskopie charakterisiert.

4.2.1 Synthese des 2′-Methoxy-3,4,4′,6′-tetra(methoxymethoxy)chalkons, V03

Zur Herstellung von V03 wurde die freie OH-Gruppe von I01 methyliert und anschließend mit I02, ähnlich wie in 4.1.3 beschrieben kondensiert.
4.2.1.1 Darstellung des 2-Methoxy-4,6-di(methoxymethoxy)acetophenons, I03

4.2.1.1.1 Reaktionsschema

![Diagram](image.png)

Abb. 25.: Darstellung des 2-Methoxy-4,6-di(methoxymethoxy)acetophenons, I03

Bei der dünnschichtchromatographischen Reaktionsverfolgung zeigte sich außer dem Peak, der dem noch nicht reagierten Edukt zugeordnet werden konnte, nur ein weiterer Peak, der aber eigenartiger Weise einen geringeren R_f-Wert aufwies, als der des Eduktes. Dies widerspricht etwas den theoretischen und intuitiven Erwartungen. Durch die Veretherung der freien OH-Gruppe sollte die Verbindung eigentlich apolarer werden und somit von der polaren stationären Phase weniger stark retardiert werden, also einen größeren R_f-Wert aufweisen. Es wurde dieses DC-Bild aber bei jeder weiteren Reaktion dieser Art bei jeder DC reproduziert und traf auch auf die in 4.2.3.1 beschriebene Veretherung mit der Prenylgruppe zu.

Nichtsdestotrotz wurde besagter Peak als dem Produkt zugehörig identifiziert – es war der einzige außer dem Edukt-Peak – und es erfolgte eine entsprechende SC-Reinigung (Hexan:EtOAc = 7:3). Die vom reinen, lösungsmittelfreien Produkt (es handelte sich dabei um eine leicht gelbliche, klare, hochviskose Flüssigkeit) genommene NMR Probe bestätigte in der Tat, dass I03 dargestellt wurde.
4.2.1.1.2 1H-NMR-Spektrum

Abb. 26: 1H-NMR-Spektrum des 2-Methoxy-4,6-di(methoxymethoxy)acetophenons, I03 in CDCl$_3$

Tab. 5: Peaks des 1H-NMR-Spektrums von I03 in CDCl$_3$:

<table>
<thead>
<tr>
<th>δ [ppm]</th>
<th>Intensität</th>
<th>Signaltyp</th>
<th>Kopplungskonstante, J, [Hz]</th>
<th>Protonenzuordnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.45</td>
<td>1H</td>
<td>Dublett</td>
<td>1.9</td>
<td>Aromat: H-C3/H-C5</td>
</tr>
<tr>
<td>6.31</td>
<td>1H</td>
<td>Dublett</td>
<td>1.9</td>
<td>Aromat: H-C3/H-C5</td>
</tr>
<tr>
<td>5.15</td>
<td>2H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_2$-O</td>
</tr>
<tr>
<td>5.13</td>
<td>2H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_2$-O</td>
</tr>
<tr>
<td>3.78</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_3$</td>
</tr>
<tr>
<td>3.48</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_3$</td>
</tr>
<tr>
<td>3.45</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_3$</td>
</tr>
<tr>
<td>2.47</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>CO-CH$_3$</td>
</tr>
</tbody>
</table>

Die beiden aromatischen Protonen sind jeweils als Dublett bei 6.45 bzw. 6.31 ppm zu sehen und sind gegenüber dem Edukt-Spektrum (I01) nur leicht geschiftet und mit einer minimal anderen Kopplungskonstante (1.9 Hz) versehen. Auch die Schutzgruppenpeaks bei 5.15 und 5.13 ppm bzw. 3.48 und 3.45 ppm weisen erwartungsgemäß nur geringe shifts gegenüber dem Edukt-Spektrum auf. Charakteristisch ist vor allem das Fehlen des OH-Peaks im tiefen Feld, dafür aber ist bei 3.78 ppm der 3H Peak der zusätzlichen Methoxygruppe zu sehen. Bemerkenswert ist auch der alpha-Carbonyl-Peak bei 2.47, der gegenüber dem Edukt-Spektrum um immerhin 17 ppm geshiftet ist. In der Literatur ist diesbezüglich
...widersprüchliches zu finden. Eine Autorin konnte diesen Shift nicht beobachten und beziffert den besagten Peak bei 2.64 ppm.³³ Andere nennen ebenfalls den Wert 2.47 ppm.³² Da bei sämtlichen Spektren aller Ansätze von I03 der Wert 2.47 ppm reproduziert wurde, es auch Autoren gibt, die diesen Wert ebenfalls ermittelt haben und ansonsten alle Peak-Positionen optimal mit allen Literaturquellen übereinstimmen, wurde diese Abweichung ignorierend, die Substanz als I03 identifiziert. Aus dem Spektrum lässt sich außerdem schließen, dass das Produkt in guter Reinheit vorliegt. Es sind nur minimale „Fremdpeaks“ zu erkennen, deren Fläche sich in der Größenordnung von ca. 2% der Produktpeaks bewegt. Mit 85% konnte die Literaturausbeute reproduziert werden.³³

4.2.1.2 Darstellung des 2′-Methoxy-3,4,4′,6′-tetra(methoxymethoxy)chalkons, V03

4.2.1.2.1 Reaktionsschema

Der nun geschützte und methoxylierte Acetophenon, I03, wird mit dem geschützten Benzaldehyd, I02, dessen Darstellung bereits beschrieben wurde, kondensiert. Es erfolgt dies unter analogen Bedingungen wie bei V01.

![Chemische Formel](image)

Abb. 27.: Darstellung des 2′-Methoxy-3,4,4′,6′-tetra(methoxymethoxy)chalkons, V03
Bei der dünnschichtchromatographischen Reaktionsverfolgung zeigte sich anhand eines deutlich sichtbaren gelben Peaks, dass offensichtlich ein Kondensationsprodukt gebildet wurde. Es wurde dieses mittels SC (Hexan:EtOAc = 1:1) gereinigt und eine NMR-Probe der nach Reinigung und Lösungsmittelentfernung gewonnen tiefgelben, hochviskosen Flüssigkeit entnommen.

4.2.1.2.2 ¹H-NMR-Spektrum

Abb. 28: ¹H-NMR-Spektrum des 2'-Methoxy-3,4,4',6'-tetra(methoxymethoxy)chalkons, V03 in CDCl₃

Tab. 6: Peaks des ¹H-NMR-Spektrums von V03 in CDCl₃:

<table>
<thead>
<tr>
<th>δ [ppm]</th>
<th>Intensität</th>
<th>Signaltyp</th>
<th>Kopplungskonstante, J, [Hz]</th>
<th>Protonenzuordnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.35</td>
<td>1H</td>
<td>breites Singulett</td>
<td>-</td>
<td>Aromat: H-C2</td>
</tr>
<tr>
<td>7.27</td>
<td>1H</td>
<td>Dublett</td>
<td>16</td>
<td>H-alpha</td>
</tr>
<tr>
<td>7.14</td>
<td>2H</td>
<td>Dublett</td>
<td>1.3</td>
<td>Aromat: H-C5, H-C6</td>
</tr>
<tr>
<td>6.86</td>
<td>1H</td>
<td>Dublett</td>
<td>16</td>
<td>H-beta</td>
</tr>
<tr>
<td>6.50</td>
<td>1H</td>
<td>Dublett</td>
<td>1.9</td>
<td>Aromat: H-C'5</td>
</tr>
<tr>
<td>6.36</td>
<td>1H</td>
<td>Dublett</td>
<td>1.9</td>
<td>Aromat: H-C'3</td>
</tr>
<tr>
<td>5.25</td>
<td>2H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH₂-O</td>
</tr>
<tr>
<td>5.23</td>
<td>2H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH₂-O</td>
</tr>
<tr>
<td>5.20</td>
<td>2H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH₂-O</td>
</tr>
</tbody>
</table>
5.10 2H Singulett - O-CH₂-O
3.75 3H Singulett - O-CH₃
3.51 2*3H Singulett - O-CH₃
3.50 3H Singulett - O-CH₃
3.38 3H Singulett - O-CH₃

Die drei aromatischen Protonen des B-Rings bilden hier eigenartigerweise nicht das zu erwartende Peak-Muster, wie dies etwa beim geschützten Benzaldehyd gemessen wurde (d(eng), dd, d(weit)). Das H-C2 Proton ist ganz außen im tiefen Feld, bei 7.35 ppm, zu finden und erscheint als ein etwas breiteres Singulett mit der Andeutung einer Triplett-Aufspaltung. Die beiden anderen (H-C5 und H-C6) weisen offensichtlich zufällig dieselbe elektromagnetische Umgebung auf und fallen daher übereinander als ein sehr enges Dublett bei 7.14 ppm. Sowohl Peak-Form als auch -Position stimmen aber perfekt mit der Literatur überein.³³

Die beiden charakteristischsten Peaks liefern die beiden Protonen der Doppelbindung (H-alpha und H-beta), die bei 7.27 (wobei hier noch der Peak der d-Chloroform-Referenz dazwischen liegt) bzw. 6.86 ppm als sehr weite Dubletts erscheinen. Diese weite Aufspaltung (16 Hz) ist charakteristisch für trans-ständige Protonen einer Doppelbindung. Die beiden Peaks zeigen damit nicht nur, dass eine Doppelbindung gebildet wurde, sondern auch, dass diese trans-Konfiguration aufweist. Dies zeigt im Zusammenhang mit den vollständig und an ihren erwarteten Positionen vorhandenen Schutzgruppen-Peaks sowie dem Peak für die Methoxy-Protonen, dass die Reaktion funktioniert hat und das gewünschte Produkt entstanden ist. Darüber hinaus stimmen sämtliche Peaks mit den in der Literatur zu findenden Angaben überein.³³

Aus dem Spektrum lässt sich außerdem schließen, dass das Produkt in guter Reinheit vorliegt; es sind nur minimale „Fremdpeaks“ zu erkennen, deren Fläche sich in der Größenordnung von ca. 2-3% der Produktpeaks bewegt. Auffällig ist das Quartett bei etwa 4.1 ppm. Es ist dem Ethylacetat zuzuordnen, das offensichtlich noch in Spuren im Produkt vorhanden war. Dazu sei bemerkt, dass es sich als durchaus schwierig erwies, aus hochviskosen, aber flüssigen Produkten Lösungsmittelreste vollständig zu entfernen. Selbst nach 4-5 stündiger Behandlung mit Hochvakuum (10⁻² mbar) waren zuweilen noch Lösungsmittelreste vorhanden. Diese bewegten sich aber ebenfalls im Bereich von 2-3% Prozent der Produktmasse und störten daher nicht wesentlich. Mit 70 -77% konnten die Literaturnausbeuten reproduziert werden.³³
4.2.2 Synthese des 2′-Methoxy-4,4′,6′-tri(methoxymethoxy)chalkons, V04
Zur Herstellung von V04 wurde I03 mit dem 4-Hydroxybenzaldehyd kondensiert. Dieser wurde zuvor in Analogie zu 4.1.1. geschützt.

4.2.2.1 Darstellung des 4-(Methoxymethoxy)benzaldehyds, I04

4.2.2.1.1 Reaktionsschema
In Analogie zu I02 wird auch I04 durch Veretherung des Hydroxybenzaldehyds mittels MOM-Br und Kaliumcarbonat und Aceton-Rückfluss geschützt.

Abb. 29.: Darstellung des 4-(methoxymethoxy)benzaldehyds, I04

Wie aufgrund der geringen Substituenten-Anzahl zu erwarten war, stellte die Schützung des 4-Hydroxybenzaldehyds die einfachste und unkomplizierteste der drei Schützungen dar. Die DC-Reaktionskontrolle zeigte außer einem minimalen Edukt-Peak nur einen Peak. Dieser wurde dem Produkt zugeordnet. Nach SC-Reinigung (Hexan:EtOAc = 7:3), die sich in diesem Fall, aufgrund der kaum vorhandenen Fremdprodukte recht einfach gestaltete, wurde das Lösungsmittel entfernt und von der verbliebenen, klaren, farblosen, hochviskosen Flüssigkeit eine NMR-Probe genommen.
4.2.2.1.2 1H-NMR-Spektrum

Abb. 30: 1H-NMR-Spektrum des 2-Methoxy-4,6-di(methoxymethoxy)acetophenons, I04 in CDCl$_3$.

Tab. 7: Peaks des 1H-NMR-Spektrums von I04 in CDCl$_3$:

<table>
<thead>
<tr>
<th>δ [ppm]</th>
<th>Intensität</th>
<th>Signaltyp</th>
<th>Kopplungskonstante, J, [Hz]</th>
<th>Protonenzuordnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.90</td>
<td>1H</td>
<td>Singulett</td>
<td>-</td>
<td>CO-H</td>
</tr>
<tr>
<td>7.83</td>
<td>2H</td>
<td>Dublett von Tripletts</td>
<td>8.8 und 2.5 Hz</td>
<td>Aromat: H-C2/H-C6</td>
</tr>
<tr>
<td>7.14</td>
<td>2H</td>
<td>Dublett von Tripletts</td>
<td>8.8 und 2.5 Hz</td>
<td>Aromat: H-C3/H-C5</td>
</tr>
<tr>
<td>5.25</td>
<td>2H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_2$-O</td>
</tr>
<tr>
<td>3.49</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_3$</td>
</tr>
</tbody>
</table>

Das im tiefen Feld (9.90 ppm) erscheinende Aldehyd-Proton sowie die bei 5.25 bzw. 3.49 ppm befindlichen Schutzgruppen-Peaks zeigen das erfolgreiche Einführen der Schutzgruppe und den Erhalt der Aldehyd-Funktionalität an und sind ziemlich analog zum Spektrum von I02. Von den vier aromatischen Protonen sind aus Symmetriegründen jeweils zwei ident (H-C6 und H-C2 bzw. H-C3 und H-C5). Die daraus resultierenden zwei 2H-Peaks sind aufgrund der ortho-Kopplung (+dem kleinen Anteil der para-Kopplung) zu einem relativ weiten Dublett aufgespalten (8.8 Hz), das durch die zwei unterschiedlichen meta-Kopplungen eine zusätzliche Aufspaltung erfährt. Diese Aufspaltung ist einerseits von Auflösungsvermögen...

