DIPLOMARBEIT

Titel der Diplomarbeit
“Bildungstransmissionen in Österreich mit besonderer Berücksichtigung von Gender-Aspekten”

Verfasserin
Pia Kranawetter

angestrebter akademischer Grad
Magistra der Sozial- und Wirtschaftswissenschaften (Mag. rer. soc. oec.)

Wien, 2012

Studienkennzahl lt. Studienblatt: A 140
Studienrichtung lt. Studienblatt: Diplomstudium Volkswirtschaft
Betreuerin: Prof. DI Dr. Christine Zulehner
Danksagung

Ich möchte mich an dieser Stelle bei meiner Diplomarbeitsbetreuerin Christine Zulehner für die hilfsbereite Unterstützung bei Erstellung dieser Arbeit und die zahlreichen Tipps bedanken.

Mein besonderer Dank gilt meinen Eltern, Maria und Manfred Kranawetter, die mich dazu ermutigt haben, ein Studium zu beginnen und mir immer sehr viel Vertrauen entgegengebracht haben.

Bei der Ideenfindung hat Pirmin Fessler einen wesentlichen Beitrag geleistet - danke dafür.

Außerdem bedanke ich mich bei allen Freundinnen und Freunden, die mir immer den Rücken gestärkt haben und natürlich auch für sonst alles.
Inhaltsverzeichnis

1. Einleitung 9
 1.1. Motivation 9
 1.2. Fragestellung 10
 1.3. Gliederung der Arbeit 12

2. Literaturüberblick 13
 2.1. Faktoren der intergenerationalen Bildungsmobilität 13
 2.2. Transmission des ökonomischen Status 16
 2.3. Transmission von Bildungsabschlüssen
 2.3.1. Einbeziehung von Gender-Faktoren 18
 2.3.2. Genetische Vererbung vs. Umweltfaktoren 19

3. Bildungssystem in Österreich und deren Veränderungen 21
 3.1. Das österreichische Bildungssystem 21
 3.2. Bildungsreformen in Österreich 23
 3.3. Veränderung des Frauenbildes 25
 3.4. Bildungsexpansion 26

4. Empirische Analyse 28
 4.1. Datengrundlage
 4.1.1. Beschreibung der Daten
 4.1.1.1. Zusammenfassung der Bildungskategorien 29
 4.1.1.2. Vergleich der Daten: Grundprogramm mit Sonderprogramm 29
 4.1.1.3. Bildung von Alterskohorten 30
 4.1.1.4. Bildungsexpansion 31
 4.1.1.5. Unterschiedliche Bildungsabschlüsse: Stadt-Land 34
 4.2. Methoden
 4.2.1. OLS-Regressionen
 4.2.1.1. Wichtigste Ergebnisse der OLS-Regressionen 46
 4.2.2. Ordered-Logit-Modelle
 4.2.2.1. Wichtigste Ergebnisse des Ordered-Logit-Modells 55
 4.2.3. Übergangsmatrizen
 4.2.3.1. Mobilitätsmaße 60

