Titel der Diplomarbeit

Solubilization of curcumin using a selected cyclodextrin

Verfasserin
Alexandra Rupp

angestrebter akademischer Grad
Magistra der Pharmazie (Mag.pharm.)

Wien, Mai 2012

Studienkennzahl lt. Studienblatt: A 449
Studienrichtung lt. Studienblatt: Pharmazie
Betreuerin / Betreuer: Univ.-Prof. Mag. Dr. Gerhard Buchbauer
ACKNOWLEDGEMENT

This project is a part of a collaborative work between the University of Vienna and the University of Oslo. Most of the work was performed in Oslo, where I spent 3 months from September to December 2010. All measurements, literature search as well as most of the writing were done in Oslo. The final writing was performed back in Vienna. First and foremost I would like to thank my supervisors in Oslo Postdoc Anne Bee Hegge and Prof. Hanne Hjorth Tønnesen for their support. I am exceedingly grateful, Anne Bee Hegge for your help and support in the laboratory, for your help with the HPLC method and teaching me how to use an HPLC. Thank you for sharing your room with me. I'll miss our more or less businesslike conversations. Furthermore, I would like to thank my supervisor in Vienna Prof. Dr. Gerhard Buchbauer for giving me the opportunity to do this research abroad at the University of Oslo. Without the connection between Prof. Dr. Jan Karlsen and Prof. Dr. Gerhard Buchbauer this project could have never been realized. My special gratitude goes to the technical staff in Oslo, especially Tove Larsen for her help with the DSC, Freeze-dryer and the Rotavapor. A great thanks also goes to all the PhD students for their help in the laboratory, for giving me a warm welcome in Oslo and for their friendship. You have made my stay in Oslo unforgettable. A special and warm thank you goes to my boyfriend Georg for his loving support and all his visits to Oslo. Thank you for your inspiration, always being there for me and for your unbelievable love. - Halt die Ohren steif!!!!! - ;) I’m looking forward to our next shared project. I love you. I would like to thank my grandparents for their loving and financial support during my studies in Vienna and also for always being there for me. Furthermore, a special thank you to my friends for their support over the last few years. Finally, I would like to thank my family, especially my parents Monika & Walter and my lovely sister Natascha for all their patience and their unlimited support. I love you.
ABSTRACT

Working with curcuminoids, especially with the main curcuminoide named curcumin and formulate it to improve stability and solubility has been an ongoing ambition in the department of pharmacy, University of Oslo.

Curcumin has an exceedingly low solubility in water. The aim of the present study was to use a selected cyclodextrin to increase the solubility of curcumin in aqueous solutions. The complexation between curcumin and randomized-methylated-β-cyclodextrin was investigated in phosphate buffer at fixed pH 5. The influence of low amounts of alginate, HPMC (Hydroxypropylmethylcellulose) and ethanol on the complexation was then investigated.

All studies show non-linear A_P like curves, which indicates some kind of higher order complexation. The highest curcumin concentration obtained in the present study was a curcumin solubility of 1.77×10^{-4} M detected in 5% (w/v) RMβCD in phosphate buffer (1% (v/v) ethanol), which corresponds to an almost 6000x increase in curcumin solubility, which shows great promise.

To further enhance the solubility of curcumin in aqueous solutions, a solvent evaporation method was selected. For that, a solution of curcumin powder in methanol containing RMβCD was prepared. After evaporation by a rotavapor curcumin is significantly more soluble in its amorphous form than it is before the evaporation in its crystalline form.

An excess of this powder was then diluted with purified water and filtered. After filtration HPMC was dissolved in the filtrate and the solution was lyophilized by a freeze dryer. Here, the method of lyophilization was used to improve the physical and chemical stability of this solution. The drug load of this lyophilized product shows great promise for doing more investigations.
ABSTRACT

Die Arbeit mit Curcuminoiden, insbesondere mit dem Hauptcurcuminoid Curcumin, ist ein permanentes Bestreben der Mitarbeiter des Departments der Pharmazie an der Universität Oslo, Norwegen. Deren Arbeit besteht darin, dieses genannte Curcumin herzustellen und es in seiner Stabilität und Löslichkeit zu verbessern.

Alle Untersuchungen zeigten nicht lineare \(A_p \) Kurven, welche Komplexbildungen höherer Art bedeuten. Die höchste Curcumin-konzentration, welche in dieser ganzen Arbeit erlangt wurde, war eine Curcuminlöslichkeit von \(1.77 \times 10^{-4} \) M, die in 5\% (w/v) RMβCD in Phosphatpuffer (1\% (v/v) Ethanol) gefunden wurde. Dies bedeutet eine fast 6000-fache Erhöhung der Curcuminlöslichkeit, welches sehr vielversprechend scheint.

Um eine weitere Erhöhung der Löslichkeit von Curcumin in wässriger Lösung zu erzielen, wurde ein Lösungsmittelverdampfungsverfahren gewählt. Dieses Verfahren wurde mit einem Rotavapor durchgeführt. Hierzu wurde eine Lösung angefertigt bestehend aus Curcuminpulver und RMβCD, welche in Methanol gelöst sind. Curcumin zeigte nach diesem Verdampfungsverfahren eine deutlichere Erhöhung seiner Löslichkeit, was möglicherweise an seiner amorphen Form lag, im Unterschied zu davor, als Curcumin in seiner kristallinen Form vorlag.
1 AIM OF THE STUDY ... 1

2 INTRODUCTION .. 2

2.1 CURCUMIN .. 2

2.1.1 Natural occurrences of curcumin ... 2

2.1.2 Use of curcumin ... 3

2.1.3 Physio-chemical properties of curcuminoids .. 3

2.1.3.1 Structure of curcumin .. 3

2.1.3.2 Pharmacological effects and Pharmacokinetics of curcumin 4

2.1.3.3 Solubility and stability of curcumin – challenges of using curcumin 5

2.2 CYCLODEXTRIN .. 7

2.2.1 Structure and characteristics of cyclodextrin 7

2.2.2 Physio-chemical properties of β-cyclodextrin 9

2.2.3 Application and current use of cyclodextrins 9

2.3 INCLUSION COMPLEXATION WITH CYCLODEXTRIN 11

2.3.1 Inclusion complexation ... 11

2.3.2 Stoichiometry and association constant of compound-CD inclusion complex .. 12

2.3.3 Method to determine stoichiometry and association constant of the inclusion complex: The phase solubility method ... 13

2.4 INCREASING THE SOLUBILITY OF CURCUMIN 16

3 EXPERIMENTAL: MATERIALS AND METHODS 17

3.1 MATERIALS .. 17

3.2 HPLC METHOD ... 17

3.2.1 Preparation of the buffers and the mobile phase 18

3.2.2 Analytical conditions ... 19

3.2.3 Curcumin quantification ... 19

3.2.4 Phase solubility studies ... 19

3.2.4.1 Phase-solubility-studies with purified water and purified water containing 1% (v/v) EtOH ... 22

3.2.4.2 Phase-solubility-studies with plain phosphate buffer and phosphate buffer containing 1% (v/v) EtOH... 22
3.2.4.3 Phase-solubility-studies with two different polymer in water containing 1% (v/v) EtOH

3.2.4.4 Quantification of curcumin in the freeze-dried product – drug load

3.3 ROTAVAPOR or THE SOLVENT EVAPORATION METHOD

3.4 DSC

3.5 LYOPHILIZATION

3.6 SEM

4 RESULTS AND DISCUSSION

4.1 CURCUMIN COMPLEXATION WITH RMβCD

4.1.1 Phase solubility studies – the effect of solvents

4.1.2 Quantification of curcumin after freeze-drying – drug load

4.1.3 Degradation of the products after freeze-drying

4.2 ROTAVAPOR

4.3 DSC and SEM

4.3.1 DSC and SEM of crystalline curcumin

4.3.2 DSC and SEM of RMβCD

4.3.3 DSC and SEM of cur : CD product after solvent evaporation

4.3.4 DSC of the freeze-dried products

4.4 LYOPHILIZATION

5 SUMMARY AND CONCLUSION

6 REFERENCES

Appendix:

A.1 Equipment

A.2 Reagents

A.3 Buffers and mobile phase

A.3.1 Buffer for HPLC (mobile phase)

A.3.2 Buffer for phase solubility experiments

A.3.3 Mobile Phase for HPLC system I

A.3.4 Filtration

A.3.5 Detection of the water content in RMβCD:

A 4 All Solubility investigations
A.4.1 Solubility of crystalline curcumin in 0.1-5% (w/v) of RMβCD, purified water ...66
A.4.2 Solubility of crystalline curcumin in 0.1-5% (w/v) of RMβCD, purified water containing 1% (v/v) ethanol ...66
A.4.3 Solubility of crystalline curcumin in 0.1-5% (w/v) of RMβCD, phosphate buffer pH5 (0.1 M, ionic strength 0.085) ...67
A.4.4 Solubility of crystalline curcumin in 0.1-5% (w/v) of RMβCD, phosphate buffer pH5 (0.1 M, ionic strength 0.085) containing 1% (v/v) ethanol67
A.4.5. Solubility of crystalline curcumin and solved curcumin in 0.1-5% (w/v) of RMβCD, phosphate buffer pH5 (0.1 M, ionic strength 0.085)68
A.4.6 Solubility of crystalline curcumin in 0.1-5% (w/v) of RMβCD, 0.1% (w/v) HPMC in water containing 1% (v/v) ethanol ...69
A.4.7 Solubility of crystalline curcumin in 0.1-5% (w/v) of RMβCD, 0.1% (w/v) sodium alginate in water containing 1% (v/v) ethanol ...69
List of figures