4.2.2.2 Darstellung des 2'-Methoxy-4,4',6'-tri(methoxymethoxy)chalkons, V04

4.2.2.1 Reaktionsschema

I03 wurde nun mit I04 kondensiert. Es erfolgt dies unter analogen Bedingungen wie bei V01.

Abb. 31.: Darstellung des 2'-Methoxy-4,4',6'-tri(methoxymethoxy)chalkons, V04

Bei der dünnschichtchromatographischen Reaktionsverfolgung zeigte sich anhand eines deutlich sichtbaren gelben Peaks, dass offensichtlich ein Kondensationsprodukt gebildet wurde. Es wurde dieses mittels SC (Hexan:EtOAc = 7:3) gereinigt und eine NMR-Probe der nach Reinigung und Lösungsmittelentfernung gewonnen hellgelben, hochviskosen Flüssigkeit entnommen.
4.2.2.2.2 1H-NMR-Spektrum

Tab. 8: Peaks des 1H-NMR-Spektrums von V04 in CDCl$_3$:

<table>
<thead>
<tr>
<th>δ [ppm]</th>
<th>Intensität</th>
<th>Signaltyp</th>
<th>Kopplungskonstante, J, [Hz]</th>
<th>Protonenzuordnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.47</td>
<td>1H</td>
<td>Dublett von Tripletts</td>
<td>8.8 und 2.5</td>
<td>Aromat: H-C2/H-C6</td>
</tr>
<tr>
<td>7.31</td>
<td>1H</td>
<td>Dublett</td>
<td>16.0</td>
<td>H-alpha</td>
</tr>
<tr>
<td>7.02</td>
<td>2H</td>
<td>Dublett von Tripletts</td>
<td>1.3</td>
<td>Aromat: H-C3, H-C5</td>
</tr>
<tr>
<td>6.86</td>
<td>1H</td>
<td>Dublett</td>
<td>15.8</td>
<td>H-beta</td>
</tr>
<tr>
<td>6.50</td>
<td>1H</td>
<td>Dublett</td>
<td>2.2</td>
<td>Aromat: H-C'5</td>
</tr>
<tr>
<td>6.36</td>
<td>1H</td>
<td>Dublett</td>
<td>2.2</td>
<td>Aromat: H-C'3</td>
</tr>
<tr>
<td>5.19</td>
<td>2*2H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_2$-O</td>
</tr>
<tr>
<td>5.11</td>
<td>2H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_2$-O</td>
</tr>
<tr>
<td>3.76</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_3$</td>
</tr>
<tr>
<td>3.51</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_3$</td>
</tr>
<tr>
<td>3.47</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_3$</td>
</tr>
<tr>
<td>3.38</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_3$</td>
</tr>
</tbody>
</table>

Die vier aromatischen Protonen des B-Rings zeigen dasselbe Peak-Muster wie vor der Kopplung und erscheinen – gegenüber I04 leicht geshiftet – bei 7.47 bzw. 7.02 ppm als zusätzlich aufgespaltene Dubletts (Details dazu siehe 4.2.2.2.1).
Die beiden Peaks der Doppelbindung bei 7.31 und 6.86 ppm weisen wieder die typische weite Aufspaltung auf (16.0 bzw. 15.8 Hz) und zeigen damit nicht nur die erfolgreiche Kondensation, sondern auch die trans-Konfiguration der Doppelbindung an. Es fällt auf, dass die beiden Kopplungskonstanten nicht exakt gleich sind, was sie eigentlich sein sollten. Eine Erklärung dafür kann im messtechnischen Bereich liegen. Die Peaks weisen in der Regel keine perfekte Gauß-Form auf und sind aus diskreten Messpunkten zusammengesetzt. Insofern ist es zuweilen nicht einfach, die exakte Lage der Peak-Mitte (=Peak-Position) zu ermitteln. In Anbetracht der durchschnittlichen Peak-Breite von 4-6 Hz ist eine Abweichung bei der Positionsbestimmung der Peak-Mitte von 0.3 Hz durchaus denk- und vertretbar. Es wird dieser Abweichung daher keine weitere Beachtung geschenkt und in Zusammenhang mit den vollständig und an ihren erwarteten Positionen vorhandenen Schutzgruppen-Peaks sowie dem Peak für die Methoxy-Protonen davon ausgegangen, dass die Reaktion funktioniert hat und das gewünschte Produkt entstanden ist. Darüber hinaus stimmen sämtliche Peaks mit den in der Literatur zu findenden Angaben überein. Aus dem Spektrum lässt sich außerdem schließen, dass das Produkt in guter Reinheit vorliegt. Es sind nur minimale „Fremdpeaks“ zu erkennen, deren Fläche sich in der Größenordnung von ca. 2-3% der Produktpeaks bewegt. Wie schon bei V03 ist auch hier ein kleiner Ethylacetat-Rest im Spektrum zu erkennen. Mit 66% lag die Ausbeute minimal unter den Literaturwerten (70-77%).

4.2.3 Synthese des 3,4,4′,6′-Tetra(methoxymethoxy)-2′-prenyloxychalkons, V05
Für die Synthese von V05 musste vor der Kondensationsreaktion die Prenylgruppe am Acetophenon eingeführt werden. Dazu wurde I01 an der freien OH-Gruppe mit dem Prenylgruppe versehen. Der so dargestellte 4,6-Di(methoxymethoxy)-2-prenyloxyacetophenon wurde dann, wie in 4.1.1, mit dem entsprechenden Benzaldehyd kondensiert.

4.2.3.1 Darstellung des 4,6-(Methoxymethoxy)-2-prenyloxyacetophenons, I05
4.2.3.1.1 Reaktionsschema
Das Einführen der Prenylgruppe über die Veretherung der freien OH-Gruppe verläuft ähnlich wie die Schützung. Sie wurde mittels 3,3-Dimethylallylbromid und K₂CO₃ in Aceton-Rückfluss bewerkstelligt. Wie in 2.3.1 erwähnt, weist die freie OH-Gruppe, aufgrund des höheren pKₐ-Werts, eine relativ geringe Reaktivität auf. Die Reaktionszeit wurde daher gegenüber der Schützungsreaktion auf 24 h erhöht.
Abb. 33.: Darstellung des 4,6-(Methoxymethoxy)-2-prenyloxyacetophenons, I05

Wie bereits bei Methylierung der freien OH-Gruppe zeigt auch hier eigenartiger Weise die DC neben einem kleinen Edukt-Peak nur einen mit niedrigerem \(R_f \) – Wert als der Ausgangsstoff mit der freien OH-Gruppe (Details dazu siehe 4.2.1.1.1). Aber auch hier zeigte die, nach SC-Reinigung (Hexan: EtOAc = 7:3) und Lösungsmittelentfernung (was einen hellgelben, kristallinen Feststoff lieferte), entnommene NMR-Probe, dass es sich dabei tatsächlich um I05 handelte.

4.2.3.1.2 \(^1\text{H}-\text{NMR}-\text{Sprektrum}\)

Abb. 34.: \(^1\text{H}-\text{NMR}-\text{Spektrum des 4,6-(Methoxymethoxy)-2-prenyloxyacetophenons, I05 in CDCl}_3\)
Tab. 9: Peaks des 1H-NMR-Spektrums von I05 in CDCl$_3$:

<table>
<thead>
<tr>
<th>δ [ppm]</th>
<th>Intensität</th>
<th>Signaltyp</th>
<th>Kopplungskonstante, J, [Hz]</th>
<th>Protonenzuordnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.44</td>
<td>1H</td>
<td>Dublett</td>
<td>1.9</td>
<td>Aromat: H-C5</td>
</tr>
<tr>
<td>6.31</td>
<td>1H</td>
<td>Dublett</td>
<td>1.9</td>
<td>Aromat: H-C3</td>
</tr>
<tr>
<td>5.40</td>
<td>1H</td>
<td>Triplet von Quintupletts</td>
<td>6.6 bzw. 1.3</td>
<td>-CH=</td>
</tr>
<tr>
<td>5.14</td>
<td>2H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_2$-O</td>
</tr>
<tr>
<td>5.12</td>
<td>2H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_2$-O</td>
</tr>
<tr>
<td>4.49</td>
<td>2H</td>
<td>Dublett</td>
<td>6.6</td>
<td>O-CH$_2$-</td>
</tr>
<tr>
<td>3.47</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_3$</td>
</tr>
<tr>
<td>3.45</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_3$</td>
</tr>
<tr>
<td>2.47</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>CO-CH$_3$</td>
</tr>
<tr>
<td>1.76</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>-CH$_3$</td>
</tr>
<tr>
<td>1.71</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>-CH$_3$</td>
</tr>
</tbody>
</table>

4.2.3.2 Darstellung des 3,4,4',6'-Tetra(methoxymethoxy)-2'-prenyloxychalkons, V05

4.2.3.2.1 Reaktionsschema

I05 wurde nun mit I02 kondensiert. Es erfolgt dies unter analogen Bedingungen wie bei V01.
Bei der dünnansichtchromatographischen Reaktionsverfolgung zeigte sich anhand eines deutlich sichtbaren gelben Peaks, dass offensichtlich ein Kondensationsprodukt gebildet wurde. Es wurde dieses mittels SC (Hexan:EtOAc = 7:3) gereinigt und eine NMR-Probe der nach Reinigung und Lösungsmittelentfernung gewonnen hellgelben, hochviskosen Flüssigkeit entnommen.
4.2.3.2.2

Abb. 36: \(^1\)H-NMR-Spektrum des 3,4,4,6-tetra(methoxymethoxy)-2'-prenyloxychalkons, V05 in CDCl\(_3\)

Tab. 10: Peaks des \(^1\)H-NMR-Spektrums von V05 in CDCl\(_3\):

<table>
<thead>
<tr>
<th>(\delta) [ppm]</th>
<th>Intensität</th>
<th>Signaltyp</th>
<th>Kopplungskonstante, (J), [Hz]</th>
<th>Protonenzuordnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.34</td>
<td>1H</td>
<td>Singulett</td>
<td>-</td>
<td>Aromat: H-C2</td>
</tr>
<tr>
<td>7.25</td>
<td>1H</td>
<td>Dublett</td>
<td>16.1</td>
<td>H-alpha</td>
</tr>
<tr>
<td>7.13</td>
<td>2H</td>
<td>Singulett</td>
<td>-</td>
<td>Aromat: H-C5, H-C6</td>
</tr>
<tr>
<td>6.84</td>
<td>1H</td>
<td>Dublett</td>
<td>16.1</td>
<td>H-beta</td>
</tr>
<tr>
<td>6.49</td>
<td>1H</td>
<td>Dublett</td>
<td>1.9</td>
<td>Aromat: H-C5'</td>
</tr>
<tr>
<td>6.37</td>
<td>1H</td>
<td>Dublett</td>
<td>1.9</td>
<td>Aromat: H-C3'</td>
</tr>
<tr>
<td>5.33</td>
<td>1H</td>
<td>Triple von Quintupletts</td>
<td>6.6 bzw. 1.6-</td>
<td>-CH=</td>
</tr>
<tr>
<td>5.26</td>
<td>2H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH(_2)-O</td>
</tr>
<tr>
<td>5.23</td>
<td>2H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH(_2)-O</td>
</tr>
<tr>
<td>5.18</td>
<td>2H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH(_2)-O</td>
</tr>
<tr>
<td>5.10</td>
<td>2H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH(_2)-O</td>
</tr>
<tr>
<td>4.48</td>
<td>2H</td>
<td>Dublett</td>
<td>6.6-</td>
<td>O-CH(_2)-O</td>
</tr>
<tr>
<td>3.51</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH(_3)</td>
</tr>
<tr>
<td>3.50</td>
<td>2*3H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH(_3)</td>
</tr>
<tr>
<td>3.39</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH(_3)</td>
</tr>
</tbody>
</table>
Wie auch schon beim 2'-Methoxy-3,4,4',6'-(methoxymethoxy)chalkon zeigen auch hier die 3 Protonen des B-Rings nicht das erwartete Muster (siehe 4.1.2), sondern lediglich ein 1H Singulett bei 7.34 ppm sowie ein 2H Singulett bei 7.13 ppm. Es fällt auf, dass die beiden Verbindungen, deren 2'-OH-Gruppe verethert ist (unabhängig ob mit Methyl oder Prenyl-Ether), dieses Peak-Muster der B-Ring-Protonen aufweisen.

Die beiden Peaks der Doppelbindung bei 7.25 und 6.84 ppm weisen wieder die typische weite Aufspaltung auf (16.1 Hz). Es besteht somit kaum Zweifel, dass die Kondensation, wie erwartet stattgefunden hat. Die beiden aromatischen Protonen des A-Rings erscheinen als Dubletts (J = 1.9 Hz) bei 6.49 bzw. 6.37 ppm und zeigen zusammen mit den gegenüber I05 nur leicht geshifteten Prenyl-Peaks, dass das Substitutionsmuster des A-Rings erhalten geblieben ist. Auch die Peaks der Schutzgruppen-Protonen sind vollständig vorhanden und an den zu erwartenden Positionen.