5. Fazit 63
Tabellenverzeichnis

4.1. Bildungsabschlüsse Kinder gesamter Datensatz .. 29
4.2. Zusammenfassung der Bildungsabschlüsse in fünf bzw. drei Kategorien 30
4.3. Vergleich Verteilung „Höchster Bildungsabschluss Kinder“ 30
4.4. Bildungsexpansion zw. Kinder und deren Eltern ... 32
4.5. Vergleich Bildungsabschlüsse: Stadt-Land ... 34
4.6. Umrechnung von Bildungsabschlüssen in (statutorische) Bildungsjahre 35
4.7. Geschätzte Koeffizienten für Modell aus 4.1 ... 36
4.8. Geschätzte Koeffizienten: Modell 4.1 für Alterskohorten 38
4.9. Geschätzte Koeffizienten: Modell 4.1 getrennt nach Geschlechtern 39
4.10. Geschätzte Koeffizienten: Modell 4.1 \((p = m)\) getrennt nach Geschlechtern für Alterskohorten ... 40
4.11. Geschätzte Koeffizienten: Modell 4.1 \((p = v)\) getrennt nach Geschlechtern 40
4.12. Geschätzte Koeffizienten Modell 4.2 getrennt nach Geschlechtern 41
4.13. Schätzer für Modell 4.2 für \(p = \max(v, m)\) nach Alterskohorten 43
4.14. Geschätzte Koeffizienten für Modell 4.3 ... 44
4.15. Regressionen für Modell 4.3 für \(p = \max(v, m)\) nach Alterskohorten 45
4.16. Geschätzte Koeffizienten für Modell 4.4, \(p = \max(m, v)\) 45
4.17. Ordered Logit alle Kinder ... 49
4.18. Ordered Logit getrennt nach Geschlechtern ... 51
4.19. Ordered Logit alle Kinder mit Kohorteneffekten ... 53
4.20. Ordered Logit getrennt nach Geschlechtern mit Kohorteneffekten 56
4.21. Übergangsmatrix Eltern-Kinder: \(P_{E} \rightarrow K\) .. 58
4.22. Übergangsmatrix Mutter-Tochter: \(P_{M} \rightarrow K_{w}\) .. 58
4.23. Übergangsmatrix Mutter-Sohn: \(P_{M} \rightarrow K_{m}\) .. 59
4.24. Übergangsmatrix Vater-Tochter: \(P_{V} \rightarrow K_{w}\) .. 59
4.25. Übergangsmatrix Vater-Sohn: \(P_{V} \rightarrow K_{m}\) ... 59
4.26. Übergangsmatrix mit höchster Mobilität ... 61
4.27. Mobilitätsindizes für \(P_{M} \rightarrow K_{w}\), \(P_{M} \rightarrow K_{m}\), \(P_{V} \rightarrow K_{w}\), \(P_{V} \rightarrow K_{m}\) 61
4.28. Mobilitätsindizes für \(P_{M} \rightarrow K_{w}\) nach Alterskohorten 62
4.29. Mobilitätsindizes für \(P_{V} \rightarrow K_{m}\) nach Alterskohorten 62

A.1. Vergleich: Geschlecht und Stadt/Land ... 66
A.2. Vergleich: Prozentueller Anteil an Frauen in jeweils Alterskohorte 66
A.3. Vergleich: Mittelwert Alter in Jahren ... 66
Abbildungsverzeichnis

3.1. Schulsystem Österreich ... 22
4.1. Bildungsexpansion weibliche Kinder 32
4.2. Bildungsexpansion männliche Kinder 33
1. Einleitung

1.1. Motivation

Wenn die Korrelation zwischen der Bildung der Eltern und deren Kinder hoch ist, verringert sich gleichzeitig die Wahrscheinlichkeit für Kinder aus benachteiligten Familien den sozialen Aufstieg schaffen zu können (Statistik Austria (2007)). Die Ungleichheit bei den Bildungsabschlüssen wird aufgrund der Herkunft in der nächsten Generation fortgeführt. Der Gesetzgeber kann dem entgegenwirken indem Kinder aus benachteiligten Familien besonders gefördert werden (Fessler u. Schneebaum (2011)). In den 1960er- und 70er-Jahren wurden weitreichende Bildungsreformen in Österreich durchgeführt, die darauf abzielten, das allgemeine Bildungsniveau zu heben und Nachteile für Kinder aus einkommensschwachen Haushalten auszugleichen.

Die Wichtigkeit der Transmission von Bildungschancen wird klar, wenn man be-
denkt, dass mit einer höheren Bildung ein höheres erwartetes Einkommen und unzählig
gle andere positive Faktoren einhergehen. So wird durch höhere Bildung der Zugang zum
politischen und kulturellen Leben erleichtert oder die Wahrscheinlichkeit von Arbeits-
losigkeit betroffen zu sein geringer (Festerer [2001]). Zudem profitiert die Allgemeinheit
von einem höheren Bildungsniveau der Bevölkerung. Eine niedrigere Kriminalitätsrate
korreliert etwa mit höheren Bildungsabschlüssen und Bildung gilt als wichtiger Faktor
für das Wirtschaftswachstum einer Volkswirtschaft (Festerer [2001]).