Figure 1: The chemical structure of curcumin .. 2
Figure 2: The keto-enol tautomerization of curcumin (Singh, R., 2008) 4
Figure 3: Chemical structure of randomly methylated-b-CD (Tønnesen, H.H., et al., 2002a) ... 7
Figure 4: Cone shape of cyclodextrins (Brewster, M.E., et al., 2007) 8
Figure 5: Phase solubility diagram (Brewster, M.E., et al., 2007) 13
Figure 6: Curcumin-cyclodextrin complexation (Singh, R., et al., 2010) 27
Figure 7: Phase solubility diagram of curcumin in purified water showing A_v like curves. ... 28
Figure 8: Phase solubility diagram of curcumin in phosphate buffer showing A_v like curves. ... 30
Figure 9: The diagram shows the solubility of curcumin at increasing concentrations (w/v) of RMBCD with different solvents ... 33
Figure 10: Phase solubility diagram of curcumin with different types of polymer showing A_v like curves. ... 35
Figure 11: HPLC chromatogram of the product after freeze-drying at the wavelength 430 nm .. 38
Figure 12: HPLC chromatogram of the product after freeze-drying at the wavelength 367 nm .. 38
Figure 13: DSC thermograms of pure curcumin .. 40
Figure 14: SEM picture of pure curcumin with a magnification of 200 41
Figure 15: SEM picture of pure curcumin with a magnification of 900 41
Figure 16: DSC thermograms of pure curcumin with its intense endothermic peak and pure RMBCD with its glass transition .. 42
Figure 17: DSC thermograms of pure RMBCD and also its heating-cooling-heating cycle in the colors blue, green and violet ... 43
Figure 18: SEM picture of pure RMBCD with a magnification of 200 44
Figure 19: SEM picture of pure RMBCD with a magnification of 2000 44
Figure 20: DSC traces of pure curcumin (black trace) and pure RMBCD (red trace) in comparison to curcumin + cyclodextrin in MeOH after evaporation (violet trace). ... 45
Figure 21: SEM picture of curcumin with RMBCD in MeOH with a magnification of 150 46
Figure 22: SEM picture of curcumin with RMBCD in MeOH with a magnification of 6000 .. 47
Figure 23: DSC thermograms of pure curcumin and the curcumin in methanol after evaporation ... 48
Figure 24: DSC thermograms of freeze-dried products with different ratios 49
Figure 25: SEM picture of the freeze-dried curcumin/ RMBCD/ HPMC system with a magnification of 45 ... 50
Figure 26: SEM picture of the freeze-dried curcumin/ RMBCD/ HPMC system with a magnification of 80 ... 50
Figure 27: SEM picture of the freeze-dried curcumin/ RMBCD/ HPMC system with a magnification of 2200 ... 51
Figure 28: One of the freeze-dried sample in a freeze-dried vial with plastic stopper .. 52
List of tables

Table 1: All chemicals used in this thesis with Lot Number and Supplier 17

Table 2: This table shows the solvents, which were used. 20

Table 3: The concentration of curcumin (M) expressed as the calculated mean +/- SD in different concentration (w/v) of RMbCD solution in purified water and purified water containing 1% (v/v) ethanol 28

Table 4: The concentration of curcumin (M) expressed as the calculated mean +/- SD in different concentration (w/v) of RMbCD solution in plain phosphate buffer and phosphate buffer containing 1% (v/v) ethanol 31

Table 5: Molar solubility of curcumin in different concentration (w/v) of RMbCD solution investigated with phosphate buffer. 33

Table 6: The concentration of curcumin (M) expressed as the calculated mean +/- SD in different concentration (w/v) of RMbCD solution with 2 different polymers in purified water containing 1% (v/v) ethanol 35

Table 7: Curcumin load in % after freeze-drying 36

Table 8: The average (of 4 runs) of the detected curcumin load and +/- standard deviation (SD) after freeze-drying 36
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC</td>
<td>before Christ</td>
</tr>
<tr>
<td>CD</td>
<td>Cyclodextrin</td>
</tr>
<tr>
<td>CDs</td>
<td>Cyclodextrins</td>
</tr>
<tr>
<td>CE</td>
<td>Complexation efficiency</td>
</tr>
<tr>
<td>Conc</td>
<td>Concentration</td>
</tr>
<tr>
<td>Cur</td>
<td>Curcumin</td>
</tr>
<tr>
<td>Cur : CD</td>
<td>Curcumin : Cyclodextrin complexation</td>
</tr>
<tr>
<td>D</td>
<td>Drug</td>
</tr>
<tr>
<td>DSC</td>
<td>Differential scanning calorimetry</td>
</tr>
<tr>
<td>e.g.</td>
<td>'exempli gratia', for example</td>
</tr>
<tr>
<td>EtOH</td>
<td>Ethanol</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>HP</td>
<td>Hydroxypropyl</td>
</tr>
<tr>
<td>HPβCD</td>
<td>Hydroxypropyl-β-cyclodextrin</td>
</tr>
<tr>
<td>HPγCD</td>
<td>Hydroxypropyl-γ-cyclodextrin</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>HPMC</td>
<td>Hydroxypropylmethylcellulose</td>
</tr>
<tr>
<td>K</td>
<td>Association constant</td>
</tr>
</tbody>
</table>
\(K_{m:n} \) Equilibrium constant

kV Kilovolt

LOQ Limit of quantification

\(m \) Amount of substrate

M Molar

M\(\beta \)CD Methylated-beta-cyclodextrin

mg Milligram

ml Milliliters

min Minute

\(m:n \) Stoichiometry between substrate and ligand

\(n \) Amount of ligand

nm Nanometer

RM Randomized methylated

RM\(\beta \)CD Randomized methylated-\(\beta \)-cyclodextrin

S Substrate

S.D. Standard deviation

SEM Scanning electron microscopy

\(S_{\text{int}} \) Intercept

\(S_0 \) Intrinsic solubility

v/v Volume divided by volume
w/v Weight divided by volume

w/w Weight divided by weight

µm Micrometer
1 AIM OF THE STUDY

The aim of the present study was to improve the aqueous solubility and dissolution rate of curcumin by using a selected MβCD.

Further, to investigate the effect of low amounts of alginate, HPMC and ethanol on the Cur : CD complexation.
2 INTRODUCTION

2.1 CURCUMIN

2.1.1 Natural occurrences of curcumin

Curcumin is a naturally occurring compound and the commercially available curcumin is isolated from the plant *Curcuma longa L.*, belonging to the Zingiberaceae family (Tomren, M.A., et al., 2007; Jayaprakasha, G.K., et al., 2005; Tønnesen H.H. et al., 2002a). This plant is widely cultivated in warm, rainy regions of the world such as China, India, Indonesia, Jamaica and Peru (Jayaprakasha, G.K., et al., 2005).

The coloring principle of turmeric was isolated in the 19th century and was named curcumin. Three Curcuminoids were isolated from turmeric viz., curcumin, demethoxycurcumin and bisdemethoxycurcumin (Jayaprakasha, G.K., et al., 2005).

The curcumin on the market consists of a mixture of these three naturally occurring curcuminoids, with curcumin as the main constituent (Tønnesen, H.H., et al., 2002a). However, to avoid interference from other curcuminoids (i.e. demethoxycurcumin and bisdemethoxycurcumin) the curcumin used in the present study is synthesized with the method of Pabon (Pabon, H., 1964). The purity of curcumin has previously been controlled with HPLC, TLC and DSC (Haukvik, T., et al., 2009).

![Figure 1: The chemical structure of curcumin](image-url)
2.1.2 Use of curcumin

Curcuma has been used in Asian medicine since the second millennium BC. It also has been referred to the ancient Hindu scripture, the Ayurveda (Sharma, R.A., et al. 2007). Turmeric has been used internally as a stomachic, tonic and blood purifier and externally in the prevention and treatment of skin diseases (The Wealth of India, 2001; Jayaprakasha, G.K., et al. 2005).

Further, curcumin is used as a coloring agent in food, drugs and as well as in cosmetics and textiles. Curcumin is one of the constituents of curry powder (Govindarajan, V.S., 1980).

2.1.3 Physio-chemical properties of curcuminoids

2.1.3.1 Structure of curcumin

Curcumin is a symmetric molecule with two aromatic rings with ortho methoxy fenolic –OH groups and a diketone moiety (figure 1). The diketone moiety can undergo keto-enol tautomerization depending on the solvent and temperature as summarized in the reference (Priyadarsini, K.I., 2009). Figure 2 shows the keto-enol tautomerization of curcumin. In solution, the cis-enol configuration of curcumin is stabilized by a strong intramolecular H-bond. This intramolecular bonding gives the enol ring a pseudo aromatic character (Tønnesen, H.H., et al., 1982).
2.1.3.2 Pharmacological effects and Pharmacokinetics of curcumin

Curcumin has a number of pharmacological effects (Tøennesen H.H. et al., 2002a). In vitro studies show potential use against cancer, HIV-infections, cystic fibrosis and as an immunmodulating agent (Chattopadhyay, I., et al., 2004; Jayaprakasha, G.K., et al., 2005).

Other reported biological activities in vivo of curcumin include anti-inflammatory activity, antioxidant, antibacterial effect against Alzheimer’s disease and antimicrobial activity, which is shown in vitro (Tøennesen, H.H., et al., 1987; Chattopadhyay, I., et al., 2004; Jayaprakasha, G.K., et al., 2005) Curcumin has a potential as a photosensitizer in antimicrobial photodynamic therapy (PDT) of localized superficial infections (Haukvik, T., et al., 2009; Hegge, A.B., et al, 2010).

Pharmacologically curcumin is well tolerated even at a dose of 8 g/day orally.
2.1.3.3 Solubility and stability of curcumin – challenges of using curcumin

One of the challenges of making a formulation of curcumin is the compounds stability (Hegge, A.B., 2010). It is influenced by pH, light, temperature, chemical oxidants, metal ions, enzymes and solvents (Lauro, G.J., et al., 2000).

One of the main drawbacks is that curcumin is almost insoluble in water at acidic and neutral pH (pH 1-7). The lipophilic character of the compound is the reason of the low water solubility. This limits the use as a drug, as mentioned before (Tønnesen, H.H., Karlsen, J., 1985a,b; Lauro, G.J., et al., 2000; Tønnesen, H.H., 2006).

To date, curcumin is not approved as a drug. Probably one of the reasons is its very low water solubility at physiological conditions as mentioned before and a corresponding low absorption after oral or i.v. administration. Furthermore, curcumin undergoes fast metabolism, resulting in low bioavailability (Priyadarsini, K.I., 2009). Also animal studies have shown that curcumin is rapidly metabolized, conjugated in the liver, and excreted in the feces. Accordingly, the low bioavailability, rapid plasma clearance and conjugation may be important limiting factors for medical application of curcumin (Lin, Xie, et al., 2010).

On the other hand curcumin shows increased solubility in aqueous solvents with pH values over neutral, but is then highly susceptible to hydrolytic degradation, which means that it degrades under exposure to light (Tønnesen, H.H., Karlsen, J., 1985a,b; Lauro, G.J., et al., 2000; Tønnesen, H.H., 2002, Tønnesen, H.H., 2006). At pH 5 the hydrolytic degradation rate of curcumin is low (Tønnesen, H.H., Karlsen, J., 1985b). Curcumin in its solid state shows photodegradation. Radiation wavelengths from 280-450nm initiate singlet oxygen production, which cause degradation of the curcuminoids (Lauro, G.J., et al., 2000). Previous studies, which were performed to enhance the stabilization of curcumin against photochemical
degradation, have shown that it is a difficult task (Tønnesen, H.H., 2002; Tønnesen, H.H., et al., 2002a; Tomren, M.A., et al., 2007).