Es kann daher davon ausgegangen werde, dass tatsächlich V05 dargestellt wurde. Literaturdaten zu dieser Verbindung sind nicht verfügbar. Der Peak, der dem Ethylacetat zugeordnet werden kann, ist in diesem Falle nicht vernachlässigbar klein. Es handelt sich dabei um den O-CH$_2$-Peak, der also 2 Protonen repräsentiert. Das Integral des Ethylacetat-Peaks ergibt einen relativen Wert von 1, was bedeutet, dass die NMR-Probe 50% Ethylacetat enthielt, was grundsätzlich nicht störte, aber für die Ermittlung der Ausbeute berücksichtigt werden musste. Trotz der Berücksichtigung des oben beschriebenen Umstandes war die Ausbeute mit 80% recht hoch. Auch hier ist, aus Mangel an dementsprechenden Daten, kein direkter Literaturvergleich möglich.

| 1.68 | 3H | Singulett | - | Prenyl-CH$_3$ |
| 1.65 | 3H | Singulett | - | Prenyl-CH$_2$ |

4.2.4 Synthese des 6'-Hydroxy-2',3,4,4'-tetra(methoxymethoxy)-3'-prenylchalkons, V06
Für die Synthese von V06 musste vor der Kondensationsreaktion die Prenylgruppe von I05 an die 3-Position des Acetophenons überführt werden. Es wurde dies mit einer thermischen Umlagerung erreicht. Der so dargestellte 6-Hydroxy-2,4-di(methoxymethoxy)-3-prenylacetophenon wurde dann mit I02 kondensiert.
4.2.4.1 Darstellung des 6-Hydroxy-2,4-di(methoxymethoxy)-3-prenylacetophenons, I06

4.2.4.1.1 Reaktionsschema

Die Prenylgruppe, die bei I05 durch Veretherung der 6-OH-Gruppe eingeführt wurde, wurde zur Gewinnung von I06 thermisch auf die 3-Position, direkt am Aromaten, umgelagert. Es erfolgte dies in N,N-Dimethylanilin bei 180°C unter Stickstoffatmosphäre.

Abb. 37.: Darstellung des 6-Hydroxy-2,4-di(methoxymethoxy)-3-prenylacetophenons, I06

Auffallend war, dass die Edukt-Fraktion die größte der 3 Fraktionen darstellte, dass also die Reaktion nur sehr unzureichenden Umsatz lieferte. Jedoch konnte weder durch längere Reaktionszeit, noch durch Temperaturerhöhung eine Verbesserung des Umsatzes erzielt werden. Auch in der Literatur wird dies als limitierender Faktor der Reaktion beschrieben.33
4.2.4.1.2 ^1H-NMR-Spektrum

![NMR Spectra](image)

Abb. 38.: ^1H-NMR-Spektrum des 6-Hydroxy-2,4-di(methoxymethoxy)-3-prenylacetoephonons, I06 in CDCl$_3$

Tab. 11: Peaks des ^1H-NMR-Spektrums von I06 in CDCl$_3$:

<table>
<thead>
<tr>
<th>δ [ppm]</th>
<th>Intensität</th>
<th>Signaltyp</th>
<th>Kopplungskonstante, J, [Hz]</th>
<th>Protonenzuordnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.91</td>
<td>1H</td>
<td>Singulett</td>
<td>-</td>
<td>OH</td>
</tr>
<tr>
<td>6.46</td>
<td>1H</td>
<td>Singulett</td>
<td>-</td>
<td>Aromat: H-C5</td>
</tr>
<tr>
<td>5.20</td>
<td>2H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH2-O</td>
</tr>
<tr>
<td>5.14</td>
<td>1H</td>
<td>Triplet von Quintupletts</td>
<td>6.6 bzw. 1.3</td>
<td>-CH=</td>
</tr>
<tr>
<td>4.95</td>
<td>2H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_2$-O</td>
</tr>
<tr>
<td>3.50</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_3$</td>
</tr>
<tr>
<td>3.45</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_3$</td>
</tr>
<tr>
<td>3.30</td>
<td>2H</td>
<td>Dublett</td>
<td>6.6</td>
<td>Ar-CH$_2$-</td>
</tr>
<tr>
<td>2.69</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>CO-CH$_3$</td>
</tr>
<tr>
<td>1.76</td>
<td>3H</td>
<td>Dublett</td>
<td>0.6</td>
<td>-CH$_3$</td>
</tr>
<tr>
<td>1.68</td>
<td>3H</td>
<td>Dublett</td>
<td>1.3</td>
<td>-CH$_3$</td>
</tr>
</tbody>
</table>

Das im tiefen Feld gelegene OH-Proton bei 12.91 ppm zeigt, dass die Umlagerung insofern jedenfalls funktioniert hat, als die freie OH-Gruppe wieder als solche vorhanden und nicht mehr verethert ist. Eine weitere Bestätigung der Zielverbindung stellt das Singulett im aromatischen Bereich bei 6.46 ppm dar. Zusammen mit dem Fehlen sonstiger aromatischer
Peaks zeigt es eindeutig, dass der aromatische Ring an einer zusätzlichen Position einen Substituenten trägt. Ob dies die 3- oder die 5-Position ist, lässt sich anhand des Protonenspektrums alleine nicht sagen. Ein Vergleich mit den entsprechenden Spektren in der Literatur zeigt, dass es sich tatsächlich um die 3-Position handelt. Das Triplet von Quintupletts bei 5.14 ppm (J = 6.6 bzw. 1.3 Hz), die beiden Prenyl-CH$_3$ Dubletts bei 1.76 und 1.68 ppm sowie das gegenüber I05 erheblich geshiftete 2H Dublett bei 3.30 ppm zeigen, dass es sich bei besagtem Substituenten um die Prenylkette handelt. Der erwähnte shift des 2H Dubletts von 4.49 ppm beim Edukt (O-CH$_2$-) auf 3.30 beim Produkt (Aromat-CH$_2$-) ist eine weitere Bestätigung, dass die Prenylkette sich nun direkt am aromatischen Ring befindet. Das Vorhandensein der Schutzgruppenpeaks bei 5.20 und 4.95 ppm bzw. 3.50 und 3.45 ppm sowie des alpha-Carbonyl-Peaks bei 2.69 ppm bestätigen, dass das Molekül abgesehen von der Umlagerung der Prenylkette unverändert geblieben ist.

Das Spektrum steht in gutem Übereinklang mit Literaturdaten. Interessanter Weise ist hier eine minimale Aufspaltung der Signale der Prenyl-CH$_3$-Protonen zu erkennen (1.3 bzw. 0.6 Hz), weshalb sie hier als Dubletts angeführt werden. In der Literatur sind sie aber häufig auch als Singulets ausgewiesen. Die Aufspaltung kommt vermutlich durch eine Kopplung über die Doppelbindung mit dem einzelnen Proton der Prenylkette zustande, die hier stärker ausgeprägt ist, als bei der O-Prenylierten Spezies. Aufgrund der sichtbaren Aufspaltung lässt sich auch das stärker aufgespaltene (J = 1.3 Hz) Signal bei 1.68 ppm der zum einzelnen Proton trans-ständigen CH$_3$-Gruppe zuordnen.

Abseits von Aceton, das vermutlich bei der NMR-Proben-Bereitung in die Probe gelangte und nicht im Produkt selbst vorhanden war, lässt das Spektrum auf keine Fremdstoffe in der Probe schließen. Es kann daher von einer guten Reinheit (99%) des Produktes ausgingen werden. Die Ausbeute von 35-40% war mäßig. Es wird dies aber auch in der Literatur so beschrieben.

4.2.4.2 Darstellung des 6′-Hydroxy-2′,3,4,4′-tetra(methoxymethoxy)-3′-prenylchalkons, V06

4.2.4.2.1 Reaktionsschema

I06 wurde nun mit I02 kondensiert. Es erfolgt dies unter analogen Bedingungen wie bei V01.
4.2.4.2.2 1H-NMR-Spektrum

![NMR-Spektrum](attachment:34) NMR Zweite Säule - Produkt (Fraktion 1).esp

Abb. 40: 1H-NMR-Spektrum des 6'-Hydroxy-2',3,4,4'-tetra(methoxymethoxy)-3'-prenyloxychalkons, V06 in CDCl$_3$

Tab. 12: Peaks des 1H-NMR-Spektrums von V06 in CDCl$_3$:

<table>
<thead>
<tr>
<th>δ [ppm]</th>
<th>Intensität</th>
<th>Signaltyp</th>
<th>Kopplungskonstante, J, [Hz]</th>
<th>Protonenzuordnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.90</td>
<td>1H</td>
<td>Singulett</td>
<td>-</td>
<td>OH</td>
</tr>
<tr>
<td>7.78</td>
<td>1H</td>
<td>Dublett</td>
<td>15.5</td>
<td>H-alpha</td>
</tr>
<tr>
<td>7.73</td>
<td>1H</td>
<td>Dublett</td>
<td>15.5</td>
<td>H-beta</td>
</tr>
<tr>
<td>7.45</td>
<td>1H</td>
<td>Dublett</td>
<td>2.2</td>
<td>Aromat: H-C2</td>
</tr>
<tr>
<td>7.29</td>
<td>1H</td>
<td>Dublett von</td>
<td>8.5 bzw. 1.9</td>
<td>Aromat: H-C6</td>
</tr>
<tr>
<td></td>
<td>Dubletts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.19</td>
<td>1H</td>
<td>Dublett</td>
<td>8.5</td>
<td>Aromat: H-C5</td>
</tr>
<tr>
<td>6.50</td>
<td>1H</td>
<td>Singulett</td>
<td>-</td>
<td>Aromat: H-C5'</td>
</tr>
<tr>
<td>5.28</td>
<td>2H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_2$-O</td>
</tr>
<tr>
<td>5.27</td>
<td>2H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_2$-O</td>
</tr>
<tr>
<td>5.22</td>
<td>2H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_2$-O</td>
</tr>
<tr>
<td>5.19</td>
<td>1H</td>
<td>Triplet von</td>
<td>6.6 bzw. 1.3</td>
<td>-CH=</td>
</tr>
<tr>
<td></td>
<td>Quintupletts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.88</td>
<td>2H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_3$-O</td>
</tr>
<tr>
<td>3.54</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_3$</td>
</tr>
<tr>
<td>3.52</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_3$</td>
</tr>
<tr>
<td>3.49</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_3$</td>
</tr>
<tr>
<td>3.46</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_3$</td>
</tr>
<tr>
<td>3.36</td>
<td>2H</td>
<td>Dublett</td>
<td>6.6</td>
<td>Ar-CH$_2$-</td>
</tr>
<tr>
<td>1.79</td>
<td>3H</td>
<td>Dublett</td>
<td>0.6</td>
<td>Prenyl-CH$_3$</td>
</tr>
</tbody>
</table>
Im tiefen Feld befindet sich wieder das Signal des OH-Protons bei 12.90 ppm. Bei 7.78 bzw. 7.73 ppm folgen die Dubletts der Doppelbindung, die in diesem Fall sehr nahe beieinander liegen und wiederum die charakteristische weite Aufspaltung von 15.5 Hz aufweisen. Die aromatischen Protonen des B-Rings zeigen hier die erwartete Struktur (siehe Kapitel 4.1.2.2): bei 7.45 ppm ist das enge Dublett (\(J = 2.2\) Hz) des C2-Protons zu sehen. Es folgt das Dublett von Dubletts (\(J = 8.5\) bzw. 1.9 Hz) des C6-Protons bei 7.29 ppm und schließlich das weite Dublett (\(J = 8.5\) Hz) des C5-Protons bei 7.19 ppm. Das aromatische Proton des A-Rings erscheint bei 6.50 ppm und zeigt im Verbund mit den Signalen der Prenylkette, dem Triplett von Quintupletts bei 5.19 ppm, dem Dublett bei 3.36 ppm sowie den beiden Dubletts bei 1.79 bzw. 1.69 ppm, den Erhalt des Substitutionsmusters an. Auch die Peaks der Schutzgruppen sind vollständig an den erwarteten Positionen. Als Literatur-Vergleich steht in diesem Fall nur ein etwas älterer Artikel zur Verfügung. Das dort genannte NMR Spektrum wurde mit 40 MHz vermessen und weist daher gewisse Unterschiede zu dem hier abgebildeten auf. Aufgrund der oben angeführten Argumentation und der Ähnlichkeit mit dem Literatur-Spektrum wurde aber trotzdem davon ausgegangen, dass tatsächlich \(V_06\) synthetisiert wurde. Ein weiteres Literatur-Argument für die Richtigkeit der Protonenzuordnung ist das extrem ähnliche, literaturmäßig gut bekannte, Spektrum von \(V_07\), das mit dem von \(V_06\) in sehr gutem Übereinklang steht (siehe Kapitel 4.2.5.1.2). Außer einem recht markanten Aceton-Peak, der aber von der Probenbereitung stammt, sind kaum Fremdecks im Spektrum zu erkennen. Es kann von guter Reinheit (98\%) der Probe ausgegangen werden. Die Ausbeute war mit 19\% gering, was mit der Problem-behafteten Reinigung zu erklären ist. Ein direkter Literaturvergleich ist nicht möglich.