Die Datengrundlage dieser Diplomarbeit bilden Teile des Grundprogramms und das
Quartal) der Statistik Austria (1996). Bei diesen Querschnittsdaten wird die Genera-
tion der Kinder gefragt, welchen Bildungsabschluss der Vater und die Mutter hatten,
as diese 15 Jahre alt waren.

Mithilfe von OLS-Regressionen (Kapitel 4.2.1), einem Ordered-Logit-Modell (Kapitel
4.2.2) und verschieden Mobilitätsmaßen (Kapitel 4.2.3) soll die Bildungstransmission
von einer Generation auf die nächste ökonometrisch untersucht und auf geschlechtedef
spezifische Arten eingegangen werden. Darüber hinaus soll auf die Entwicklung
der Korrelation zwischen Bildung der Eltern und jener der Kinder im Laufe der Zeit
(Geburtenjahrgänge 1936-1969) und der Umweltfaktor „auf dem Land leben“ analysiert
werden.

1.2. Fragestellung

Hier soll ein kurzer Überblick über die konkreten Fragestellungen dieser Diplomarbeit
gegeben werden, die später ausführlicher in Kapitel 4 beschrieben und mittels verschied-
derer Methoden beantwortet werden.

Ist der Bildungsabschluss der Mutter bzw. des Vaters positiv mit dem
Bildungsabschluss des Sohnes bzw. der Tochter korrelliert?

In vielen empirischen Untersuchungen wurde gezeigt, dass die Korrelation zwischen
dem Bildungsabschluss der Eltern und jenem der Kinder positiv und statistisch signifi-
kant ist (u. a. bei Hertz u. a. [2007]). Aus diesem Grund wird angenommen, dass auch
bei den hier verwendeten österreichischen Mikrozensusdaten (Statistik Austria [1996])
der Bildungsabschluss der Eltern stets positiv mit dem Bildungsabschluss der Kinder
correliert. Das heißt sowohl die Bildung des Vaters als auch die Bildung der Mutter
sollte die Bildung der Tochter und des Sohnes positiv beeinflussen.

Was für eine Rolle spielen geschlechtsspezifische Unterschiede bei der
Transmission von Bildungsabschlüssen?

Aufgrund von geschlechtsspezifischen Rollenbildern, die vorgelebt und weitergegeben
werden, wird angenommen, dass die Korrelation beim Bildungsabschluss bei den Paa-

10

Verändert sich der Grad der Korrelation bei den Bildungsabschlüssen im Laufe der Zeit?

Verändern sich geschlechtspezifische Unterschiede bei der Bildungstransmission im Laufe der Zeit?

Weibliche Kinder haben im Schnitt wesentlich niedriger Bildungsabschlüsse als männliche bei den älteren Geburtenjahrgängen im Datensatz und holen im Laufe der Zeit auf (Kapitel 4.1.1.4). Da die Bildungsexpansion bei den weiblichen Kindern im Datensatz stärker ausgeprägt als bei den männlichen, wird angenommen, dass die geschlechtspezifischen Unterschiede im Laufe der Zeit zurückgehen.

Gibt es einen negativen Zusammenhang zwischen auf dem Land aufwachsen und dem Bildungsabschluss?

Da Familien, die auf dem Land leben, im Schnitt ein niedrigeres Bildungsniveau aufweisen und die Infrastruktur für höhere Bildungseinrichtungen in städtischen Gebieten wesentlich besser ausgebaht ist, wird angenommen, dass Kinder in ländlichen Gebieten einen Nachteil gegenüber Kinder aus städtischen Gebieten haben. Vor allem Personen, die lediglich einen Pflichtschulabschluss haben, sind in ländlichen Gebieten überdurchschnittlich häufig (Statistik Austria (2010a)).

Wie verändert sich Nachteil von auf dem Land aufwachsen im Laufe der Zeit?