Summarized, the pH influences the ionization, the rate of degradation and the color of curcumin. In neutral form (pH 1-7) the color is yellow; pH below 1 and pH above 7.5 gives a red color (Tønnesen, H.H., Karlsen, J., 1985a,b; Lauro, G.J., et al., 2000; Tønnesen, H.H., 2006). The main degradation products are feruloylmethane, ferulic acid and vanillin. Alkaline degradation of curcumin also results in condensation products of feruloylmethane (Tønnesen, H.H., Karlsen, J., 1985a).

Accordingly, the main drawbacks for clinical applications of curcumin are its low solubility at acidic and neutral pH, its low photostability, its rapid plasma clearance and conjugation and as well its poor bioavailability.

Therefore, solubility and hydrolytic stability have been improved by making complex formation with cyclodextrins and micelles. Cyclodextrins are used in this thesis to increase the water solubility of curcumin in its neutral and most stable form (Tønnesen, H.H., Karlsen, J., 1985b). In fact, the solubility is increased by a factor of at least 10^4 at pH5 (Tønnesen, H.H., 2002; Tønnesen, H.H., et al., 2002a).
2.2 CYCLODEXTRIN

2.2.1 Structure and characteristics of cyclodextrin

As already mentioned above, the solubility of curcumin is an important drawback working with curcumin. To enhance the solubility of curcumin, CDs or different types of polymer can be used in order to improve the water solubility.

Researchers try to investigate the benefits of complexing curcumin with other substances to increase systemic bioavailability (Lin, Xie, et al., 2010). For example they increase the systemic bioavailability by encapsulation in polymeric nanoparticles (Bisht, S., et al., 2007), surfactants (micelles) (Tønnesen, H.H., 2002) or cyclodextrins (Tønnesen, H.H., et al., 2002a), which are utilized in this thesis.

The three most common naturally occurring CDs are α-cyclodextrin, β-cyclodextrin and γ-cyclodextrin. They are cyclic (α-1,4)-linked oligosaccharides of α-D-glucopyranose with six, seven and eight units, respectively (Loftsson, T., et al., 1998).

![Chemical structure of randomly methylated-β-CD](image)

R: CH₃

Figure 3: chemical structure of randomly methylated-β-CD (Tønnesen, H.H., et al., 2002a)
CDs were first published in the year 1891 by the French scientist A. Villers. At this time he named them “cellulosine”. In 1903 the Austrian microbiologist Franz Schardinger published an article as well, where he describes two “crystalline dextrin”, which he had isolated from bacterial digest of potato starch. He identified his “crystalline dextrin” as Villers “cellulosine”. Later Schardinger changed the names to α-dextrin and β-dextrin (Loftsson, T., et al., 2007).

Cyclodextrin molecules have a cylindrical, cone-like shape (Figure 4) with primary hydroxyl groups, which are located on the narrow side of the torus. They show a relative lipophilic central cavity while the secondary hydroxyl groups, which are located on the wider edge, having a hydrophilic outer surface (Loftsson, T., et al. 2005b; Loftsson, T., 1995). These hydroxyl groups on the outer surface are able to form hydrogen bonds with other molecules (Loftsson, T., et al., 2007a; Loftsson, T., et al., 2007b).

Figure 4: Cone shape of cyclodextrins (Brewster, M.E., et al., 2007)
With their lipophilic cavity the CDs are able to form inclusion complexes with lipophilic compounds in aqueous solutions, which is discussed in detail in section 2.3.

Such inclusion complexation will influence the physiochemical properties of the drug, for example aqueous solubility and stability (Loftsson, T., et al., 2004a; Loftsson, T., et al. 2005b; Hegge, A.B., et al., 2008).

2.2.2 Physio-chemical properties of β-cyclodextrin

Even though the natural CDs are relatively hydrophilic, in particular β-cyclodextrin, they have limited aqueous solubility because of the relatively strong binding of the natural CD molecules in the crystal state. Therefore a huge number of cyclodextrin derivatives with high solubility in water have been synthesized. The main reason for the increased solubility is that the random substitution transforms the crystalline CDs into amorphous mixtures of isomeric derivatives (Szejtli, J., 1988; Loftsson, T., et al., 1996a; Loftsson, T., et al., 1998; Brewster, M.E., et al., 2007).

One of them is methyl-β-cyclodextrin. This selected CD was taken for the investigations in this thesis.

2.2.3 Application and current use of cyclodextrins

As pharmaceutical excipients, cyclodextrins are used to increase the aqueous solubility of poorly water-soluble, lipophilic substances (Loftsson, T., et al., 2002a; Loftsson, T., et al., 2007a).

Furthermore, they are used to increase the stability of drugs in aqueous preparations. The use of CDs is often preferred to organic solvents in parenteral and topical formulations, to enhance oral bioavailability, to reduce
or prevent gastrointestinal or ocular irritation, reduce or eliminate unpleasant smells or tastes, to increase dermal availability of drugs or even to convert oils and liquid drugs into microcrystalline or amorphous powders (Loftsson, T., et al., 1998; Loftsson, T., et al., 1996a; Loftsson, T., et al., 2002a; Loftsson, T., et al., 2005b; Loftsson, T., et al., 2007a; Brewster, M.E., et al., 2007).

Methyl-β-cyclodextrin is relatively lipophilic compared to the natural β-CD, which is able to permeate mucosa and to enhance drug delivery through biological membranes, such as through the nasal mucosa, by reducing barrier function of the membranes (Martiin, E., et al. 1998).

Because of the limited water solubility, natural β-cyclodextrin can’t be given parenterally. Also lipophilic CD derivatives, such as the methylated CDs, have been shown to be toxic after parenteral administration. The compound precipitate in the kidney and this can induce nephrotoxicity (Loftsson, T., et al., 1997; Loftsson, T., et al., 2005b).

The oral administration of methylated β-cyclodextrin or methylated β-cyclodextrin in topical formulations is somehow limited because of its potential toxicity but it is basically non-toxic when given in a low or moderate oral dosage. As a result β-cyclodextrin is being found in a number of oral, topical, buccal and rectal pharmaceutical formulations (Loftsson, T., et al., 2005b; Brewster, M.E., et al., 2007).
2.3 INCLUSION COMPLEXATION WITH CYCLODEXTRIN

2.3.1 Inclusion complexation

As already mentioned in 2.2.1, cyclodextrins are able to form inclusion complexes in aqueous solutions. The reason for this is the chair formation of the glucopyranose units. Lipophilic drug molecule or lipophilic moieties of the drug molecule are taken into the central cavity, where water-molecules are located and replace them (Loftsson, T., et al., 2004a; Loftsson, T., et al. 2005b; Hegge, A.B., et al., 2008).

Because of these characteristics CDs are able to interact through non-covalent interactions with poorly water-soluble substances and form a mixture of inclusion and non-inclusion complexes in aqueous solutions (Loftsson, T., et al., 2004a; Loftsson, T., et al. 2005b; Hegge, A.B., et al., 2008).

As well the size and the chemical structure of the guest molecule affect the complex formation. Only relative apolar molecules with an appropriate size, which is not too large, are able to enter the cyclodextrin cavity. But also the size of the cyclodextrin cavity is important (Loftsson, T., 1995).

The cyclodextrin molecules are relatively large (molecular weight ranging from almost 1000 to > 2000 Da) with a large number of hydrogen donors and acceptors and they are consequently poorly absorbed through biological membranes (Loftsson, T., et al., 2005).
2.3.2 Stoichiometry and association constant of compound-CD inclusion complex

Dependent on the type and amount of drug and cyclodextrin, a lot of different complexes of drug-cyclodextrin molecules can be formed, which have different CD : drug ratios or stoichiometry (Eq. 1).

$$K_{m:n}$$

$$\text{mCD} + \text{nD} \rightleftharpoons \text{CD}_m \times \text{D}_n$$

Eq. 1 (Brewster, M.E., et al., 2007)

The association constant (K_c), also known as equilibrium constant ($K_{m:n}$) specifies the stoichiometric ratio of the complex. For explanation m is the amount of substrate and n is the amount of ligand. In this case ligand is the drug (D) and substrate is the cyclodextrin (CD). Thus $m:n$ is the stoichiometry between substrate and ligand. For complexation, the association constant can be written:

$$K_{m:n} = \frac{[\text{CD}_m \times \text{D}_n]}{[\text{CD}]^m [\text{D}]^n}$$

Eq. 2: (Brewster, M.E., et al., 2007)

In dilute solutions, the most common stoichiometry of drug-cyclodextrin complex is 1:1 complexation, where one drug molecule (substrate) forms a complex with one cyclodextrin molecule (ligand) (Eq. 1). This occurs if the drug fits entirely into the cyclodextrin cavity and/or in dilute solutions. In many cases such as for curcumin it is only a part of the drug, which is probably included in the CD cavity. The aromatic group of curcumin is a typical group, which fits into the beta CD cavity. Other ratios are for example 1:2, 2:1 or 2:2. If the size of the drug is larger, two or more cyclodextrin molecules can enclose the drug and a 1:2 stoichiometry occurs or higher order complexes can be formed. If the cyclodextrin cavity incorporates 2 drug

2.3.3 Method to determine stoichiometry and association constant of the inclusion complex: The phase solubility method

The phase solubility method is a method to determine associations constants and stoichiometry of the equilibrium (Higuchi, T. and Connors, K.A., 1965). The exact procedure of the phase solubility method is described in section 3.2.4.

A phase solubility diagram (figure 5) is constructed by plotting the total molar concentration of dissolved solute, found on the vertical axis. On the horizontal axis there is the concentration of the complexing agent added (Higuchi, T. and Connors, K.A., 1965; Brewster, M.E., et al., 2007).
In general, phase solubility diagrams have two major types: A- and B-types.

A-type phase-solubility profiles are obtained when soluble complexes are formed. The A-curves are again subdivided into A_L, A_P and A_N subtypes. A_L profiles indicate a linear increase in solubility as a function of cyclodextrin concentration. A_P profiles indicate positively deviating isotherm and A_N indicate a negatively deviating isotherm. A_L type diagrams are first order with respect to the cyclodextrin and may be first or higher order with respect to the drug, i.e., DCD, D2CD, D3CD,…, DmCD. If the slope of an A_L-type profile is greater than one, higher order complexes are assumed to be involved. Although a slope less than one, does not necessarily exclude higher order complexation. Often a one-to-one complex is assumed. A_P type diagrams suggest the formation of higher order complexes with respect to the cyclodextrin at higher cyclodextrin concentrations, i.e., DCD, DCD3,…,DCD_N (Brewster, T., et al. 2007; Loftsson, T., et al., 2005; Loftsson, T., et al., 2004b; Singh, R., 2008).

Complexation efficiency

A more accurate method for determination the solubilizing effect of cyclodextrins is to compare their complexation efficiency (CE). The complexation efficiency is the determination of the concentration ratio between cyclodextrin in a complex and free cyclodextrin. It is calculated from the slope of the phase-solubility diagram and is independent of both S_O (intrinsic solubility) and S_int (intersept) (Loftsson, T., et al., 2007b).