4.2.5 Synthese des 6′-Hydroxy-2′,4′,4-tri(methoxymethoxy)-3′-prenylchalkons, \(V_07\)
Für die Synthese von \(V_07\) wurde in Analogie zu \(V_06\) der 6-Hydroxy-2,4-di(methoxymethoxy)-3-prenylacetophenon mit dem 4-(Methoxymethoxy)benzaldehyd kondensiert.

4.2.5.1 Darstellung des 6′-Hydroxy-2′,4′,4-tri(methoxymethoxy)-3′-prenylchalkons, \(V_07\)

4.2.5.1.1 Reaktionsschema
\(I_06\) wurde nun mit \(I_04\) kondensiert. Es erfolgt dies unter analogen Bedingungen wie bei \(V_06\).
Bei der dünnschichtchromatographischen Reaktionsverfolgung zeigte sich anhand eines deutlich sichtbaren gelben Peaks, dass offensichtlich ein Kondensationsprodukt gebildet wurde. Auch hier wurde dieser von einem weiteren gelben Peak mit extrem ähnlichen Laufverhalten quasi überlagert, was wiederum die SC-Reinigung (Hexan:EtOAc = 7:3) sehr verkomplizierte. Von den gewonnen dunkelgelben, hochviskosen Flüssigkeiten wurde eine NMR Probe genommen. Die größere Fraktion konnte so dem Produkt zugeordnet werden. Die andere wurde nicht näher bestimmt.
4.2.5.1.2 1H-NMR-Spektrum

Tab. 13: Peaks des 1H-NMR-Spektrums von V07 in CDCl$_3$:

<table>
<thead>
<tr>
<th>δ [ppm]</th>
<th>Intensität</th>
<th>Signalart</th>
<th>Kopplungskonstante, J, [Hz]</th>
<th>Protonenzuordnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.86</td>
<td>1H</td>
<td>Singulett</td>
<td>-</td>
<td>OH</td>
</tr>
<tr>
<td>7.82</td>
<td>1H</td>
<td>Dublett</td>
<td>15.8</td>
<td>H-alpha</td>
</tr>
<tr>
<td>7.72</td>
<td>1H</td>
<td>Dublett</td>
<td>15.8</td>
<td>H-beta</td>
</tr>
<tr>
<td>7.60</td>
<td>2H</td>
<td>Dublett von Tripletts</td>
<td>8.5 bzw. 2.5</td>
<td>Aromat: H-C2, H-C6</td>
</tr>
<tr>
<td>7.07</td>
<td>2H</td>
<td>Dublett von Tripletts</td>
<td>8.8 bzw. 2.5</td>
<td>Aromat: H-C3, H-C5</td>
</tr>
<tr>
<td>6.50</td>
<td>1H</td>
<td>Singulett</td>
<td>-</td>
<td>Aromat: H-C5’</td>
</tr>
<tr>
<td>5.22</td>
<td>2H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_2$-O</td>
</tr>
<tr>
<td>5.21</td>
<td>2H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_3$</td>
</tr>
<tr>
<td>5.18</td>
<td>1H</td>
<td>Triplet von Quintupletts</td>
<td>6.6 bzw. 1.3</td>
<td>-CH=</td>
</tr>
<tr>
<td>4.88</td>
<td>2H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_3$-O</td>
</tr>
<tr>
<td>3.49</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_3$</td>
</tr>
<tr>
<td>3.47</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_3$</td>
</tr>
<tr>
<td>3.46</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_3$</td>
</tr>
<tr>
<td>3.36</td>
<td>2H</td>
<td>Dublett</td>
<td>6.6</td>
<td>Ar-CH$_2$-</td>
</tr>
<tr>
<td>1.79</td>
<td>3H</td>
<td>Dublett</td>
<td>0.6</td>
<td>Prenyl-CH$_3$</td>
</tr>
<tr>
<td>1.69</td>
<td>3H</td>
<td>Dublett</td>
<td>1.3</td>
<td>Prenyl-CH$_3$</td>
</tr>
</tbody>
</table>
Die Protonen des A-Rings und seiner Substituenten liefern im Wesentlichen dieselben Peaks wie bei V06. Die Protonen der Doppelbindung zeigen die erwartete weite Aufspaltung \(J = 15.8 \text{ Hz} \) und sind gegenüber V06 leicht geshiftet. Die aromatischen Protonen des B-Rings zeigen dasselbe Muster wie dies bei I04 bereits besprochen wurde und sind als Dubletts von Triplets \(J = 8.5 \text{ bzw. } 2.5 \text{ Hz} \) bei 7.60 bzw. 7.07 ppm zu sehen. Auch die Schutzgruppen-Peaks sind an ihren erwarteten Positionen. Das Spektrum steht in sehr gutem Einklang mit Literaturdaten.\(^\text{33}\)

Außer dem von der Probenbereitung stammenden Aceton-Peak ist hier auch ein nicht zu vernachlässigender Ethylacetat-Peak zu erkennen. Es wurde dies im Weiteren bei der Ermittlung der Ausbeute berücksichtigt. Diese war mit 24\% ähnlich niedrig wie bei V06 und auch signifikant niedriger als in der Literatur (40-45\%).\(^\text{33}\) Es fällt auf, dass sowohl in der Literatur als auch bei den hier durchgeführten experimentellen Arbeiten, die Ausbeuten der Verbindungen, die an der 6’-Position eine freie OH-Gruppe tragen deutlich geringer sind als gegenüber den Veretherten.

4.2.6 Synthese des 6’-Methoxy-2’,4’,4-tri(methoxymethoxy)-3’-prenylchalkons, V08

Für die Synthese von V08 wurde vor der Kondensationsreaktion die freie OH-Gruppe des 6-Hydroxy-2,4-di(methoxymethoxy)-3-prenylacetophenons (I06) zusätzlich noch methyliert. Es erfolgte dies analog zur Methylierung von I01. Anschließend wurde mit I04 kondensiert.

4.2.6.1 Darstellung des 6-Methoxyxy-2,4-di(methoxymethoxy)-3-prenylacetophenons, I07

4.2.6.1.1 Reaktionschema

Mit Dimethylsulfat als Methylierungsreagens und Tetrabutylammonium-iodid als Phasentransferkatalysator wurde I06 in DCM/Wasser methyliert.
Auch bei dieser Veretherung der freien OH-Gruppe zeigte sich bei DC-Verfolgung der Reaktion, dass das Produkt einen geringeren R_f-Wert als das Edukt aufwies (siehe Kapitel 4.2.1.1.1 bzw. 4.2.3.1.1). Ansonsten wies die DC auf einen recht guten, fast vollständigen Reaktionsverlauf hin.

Nach Reinigung des Rohprodukts mit SC (Hexan: EtOAc = 7:3) wurde eine NMR Probe genommen.

4.2.6.1.2 ¹H-NMR-Spektrum
Abb. 44.: 1H-NMR-Spektrum des 6-Methoxy-2,4-di(methoxymethoxy)-3-prenylacetophenons, I\textsubscript{07} in CDCl\textsubscript{3}

Tab. 14: Peaks des 1H-NMR-Spektrums von I\textsubscript{07} in CDCl\textsubscript{3}:

<table>
<thead>
<tr>
<th>(\delta) [ppm]</th>
<th>Intensität</th>
<th>Signaltyp</th>
<th>Kopplungskonstante, (J), [Hz]</th>
<th>Protonenzuordnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.53</td>
<td>1H</td>
<td>Singulett</td>
<td>-</td>
<td>Aromat: H-C5</td>
</tr>
<tr>
<td>5.19</td>
<td>2H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH2-O</td>
</tr>
<tr>
<td>5.13</td>
<td>1H</td>
<td>Triplet von Quintupletts</td>
<td>6.6 bzw. 1.3</td>
<td>-CH=</td>
</tr>
<tr>
<td>4.89</td>
<td>2H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH\textsubscript{2}-O</td>
</tr>
<tr>
<td>3.78</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH\textsubscript{3}</td>
</tr>
<tr>
<td>3.47</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH\textsubscript{3}</td>
</tr>
<tr>
<td>3.46</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH\textsubscript{3}</td>
</tr>
<tr>
<td>3.30</td>
<td>2H</td>
<td>Dublett</td>
<td>6.6</td>
<td>O-CH\textsubscript{2}-</td>
</tr>
<tr>
<td>2.48</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>CO-CH\textsubscript{3}</td>
</tr>
<tr>
<td>1.74</td>
<td>3H</td>
<td>Dublett</td>
<td>0.6</td>
<td>-CH\textsubscript{3}</td>
</tr>
<tr>
<td>1.65</td>
<td>3H</td>
<td>Dublett</td>
<td>1.3</td>
<td>-CH3</td>
</tr>
</tbody>
</table>

Das Spektrum zeigt im Wesentlichen dieselben Peaks, wie das des Eduktes (Details siehe 4.2.4.1.2). Lediglich ein Peak bei 3.78 ppm ist zusätzlich vorhanden und zeigt das erfolgreiche Einführen der Methylgruppe an. Dementsprechend ist im tiefen Feld, im Bereich der OH-Protonen kein Peak zu erkennen. Es fällt auf, dass bei 3.95 ppm ein relativ großer Fremdpeak zu sehen ist. Dieser kann keinem Lösungsmittelrest zugeordnet werden. Es muss sich dabei wohl um irgendein Nebenprodukt handeln, dass nicht abgetrennt werden konnte. Ansonsten stimmt das Spektrum sehr gut mit den in der Literatur zu findenden Daten überein.33 Mit 88\% war die Ausbeute ähnlich hoch wie in der Literatur.33

4.2.6.2 Darstellung des 6'-Methoxy-,2',4',4-tri(methoxymethoxy)-3'-prenylchalkons, V\textsubscript{08}

4.2.6.2.1 Reaktionsschema
I\textsubscript{07} wurde nun mit I\textsubscript{04} kondensiert. Es erfolgt dies unter analogen Bedingungen wie bei V\textsubscript{01}.
Bei der dünnschichtchromatographischen Reaktionsverfolgung zeigten sich bei genauer Betrachtung zwei gelbe Peaks, die sehr nahe beieinander liegen. Es hatte sich also offensichtlich auch hier ein schwer abzutrennendes Nebenprodukt gebildet. Nichtsdestotrotz wurde versucht mittels SC (Hexan:EtOAc = 7:3) zwei reine Fraktionen zu gewinnen, von deren die größere mittels NMR-Messung als dem Produkt zugehörig identifiziert wurde.
4.2.6.2.2 1H-NMR-Spektrum

Tab. 15: Peaks des 1H-NMR-Spektrums von V08 in CDCl$_3$:

<table>
<thead>
<tr>
<th>δ [ppm]</th>
<th>Intensität</th>
<th>Signaltyp</th>
<th>Kopplungskonstante, J, [Hz]</th>
<th>Protonenzuordnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.48</td>
<td>2H</td>
<td>Dublett von Tripletts</td>
<td>8.5 bzw. 2.5</td>
<td>Aromat: H-C2, H-C6</td>
</tr>
<tr>
<td>7.37</td>
<td>1H</td>
<td>Dublett</td>
<td>15.9</td>
<td>H-alpha</td>
</tr>
<tr>
<td>7.03</td>
<td>2H</td>
<td>Dublett von Tripletts</td>
<td>8.5 bzw. 2.5</td>
<td>Aromat: H-C3, H-C5</td>
</tr>
<tr>
<td>6.89</td>
<td>1H</td>
<td>Dublett</td>
<td>15.9</td>
<td>H-beta</td>
</tr>
<tr>
<td>6.58</td>
<td>1H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_2$-O</td>
</tr>
<tr>
<td>5.23</td>
<td>2H</td>
<td>Singulett</td>
<td>-</td>
<td>Ar-CH$_2$-O</td>
</tr>
<tr>
<td>5.20</td>
<td>2H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_3$-O</td>
</tr>
<tr>
<td>5.19</td>
<td>1H</td>
<td>Triplet von Quintupletts</td>
<td>6.6 bzw. 1.3</td>
<td>-CH=</td>
</tr>
<tr>
<td>4.90</td>
<td>2H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_3$-O</td>
</tr>
<tr>
<td>3.75</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_3$</td>
</tr>
<tr>
<td>3.50</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_3$</td>
</tr>
<tr>
<td>3.47</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_3$</td>
</tr>
<tr>
<td>3.42</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_3$</td>
</tr>
<tr>
<td>3.35</td>
<td>2H</td>
<td>Dublett</td>
<td>6.6</td>
<td>Ar-CH$_2$-O</td>
</tr>
<tr>
<td>1.76</td>
<td>3H</td>
<td>Dublett</td>
<td>0.6</td>
<td>Prenyl-CH$_3$</td>
</tr>
<tr>
<td>1.67</td>
<td>3H</td>
<td>Dublett</td>
<td>1.3</td>
<td>Prenyl-CH$_3$</td>
</tr>
</tbody>
</table>

Das Spektrum ist im Wesentlichen dasselbe wie das von V07 (Details siehe dort). Ein Unterschied ergibt sich bei den Protonen der Doppelbindung, deren Peaks durch die Methylierung der 6'-OH-Gruppe doch deutlich geshiftet werden und als die bekannten weiten
Dubletts (J = 15.9 Hz) bei 7.37 bzw. 6.89 ppm liegen. Zusätzlich ist bei 3.75 ppm ein 3H Singulett für die 6'-Methylgruppe zu sehen, dafür ist kein Peak im tiefen Feld der OH-Protonen zu erkennen.

Es fällt auf, dass neben einem relativ großen Ethylacetat-Peak, auch einige nicht vernachlässigbar kleine Fremdpeaks zu sehen sind. Diese stammen vermutlich von dem in 4.2.6.2.1 erwähnten Nebenprodukt, dass trotz zweimaligem Säulens nicht vollständig abgetrennt werden konnte.