Der Nachteil von Kindern, die in ländlichen Gebieten aufwachsen, sollte zurückgehen, da ab dem Jahr 1972 die gesamten Fahrtkosten zu allen Bildungsinstitutionen vom Staat übernommen werden und zudem das Bildungsangebot (auch in ländlichen Regionen) ausgebaut wurde.
1.3. Gliederung der Arbeit

In Abschnitt 2 findet man einen Literaturüberblick. In diesem Abschnitt sollen die von der Literatur identifizierten Faktoren, die die intergenerationale Mobilität beeinflussen, beschrieben werden. Weiters wird allgemein auf die Transmission des ökonomischen Status (Kapitel 2.3.2) eingegangen.

In Abschnitt 3 wird zuerst das österreichische Bildungssystem überblicksartig beschrieben. Danach werden die Bildungsreformen in den 1960er- und 70er-Jahren erläutert, auf die Veränderung des Frauenbildes und wichtige Reformen für der Gleichstellung von Frauen eingegangen.

Die empirische Analyse in Abschnitt 4 ist das Kernstück dieser Diplomarbeit. Die konkrete Fragestellung (1.2) soll in diesem Teil mithilfe von drei verschiedenen Methoden (OLS-Regressionen 4.2.1, Ordered-Logit-Modellen 4.2.2, Mobilitätsmaßen 4.2.3) beantwortet werden.

Im letzten Abschnitt 5 soll schließlich ein Fazit gezogen werden.
2. Literaturüberblick

2.1. Faktoren der intergenerationalen Bildungsmobilität

Einkommen der Eltern

Vermögen der Eltern

Ähnlich wie ein hohes Einkommen der Eltern ermöglicht das Vermögen mehr Investitionen in die Bildung. Durch Erben oder Geschenke haben Kinder mit vermögenden Eltern einen Vorteil gegenüber Kindern mit Eltern ohne Vermögensbestände. Innerfamiliärer Transfer erleichtert Investitionen in Humankapital (Fessler u. a. (2011)).
Quantität der Kinder

Bevölkerungsdichte

Neben den höheren Bildungskosten für Kinder mit Eltern in ländlichen Gebieten könnte die geringere Bildungseignung eine Eltern eine Rolle spielen. In ländlichen Gebieten gibt es überdurchschnittlich viele Personen, die lediglich einen Pflichtschulabschluss haben (Statistik Austria (2010a)).
Jugendarbeitslosigkeit

Genetische Faktoren

Ob genetische Faktoren eine Rolle spielen oder nicht ist in der Literatur umstritten. Diese Problemstellung wird in Kapitel 2.3.2 genauer diskutiert.

Selbstbewusstsein

Bildung der Eltern als entscheidender Faktor

Der Liste der angeführten Faktoren kann noch fortgesetzt werden. So beeinflussen
etwa die Kosten für ein Schulsystem oder gesellschaftliche Rollenbilder ebenfalls die intergenerationale Bildungsmobilität.

In keinem Datensatz wird man alle Faktoren - vorausgesetzt, dass diese beobachtbar sind - finden, die die intergenerationale Bildungsmobilität beeinflussen. Um die Transmission der Bildungsabschlüsse von einer Generation auf die nächste untersuchen zu können, benötigt man nämlich entsprechende Informationen über mindestens zwei Generationen hinweg. Die Daten (Statistik Austria (1996)), die in dieser Diplomarbeit verwendet werden, enthalten Informationen über das Geschlecht und den Bildungsabschluss der Kinder und der Eltern und gibt Auskunft, ob die Kinder eher in einem städtischen oder ländlichen Gebiet aufgewachsen sind.

2.2. Transmission des ökonomischen Status

befragt werden, erhält man teilweise widersprüchliche Angaben, die für wissenschaftliche Analysen ungeeignete Einkommensverteilungen der Elterngeneration zur Folge haben. Offensichtlich fällt es Menschen schwer, das Einkommen der Eltern korrekt einzuschätzen. Um wertbare Daten zu erhalten, müssten also zwingend Eltern und Kinder befragt werden, was sich aber nur schwer umsetzen lässt. Darüber hinaus lassen sich aus einer Status-Quo Erhebung kaum Aussagen ableiten. Entscheidend für die Investition in die Bildung ihrer Kinder ist viel mehr das Einkommen der Eltern in längeren Zeiträumen, insbesondere in der Zeit, in der sich die Kinder in Ausbildung befinden. Aus diesem Grund wird oft auf die Transmission von Bildungsabschlüssen zurückgegriffen, da dadurch die Transmission des ökonomischen Status am besten widerspiegelt wird (Black u. Devereux (2010)). Höhere Bildungsabschlüsse weisen eine positive Korrelation mit höherem Einkommen auf.