Methods to enhance the complexation efficiency

There are several reasons for increasing the efficiency of cyclodextrin complexation of drugs. For example toxicological considerations, production costs, drug bioavailability and isotonicity are just a few reasons why to
include as little cyclodextrin as possible in pharmaceutical formulations (Loftsson, T., et al., 1999; Loftsson, T., et al., 2005a; Loftsson, T., et al., 2007a; Brewster, M.E., et al., 2007).

Several methods have been applied to enhance the complexation efficiency of cyclodextrins (Loftsson, T., et al., 1999). For example, addition of different types of polymer like HPMC or sodium alginate to the aqueous complexation media (Loftsson, T., et al., 2004a), addition of co-solvents and so on (Li, P., et al., 1998; Loftsson, T., et al., 1999; Brewster, M.E., et al., 2007).
2.4 INCREASING THE SOLUBILITY OF CURCUMIN

As mentioned above, the low solubility of curcumin limits its use as a drug. Cyclodextrins alone or in combination with water-soluble biopolymers is therefore used to enhance the solubility of curcumin.

In the present study sodium alginate and HPMC were chosen as polymer. Alginates are natural water-soluble polysaccharide polymers isolated from marine brown algae (Phaeophyceae) or fermentation of bacteria (Draget, K.I., et al., 2006). Alginic acid is a linear polymer consisting of D-mannuronic acid and L-glucuronic acid (Tønnesen, H.H., et al. 2002b). A number of different grades of sodium alginate, which have different solution viscosities, are available. Sodium alginate is practically insoluble in organic solvents and slowly soluble in water, forming a viscous colloidal solution. It is used in a variety of oral and topical pharmaceutical formulations, as stabilizing agent, suspending agent, viscosity-increasing agent and many more. In this study sodium alginate is used, which is probably the most frequently investigated one (Hegge, A.B., et al., 2008; Handbook of pharmaceutical excipients, 2003).

Hydroxypropylmethylcellulose (HPMC) also known under the trade name Hypromellose® is a partly O-methylated and O-(2-hydroxypropylated) cellulose. Depending upon the viscosity grade, Hypromellose is available in several grades. It is used as a viscosity-increasing agent, as well as stabilizing, suspending or coating agent. It is soluble in cold water, forming a viscous colloidal solution (Handbook of pharmaceutical excipients, 2003).
3 EXPERIMENTAL: MATERIALS AND METHODS

3.1 MATERIALS

Curcumin was synthesized according to the method of Pabon (Pabon, H., 1964).

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Lot Number</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citric Acid monohydrate</td>
<td>08D150022</td>
<td>VWR International</td>
</tr>
<tr>
<td>Potassium hydroxide</td>
<td>11293</td>
<td>Eka Nobel AB/ Nobel Industrier</td>
</tr>
<tr>
<td>Sodium chloride</td>
<td>9D122/4</td>
<td>Norsk Medisinaldepot, Norway</td>
</tr>
<tr>
<td>Methanol Chromasolv® (HPLC-grade)</td>
<td>SZBA1195</td>
<td>Sigma-Aldrich Co./Chemie GmbH</td>
</tr>
<tr>
<td>Ethanol</td>
<td></td>
<td>Norsk Medisinaldepot, Norway</td>
</tr>
<tr>
<td>Sodium hydrogen phosphate dihydrate</td>
<td>K91380845 819</td>
<td>Merck KGaA</td>
</tr>
<tr>
<td>Disodium hydrogen phosphate dihydrate</td>
<td>K27618980 020</td>
<td>Merck KGaA</td>
</tr>
<tr>
<td>RM- β-cyclodextrin = Cavasol W7 M</td>
<td>71T051</td>
<td>Wacker Chemie AG</td>
</tr>
<tr>
<td>Hydroxypropylmethylcellulose</td>
<td>8028204</td>
<td>Shin-Etr Chemie. Lv.</td>
</tr>
<tr>
<td>Sodium Alginate (Protanal® LF 10/60 LS)</td>
<td>S17261</td>
<td>FMC BioPolymers/NovaMatrix</td>
</tr>
</tbody>
</table>

Table 1: all chemicals used in this thesis with Lot Number and Supplier

All chemicals used, were of analytical grade, except the polymers.

3.2 HPLC METHOD

The solubility of curcumin was quantified with a previously described HPLC quantification method (Hegge, A.B., et al., 2008). However, due to practical issues, one additional HPLC method was employed. The two methods are described below:
HPLC system I: system I consisted of a Waters Nova-Pak® C18, 3.9 x 150 mm, 4 μm particle size column by use of a Shimadzu Liquid Chromatography LC-9A pump, a Shimadzu Auto Injector SIL-10 AD auto sampler, a Shimadzu UV-Vis Spectrophotometric detector SPD-10A, and a Shimadzu C-R3A integrator.

HPLC system II: system II consisted of a Waters Nova-Pak® C18, 3.9 x 150 mm, 4 μm particle size column by use of a Shimadzu Liquid Chromatography LC-20AD pump, a Shimadzu Auto Injector SIL-20AC HT auto sampler, a Shimadzu UV-Vis Spectrophotometric detector SPD-M20A, a CBM-20A controlling unit and a CTO-20A oven.

3.2.1 Preparation of the buffers and the mobile phase

0.026 M (0.5%) Citric acid buffer pH3:

The citric acid buffer was prepared by dissolving a given amount of citric acid monohydrate in a volumetric flask almost filled with purified water and adjusted to pH 3 +/- 0.1 by adding 10% (w/v) KOH solution. The pH was checked using a WTW pH 526 pH meter. Purified water was then added to the mark in the flask before filtration.

The mobile phase was composed of 62 parts of MeOH to 38 parts of citric acid buffer for system I.

Phosphate buffer pH 5 (0.05 M; ionic strength 0.085):

The phosphate buffer was prepared by dissolving a given amount of the appropriate salt in purified water by using a volumetric flask. The ionic strength was fixed by adding a calculated amount of NaCl. The pH 5 +/- 0.2 was checked using a WTW pH 526 pH meter.
The exact compositions of the buffer used in the phase solubility studies are presented in appendix A.3.

3.2.2 Analytical conditions

The retention time for curcumin was at around 12 minutes.

All the quantitative analysis were done in triplicate to reduce random error.

3.2.3 Curcumin quantification

Linearity was investigated in the range 5×10^{-7} M and 1×10^{-5} M curcumin using a stock solution in methanol. Calibration of the instrument was performed with curcumin solutions in methanol (5×10^{-7} M, 1×10^{-6} M, 2×10^{-6} M and 1×10^{-5} M) for quantification of curcumin.

The quantification was performed using linear regression. The integrals were plotted on the x-axis and the concentration was plotted on the y-axis. This gave a straight line. The regression coefficient was > 0.99.

$$y = ax + b$$

y is the concentration, x is the integral, a is the slope and b is the intercept.

3.2.4 Phase solubility studies

Phase solubility studies were performed by adding an excess amount of drug to several vials. A constant volume of solvent is added to each vial and also solvent containing successively larger concentrations of the complexing agent is then added. The vials are closed and the contents brought to
solubility equilibrium by shaking at a constant temperature. The suspensions are filtered and then analyzed for their total concentration of compound by HPLC.

In the present study an excess amount of curcumin is added to different solvents containing increasing concentration 0.1, 0.3, 0.5, 1, 2, 3 and 5 % (w/v) of RMβCD.

All investigations were performed at ambient temperature using three parallels. The samples were protected from light.

7 different solvents were taken to compare their solubilizing effect under the given conditions with RMβCD.

The samples were detected at the wavelength 420nm and 430nm.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>crystalline curcumin</th>
<th>Curcumin in ethanol solution (1x10^{-3} M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>purified water</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>purified water with 1% (v/v) EtOH</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>0,1% (w/v) sodium alginate in water + 1% (v/v) EtOH</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>RM-β-CD in different ratio</td>
<td>0,1% (w/v) HPMC in water + 1% (v/v) EtOH</td>
<td>x</td>
</tr>
<tr>
<td>plain phosphate buffer (pH5)</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>phosphate buffer (pH5) + 1% (v/v) EtOH</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>phosphate buffer (pH5)</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Table 2: this table shows the solvents, which were used.
Determination of the water content in the cyclodextrin:

It is important to determine the water content and correct it when preparing the cyclodextrin stock solution. The water content in the cyclodextrins was determined at the beginning of the studies of this thesis.

The measurement was carried out by use of approximately 2g of the cyclodextrin. A Sartorius Moisture Analyzer, MA 30 was used. The cyclodextrin was dried at 130°C for 60 minutes, respectively. The samples were weighted on an analytical balance before and after measurement. The water content of the samples was calculated, based on the weight loss. As well, the measurements were done in triplicates, and the value used for concentration corrections was the average of the three parallels.
3.2.4.1 Phase-solubility-studies with purified water and purified water containing 1% (v/v) EtOH

A 1% (w/v) cyclodextrin solution in water was prepared. The moisture content in the cyclodextrin was corrected for.

Vials were filled with an excess amount of compound and an appropriate amount of the cyclodextrin solution was diluted according to the different concentrations in each vial. The concentrations were 0.1, 0.3, 0.5, 1, 2, 3 and 5% (w/v) made from 1% stock solution of CD. The vials were sealed and were shaken for 1 day and protected from light. Undissolved curcumin was then removed by filtration 0.45 Spartan 13/0.45 RC before diluting the solution 1:1 with MeOH and analyzed by HPLC system I at 420nm wavelength to quantify the curcumin in the filtrate. The first drops of the filtrated samples were discarded.

3.2.4.2 Phase-solubility-studies with plain phosphate buffer and phosphate buffer containing 1% (v/v) EtOH

Three 1% (w/v) cyclodextrin solutions in phosphate buffer were prepared. The moisture content in the cyclodextrin was corrected for.

One solution was prepared only with plain phosphate buffer and two 1% (w/v) cyclodextrin solutions in phosphate buffer containing 1% (v/v) EtOH were prepared differently. One study was investigated with crystalline and solved curcumin (100µl of curcumin in ethanol solution 1x10^{-3} M) and the other one was investigated simply with crystalline curcumin.

Vials were filled with an excess amount of compound (and as well with 100µl of curcumin in ethanol solution). An appropriate amount of the cyclodextrin
solution was diluted according to the different concentrations in each vial. The concentrations were again 0.1, 0.3, 0.5, 1, 2, 3 and 5% (w/v) made from 1% stock solution of CD. The vials were sealed and were shaken for 1 day and protected from light. Undissolved curcumin was then removed by filtration 0.45 Spartan 13/0.45 RC before diluting the solution 1:1 with MeOH and analyzed by HPLC system I at 420nm wavelength to quantify the curcumin in the filtrate. The first drops of the filtrated samples were discarded.