Ansonsten stimmt das Spektrum perfekt mit den Literaturdaten überein. Mit 44% ist die Ausbeute signifikant niedriger als in der Literatur (66%). Es wird dies auf die problematische SC-Reinigung zurückgeführt. Trotzdem ist die Ausbeute erheblich höher als bei der nicht-methylierten Verbindung, V07.

4.3 Synthese und Charakterisierung des 2'-Amino-4'-methoxy-3,4-di(methoxymethoxy)chalkons, V09

Mit der in 2.3.3 beschriebenen Methode soll V09 synthetisiert werden. Dazu wurde aus dem kommerziell erhältlichen 2-Methoxyanilin (m-Anisidin) mittels Friedel-Crafts-Acetylierung der 2-Amino-4-methoxyacetophenon hergestellt. Dieser wurde dann mit I02 kondensiert.

4.3.1 Darstellung des 2-Amino-4-methoxyacetophenons, I08

4.3.1.1 Reaktionsschema

Mit Acetonitril als Reagens und Aluminiumtrichlorid und Bortrichlorid als Katalysator wurde das 2-Methoxyanilin acetyliert, wie es in 2.3.3 beschrieben ist.

Nach Reinigung des Rohprodukts durch Umkristallisation wurde eine NMR Probe genommen.
4.3.1.2 ¹H-NMR-Spektrum

Abb. 48.: ¹H-NMR-Spektrum des 2-Amino-4-methoxyacetophenons I08 in d-DMSO

Tab. 16: Peaks des ¹H-NMR-Spektrums von I08 in d-DMSO:

<table>
<thead>
<tr>
<th>δ [ppm]</th>
<th>Intensität</th>
<th>Signaltyp</th>
<th>Kopplungskonstante, J, [Hz]</th>
<th>Protonenzuordnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.64</td>
<td>1H</td>
<td>Dublett</td>
<td>8.8</td>
<td>Aromat: H-C6</td>
</tr>
<tr>
<td>7.29</td>
<td>2H</td>
<td>Singulett</td>
<td>-</td>
<td>-NH₂</td>
</tr>
<tr>
<td>6.22</td>
<td>1H</td>
<td>Dublett</td>
<td>2.5</td>
<td>Aromat: H-C3</td>
</tr>
<tr>
<td>6.13</td>
<td>1H</td>
<td>Dublett von Dubletts</td>
<td>8.8 bzw. 2.5</td>
<td>Aromat: H-C5</td>
</tr>
<tr>
<td>3.73</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH₃</td>
</tr>
<tr>
<td>2.41</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>CO-CH₃</td>
</tr>
</tbody>
</table>

Der Peak bei 2.41 ppm zeigt, dass die Acetyl-Funktionalität erfolgreich am aromatischen Ring eingeführt wurde. Das Peak-Muster der aromatischen Protonen mit dem weiten Dublett (J = 8.8 Hz), dem engen Dublett (J = 2.5 Hz) und dem Dublett von Dubletts (J = 8.8 bzw. 2.5 Hz) bei 7.64, 6.22 und 6.13 ppm zeigt, dass die Acetyl-Funktionalität entweder ortho- oder para zur Amino-Gruppe steht. Welches von beiden der Fall ist, lässt sich aufgrund des H-NMR-Spektrums alleine nicht unterscheiden, die Bevorzugung der ortho-Position bei den gegebenen Reaktionsbedingungen (siehe Kapitel 2.3.3) sowie die sehr gute Übereinstimmung mit Literaturdaten lässt aber trotzdem auf eine ortho-Einführung der Acetyl-Funktionalität schließen.

Die Peaks bei 3.73 ppm sowie bei 7.29 ppm zeigen, dass sowohl die Methoxy-Gruppe als auch die Amino-Gruppe selbst unverändert sind. Es besteht somit kein Zweifel, dass I08
synthetisiert wurde.
Das abgebildete Spektrum wurde mit d-DMSO als Lösungsmittel aufgenommen, um die Sichtbarkeit der Stickstoff-Protonen zu erhöhen. In der Literatur ist lediglich ein mit d-Chloroform gemessenes Spektrum vorhanden. Dieses stimmt mit dem hier nicht abgebildeten, aber zusätzlich in d-Chloroform gemessenen Spektrum sehr gut überein. Die Ausbeute war mit 32% geringfügig niedriger als in der Literatur (40-45%).

4.3.2 Darstellung des 2'-Amino-4'-methoxy-3,4-di(methoxymethoxy)chalkons, V09

4.3.2.1 Reaktionsschema
I08 wurde nun mit I02 kondensiert. Es erfolgte dies unter ähnlichen Bedingungen wie V01, mit 3M NaOH als Base und einer kürzeren Reaktionszeit von 24 h.

Bei der dünnenschichtchromatographischen Reaktionsverfolgung zeigte ein gelber Peak, dass offensichtlich ein Kondensationsprodukt entstanden war. Dieses wurde mittels SC (Hexan:EtOAc = 7:3) gereinigt und von dem so erhaltenen gelben Feststoff wurde eine NMR-Probe genommen.
4.3.2.2 1H-NMR-Spektrum

![NMR Spectrum](image)

Tab. 17: Peaks des 1H-NMR-Spektrums von V09 in d-DMSO:

<table>
<thead>
<tr>
<th>δ [ppm]</th>
<th>Intensität</th>
<th>Signaltyp</th>
<th>Kopplungskonstante, J [Hz]</th>
<th>Protonenzuordnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.01</td>
<td>1H</td>
<td>Dublett</td>
<td>9.1</td>
<td>Aromat: H-C6'</td>
</tr>
<tr>
<td>7.75</td>
<td>1H</td>
<td>Dublett</td>
<td>15.5</td>
<td>H-Alpha</td>
</tr>
<tr>
<td>7.58</td>
<td>1H</td>
<td>Dublett</td>
<td>2.2</td>
<td>Aromat: H-C2</td>
</tr>
<tr>
<td>7.56</td>
<td>2H</td>
<td>Singulett</td>
<td>-</td>
<td>-N$_2$</td>
</tr>
<tr>
<td>7.51</td>
<td>1H</td>
<td>Dublett</td>
<td>15.5</td>
<td>H-Beta</td>
</tr>
<tr>
<td>7.41</td>
<td>1H</td>
<td>Dublett von Dubletts</td>
<td>8.7 bzw. 2.1</td>
<td>Aromat: H-C6</td>
</tr>
<tr>
<td>7.13</td>
<td>1H</td>
<td>Dublett</td>
<td>8.2</td>
<td>Aromat: H-C5</td>
</tr>
<tr>
<td>6.28</td>
<td>1H</td>
<td>Dublett</td>
<td>2.5</td>
<td>Aromat: H-C5'</td>
</tr>
<tr>
<td>6.19</td>
<td>1H</td>
<td>Dublett von Dubletts</td>
<td>9.1 bzw. 2.5</td>
<td>Aromat: H-C5'</td>
</tr>
<tr>
<td>5.29</td>
<td>2H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_2$-O</td>
</tr>
<tr>
<td>5.25</td>
<td>2H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_2$-O</td>
</tr>
<tr>
<td>3.76</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_3$</td>
</tr>
<tr>
<td>3.44</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_3$</td>
</tr>
<tr>
<td>3.41</td>
<td>3H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH$_3$</td>
</tr>
</tbody>
</table>

An den beiden weit aufgespaltenen Dubletts ($J = 15.5$ Hz) bei 7.75 und 7.51 ppm lässt sich die erfolgreiche Ausbildung der trans-Doppelbindung erkennen. Das Dublett ($J = 9.1$ Hz) bei 8.01 ppm kann dem 6'-Proton zugeordnet werden und zeigt mit dem Dublett von Dubletts (9.1 bzw. 2.5 Hz) bei 6.28 ppm und dem engen Dublett (2.5 Hz) bei 6.19 ppm, dass der A-
Ring das erwartete Substitutionsmuster trägt. Das breite Singulett bei 7.56 ppm, das den Amino-Protonen zugeordnet werden kann, zeigt zusammen mit den Methoxy-Protonen bei 3.76 ppm, dass diese durch die Reaktion nicht verändert oder abgespalten wurden. Die Peaks bei 7.58, 7.41 bzw. 7.713 ppm passen zu dem erwarteten Peak-Muster der B-Ring-Protonen und können diesen somit zugeordnet werden. Zusammen mit den vollzähligen Schutzgruppensignalen zeigen sie, dass auch der B-Ring unverändert geblieben ist und die Verbindung 09 in der erwarteten Form synthetisiert wurde.

Ein Vergleich mit Literaturdaten ist in diesem Fall nicht möglich, da solche nicht existieren. Außer einem relativ kleinen Ethylacetat-Peak sind keine markanten Fremdpeaks zu erkennen; es kann von guter Reinheit des Produktes ausgegangen werden. Die Ausbeute betrug 50%.

Literaturdaten sind dazu keine bekannt.

4.4 Alternative Syntheseansätze

4.4.1 Chalkon-Synthese mit tBDMS-Schutzgruppe

Wie schon in 2.3.1 beschrieben wurde, liefert der etablierte Syntheseweg für Polyhydroxychalkone – bedingt vor allem durch den problematischen Entschützungsschritt – nur mäßige Ausbeuten. Es wurde bei den experimentellen Arbeiten diese Problematik mehr als bestätigt. Die in der Literatur schon mäßigen Ausbeuten wurden nicht erreicht. Eine Möglichkeit die beschriebenen Probleme zu umgehen, ist die Verwendung der labileren, leichter abzuspalten tBDMS-Schutzgruppe, wie dies schon in 2.3.1.1 beschrieben wurde. Von besonderem Interesse war dabei, ob der von Müller als vielversprechend kommentierte Syntheseweg auch mit den in 2.3.2 beschriebenen Reaktionen, also mit der Darstellung prenylierter Polyhydroxychalkone kompatibel ist. Es sollte dazu der 2,4,6-Trihydroxyacetophenon sowie der 3,4-Dihydroxybenzaldehyde mit tBDMS geschützt werden, um nach erfolgreicher Prenylierung des Acetophenons mit LiHMDS als Base zum entsprechenden Chalkon kondensiert zu werden. Die Abspaltung der tBDMS-Schutzgruppe sollte dann, wie in 2.3.1.1. beschrieben, unproblematisch verlaufen.

4.4.1.1 Darstellung des 2-Hydroxy-4,6,0-di(tert.-butyldimethylsilyloxy)acetophenons, I09

4.4.1.1.1 Reaktionsschema

Über die Zwischenstufe des N-tert-butyldimethylsilylimidazole, einem sehr reaktiven Silierungsreagenz, das durch die Zugabe von Imidazol und dem tBDMS-Cl gebildet wird, wurde der 2,4,6-Trihydroxyacetophenon mit der tBDMS-Schutzgruppe versehen. Es erfolgte dies in trockenem THF und Stickstoffatmosphäre bei 0℃. Wie auch bei der MOM-
Schützung, blieb die 2-Hydroxygruppe ungeschützt, was für eine Einführung der Prenylfunktionalität, wie in 2.3.2 beschrieben, auch notwendig ist.

Abb. 51.: Darstellung des 2-Hydroxy-4,6-O,O-di(tert.-butyldimethylsilyloxy)acetophenons, I09

Die DC-Verfolgung der Reaktion zeigte eine sehr gute Umsetzung zu I09, das aufgrund seiner deutlich verringerten Polarität und damit erhöhtem Rf-Wert sehr gut vom Ausgangsstoff zu scheidem war. Die Reinigung erfolgte mittels SC (Hexan: EtOAc = 95:5) und lieferte, nach Lösungsmittelentfernung, einen hellgelben, klaren, kristallinen Feststoff.

4.4.1.1.2 \(^1\)H-NMR-Spektrum

Tab. 18: Peaks des \(^1\)H-NMR-Spektroms von I09 in CDCl\(_3\):

<table>
<thead>
<tr>
<th>(\delta) [ppm]</th>
<th>Intensität</th>
<th>Signaltyp</th>
<th>Kopplungskonstante, (J), [Hz]</th>
<th>Protonenzuordnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.50</td>
<td>1H</td>
<td>Singulett</td>
<td>-</td>
<td>OH</td>
</tr>
<tr>
<td>6.02</td>
<td>1H</td>
<td>Dublett</td>
<td>2.5</td>
<td>Aromat: H-C3/H-C5</td>
</tr>
<tr>
<td>5.84</td>
<td>1H</td>
<td>Dublett</td>
<td>2.2</td>
<td>Aromat: H-C3/H-C5</td>
</tr>
</tbody>
</table>
Im Wesentlichen ist das Spektrum dasselbe, wie das von I01. Die freie OH-Gruppe wird am Signal bei 13.50 ppm sichtbar, die beiden aromatischen Protonen als Dubletts bei 6.02 bzw. 5.84 ppm und die alpha-Carbonyl-Protonen als Singulett bei 2.62 ppm. Ein großer Unterschied besteht hinsichtlich der Schutzgruppenpeaks, diese sind hier bei sehr geringen ppm-Werten zu finden und erscheinen als zwei 9 H Singuletts für die tert.-Butyl-Protonen und als zwei 6H Singuletts für die Dimethyl-Protonen bei 1.00 und 0.97 ppm bzw. 0.34 und 0.23 ppm. Das Spektrum stimmt sehr gut mit theoretischen Erwartungen überein und lässt auf sehr gute Produktreinheit schließen. Das Spektrum stimmt mit der Literatur überein.\(^{30}\)

Die Ausbeute war mit 80% erheblich besser als bei der entsprechenden MOM-Schützung und wird auch in der Literatur so beschrieben.\(^{30}\)

4.4.1.2 Darstellung des 2-Prenyloxy-4,6-O,O-di(tert.-butyldimethylsilyloxy)acetophenons, I10

4.4.1.2.1 Reaktionsschema

Der tBDMS geschützte Acetophenon sollte nun analog zu dem in 2.3.2 beschriebenen Verfahren mit einer zusätzlichen Prenylfunktionalität versehen werden. Es erfolgte dies mittels 3,3-Diethylallylbromid und K\(_2\)CO\(_3\) in Aceton-Rückfluss.