2.3. Transmission von Bildungsabschlüssen

In Kapitel 2.1 wurden die Faktoren beschrieben, die die Transmission bzw. die intergenerationale Bildungsmobilität beeinflussen. Hier sollen einige ausgewählte Artikel und deren Ergebnisse kurz zusammengefasst werden.

2.3.1. Einbeziehung von Gender-Faktoren

 Wenige wissenschaftliche Artikel legen bei der Transmission von Bildungsabschlüssen einen Fokus auf Gender-Faktoren, obwohl die in mehreren Ländern wesentlich stärker ausgeprägte Bildungsexpansion von Frauen nahe legt, dass es statistisch signifikante Unterschiede bei der intergenerationalen Bildungsmobilität zwischen Männern und Frauen gibt.

Dardanoni u. a. (2008) kommen zu dem Ergebnis, dass der Bildungsabschluss des Vaters nur jenen des männlichen Kindes und nicht jenen des weiblichen beeinflusst und
der Bildungsabschluss der Mutter keine Auswirkung sowohl auf die Tochter als auch auf den Sohn hat.

2.3.2. Genetische Vererbung vs. Umweltfaktoren

Ob die Übertragung des Bildungsabschlusses von einer Generation auf die nächste auf die Vererbung von genetischen Faktoren zurückzuführen ist oder ob Umweltfaktoren entscheidend sind, ist in der Literatur umstritten.

Welche Rolle genetische Faktoren bei der intergenerationalen Bildungsmobilität spielen ist noch nicht geklärt. Die meisten AutorInnen von wissenschaftlichen Artikeln tendieren dazu, dass Umweltfaktoren eine wichtigere Komponente als genetische Faktoren sind und der sozioökonomische Hintergrund der Eltern eine besonders starke Rolle spielt.
3. Bildungssystem in Österreich und deren Veränderungen

3.1. Das österreichische Bildungssystem

In Abbildung 3.1 findet man eine überblicksartige Darstellung des österreichischen Bildungssystems, das im Folgenden kurz erklärt wird. Die Ausführungen über das Bildungssystem beziehen sich auf die geltende Gesetzeslage zum Zeitpunkt der Erhebung der in dieser Diplomarbeit verwendeten Daten (Statistik Austria (1996)). Da für Veränderungen in der Bildungspolitik eine Zweidrittelmehrheit im Nationalrat notwendig ist und die Parteien oft andere Positionen in diesem Bereich vertreten, gab es seit Ende des Zweiten Weltkrieges kaum Veränderungen in der organisatorischen Struktur des Schulsystems (Festerer (2001)).

Nach Erfüllung der neunjährigen Schulpflicht haben die SchülerInnen die Möglichkeit eine Lehre bei einem Unternehmen zu machen, die mit dem Besuch einer Berufsschule berufsbegleitend einhergeht. Im Normalfall dauert die berufsbegleitende Ausbildung in der Berufsschule drei Jahre. Man spricht in diesem Zusammenhang von einem dualen Ausbildungssystem, da die SchülerInnen in einem Unternehmen und in der Berufsschule ausgebildet werden. Diese ausbildungsorientierte Schule ist im internationalen Vergleich eine Besonderheit des österreichischen Schulsystems. Ähnliche berufsorientierte Schulen gibt es noch in Deutschland und der Schweiz.

Berufsbildende Mittlere Schulen (BMS) sind nicht berufsbegleitend und man erhalt nach einer Ausbildungsdauer von drei bis vier Jahren eine abgeschlossene Berufsausbil-
Abbildung 3.1.: Das österreichische Schulsystem
dung. Die wichtigsten Berufsbildenden Mittleren Schulen sind im technisch-gewerblichen sowie im kaufmännisch-wirtschaftlichen Bereich angesiedelt (Festerer (2001)).