3.2.4.3 Phase-solubility-studies with two different polymer in water containing 1% (v/v) EtOH

Two 1% (w/v) cyclodextrin solutions with 2 different polymers in water were prepared. The moisture content in the cyclodextrin was corrected for. Vials were filled with an excess amount of compound and an appropriate amount of the cyclodextrin-polymer solution was diluted according to the different concentrations in each vial. The concentrations were 0.1, 0.3, 0.5, 1, 2, 3 and 5% (w/v) made from 1% stock solution of CD. The vials were sealed and were shaken for 1 day and protected from light. Undissolved curcumin was then removed by filtration 0.45 Spartan 13/0.45 RC before diluting 1:1 with MeOH and analyzed by HPLC system I at 420nm wavelength to quantify the curcumin in the filtrate. The first drops of the filtrated samples were discarded.

3.2.4.4 Quantification of curcumin in the freeze-dried product – drug load

An exact amount (approx. 0.005g) of the freeze dried product was added in 1ml MeOH and immediately filtered with BD Plastipak 5ml sterile syringe
from Becton Dickinson S.A., fitted with Spartan 13/0.45 RC, 0.45µm filters from Whatman. The first drops of the filtrated samples were discarded. The samples were diluted 1:1 with MeOH before quantification by the previously described reversed phase HPLC method with the following modifications: *HPLC system II* was used, the flow rate was 0.8ml/min and the detection wavelength was 430nm for the quantification of curcumin.

Degradation products were detected at different wavelength (350nm).

3.3 ROTAVAPOR or THE SOLVENT EVAPORATION METHOD

A homogenous drug-cyclodextrin system was prepared. Curcumin-cyclodextrin complex was set up in the molar ratio of 1:1, 1:2 and 1:3 using methanol as solvent. The solvent (0.1g curcumin in 10ml MeOH; 0.2g curcumin in 10ml MeOH; 0.3g curcumin in 10ml MeOH) was then evaporated for ½ hour at 25°C in a Büchi EL – 131 rotavapor. The resulting product was a film, which was obtained after scraping the film in the glass vial and was stored over night in an exsiccator.

The same procedure was repeated with curcumin in methanol (without CDs) as comparison.

3.4 DSC

A Mettler Toledo Stare System differential scanning calorimeter was used equipped with a DSC 822e Module.

Samples of 1-1.5 mg of crystalline curcumin, pure CD, curcumin in methanol after evaporation, curcumin with CD in methanol after evaporation and of the freeze-dried products were heated in an aluminum pan, an aluminum top was placed on the sample and crimped in place, under static atmosphere. An
empty pan was used as reference. The heating rate was 10°C/min and the temperature interval used was 5°C to 220°C, under a constant flow (100ml/min) of nitrogen gas. The equipment was calibrated with indium.

3.5 LYOPHILIZATION

Lyophilization is a very complex process (Patil, V.V., et al., 2010).

For Lyophilization Virtis 25ES from Virtis Company Inc. USA was used. A vacuum pump, named Leybold, Trivac D16B from Engineering Company Inc., USA was used.

An excess of cyclodextrin:curcumin powder (from the solvent evaporation) was dissolved in 10ml purified water by shaking (approximately 3min) and if necessary with the help of an ultrasonic bath (sonication). It was filtered with 0.45 Spartan 13/0.45 RC. After filtration 0.01g HPMC was dissolved in the filtrate. HPMC was chosen to carry out the following studies by lyophilization because the increased viscosity of sodium alginate complicated the filtration of the solutions prior to freeze dry and prior to quantification.

The vials were freeze-dried according to the following procedure:

Samples (approximately 10ml of the sample in 50ml glass vials with open plastic stopper) were put on the shelves and were frozen at -48°C for 24 hours. Meanwhile, the temperature of the condenser of the freeze dryer was allowed to reach at its minimum level of -50°C. Thereafter, the frozen samples are still placed in the drying chamber and then the vacuum pump and the heater were switched on. Vacuum was applied, and the samples were subjected to lyophilization for 72 hours in the freeze dryer.

Before initiating the second drying step and increasing the temperature for it, the vacuum should be below 100mbar first. If these conditions are
accomplished, the secondary drying step with 10°C for 2 hours, 20°C for 1 hour and 40°C for 2 hours was succeeded.

Finally, the vials were closed by pressing the plastic stopper.

3.6 SEM

The surface morphology of pure curcumin, pure RM-β-cyclodextrin, curcumin:cyclodextrin product after solvent evaporation and the freeze-dried product was investigated using a Hitachi S-4800 scanning electron microscope from Hitachi High-Technologies, Canada. The samples were spread on a brass stub using double-sided tape and then sputtered with a thin layer of gold platinum. The pictures were taken at an acceleration voltage of 1 kV.
4 RESULTS AND DISCUSSION

4.1 CURCUMIN COMPLEXATION WITH RMβCD

4.1.1 Phase solubility studies – the effect of solvents

Phase solubility studies were carried out according to the method described by Higuchi and Connors (1965).

Phase solubility studies were performed in different solvents to investigate if the medium affected the curcumin-cyclodextrin complexation.

Because of the symmetric appearance of curcumin with two identical aromatic rings, it is a possibility that both 1:1 guest-host inclusion complexes and 1:2 guest-host inclusion complexes can be formed with cyclodextrins. As seen in figure 6, 1:1 stoichiometry includes one aromatic moiety in the cyclodextrin cavity, 1:2 stoichiometry includes both aromatic moieties into the cyclodextrin cavities of two different cyclodextrin molecules (Singh, R., et al., 2010).

![Figure 6: curcumin-cyclodextrin complexation (Singh, R., et al., 2010)](image)

In the present study, non-linear, A_p-like curves for curcumin with RMβCD in water with and without ethanol were obtained (figure 7).
Figure 7: Phase solubility diagram of curcumin in purified water showing A_α-like curves. The curves show the solubility of curcumin at increasing concentrations (w/v) of RMβCD in purified water and purified water containing 1% (v/v) ethanol.

<table>
<thead>
<tr>
<th>RMβCD concentration (w/v)</th>
<th>Curcumin concentration (M) in purified water +/- SD</th>
<th>Curcumin concentration (M) in purified water + 1% (v/v) EtOH +/- SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10%</td>
<td>5.11x10^-7</td>
<td>3.43x10^-7</td>
</tr>
<tr>
<td>0.30%</td>
<td>1.66x10^-6</td>
<td>1.85x10^-6</td>
</tr>
<tr>
<td>0.50%</td>
<td>3.10x10^-6</td>
<td>4.02x10^-6</td>
</tr>
<tr>
<td>1%</td>
<td>6.55x10^-6</td>
<td>9.81x10^-6</td>
</tr>
<tr>
<td>2%</td>
<td>2.54x10^-5</td>
<td>2.84x10^-5</td>
</tr>
<tr>
<td>3%</td>
<td>5.84x10^-5</td>
<td>5.98x10^-5</td>
</tr>
<tr>
<td>5%</td>
<td>1.24x10^-4</td>
<td>1.66x10^-4</td>
</tr>
</tbody>
</table>

Table 3: The concentration of curcumin (M) expressed as the calculated mean +/- SD in different concentration (w/v) of RMβCD solution in purified water and purified water containing 1% (v/v) ethanol.
An A$_p$-like curve suggests the formation of higher order complexes (Loftsson et al., 2004b). The curves appear similar at low concentrations of CDs, however, at a higher cyclodextrin concentration curcumin is more soluble in water containing 1% (v/v) ethanol (figure 7).

The highest solubility of curcumin obtained in the present study was 1.66x10^{-4} M as detected in 5% (w/v) RMβCD in purified water containing 1% (v/v) ethanol. In general, increased concentrations of cyclodextrin correspond to increased solubility of curcumin, that is, if the inclusion complex is formed, sufficiently soluble in water.

Several papers have been published on the complexation of curcumin with cyclodextrins.

Tønnesen, H.H., et al., 2002a reported an increase in water solubility at pH 5 by a factor of at least 104, resulting from complex formation of curcumin and cyclodextrin. The highest concentration obtained in this study was 8x10$^{-4}$ M of curcumin, measured in 11% solution of RM-β-cyclodextrin (Tønnesen, H.H., et al., 2002a).

Hegge, A.B., et al., 2009 reported a decrease in complexation and as well the overall solubility decreases in presence of ethanol in previously performed phase-solubility-studies with curcumin and HPβCD. These studies were obtained in phosphate buffer (pH 5) with 10% ethanol or in plain buffer. It might be that ethanol, being a small molecule, stabilizes the formations of higher order complexes, in particular 1:2 guest-host complexation (curcumin : CD).

Tang et al., 2002, as well, reported an 1:2 (guest:host) complex with βCD using spectrophotometric investigations.

The results of these previous studies of curcumin in CD solutions show that the complexing medium affected the stoichiometry of the curcumin-cyclodextrin complexation.
Figure 8 shows two A_p-like curves for curcumin with RMβCD in formulations with phosphate buffer containing 1% (v/v) ethanol and in plain phosphate buffer. The A_p-type of diagram of phosphate buffer containing 1% (v/v) ethanol was consistent with 2:1 or 3:1 complex formation between RMβCD and curcumin. As mentioned before, the formation of higher order complexes is suggested with an A_p-type of diagram, as well as with the symmetrical molecule appearance of curcumin with its two phenyl moieties. Both moieties are able to suit into the cyclodextrin cavity on each end (Loftsson, T., et al., 2004b; Hegge, A.B., et al., 2009).