![Reaction Scheme](image)

Abb. 53.: Darstellung des 2-Prenyloxy-4,6-O,O-di(tert.-butyldimethylsilyloxy)acetophenons, I10
Die DC-Verfolgung der Reaktion zeigte die Bildung einer großen Anzahl von Nebenprodukten an und es konnte keiner der Peaks eindeutig dem erwarteten Produkt zugeordnet werden. Um zu überprüfen, ob überhaupt I10 entstanden war, wurde eine NMR-Probe des Rohproduktes genommen.

4.4.1.1.2 1H-NMR-Spektrum

Die beiden markantesten Peaks bei 0.92 und 0.10 ppm konnten der losen Schutzgruppe zugeordnet werden. Die breiten Peaks im Bereich 1.5 bis 1.8 ppm weisen auf eine komplexe Mischung aus unterschiedlich O-prenylierten Produkten hin. Zusammen lässt sich daher folgern, dass sich bei der Reaktion die Schutzgruppe abgelöst hat und die freien OH-Gruppen zum Teil mit der Prenylkette verethert wurden. Die tBDMS-Schutzgruppe ist für diese Reaktionsführung ungeeignet. Die Schützung des Benzaldehyds wurde dadurch obsolet.

4.4.2 Umprenylierung mit Montmorillonite

Wie in 2.3.2 erwähnt, bietet der Reaktionsschritt der Umlagerung der Prenyl-Gruppe nur sehr mäßige Ausbeuten (30-40%), was auch hier in der experimentellen Arbeit bestätigt wurde. Da in der Literatur eine Einführung der Prenylkette direkt am aromatischen Ring als noch vorteilhafter beschrieben wird, wurde eine alternative Form der Umlagerung erprobt.

4.4.2.1 Reaktionsschema

Der 4,6-Di(methoxymethoxy)-2-prenyloxyacetophenon sollte mittels des Phyllosilikats, Montmorillonite K10®, zum 3-Prenyl- bzw. 5-Prenyl-Analogon umgewandelt werden. Es
erfolgte dies mit einem Massenäquivalent Montmorillonite in DCM bei 0°C.

Abb. 55.: Darstellung des 6-Hydroxy-2,4-di(methoxymethoxy)-5-prenylacetophenons, I11 sowie von I06

Die DC-Verfolgung zeigte zwei markante Peaks. Mittels einer SC (Hexan: EtOAc = 7:3) wurden die beiden Fraktionen getrennt und nach Entfernung des Lösungsmittels NMR-Proben genommen.

4.4.2.2 ¹H-NMR-Spektrum

Tab. 19: Peaks des ¹H-NMR-Spektrums von I11 in CDCl₃:

<table>
<thead>
<tr>
<th>δ [ppm]</th>
<th>Intensität</th>
<th>Signaltyp</th>
<th>Kopplungskonstante, J, [Hz]</th>
<th>Protonenzuordnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.80</td>
<td>1H</td>
<td>Singulett</td>
<td>-</td>
<td>OH</td>
</tr>
<tr>
<td>6.39</td>
<td>1H</td>
<td>Singulett</td>
<td>-</td>
<td>Aromat: H-C3</td>
</tr>
<tr>
<td>5.25</td>
<td>2H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH₂-O</td>
</tr>
<tr>
<td>5.23</td>
<td>2H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH₂-O</td>
</tr>
</tbody>
</table>
Das Spektrum in Abb. 5.6a zeigt ein sehr ähnliches Peak-Muster, wie das von I06. Tatsächlich lassen sich die 5-Prenyl- und die 3-Prenyl-Verbindung anhand des H-NMR Spektrums alleine nicht unterscheiden. Es ist aber eindeutig, dass das abgebildete Spektrum zu einer der beiden Verbindungen gehört (Details siehe 4.2.4.1). Zu I11 gibt es in der Literatur keine Vergleichsdaten; aufgrund der eindeutigen Identifizierung von I06, lässt sich aber auch I11 eindeutig als dieses identifizieren.

Tab. 20: Peaks des 1H-NMR von Produkt 2 in CDCl$_3$:

<table>
<thead>
<tr>
<th>δ [ppm]</th>
<th>Intensität</th>
<th>Signaltyp</th>
<th>Kopplungskonstante, J, [Hz]</th>
<th>Protonenzuordnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.84</td>
<td>1H</td>
<td>Singulett</td>
<td>-</td>
<td>OH</td>
</tr>
<tr>
<td>6.20</td>
<td>1H</td>
<td>Dublett</td>
<td>2.2</td>
<td>Aromat: H-C3/ H-C5</td>
</tr>
<tr>
<td>6.03</td>
<td>1H</td>
<td>Dublett</td>
<td>2.2</td>
<td>Aromat: H-C3/ H-C5</td>
</tr>
<tr>
<td>5.50</td>
<td>1H</td>
<td>Triplet von Quintupletts</td>
<td>6.6 bzw. 1.3</td>
<td>-CH=</td>
</tr>
<tr>
<td>5.18</td>
<td>2H</td>
<td>Singulett</td>
<td>-</td>
<td>O-CH2-O</td>
</tr>
<tr>
<td>4.55</td>
<td>2H</td>
<td>Dublett</td>
<td>6.6</td>
<td>O-CH$_2$-</td>
</tr>
</tbody>
</table>
Das Spektrum in Abb. 56b stammt von dem zweiten Reaktionsprodukt. Es ist sofort
ersichtlich, dass es sich dabei nicht um das gewünschte I06 handelt. Zwar ist im tiefen Feld
das Proton der freien OH-Gruppe zu erkennen, an den bei den Dubletts im aromatischen
Bereich lässt sich aber zweifelsfrei erkennen, dass hier keine Prenylierung am aromatischen
Ring stattgefunden haben kann. Darüber hinaus weist das Dublett bei 4.55 ppm zusammen
mit den lediglich einfach vorhandenen Schutzgruppenpeaks darauf hin, dass eine der beiden
Schutzgruppen abgelöst wurde und nach wie vor eine Prenyloxy-Verbindung vorliegt, wobei
nicht ersichtlich ist, ob die Prenylkette eine der beiden Schutzgruppen quasi ersetzt hat, oder
nach wie vor an der 6-Position vorhanden ist. In jedem Fall ist diese Verbindung für die
weitere Synthese von geringem Nutzen.

In Zusammenhang mit der ebenfalls nur mäßigen Ausbeute für I11 (37%) bedeutet dies, dass
diese Art der Umprenylierung keinen entscheidenden Vorteil gegenüber der in 2.3.2
beschriebenen Methode bietet.

5. Zusammenfassung und Schlussfolgerungen

Es wurde das Polyhydroxychalkon, 2',3,4,4',6'-Pentahydroxychalkon (PHC), erfolgreich
synthetisiert und in Übereinklang mit Literaturdaten charakterisiert. Allerdings erwies sich die
Synthese zum Teil als sehr herausfordernd und problematisch. Im Besonderen das Ablösen
der MOM-Schutzgruppe lieferte deutlich geringere Ausbeuten, als die ohnehin schon sehr
niedrigen Literaturangaben. Als Hauptgrund dafür wurde das Reinigungs-Prozedere mittels
Silica-Gel Flash-Chromatographie identifiziert, bei dem, vieles an Produkt durch
Mischfraktionen verloren geht. Darüber hinaus liegt die Vermutung nahe, dass größere
Mengen Produkt die Säule überhaupt nicht mehr verlassen und quasi hängen bleiben, was
möglicherweise auf die stark ausgeprägte Dipolwechselwirkung der vielen OH-Gruppen mit
dem Silica-Gel zurückzuführen ist. An dieser Tatsache konnten verschiedene
Optimierungsversuche hinsichtlich der Laufmittelzusammensetzung, der Säulendimension
und der Flussgeschwindigkeit des Laufmittels nichts ändern. Nebenbei sei bemerkt, dass sich
das Reinigungsprozedere als extrem zeit- und arbeitsintensiv erwies.
Es wird daher die Etablierung alternativer Reinigungsverfahren für Synthese dieser
Verbindungsklasse empfohlen, etwa reversed-phase-Chromatographie oder HPLC.

Das 2'-Amino-4'-methoxy-3,4-di(methoxymethoxy)chalkon wurde erfolgreich erstmalig synthetisiert und charakterisiert. Auch hier schien, aufgrund der Erfahrung mit den Edukt-Spektren und den anderen Chalkon-Spektren eine 1H-NMR-Spektroskopie als Charakterisierung ausreichend. Auch wenn die Synthese des 2-Amino-4-methoxyacetophenons einen erheblichen Arbeits- und Zeitaufwand darstellte, ist sie, aufgrund der relativ günstigen Edukte, durchaus vielversprechend und liefert einen empfehlenswerten Ansatz für die Synthese weiterer, bisher wenig untersuchter, 2'-Aminochalkone.

Es konnte gezeigt werden, dass die Verwendung der tBDMS-Schutzgruppe für die hier verwendete Methode der Prenylierung des Acetophenons nicht geeignet ist.

Auch die Phyllosilikat-katalysierte Umlagerungsreaktion erwies sich als wenig brauchbar für die hier beschriebenen Synthesen.
6. Experimenteller Teil

6.1 Geräte und Material

6.1.1 DC und SC
Es wurden folgende stationäre Phasen verwendet:
DC: Fluka 60778-25E DC-Alufolien-Kieselgel mit Fluoreszenzindikator
SC: Prolabo® 154425P Silica gel for flash chromatography

Die Detektion erfolgte mit UV-Licht bei 254 nm
Die SC erfolgte als sogenannte Flashchromatographie mit am Laufmittelreservoir angelegtem permanenten Luftstrom und Druckminderventil bei etwa 1.05 Atmosphärendruck.

6.1.2 NMR

6.1 Synthesevorschriften

6.1.1 Darstellung von 2-Hydroxy-4,6-di(methoxymethoxy)acetophenon (I01)

\[
\begin{align*}
\text{C}_{11}	ext{H}_{14}	ext{O}_5, \ M = 168.15 \\
\text{C}_{6}	ext{H}_{10}	ext{O}_4\text{Br}, \ M = 124.94 \\
\text{C}_{9}	ext{H}_{18}O_6, \ M = 266.25
\end{align*}
\]

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Menge</th>
<th>Molmasse[g/mol]</th>
<th>mmol</th>
<th>Äquiv.</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4,6-Trihydroxyasetophenon-Monohydrat</td>
<td>4.6 g</td>
<td>168+18=186</td>
<td>25</td>
<td>1</td>
<td>Aldrich</td>
</tr>
<tr>
<td>Kaliumcarbonat</td>
<td>24.2 g</td>
<td>138</td>
<td>175</td>
<td>7</td>
<td>Fluka</td>
</tr>
<tr>
<td>Aceton</td>
<td>Ca. 150 ml</td>
<td></td>
<td></td>
<td></td>
<td>Fluka</td>
</tr>
<tr>
<td>Brommethylmethylether</td>
<td>5.1 ml</td>
<td>125 (Dichte: 1.531)</td>
<td>62.5</td>
<td>2.5</td>
<td>Aldrich</td>
</tr>
</tbody>
</table>

4.6 g Acetophenon wurden in wasserfreiem Aceton gelöst, das Kaliumcarbonat zugegeben und unter Rückfluss zum Sieden gebracht. Hierauf wurde tropfenweise der
Brommethylethermethylether zugegeben und 3 Stunden unter Rückfluss gerührt. Nach Abkühlen auf Raumtemperatur wurde der Überstand abdekantiert, das Carbonat mit Aceton gewaschen und die vereinigten organischen Phasen am Rotationsverdampfer eingeengt.

SC (Hexan/EtOAc = 7:3) lieferte eine ölige Flüssigkeit, die durch Entfernen von Lösungsmittelresten mittels Hochvakuum zur Kristallisation in Form eines weißen, angenehm riechenden Feststoffs gebracht wurde:

 Ausbeute: 4.08 g (15.9 mmol) → 63.8%

6.1.2 Darstellung von 2-Hydroxy-4,6-0,0-Di(tert.-butyldimethylsilyloxy)acetophenon (109)

\[
\begin{align*}
\text{C}_8\text{H}_8\text{O}_6 & \quad \text{M} = 188.15 \\
\text{C}_2\text{H}_5\text{ClSi} & \quad \text{M} = 150.72 \\
\text{C}_{22}\text{H}_{34}\text{O}_3\text{Si} & \quad \text{M} = 386.67
\end{align*}
\]

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Menge</th>
<th>Molmasse [g/mol]</th>
<th>mmol</th>
<th>Äquiv.</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4,6-Trihydroxyacetophenon-Monohydrat</td>
<td>1.86 g</td>
<td>168+18=186</td>
<td>10</td>
<td>1</td>
<td>Aldrich</td>
</tr>
<tr>
<td>TBDMS-Cl</td>
<td>4.52 g</td>
<td>150.7</td>
<td>30</td>
<td>3</td>
<td>Aldrich</td>
</tr>
<tr>
<td>THF (dry)</td>
<td>Ca. 40 ml</td>
<td></td>
<td></td>
<td></td>
<td>Aldrich</td>
</tr>
<tr>
<td>Imidazol</td>
<td>2.72 g</td>
<td>68</td>
<td>40</td>
<td>4</td>
<td>Aldrich</td>
</tr>
</tbody>
</table>

Es wurden Acetophenon, TBDMS-Cl und Imidazol vorgelegt und Stickstoffatmosphäre hergestellt. Dann wurde unter Rühren und bei 0°C über ein Septum das THF zugegeben und weitere 4 Stunden bei Raumtemperatur gerührt.