Berufsbildende Höhere Schulen (BHS) schließen - wie die Oberstufe der AHS - nach fünf Jahren mit der Reifeprüfung (Matura) ab, die die Voraussetzung für die Hochschule darstellt. Im Gegensatz zur AHS bekommt man bei Besuch einer BHS eine fertige Berufsausbildung. Die wichtigsten Berufsbildenden Höheren Schulen sind die Handelsakademie (HAK), Höhere Technische Lehranstalt (HTL) und die Bildungsanstalt für Kindergartenpädagogik.

Die Allgemeinbildende Höhere Schule (AHS) besteht aus einer vierjährigen Unterstufe und einer vierjährigen Oberstufe. Nach acht Jahren AHS schließen die SchülerInnen mit der Reifeprüfung (Matura) ab, die zum Studium an einer Universität, einer Fachhochschule oder Pädagogischen Hochschule (bis 2007 Pädagogische Akademie) berechtigt. Obwohl es formal möglich ist von der Hauptschule in die AHS-Oberstufe zu wechseln, gibt es nur wenige SchülerInnen die diesen Übertritt schaffen (Spielauer (2004)).

Neben der Matura gibt es für SchülerInnen, die eine Berufsschule absolviert haben, die Möglichkeit eine Studienberechtigungsprüfung zu machen, um die Zulassungsvoraussetzungen für eine Hochschule zu erfüllen. Die Mindeststudienlänge für ein Diplomstudium an einer Universität beträgt vier bis sechs Jahre (Festerer (2001)). Die Durchschnittsstudienlänge liegt in Österreich aber deutlich darüber (Hochschulbericht (1972)). Fachhochschulen haben im Gegensatz zu Universitätsstudien einen stärker berufsbezogene Ausrichtung. Der Abschluss eines Diplomstudiums ist die Voraussetzung für ein Doktoratsstudium, das ausschließlich an Universitäten und nicht auf Fachhochschulen angeboten wird.

Anzumerken ist hier, dass beinahe sämtliche Ausbildungskosten in Österreich vom Staat übernommen werden. Eltern, deren Kinder öffentliche Schulen besuchen, müssen im Wesentlichen nur die Kosten für Schreibmaterial und Schulbehelfe tragen, aber nicht für den Schulbesuch bezahlen (Festerer (2001)).

3.2. Bildungsreformen in Österreich

In diesem Kapitel werden die wichtigsten Bildungsreformen ab Anfang der 1960er-Jahre beschrieben. Um Veränderungen in der Schulorganisation durchführen zu können, benötigte die Regierung bis 2005 eine Zwei-Drittel-Mehrheit im Nationalrat, was eine gewisse Rigidität im österreichischen Bildungssystem zur Folge hatte, da von den Parteien oft konträre Positionen in der Bildungspolitik verfolgt wurden (Engelbrecht).

Seit 1963 haben Hauptschulen und Allgemeinbildende Höhere Schulen die gleichen Lernziele, was zu mehr Durchlässigkeit zwischen den beiden Schultypen führen sollte (Engelbrecht (1988)). Dies wurde allerdings bis heute nicht erreicht.

Mit dem neuen Studienbeihilfengesetz von 1963 erlangten Studierende an österreichischen Universitäten erstmals einen Rechtsanpruch auf finanzielle Unterstützung, wenn diese die Bedürftigkeit und einen entsprechenden Studienerfolg nachweisen konnten. Ab 1969 wurde im Studienförderungsgesetz der Kreis der Anspruchsberechtigten erweitert und die Vergabebedingungen für die Studienbeihilfe verbessert (Hochschulbericht (1969)).

Die Bildungsreformen in den 1960er- und 70er-Jahren werden bis heute als tief-

3.3. Veränderung des Frauenbildes

1962 wurde die Anti-Baby-Pille erstmals in Österreich zugelassen. Zugänglich war diese zu Beginn nur für verheiratete Frauen mit Menstruationsbeschwerden (Mocnik (2009)).