In 11% (w/v) solution of RMβCD, the highest concentration, approximately 8×10^{-4} M of curcumin was measured in phosphate buffer by Tønnesen, H.H., et al. (Tønnesen, H.H., et al., 2002a).
Table 4: The concentration of curcumin (M) expressed as the calculated mean +/- SD in different concentration (w/v) of RMβCD solution in plain phosphate buffer and phosphate buffer containing 1% (v/v) ethanol

<table>
<thead>
<tr>
<th>RMβCD concentration</th>
<th>curcumin concentration (M) in plain buffer</th>
<th>+/- SD</th>
<th>curcumin concentration (M) in phosphate buffer containing 1% (v/v) EtOH</th>
<th>+/- SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10%</td>
<td>7.57x10^{-7}</td>
<td>1.49x10^{-7}</td>
<td>4.28x10^{-7}</td>
<td>1.45x10^{-7}</td>
</tr>
<tr>
<td>0.30%</td>
<td>2.21x10^{-6}</td>
<td>3.48x10^{-7}</td>
<td>1.75x10^{-6}</td>
<td>4.54x10^{-7}</td>
</tr>
<tr>
<td>0.50%</td>
<td>4.51x10^{-6}</td>
<td>5.29x10^{-7}</td>
<td>4.12x10^{-6}</td>
<td>1.98x10^{-7}</td>
</tr>
<tr>
<td>1%</td>
<td>9.65x10^{-6}</td>
<td>6.17x10^{-7}</td>
<td>8.57x10^{-6}</td>
<td>1.11x10^{-6}</td>
</tr>
<tr>
<td>2%</td>
<td>3.06x10^{-5}</td>
<td>3.55x10^{-7}</td>
<td>2.41x10^{-5}</td>
<td>1.45x10^{-6}</td>
</tr>
<tr>
<td>3%</td>
<td>6.67x10^{-5}</td>
<td>6.93x10^{-6}</td>
<td>5.52x10^{-5}</td>
<td>2.48x10^{-6}</td>
</tr>
<tr>
<td>5%</td>
<td>1.61x10^{-4}</td>
<td>8.24x10^{-6}</td>
<td>1.77x10^{-4}</td>
<td>6.21x10^{-6}</td>
</tr>
</tbody>
</table>

Previous investigations with another beta derivative i.e. HPβCD observed on curcumin-CD complexation showed 2:1 host-guest inclusion complex in distilled water (Baglole et al., 2005) and a 1:1 host-guest inclusion complex in phosphate buffer (Tønnesen, H.H., et al., 2002b). Hegge, A.B., et al., 2008 observations with phosphate buffer (µ=0.085) : ethanol (9:1) indicated mainly 1:1 stoichiometry. The phase solubility diagram of curcumin in a solution of HPβCD is close to linear and its slope is less than one, which indicates a 1:1 stoichiometry. But also a formation of higher order complexes is possible. The phase solubility diagram obtained in HPβCD/phosphate buffer without ethanol showed an A_p-like curve, which indicates higher order of complexation between the host and the guest molecule.

Hegge, A.B, et al., 2009 did again investigations with HPβCD and showed mainly 1:1 stoichiometry but also higher order complexes can’t be eliminated. This study was investigated with the same solvent and the same synthesized curcumin but with a UV-VIS titration method. Due to different methods (Stoichiometry studies performed with HPLC can’t be easily compared with UV-VIS titration method) a possibility of different reported curcumin-cyclodextrin stoichiometries could occur (Hegge, A.B., et al., 2009).
Figures 7 and 8 show non-linear A_p-type of phase solubility diagrams for both in the presence and absence of ethanol. In both systems the presence of ethanol enhances the overall solubilizing effect of CD. More precisely, in the presence of ethanol, the distinction in solubility is higher within the investigation with purified water than within the investigations with phosphate buffer. In fact, 1% (v/v) ethanol affects the complexation in both systems, in purified water and phosphate buffer. Compared to the investigations Hegge, A.B., et al., 2008 have performed on HPβCD. Here, in both systems (phosphate buffer and as well phosphate buffer with ethanol 9:1), the presence of ethanol decreases the overall solubiliizing effect of CD (Hegge, A.B., et al., 2008). In this particular case the effect of ethanol may be caused by a competitive binding i.e. ethanol is able to displace curcumin in the cyclodextrin cavity (Loftsson, T., et al.1999; Hegge, A.B., et al., 2008).

The phase solubility-curves obtained in Figure 9, when curcumin was added as a combination of crystalline curcumin (approximately 8mg) and of curcumin dissolved in ethanol (10^{-3} M) were compared to phase solubility curves showed in Figure 8. At CD concentration ≤ 2% the apparent solubility of curcumin is higher compared to the solubility detected, when only crystalline curcumin is added to the same solvent. The total concentration of ethanol in the phosphate buffer is 1% (v/v) EtOH. The increased solubility of curcumin observed in Figure 9 might be caused by curcumin in a supersaturated state. CDs are reported to be able to delay crystallization of drugs from supersaturated solutions (Brouwers, J., et al., 2009).
Figure 9: The diagram shows the solubility of curcumin at increasing concentrations (w/v) of RMβCD with different solvents.

<table>
<thead>
<tr>
<th>RMβCD concentration</th>
<th>Curcumin concentration (M) of crystalline + solved curcumin in phosphate buffer I +/− SD</th>
<th>Curcumin concentration (M) of crystalline + solved curcumin in phosphate buffer II +/− SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10%</td>
<td>1.20×10⁻⁶ 4.21×10⁻⁷</td>
<td>1.69×10⁻⁶ 5.89×10⁻⁷</td>
</tr>
<tr>
<td>0.30%</td>
<td>9.65×10⁻⁶ 6.31×10⁻⁷</td>
<td>8.63×10⁻⁶ 1.29×10⁻⁶</td>
</tr>
<tr>
<td>0.50%</td>
<td>2.36×10⁻⁵ 2.15×10⁻⁶</td>
<td>1.97×10⁻⁵ 1.60×10⁻⁶</td>
</tr>
<tr>
<td>1%</td>
<td>4.76×10⁻⁵ 1.61×10⁻⁶</td>
<td>3.65×10⁻⁵ 8.89×10⁻⁷</td>
</tr>
<tr>
<td>2%</td>
<td>5.45×10⁻⁵ 1.42×10⁻⁶</td>
<td>4.17×10⁻⁵ 5.80×10⁻⁶</td>
</tr>
<tr>
<td>3%</td>
<td>6.90×10⁻⁵ 4.17×10⁻⁶</td>
<td>5.09×10⁻⁵ 6.19×10⁻⁶</td>
</tr>
<tr>
<td>5%</td>
<td>1.45×10⁻⁴ 1.10×10⁻⁵</td>
<td>1.36×10⁻⁴ 2.92×10⁻⁵</td>
</tr>
</tbody>
</table>

Table 5: Molar solubility of curcumin in different concentration (w/v) of RMβCD solution investigated with phosphate buffer.
The total concentration of ethanol is 1% (v/v) for all the samples. The concentration of curcumin (M) is expressed as well as the calculated mean +/− SD.
Thus, cyclodextrins can potentially stabilize a supersaturated state at low CD concentration. By adding dissolved curcumin and shaking the samples for one day a supersaturated system could occur. However, the supersaturated system may return to equilibrium if the shaking time would be enhanced to 1 week, for example. Further, investigations will be needed to clarify this.

The effect of small amounts of alginate and HPMC on the curcumin: cyclodextrin complexation was investigated. A q_p-like curves indicating higher order complexation (Figure 8) were obtained in water containing 1% (v/v) ethanol. Compared to other investigations at same conditions but without polymers, alginate did not increase the complexation, however, HPMC appeared to decrease the complexation. 9.69x10^{-5} was the highest curcumin concentration as detected in 5% (w/v) RMβCD in HPMC in water containing 1% (v/v) EtOH compared to the highest curcumin concentration of 1.65x10^{-4} as detected in 5% (w/v) RMβCD in sodium alginate in water containing 1% (v/v) EtOH. Neither the presence nor the type of polymer did change the complexing abilities between curcumin and CD with 1% (v/v) ethanol in the complexing medium.

Loftsson, T. (Loftsson, T., et al., 1998) investigated the effect of complex formation between drug und β-cyclodextrin contained CMC, PVP or HPMC on the solubility. Adding different types of polymer resulted in a 3-10% increase in the total aqueous solubility of βCD but the drug–βCD complexation results in a 40% to >100% increase in solubility. The aqueous solubility of βCD is increased and it is caused by the polymers but its ability to form inclusion complexes isn’t decreasing. In most cases, the polymers increase the complexing abilities of βCD (Loftsson, T., et al., 1998).

Hegge, A.B., et al., 2009 showed that the presence of various co-solvents, e.g. 0.1% (w/v) sodium alginate or propylene glycol alginate, did not affect the stoichiometry of the complexes formed. Neither the presence nor the type of alginate did change the complexation between curcumin and CD with 10%
(v/v) ethanol in the complexing medium. In the case of HPβCD a 30-90% increase in the association constant was observed in the presence of alginates (Hegge, A.B., et al., 2008).

![Phase solubility investigation with POLYMER](image)

Figure 10: Phase solubility diagram of curcumin with different types of polymer showing A∞ like curves. The curves show the solubility of curcumin at increasing concentrations (w/v) of RMβCD in purified water containing 1% (v/v) EtOH and/or containing different types of polymer.

<table>
<thead>
<tr>
<th>RMβCD concentration</th>
<th>curcumin concentration (M) in 0.1% (w/v) HPMC in water + 1% (v/v) EtOH</th>
<th>+/- SD</th>
<th>curcumin concentration (M) in 0.1% (w/v) alginate in water + 1% (v/v) EtOH</th>
<th>+/- SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10%</td>
<td>2.79x10⁻⁷</td>
<td>5.79x10⁻⁸</td>
<td>3.43x10⁻⁷</td>
<td>7.33x10⁻⁸</td>
</tr>
<tr>
<td>0.30%</td>
<td>7.89x10⁻⁷</td>
<td>6.80x10⁻⁷</td>
<td>1.15x10⁻⁶</td>
<td>4.64x10⁻⁷</td>
</tr>
<tr>
<td>0.50%</td>
<td>2.20x10⁻⁶</td>
<td>6.90x10⁻⁷</td>
<td>2.14x10⁻⁶</td>
<td>1.07x10⁻⁶</td>
</tr>
<tr>
<td>1%</td>
<td>5.90x10⁻⁶</td>
<td>2.29x10⁻⁶</td>
<td>7.04x10⁻⁶</td>
<td>8.98x10⁻⁷</td>
</tr>
<tr>
<td>2%</td>
<td>1.40x10⁻⁵</td>
<td>5.70x10⁻⁶</td>
<td>1.89x10⁻⁵</td>
<td>5.36x10⁻⁶</td>
</tr>
<tr>
<td>3%</td>
<td>3.65x10⁻⁵</td>
<td>3.09x10⁻⁶</td>
<td>6.19x10⁻⁵</td>
<td>3.44x10⁻⁶</td>
</tr>
<tr>
<td>5%</td>
<td>9.69x10⁻⁵</td>
<td>3.54x10⁻⁶</td>
<td>1.65x10⁻⁴</td>
<td>6.41x10⁻⁶</td>
</tr>
</tbody>
</table>

Table 6: The concentration of curcumin (M) expressed as the calculated mean +/- SD in different concentration (w/v) of RMβCD solution with 2 different polymers in purified water containing 1% (v/v) ethanol.
4.1.2 Quantification of curcumin after freeze-drying – drug load

As seen in table 7, the averages of the curcumin load in the freeze-dried product obtained from four different runs of freeze drying. There is a clear variation between the different runs. It is caused by different reasons. One of the reasons is that the dissolution rate of the product after solvent evaporation wasn’t controlled, which is an important factor to observe in the future. But also the freeze-dried process needs better technical preparation in the future.