SC (Hex: EtOAc = 95:5) liefert eine leicht gelbliche, durchsichtige, hochviskose Flüssigkeit.
Ausbeute: **2.54 g** (8.0 mmol) \rightarrow **80.0 %**

6.1.3 Darstellung von 3,4-di(methoxymethoxy)benzaldehyd (102)

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Menge</th>
<th>Molmasse [g/mol]</th>
<th>mmol</th>
<th>Äquiv.</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,4-Dihydroxybenzaldehyd</td>
<td>2.8 g</td>
<td>138.12</td>
<td>20</td>
<td>1</td>
<td>Aldrich</td>
</tr>
<tr>
<td>Kaliumcarbonat</td>
<td>19.3 g</td>
<td>138</td>
<td>140</td>
<td>7</td>
<td>Fluka</td>
</tr>
<tr>
<td>Aceton</td>
<td>Ca. 150 ml</td>
<td></td>
<td></td>
<td></td>
<td>Fluka</td>
</tr>
<tr>
<td>Brommethylmethylether</td>
<td>4.1 ml</td>
<td>125 (Dichte: 1.531)</td>
<td>50</td>
<td>2.5</td>
<td>Aldrich</td>
</tr>
</tbody>
</table>

2.8 g Benzaldehyd wurden in wasserfreiem Aceton gelöst, das Kaliumcarbonat zugegeben und unter Rückfluss zum Sieden gebracht. Hierauf wurde tropfenweise der Brommethylmethylether zugegeben und 3 Stunden unter Rückfluss gerührt. Nach Abkühlen auf Raumtemperatur wurde der Überstand abdekantiert, das Carbonat mit Aceton gewaschen und die vereinigten organischen Phasen am Rotationsverdampfer eingeengt.

SC (Hexan/EtOAc = 1:1) lieferte eine ölige Flüssigkeit, die durch Entfernen von Lösungsmittelresten mittels Hochvakuum zur Kristallisation in Form eines weißen, angenehm riechenden Feststofes gebracht wurde:

Ausbeute: **2.63 g** (11.6 mmol) \rightarrow **58.1 %**
6.1.4 Darstellung von 4-(Methoxymethoxy)benzaldehyd (I04)

\[
\begin{align*}
\text{Substanz} & \quad \text{Menge} & \quad \text{Molmasse [g/mol]} & \quad \text{mmol} & \quad \text{Äquiv.} & \quad \text{Quelle} \\
2-\text{Hydroxybenzaldehyd} & \text{1.8 g} & 122 & 15 & 1 & \text{Aldrich} \\
\text{Kaliumcarbonat} & \text{10.4 g} & 138 & 75 & 5 & \text{Fluka} \\
\text{Aceton} & \text{Ca. 75 ml} & & & & \text{Fluka} \\
\text{Brommethylmethylether} & \text{1.9 ml} & 125 (Dichte: 1.531) & 22.5 & 1.5 & \text{Aldrich}
\end{align*}
\]

1.8 g Benzaldehyd wurden in wasserfreiem Aceton gelöst, das Kaliumcarbonat zugegeben und unter Rückfluss zum Sieden gebracht. Hierauf wurde tropfenweise der Brommethylmethylether zugegeben und 3 Stunden unter Rückfluss gerührt. Nach Abkühlen auf Raumtemperatur wurde der Überstand abdekantiert, das Carbonat mit Aceton gewaschen und die vereinigten organischen Phasen am Rotationsverdampfer eingeengt.

SC (Hexan/EtOAc = 7:3) und Lösungsmittelerste-Entfernung mittels Hochvakuum lieferte eine klare, ölige Flüssigkeit

Ausbeute: 2.00 g (12.0 mmol) \(\rightarrow\) 80.1%

6.1.5 Darstellung von 2-Methoxy-4,6-di(methoxymethoxy)acetophenon (I03)

\[
\begin{align*}
\text{Substanz} & \quad \text{Menge} & \quad \text{Molmasse [g/mol]} & \quad \text{mmol} & \quad \text{Äquiv.} & \quad \text{Quelle} \\
2-\text{Hydroxy-4,6-di(methoxymethoxy)acetophenon} & \text{0.53 g} & 256.09 & 2 & 1 & \text{I01}
\end{align*}
\]
Es wurden 2 mmol Acetophenon, 3 mmol NaOH und 0.2 mmol Tetrabutylammonium-iodid in 10 ml DCM/Wasser (3:2) vorgelegt und gut gerührt. Dann wurden tropfenweise 2.2 mmol DMS zugegeben und 24 h bei Raumtemperatur gerührt. Die Phasen wurden getrennt und die wässrige Phase mit DCM extrahiert. Die vereinigten organischen Phasen wurden mit Wasser gewaschen, über Na₂SO₄ getrocknet und am Rotationsverdampfer eingeengt.

SC (Hexan:EtOAc = 7:3) und Lösungsmittelreste-Entfernung mittels Hochvakuum liefert eine ölge, klare Flüssigkeit.

Ausbeute: \(0.45\) g (1.6 mmol) \(\rightarrow 82.4\%\)

6.1.6 Darstellung von 4,6-Di(methoxymethoxy)-2-prenyloxyacetophenon (I05)

![Chemical Structure]

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Menge</th>
<th>Molmasse[g/mol]</th>
<th>mmol</th>
<th>Äquiv.</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Hydroxy-4,6-di(methoxymethoxy)acetophenon</td>
<td>3.4 g</td>
<td>256.09</td>
<td>13.4</td>
<td>1</td>
<td>I01</td>
</tr>
<tr>
<td>Kaliumcarbonat</td>
<td>7.4 g</td>
<td>138</td>
<td>53.6</td>
<td>4</td>
<td>Fluka</td>
</tr>
<tr>
<td>Aceton</td>
<td>Ca. 250 ml</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethylallylbromid</td>
<td>2.3 ml</td>
<td>149 (Dichte: 1.29)</td>
<td>20.1</td>
<td>1.5</td>
<td>Aldrich</td>
</tr>
</tbody>
</table>

3.4 g Acetophenon wurden in Aceton gelöst, das Kaliumcarbonat zugegeben und unter Rückfluss zum Sieden gebracht. Hierauf wurde tropfenweise das Dimethylallylbromid zugegeben und 24 Stunden unter Rückfluss gerührt.

Nach Abkühlen auf Raumtemperatur wurde der Überstand abdekantiert, das Carbonat mit Aceton gewaschen und die vereinigten organischen Phasen am Rotationsverdampfer
eingeengt.
SC mit Hexan/Ethylacetat 7:3 lieferte eine leicht gelbliche, ölige Flüssigkeit, die durch Entfernung von Lösungsmittelresten mittels Hochvakuum zu Kristallisation in Form eines leicht gelblichen Feststoffes gebracht wurde.

Ausbeute: 3.9 g (12.1 mmol) \(\rightarrow\) 90.2%

6.1.7 Darstellung von 2-Prenyloxy-4,6-O,O-Di(tert.-butyldimethylsilyloxy)acetophenon (I10)

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Menge</th>
<th>Molmasse [g/mol]</th>
<th>mmol</th>
<th>Äquiv.</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Hydroxy-4,6-O,O-Di(tert.-butyldimethylsilyloxy)acetophenon</td>
<td>0.3 g</td>
<td>256.09</td>
<td>1.34</td>
<td>1</td>
<td>I09</td>
</tr>
<tr>
<td>Kaliumcarbonat</td>
<td>0.7 g</td>
<td>138</td>
<td>5.36</td>
<td>4</td>
<td>Fluka</td>
</tr>
<tr>
<td>Aceton</td>
<td>Ca. 25 ml</td>
<td></td>
<td></td>
<td></td>
<td>Fluka</td>
</tr>
<tr>
<td>Dimethylallylbromid</td>
<td>0.23 ml</td>
<td>149 (Dichte: 1.29)</td>
<td>2.01</td>
<td>1.5</td>
<td>Aldrich</td>
</tr>
</tbody>
</table>

0.3 g I09 wurden in Aceton gelöst, das Kaliumcarbonat zugegeben und unter Rückfluss zum Sieden gebracht. Hierauf wurde tropfenweise das Dimethylallylbromid zugegeben und 24 Stunden unter Rückfluss gerührt.
Nach Abkühlen auf Raumtemperatur wurde der Überstand abdekantiert, das Carbonat mit Aceton gewaschen und die vereinigten organischen Phasen am Rotationsverdampfer eingeengt.
NMR der Rohmischung zeigte, dass sich die Schutzgruppen vollständig abgelöst hatten, dafür ein komplexes Gemisch aus verschiedentlich prenylierten Acetophenonen entstanden war.
Ausbeute: 0 g (0 mmol) \(\rightarrow\) 0%
6.1.8 Darstellung von 6-Hydroxy-2,4-di(methoxymethoxy)-3-prenylacetophenon (I06)

Es wurde eine Lösung von 4,6-Di(methoxymethoxy)-2-prenyloxyacetophenon in N,N-Dimethylanilin (98%) unter Stickstoff vorgelegt und 3 Stunden bei 180°C refluxiert. Anschließend wurde auf Raumtemperatur abgekühlt und Ethylacetat (70 ml) hinzugefügt. Die Mischung wurde 2-mal mit 70 ml 1M HCl sowie 2-mal mit 70 ml H₂O gewaschen, die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und am Rotationsverdampfer eingeengt.

Ausbeute: 0.53 g (1.6 mmol) \(\rightarrow\) 40.9%

6.1.9 Darstellung von 6-Hydroxy-2,4-di(methoxymethoxy)-5-prenylacetophenon (I11)
Eine Lösung von I05 in DCM wurde unter Rühren auf 0°C gekühlt und nach Zugabe des Montmorillonite 1 Stunde bei 0°C gerührt.
Nach Abfiltrieren des Feststoffs wurde die Produktmischung am Rotationsverdampfer eingeengt und einer SC Reinigung zugeführt. (7:3=Hex:EtOAc). Es wurden 2 Fraktionen gewonnen, die nach Einengung am Rotationsverdampfer und Entfernung der Lösungsmittelreste durch Hochvakuum einer NMR-Messung zugeführt wurden.

Ausbeute: I11: 0.10 g (0.3 mmol) \(\rightarrow\) 37.5%
I06: 0 g (0 mmol) \(\rightarrow\) 0%

6.1.10 Darstellung von 6-Methoxy-4,6-di(methoxymethoxy)-3-prenylacetophenon (I07)

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Menge</th>
<th>Molmasse[g/mol]</th>
<th>mmol</th>
<th>Äquiv.</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Hydroxy-4,6-di(methoxymethoxy)-3-prenylacetophenon</td>
<td>1.0 g</td>
<td>324</td>
<td>3</td>
<td>1</td>
<td>I06</td>
</tr>
<tr>
<td>Natriumhydroxid</td>
<td>0.19 g</td>
<td>40</td>
<td>4.5</td>
<td>1.5</td>
<td>VWR</td>
</tr>
<tr>
<td>DCM:Wasser (3:2)</td>
<td>20 ml</td>
<td></td>
<td></td>
<td></td>
<td>Aldrich</td>
</tr>
<tr>
<td>Tetrabutylammonium-iodid</td>
<td>0.11g</td>
<td>369.4</td>
<td>0.3</td>
<td>0.1</td>
<td>Aldrich</td>
</tr>
<tr>
<td>Dimethylsulfat</td>
<td>0.34 ml</td>
<td>126 (Dichte=1.33)</td>
<td>3.6</td>
<td>1.2</td>
<td>Aldrich</td>
</tr>
</tbody>
</table>

Es wurden 3 mmol Acetophenon, 4.5 mmol NaOH und 0.3 mmol Tetrabutylammonium-iodid in 20 ml DCM/Wasser (3:2) vorgelegt und gut gerührt. Dann wurden tropfenweise 3.6 mmol DMS zugegeben und weitere 24 h bei Raumtemperatur gerührt. Die Phasen wurden getrennt und die wässrige Phase mit DCM extrahiert. Die vereinigten organischen Phasen wurden mit
Wasser gewaschen und am Rotationsverdampfer eingeengt. Lösungsmittelreste wurden mittels Hochvakuum entfernt.