<table>
<thead>
<tr>
<th>Ratio of CD:Cur in % (w/w), which was used to prepare the solution for the solvent evaporation for the freeze drying step</th>
<th>Average curcumin load in % (w/w) of the freeze dried products</th>
<th>+/- S.D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1</td>
<td>0.1338%</td>
<td>0.0057%</td>
</tr>
<tr>
<td>2:1</td>
<td>0.2133%</td>
<td>0.0040%</td>
</tr>
<tr>
<td>3:1</td>
<td>0.3057%</td>
<td>0.0291%</td>
</tr>
</tbody>
</table>

Table 8: The average (of 4 runs) of the detected curcumin load and +/- standard deviation (SD) after freeze-drying

In Table 8 the averages of all the common products are summarized. Also the standard deviation is indicated. This table shows that the selected ratio of CD:curcumin influences the final drug load of the freeze dried product. A 3:1 (CD:Cur) resulted in the highest drug load detected of 0.31% (w/w) curcumin.
Hegge, A.B., et al., 2010 reported a theoretical curcumin load of 0.15% (w/w) in previous prepared alginate foams. Different ratios between CDs and curcumin were selected to investigate the effect of the CDs on the physical characteristics of the foams, the curcumin release and photostability (Hegge, A.B., et al., 2010).

The optimal ratio of CD:curumin needs to be established. The importance of selection the optimal ratio of CD:curumin to obtain the most efficient complexation in the solvent evaporation has been demonstrated in case of curcumin and HPγCD (Singh, R., et al., in process). As well more importantly is the question, how it is possible to reach the highest possible curcumin load from the solvent evaporation product before freeze drying. However, in order to find the optimal ratio of MβCD:curcumin, further studies will be needed. It is essential to control the solubility of curcumin in the solution used for the freeze-dried process in order to control the drug load of the final product.

4.1.3 Degradation of the products after freeze-drying

The HPLC chromatograms indicate some degradation of curcumin, observed as several unidentified peaks. In Figure 11 only curcumin appears at 430nm and compared to the other figure 12 at a wavelength 376nm there are several unidentified peaks, which are not visible at 430nm. These unidentified peaks with retention time less than 4 min can be caused by impurities in the synthesized curcumin powder. In this thesis an excess of powder was used and it was filtered before freeze drying. Accordingly impurities might be visible in the HPLC chromatogram. Further investigations need to be done if these unidentified peaks are caused by degradation of curcumin or by impurities of the starting compound.

Feruloylmethane, ferulic acid, vanillin and also condensation products of feruloylmethane are some of the degradation products of curcumin, as already mentioned in 2.1.3.3 (Tønnesen, H.H., Karlsen, J., 1985a).
Figure 11: HPLC chromatogram of the product after freeze-drying at the wavelength 430nm

Figure 12: HPLC chromatogram of the product after freeze-drying at the wavelength 367nm
4.2 ROTAVAPOR

Two different systems were utilized. First system was curcumin dissolved in methanol. Second system was the combination of curcumin-cyclodextrin in methanol. Both systems were evaporated by a rotavapor. After evaporation both samples had the same powder-like visual appearance. Analyzed by DSC and SEM there are differences, which are mentioned in the section below.

4.3 DSC and SEM

Differential scanning calorimetry is a fast and relatively inexpensive technique to characterize the physical state of drugs or complexes of drugs (Bing, M., et al., 2010). DSC measures the energy change, which is the heat flow.

Scanning electron microscopy was used to imagine the sample surface by scanning it with high-energy beam of electrons in a raster scan pattern (Wikipedia, 2010).

DSC and SEM pictures of crystalline curcumin, pure RMβCD, curcumin with RMβCD in MeOH after evaporation and the freeze-dried product are shown in Figures 13-27. The SEM pictures below show the various components in their different appearance.

4.3.1 DSC and SEM of crystalline curcumin

The thermograms of pure curcumin in figure 13 show an intense melting endotherm at around 180°C corresponding to the melting point of pure
curcumin, which is specified in literature (Merck, 2001). In addition to this, a heating-cooling-heating cycle in exact temperatures from 25°C to 200°C back to 25°C and from 25°C to 300°C with the heating rate of 10°C/min was operated. This showed that curcumin doesn’t recrystallize by cooling because exothermal crystallization could not be observed. It remains amorphous. By reheating it undergoes glass transition at around 70°C. This glass transition is indicated with the red box in figure 13.

Figure 13: DSC thermograms of pure curcumin. The blue and green curves show the heating-cooling-heating cycle. The red box indicates the glass transition.

Figures 14 and 15 show two SEM pictures of pure curcumin with different magnification. Overall, it can be observed that curcumin appears as crystalline needles.
Figure 14: SEM picture of pure curcumin with a magnification of 200.

Figure 15: SEM picture of pure curcumin with a magnification of 900
4.3.2 DSC and SEM of RMβCD

The previous detected water content in RMβCD was 2.8%. The first endothermic peak in pure RMβCD in figure 16 is evaporation of residual water. Compared to pure curcumin, pure RMβCD undergoes glass transition at around 170°C which is again indicated with the red box. A heating-cooling-heating cycle was performed, which is seen in figure 17. The first heating from 25-110°C showed again evaporation of residual water which results in an endothermic peak. During the second heating from 25-220°C a glass transition at around 170°C appeared. In the producers technical sheet it is mentioned that the melting point of RMβCD is in the range of 165-172°C but according to another reference this selected cyclodextrin should be noncrystalline, which occurs in glass transition but in no melting (Froemming, K-H., et al. 1994).

The analyses in this present study show an amorphous state of the randomized-methylated-β-cyclodextrin due to the absences of a melting peak and the observer glass transition at around 170°C (figures 16 and 17).

Figure 16: DSC thermograms of pure curcumin with its intense endothermic peak and pure RMβCD with its glass transition.
The red box indicates the glass transition.
Figure 17: DSC thermograms of pure RMβCD and also its heating-cooling-heating cycle in the colors blue, green and violet. The red box indicates the glass transition.

SEM pictures of pure RMβCD with different magnifications are shown in figures 18 and 19. With the results from DSC and the analyses with SEM it seems that this selected cyclodextrin is amorphous.
Figure 18: SEM picture of pure RMβCD with a magnification of 200

Figure 19: SEM picture of pure RMβCD with a magnification of 2000
4.3.3 DSC and SEM of cur : CD product after solvent evaporation

A solution of curcumin and cyclodextrins in methanol was prepared and the solvent was removed by solvent evaporation using a rotavapor. Analyses of the resulting product are shown in figure 20. The absence of an endothermic peak indicates that the product is not crystalline anymore but amorphous.

The DSC thermograms of curcumin + cyclodextrin in MeOH after evaporation (violet trace) show an endothermic peak in the beginning and as well glass transition occurred comparable to the pure β-cyclodextrin (red trace). A heating-cooling-heating cycle was operated, which shows glass transition at around 140°C during the second heating from 5-220°C. This indicates that curcumin with cyclodextrin after evaporation is turned amorphous compared to pure curcumin before evaporation, which has a melting point and is consequently crystalline.

Figure 20: DSC traces of pure curcumin (black trace) and pure RMβCD (red trace) in comparison to curcumin + cyclodextrin in MeOH after evaporation (violet trace). The red box indicates the glass transition.
The SEM pictures demonstrate that curcumin with RMβCD in MeOH after evaporation have a flake-like structure throughout the sample as it is shown in figure 21 with a magnification of 150 and in figure 22 with a magnification of 6000. However, the prior morphology of the parent compounds disappeared and it is impossible to differentiate between the two initial components. A totally new appearance occurred.

Figure 21: SEM picture of curcumin with RMβCD in MeOH with a magnification of 150
The pure curcumin in methanol after evaporation was analysed as a control. Analyzing the product after evaporation by DSC with the heating rate of 10°C/min in the range of 5-220°C the same intense endothermic peak appears at around 180°C as seen in pure curcumin powder, which indicates the crystalline form of curcumin again (figure 23). The absence of a glass transition approves that curcumin in MeOH after evaporation is still crystalline, compared to the thermogram in figure 20 (with cyclodextrins), where glass transition appears at around 140°C, which indicates an amorphous structure.
Figure 23: DSC thermograms of pure curcumin and the curcumin in methanol after evaporation
4.3.4 DSC of the freeze-dried products

The thermograms of three freeze-dried products with different CD:Cur ratios in figure 24 are similar in appearance. During heating from 5-220°C with the heating rate of 10°C/min glass transition appears in the range of 60-80°C. No melting endotherm was observed at around 180-190°C where pure curcumin is supposed to has its melting point. Consequently crystalline curcumin was not detected in the freeze-dried product.

Figure 24: DSC thermograms of freeze-dried products with different ratios. Violet trace - CD:Cur ratio 1:1, green trace - CD:Cur ratio 2:1, black trace - CD:Cur ratio 3:1

Figure 25, 26 and 27 show the freeze-dried curcumin/ RMβCD/ HPMC system with its polymer structure with different magnification (45, 80 and 2200). The prior morphology of the parent compounds disappeared and a totally new appearance occurred. Ice crystals formed during the freezing process left behind the large pores.
Figure 25: SEM picture of the freeze-dried curcumin/ RMβCD/ HPMC system with a magnification of 45

Figure 26: SEM picture of the freeze-dried curcumin/ RMβCD/ HPMC system with a magnification of 80
Figure 27: SEM picture of the freeze-dried curcumin/ RMβCD/ HPMC system with a magnification of 2200
4.4 LYOPHILIZATION

In order to improve the physical and chemical stability of the samples and to convert solutions or suspensions into solids, one of the most commonly used processes is freeze-drying (Patil, V.V., et al., 2010).

All freeze-dried products had a sponge like morphology. After lyophilization the products appeared like foam. Figure 28 shows a representative freeze-dried sample containing curcumin, CD and HPMC in a typical freeze-dried vial with plastic stopper.

Figure 28: one of the freeze-dried sample in a freeze-dried vial with plastic stopper
5 SUMMARY AND CONCLUSION

Curcumin has a wide range of pharmacological properties and is currently under intense investigation as a possible photosensitizer in a PDT. However, the extremely low aqueous solubility of curcumin and low stability at physiological conditions, solubilization and protection from degradation will be necessary in order to utilize this compound as a drug.

The aim of this master thesis was to improve the solubility and dissolution rate of curcumin by using a selected cyclodextrin. With the aid of phase solubility studies conducted by Higuchi and Connors (1965), the solubility of curcumin in 7 different solvents was investigated. All these studies show non-linear, \(A_p \)-like curves independent from the solvent used. This indicates some kind of higher order complexation.

As described in chapter 4.1 the highest curcumin concentration obtained in the present study was \(1.77 \times 10^{-4} \) M as detected in 5\% (w/v) \(\text{RM}\beta\text{CD} \) in phosphate buffer containing 1\% (v/v) ethanol. Similar solubilities were detected independent of the solvent used and independent of the presence of 0.1\% alginate. There is no increasing solubility by adding any polymer. In fact, less solubility occurred by adding HPMC.