Ausbeute: **0.90** g (2.7 mmol) \(\rightarrow \) **88.7%**

6.1.11 Darstellung von 2-Amino-4-methoxyacetophenon (I08)

![Chemical structure](image)

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Menge</th>
<th>Molmasse [g/mol]</th>
<th>mmol</th>
<th>Äquiv.</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>m-Anisidin</td>
<td>6.15 g</td>
<td>123</td>
<td>50</td>
<td>1</td>
<td>Aldrich</td>
</tr>
<tr>
<td>BCl₃</td>
<td>50 ml</td>
<td>117 [1M in DCM]</td>
<td>50</td>
<td>1</td>
<td>Aldrich</td>
</tr>
<tr>
<td>AlCl₃</td>
<td>7.32 g</td>
<td>133</td>
<td>55</td>
<td>1.1</td>
<td>Aldrich</td>
</tr>
<tr>
<td>Acetonitril</td>
<td>3.12 ml</td>
<td>41,05 (0,78 g/ml)</td>
<td>60</td>
<td>1.2</td>
<td>Aldrich</td>
</tr>
<tr>
<td>Toluol</td>
<td>32 ml</td>
<td></td>
<td></td>
<td></td>
<td>Aldrich</td>
</tr>
</tbody>
</table>

Ausbeute: **2.62** g (15.8 mmol) \(\rightarrow \) **31.7%**
6.1.12 Darstellung von 2'-Hydroxy-3,4,4',6'-tetra(methoxymethoxy)chalkon (V01)

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Menge</th>
<th>Molmasse [g/mol]</th>
<th>mmol</th>
<th>Äquiv.</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Hydroxy-4,6-di(methoxymethoxy)aceto phenon</td>
<td>2.05 g</td>
<td>256.09</td>
<td>8.0</td>
<td>1</td>
<td>I01</td>
</tr>
<tr>
<td>3,4-Dimethoxymethoxybenzaldehyde</td>
<td>1.99 g</td>
<td>226.08</td>
<td>8.8</td>
<td>1.1</td>
<td>I02</td>
</tr>
<tr>
<td>Kaliumhydroxid</td>
<td>55.2 g</td>
<td>138</td>
<td>400</td>
<td>50</td>
<td>VWR</td>
</tr>
<tr>
<td>Ethanol</td>
<td>20 ml</td>
<td></td>
<td></td>
<td></td>
<td>VWR</td>
</tr>
<tr>
<td>Ethanol/Wasser 3/2</td>
<td>100 ml</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zu einer kalten Lösung (0°C) von 1 Äquivalent I01 und 1.1 Äquivalent I02 in 20 ml Ethanol wurde tropfenweise eine kalte Lösung von 50 Äquivalenten Kaliumhydroxid in 100 ml Ethanol/Wasser (3/2) bei 0°C unter Stickstoff gegeben. Es wurde zunächst 1 Stunde im Eisbad gerührt, dann 3 Tage bei Raumtemperatur unter Stickstoff. Anschließend wurde auf Eiswasser gegossen, mit 3N HCl angesäuert und mit Ethylacetat extrahiert. Die vereinigten organischen Phasen wurden mit Wasser gewaschen, über Natriumsulfat getrocknet und am
Rotationsverdampfer eingeengt, wobei die Substanz als dunkelgelber, kristalliner Feststoff ausfiel.

Die Kristalle wurden in möglichst wenig Ethylacetat gelöst (warm), einrotiert bis sich erste Anzeichen einer beginnenden Kristallisation zeigten und die Lösung daraufhin mit etwa 5ml Hexan versetzt, was eine recht rasche Kristallisation zur Folge hatte. Diese wurde durch Kühlung vervollständigt, der Überstand abdekantiert, die Kristalle mit kaltem Hexan gewaschen und Lösungsmittelreste mit Hochvakuum entfernt.

Ausbeute: 2.59 g (5.6 mmol) → 70.0%

6.1.13 Darstellung von 2'-Methoxy-3,4,4',6'-tetra(methoxymethoxy)chalkon (V03)
V03 wurde nach Vorschrift 6.1.13 dargestellt.
C_{24}H_{30}O_{10} M = 478.18 g/mol

Ausbeute: 77.2%

6.1.14 Darstellung von 2'-Methoxy-4,4',6'-tri(methoxymethoxy)chalkon (V04)
V04 wurde nach Vorschrift 6.1.13 dargestellt.
C_{22}H_{26}O_{8} M = 418.16 g/mol

Ausbeute: 65.9%

6.1.15 Darstellung von 2'-Prenyloxy-3,4,4',6'-tetra(methoxymethoxy)chalkon (V05)
V05 wurde nach Vorschrift 6.1.13 dargestellt.
C_{28}H_{36}O_{10} M =532.59 g/mol

Ausbeute: 80.2%

6.1.16 Darstellung von 6'-Hydroxy-2',3,4,4'-tetra(methoxymethoxy)-3'-prenylchalkon (V06)
V06 wurde nach Vorschrift 6.1.13 dargestellt.
C_{28}H_{36}O_{10} M =532.59 g/mol

Ausbeute: 19.2%

6.1.17 Darstellung von 6'-Hydroxy-2',4,4'-tri(methoxymethoxy)-3'-prenylchalkon (V07)
V07 wurde nach Vorschrift 6.1.13 dargestellt.
C_{28}H_{32}O_{8} M = 472.21 g/mol
Ausbeute: 24.2%

6.1.18 Darstellung von 6'-Methoxy-2',4,4'-tri(methoxymethoxy)-3'-prenylchalkon (V08)
V08 wurde nach Vorschrift 6.1.13 dargestellt.
C_{27}H_{34}O_8 \quad M = 486.23 \text{ g/mol}
Ausbeute: 44.2%

6.1.19 Darstellung von 2'-Amino-4'-methoxy-3,4-di(methoxymethoxy)chalkon (V09)

\begin{align*}
\text{Zu einer kalten Lösung des Acetophenons und Benzaldehyd in EtOH wurde tropfenweise kalte NaOH Lösung bei 0°C unter Stickstoff gegeben. Es wurde zunächst 1 Stunde im Eisbad gerührt, dann 1 Tag bei Raumtemperatur unter Stickstoff.}
\end{align*}

SC (Hexan:EtOAc = 7:3) lieferte, nach Hochvakuumtrocknung, einen hellgelben, kristallinen Feststoff.

Ausbeute: **0.93 g (2.5 mmol) → 50.0%**

6.1.20 Darstellung von 2',3,4,4',6'-Pentahydroxychalkon (V02)

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Menge</th>
<th>Molmasse [g/mol]</th>
<th>mmol</th>
<th>Äquiv.</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>2'-Hydroxy-3,4,4',6'-tetra(methoxymethoxy)chalkon</td>
<td>1.2 g</td>
<td>464.46</td>
<td>2.6</td>
<td>1</td>
<td>V01</td>
</tr>
<tr>
<td>Methanol</td>
<td>10ml</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCl (3N)</td>
<td>2ml</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dieser wurde in möglichst wenig Methanol gelöst und mittels SC (DCM: MeOH = 95:5) gereinigt. Die Fraktionen wurden mittels UV/VIS auf ihre Produkthaltigkeit hin untersucht, da mittels DC keine eindeutige Zuordnung möglich war (siehe 4.1.4)

Ausbeute: **0.12 g (0.4 mmol) → 16.0%**
Abkürzungen

d Peak-Form: Dublett im NMR Spektrum
DC Dünnschichtchromatographie
d-Aceton deuteriertes Aceton
d-Chloroform deuteriertes Chloroform
DCM Dichlormethan
dd Peak-Form: Dublett von Dubletts im NMR Spektrum
DMS Dimethylsulfat
d-DMSO deuteriertes Dimethylsulfoxid
EtOAc Ethylacetat
EtOH Ethanol
I01 Intermediat 01, 2-Hydroxy-4,6-di(methoxymethoxy)acetophenon
I02 Intermediat 02, 3,4-Di(methoxymethoxy)benzaldehyd
I03 Intermediat 03, 2-Methoxy-4,6-di(methoxymethoxy)acetophenon
I04 Intermediat 04, 4-(Methoxymethoxy)benzaldehyd
I05 Intermediat 05, 4,6-Di(methoxymethoxy)-2-prenyloxyacetophenon
I06 Intermediat 06, 6-Hydroxy-2,4-di(methoxymethoxy)-3-prenylacetophenon
I07 Intermediat 07, 6-Methoxy-2,4-di(methoxymethoxy)-3-prenylacetophenon
I08 Intermediat 08, 2-Amino-4-methoxyacetophenon
I09 Intermediat 09, 2-Hydroxy-4,6-O,O-Di(tert.-butyldimethylsilyloxy)acetophenon
I10 Intermediat 11, 2-Prenyloxy-4,6-O,O-Di(tert.-butyldimethylsilyloxy)acetophenon
I11 Intermediat 12, 6-Hydroxy-2,4-di(methoxymethoxy)-5-prenylacetophenon
LiHMDS Lithium-bis(trimethylsilyl)amid
MeOH Methanol
MOM Methoxymethylether
MOM-Br Bromomethyl-methylether
PHC 2‘,3,4,4’,6’-Pentahydroxychalkon
R.T. Raumtemperatur
SC Säulenchromatographie
THF Tetrahydrofuran
tBDMS tertiär-Butyl-dimethylsilyl
V01 Verbindung 01, 2‘-Hydroxy-3,4,4’,6’-tetra(methoxymethoxy)chalkon
Verbindung 02, 2',3,4,4',6'-Pentahydroxychalkon

Verbindung 03, 2'-Methoxy-3,4,4',6'-tetra(methoxymethoxy)chalkon

Verbindung 04, 2'-Methoxy-4,4',6'-tri(methoxymethoxy)chalkon

Verbindung 05, 2'-Prenyloxy-3,4,4',6'-tetra(methoxymethoxy)chalkon

Verbindung 06, 6'-Hydroxy-2',3,4,4'-tetra(methoxymethoxy)-3'-prenylchalkon

Verbindung 07, 6'-Hydroxy-2',4',4'-tri(methoxymethoxy)-3'-prenylchalkon

Verbindung 08, 6'-Methoxy-2',4',4'-tri(methoxymethoxy)-3'-prenylchalkon

Verbindung 09, 2'-Amino-4'-methoxy-3,4-di(methoxymethoxy)chalkon

Literaturverzeichnis

1 Havsteen, B.H. The biochemistry and medical significance oft he flavonoids, Pharmacology & Therapeutics 96, 67-202 (2002)
13 Ávila, H., de Fátima Albino Smânia, E., Delle Monache, F., Smânia Júnior, A. Structure-activity relationship of antibacterial chalcones, Bioorganic & Medicinal Chemistry 16, 9790-

Kakati D., Sarma J. C., Microwave assisted solvent free synthesis of 1,3-diphenylpropenones, *Chemistry Central Journal* 5:8, (2011)

Hesse M., Meier H., Zeeh B. Spektroskopische Methoden in der organischen Chemie. 7. Auflage, Thieme, Stuttgart 2005, S. 104-143

Florian Strasser
Czerningasse 29/2/24, 1020 Wien
Mobil: 0650 4813348, Mail: a0707329@unet.univie.ac.at

Geboren am 14. Oktober 1985 in Wels, OÖ

Berufliche Erfahrung

Seit 10/2011
BPC Uni Wien, Diplomand
- Planung und Durchführung organischer Synthesen
- Planung und Durchführung diverser Reinigungsverfahren
- Analysen mittels NMR, UV/VIS
- Verfassen einer Diplomarbeit

Seit 09/2007
Uni Wien, Student für LA Chemie und Physik
- SS 11, WS11/12 und SS 12: Tutor bei Prof. Flandorfer; Schulversuche aus anorganischer Chemie
- SS 11: Tutor bei Dr. Embacher: Theoretische Physik für LA
- SS 12: Tutor bei Mag. Mühl: Schulversuche aus organischer Chemie

07/2006 – 04/2007
ÖBH, Auslandseinsatzpräsenzdienst (KFOR 15)
- Erfolgreiche Absolvierung des Kraftfahrkurs G3a
- Sicherungs- und Transportaufgaben im Einsatzgebiet Suava Reka

H.B.Fuller Austria Produktions GesmbH Wels, Chemiewerker
- Hilfsarbeiten bei der Produktion sowie in der Qualitätskontrolle

05/2005 – 10/2005
ÖBH, Zeitsoldat
- Richtschütze am Kampfpanzer Leopard 2a4
- Assistenzeinsatz GRÜ

Schulbildung

BRG und BG Brucknerstraße Wels, Gymnasium mit sprachlichem Schwerpunkt

VS9, Wels

Zusätzliches

Sprachen
Englisch: sehr gute Kenntnisse im Verständnis (Wort und Schrift) und Anwendung von Schrift; gut in Anwendung von Wort
Französisch: Grundkenntnisse

EDV
Gute Kenntnisse in MS Excel, MS PowerPoint, MS Word, ACD/NMR-Processor, MarvinSketch, QTI-Plot, Mathematica
An dieser Stelle möchte ich Frau Prof. Rompel danken, dass sie mir dieses interessante Thema sowie die nötige Ausrüstung für meine Arbeit zur Verfügung gestellt hat. Auch für die Art der Betreuung, die von Gewährung großer Freiheit und Möglichkeit bzw. Notwendigkeit von sehr viel Eigenständigkeit meinerseits gekennzeichnet war, möchte ich mich ausdrücklich bedanken; ich bin der Überzeugung dabei sehr viel gelernt zu haben, was weit über das Thema der Arbeit selbst hinausgeht.

Sehr dankbar bin ich für ihr stetes Bemühen, die Arbeit am Institut in organisatorischer, finanzieller und kulinarischer Sicht möglichst angenehm und ergiebig zu gestalten.

Ein großer Dank geht auch an die gesamte Arbeitsgruppe der biophysikalischen Chemie. Im Besonderen möchte ich Simon Müller für seine kompetente Unterstützung und hilfreichen Anregungen danken.

Für die vielen NMR-Messungen danke ich der Galanski-Gruppe und ihrem Messpersonal; besonderer Dank geht an Verena, die mir bei den immer wieder auftauchenden Problemen und Missverständnissen kooperativ und hilfreich zur Seite gestanden ist.

Ein herzliches Dankeschön natürlich auch an meine Eltern, ohne deren finanzielle Unterstützung mein Studium nicht in der Form möglich gewesen wäre.

Amen.