Different solubility curves were found when curcumin was added as a combination of curcumin dissolved in \(\text{EtOH} \left(10^{-3} \right) \) together with crystalline curcumin to \(\text{RM}\beta\text{CD} \) in phosphate buffer. In the beginning the curves seemed to be linear but at higher cyclodextrin concentration the curves started being \(A_p \)-like. At CD concentration \(\leq 2\% \) the apparent solubility of curcumin is higher compared to the solubility detected, when only crystalline curcumin is added to the same solvent. The increased solubility of curcumin might be caused by curcumin in a supersaturated state, which cyclodextrins
potentially stabilize. Further investigations under different buffer conditions will be needed to clarify this.

To further enhance the solubility of curcumin in aqueous solutions, a solvent evaporation method was selected. In fact, the product of curcumin with cyclodextrin after evaporation is turned amorphous compared to the pure curcumin before evaporation, which is crystalline. The prior morphology of the parent compounds disappeared after solvent evaporation and a totally new product appeared.

The figure below shows the series of tests, which were performed in this study to find the most promising product to enhance the solubility and stability of curcumin. Even though 0.1% (w/v) HPMC in water with 1% (v/v) EtOH didn’t get as promising solubilizing effect as sodium alginate, HPMC was chosen to carry out the following studies. The increased viscosity of sodium alginate complicated the filtration of the solutions prior to freeze dry and prior to quantification.
The method of lyophilization was used to improve the physical and chemical stability of this new product. But at this point the procedure of lyophilization with a curcumin/ cyclodextrin/ HPMC solution is in its infancy. To find out the best conditions, a lot of measurements need to be taken.

Nonetheless, some analyses of the lyophilized products were performed but the products haven’t been fully characterized yet.

By checking the freeze-dried products with DSC, a glass transition occurred, which indicates that the product after lyophilization remains amorphous.

The drug load of the freeze-dried products shows great promise as well. 0.31% (w/w) curcumin load was detected in 3:1 CD:Cur ratio. Unfortunately it’s a clear variation between the different runs. It is caused by different reasons. It is essential to control the solubility of curcumin in the solution used for the freeze-dried process in order to control the drug load of the final product. Also the lyophilization process needs better technical preparation in the future.

The specific degradation products haven’t been investigated so far. The HPLC chromatograms indicate some degradation of curcumin, observed as several unidentified peaks. Further investigations need to be done if these unidentified peaks are caused by degradation of curcumin or by impurities of the starting compound.

Furthermore, to find the exact water content of the lyophilized product, a Fischer titration could be carried out in the future.

However, a porous freeze-dried product will probably increase the dissolution rate and solubility of curcumin markedly. After all it will still be able to protect curcumin from degradation during storage. Such product has a potential use as a topical drug delivery system. This interesting and promising project has just started. More investigations need to be conducted in the future.
6 REFERENCES

Appendix:

A.1 Equipment

HPLCs:

HPLC system I: system I consisted of a Waters Nova-Pak C18, 3.9 x 150 mm, 4µm particle size column by use of a Shimadzu Liquid Chromatography LC-9A pump, a Shimadzu Auto Injector SIL-10 AD auto sampler, a Shimadzu UV-Vis Spectrophotometric detector SPD-10A, and a Shimadzu C-R3A integrator.

HPLC system II: system II consisted of a Waters Nova-Pak C18, 3.9 x 150 mm, 4µm particle size column by use of a Shimadzu Liquid Chromatography LC-20AD pump, a Shimadzu Auto Injector SIL-20AC HT auto sampler, a Shimadzu UV-Vis Spectrophotometric detector SPD-M20A, a CBM-20A controlling unit and a CTO-20A oven.

Rotavapor: Büchi EL -131

Differential scanning calorimeter: Mettler Toledo Stare System DSC822® and Mettler Doledo STARE software

Lyophilization: Virtis 25ES from Virtis Company Inc. USA.

Vacuum pump: Leybold, Trivac D16B from Engineering Company Inc., USA
Scanning electron microscope: Hitachi S-4800 scanning electron microscope

Moisture analyzer: Sartorius Moisture Analyzer MA30

Analytical weight: Sartorius analytical weight
A.2 Reagents

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Lot Number</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citric Acid monohydrate</td>
<td>08D150022</td>
<td>VWR International</td>
</tr>
<tr>
<td>Kaliumhydroxid</td>
<td>11293</td>
<td>Eka Nobel AB/ Nobel Industrier</td>
</tr>
<tr>
<td>Natriumchlorid</td>
<td>9D122/4</td>
<td>Norsk Medisinaldepot, Norway</td>
</tr>
<tr>
<td>Methanol Chromasolv® (HPLC-grade)</td>
<td>SZBA1195</td>
<td>Sigma-Aldrich Co./Chemie GmbH</td>
</tr>
<tr>
<td>Ethanol</td>
<td></td>
<td>Norsk Medisinaldepot, Norway</td>
</tr>
<tr>
<td>Natriumhydrogenphosphatdihydrat</td>
<td>K91380845 819</td>
<td>Merck KGaA</td>
</tr>
<tr>
<td>Di-natriumhydrogenphosphatdihydrat</td>
<td>K27618980 020</td>
<td>Merck KGaA</td>
</tr>
<tr>
<td>RM- β-cyclodextrin = Cavasol W7 M</td>
<td>71T051</td>
<td>Wacker Chemie AG</td>
</tr>
<tr>
<td>Hydroxypropylmethylcellulose</td>
<td>8028204</td>
<td>Shin-Etr Chemie. Lv.</td>
</tr>
<tr>
<td>Sodium Alginate (Protanal® LF 10/60 LS)</td>
<td>S17261</td>
<td>FMC BioPolymers/NovaMatrix</td>
</tr>
</tbody>
</table>

A.3 Buffers and mobile phase

A.3.1 Buffer for HPLC (mobile phase)

0.026 M (0.5%) Citrate buffer pH 3:

For 1000ml buffer:

5.47 g citric acid anhydrate

pH adjusted to 3 with 10% KOH solution

A.3.2 Buffer for phase solubility experiments

Buffer: phosphate buffer pH 5 (0.05 M; ionic strength 0.085):

For 1000ml buffer:

7.8 g NaH₂PO₄ x 2 H₂O
0.089 g Na$_2$HPO$_4$ x 2 H$_2$O

2g NaCl

A.3.3 Mobile Phase for HPLC system I

62 parts MeOH

38 parts citric acid buffer

A.3.4 Filtration

BD Plastipak 5ml sterile syringe from Becton Dickinson S.A., fitted with Spartan 13/0.45 RC, 0.45µm filters from Whatman.

A.3.5 Detection of the water content in RMβCD:

The water content of the CDs (ca. 2.8% w/w) was determined by heating the CDs to 130°C on a Sartorius analytical weight for 60 minutes, respectively, and calculating the water loss.

The water-content was calculated according to the equation:

\[
(W1 - W2) / W1 \times 100\% , \text{ where } W1 \text{ and } W2 \text{ are the weights of the CDs before and after drying, respectively.}
\]

The measurements were done in triplicates and the value used for concentration corrections was the average of the three parallels.
1 parallel:

\[W_1: 1.94478 \quad W_2: 1.89092 \quad \rightarrow \quad x=2.769465\% \]

2 parallel:

\[W_1: 1.73229 \quad W_2: 1.68409 \quad \rightarrow \quad x=2.782444\% \]

3 parallel:

\[W_1: 1.98667 \quad W_2: 1.933 \quad \rightarrow \quad x=2.701506\% \]
A 4 All Solubility investigations

A.4.1 Solublity of crystalline curcumin in 0.1-5% (w/v) of RMβCD, purified water

A.4.2 Solublity of crystalline curcumin in 0.1-5% (w/v) of RMβCD, purified water containing 1% (v/v) ethanol
A.4.3 Solubility of crystalline curcumin in 0.1-5% (w/v) of RMβCD, phosphate buffer pH5 (0.1 M, ionic strength 0.085)

A.4.4 Solubility of crystalline curcumin in 0.1-5% (w/v) of RMβCD, phosphate buffer pH5 (0.1 M, ionic strength 0.085) containing 1% (v/v) ethanol
A.4.5. Solubility of crystalline curcumin and solved curcumin in 0.1-5% (w/v) of RMβCD, phosphate buffer pH5 (0.1 M, ionic strength 0.085)
A.4.6 Solubility of crystalline curcumin in 0.1-5% (w/v) of RMβCD, 0.1% (w/v) HPMC in water containing 1% (v/v) ethanol

A.4.7 Solubility of crystalline curcumin in 0.1-5% (w/v) of RMβCD, 0.1% (w/v) sodium alginate in water containing 1% (v/v) ethanol
Alexandra Rupp
Berggasse 20/2/24
1090 wien
Österreich
Tel.: 0680/1172441
E-mail: alex.rupp@gmx.at

Curriculum Vitae

Alexandra Rupp
Geboren am 19.09.1983 in Bregenz, Vorarlberg, Österreich
Hauptwohnsitz in 6972 Fussach, Kanalstrasse 8

Ausbildung
Seit 2002 Pharmaziestudium an der Universität Wien
1990-1994
Volksschule Fussach in Fussach, Vorarlberg
1994-2002
Bundesgymnasium Blumenstraße in Bregenz, Vorarlberg
2002
Matura erfolgreich bestanden

Persönliche Fähigkeiten
Muttersprache: Deutsch
Gute Englischkenntnisse
Gute Computerkenntnisse
Schulniveau Französisch

Interessen
Badminton, Kultur, Segeln, Kochen

Arbeits erfahrung
Juli-August 2003
Braun Apotheke und Drogerie, Lustenau, Vorarlberg, Österreich
Juli 2004
Seeapothek Hard, Vorarlberg, Österreich
Juli 2005
Seeapothek Hard, Vorarlberg, Österreich
August 2006
Seeapothek Hard, Vorarlberg, Österreich
August 2007
Seeapothek Hard, Vorarlberg, Österreich
August 2008
Seeapothek Hard, Vorarlberg, Österreich
Juli 2009
Seeapothek Hard, Vorarlberg, Österreich
August 2010
Seeapothek Hard, Vorarlberg, Österreich
Juli 2011
Seeapothek Hard, Vorarlberg, Österreich
Curriculum Vitae

Okt.2006 - Feb.2008

Feb. 2004
Um mein Wissen über die Pflanzen des Regenwaldes zu erweitern absolvierte ich für 1 Monat eine Forschungsreise der Universität Wien nach Costa Rica.

Okt.2005 - 2010

Sept.2010 - Dez. 2010
Zwischen September und Dezember 2010 hatte ich die Möglichkeit die praktische Arbeit meiner Diplomarbeit und das Schreiben der Diplomarbeit an der Universität Oslo zu absolvieren.