Ein zentrales Anliegen der Frauenbewegung in den 1970er-Jahren war die Legalisierung der Abtreibung. Frauen der Sozialdemokratischen Partei Österreichs (SPÖ), der
Kommunistischen Partei Österreichs (KPÖ) und der AUF wirkten zusammen, um dieses Anliegen politisch durchzusetzen. Schließlich tritt die so genannte Fristenlösung, die den Schwangerschaftsabbruch innerhalb von drei Monaten nach Beginn der Schwangerschaft straffrei stellt und als Kompromiss gilt, 1975 unter der SPÖ-Alleinregierung in Kraft (Zach [4]). Die Österreichische Volkspartei (ÖVP) und die Freiheitliche Partei Österreichs (FPÖ) stimmten dagegen (Engelbrecht [1988]).

Mit der Beschlussfassung des ersten Teils der Familienrechtsreform 1975 wurde die Gleichstellung von Frau und Mann erstmals gesetzlich geregelt. Im selben Jahr wurde rechtlich die Möglichkeit geschaffen, Wohnungseigentum gemeinsam zu erwerben, was mehr Frauen zu Wohnungseigentümerinnen machte (Fessler u. Schneebaum [2011]).

Mit dem Unterhaltsvorschussgesetz 1976 übernimmt der Staat den Unterhalt für Kinder, wenn Väter im Scheidungsfall den verpflichtenden Zahlungen nicht nachkommen (Zach [b]). Diese Maßnahme erleichterte Frauen eine Scheidung und verminderte die finanzielle Abhängigkeit von ihrem Ehepartner.

Im Jahr 1979 wurde ein eigenes Staatssekretariat für allgemeine Frauenfragen eingerichtet und das Gleichbehandlungsgesetz trat in Kraft, wodurch bei Kollektivverträgen nicht mehr zwischen Frauen- und Männerlöhnen unterschieden werden durfte (Zach [b]).

Die hier angeführten Bildungsreformen und die gesellschaftliche Veränderung des Frauenbildes waren ein wesentlicher Beitrag für Frauen mehr in Bildung zu investieren. Nahelegend ist, dass diese Entwicklungen auch die intergenerationale Bildungsmobilität verändert haben.

3.4. Bildungsexpansion

Die Bildungsreformen und die Veränderung des Frauenbildes haben dazu einen wesentlichen Beitrag geleistet. Darüber hinaus wurde die Bildungsinfrastruktur deutlich ausgebaut. In einigen Landeshauptstädten (Salzburg: 1963, Linz: 1966, Klagenfurt: 1970) wurden neue Universitäten errichtet, was die Kosten für ein Hochschulstudium verringerte, da die Studierenden in ihrer Ausbildungszeit bei den Eltern wohnen konnten (Festerer (2001)).

Neben dem Trend zu höheren Abschlüssen stiegen auch die SchülerInnen- und Studierendenzahlen in den 1960er- und 70er-Jahren insgesamt deutlich: im Vergleich zu 1951 um 25% (Fassmann (2002)).

In der empirischen Analyse im nächsten Kapitel wird die Bildungsexpansion (Kapitel 4.1.1.4) und deren geschlechtsspezifische Unterschiede mit dem verwendeten Datensatz (Statistik Austria (1996)) belegt.
4. Empirische Analyse

Dieser Abschnitt ist das Kernstück dieser Diplomarbeit. Mithilfe von verschiedenen Methoden - nämlich OLS-Regressionen 4.2.1, einem Ordered-Logit-Modell 4.2.2 und Mobilitätsmaßen 4.2.3 - sollen die konkreten Fragestellungen aus Kapitel 1.2 beantwortet werden.

4.1. Datengrundlage

4.1.1. Beschreibung der Daten

Das freiwillige Sonderprogramm wurde nur an eine bestimmte Personengruppe, nämlich an alle Personen der Geburtenjahrgänge 1936 bis inklusive 1981, gerichtet und beinhaltet die für die empirische Analyse der Bildungstransmission notwendigen Daten über den höchsten Bildungsabschluss der Mutter bzw. des Vaters, wobei sich die

4.1.1.1. Zusammenfassung der Bildungsarten

Um die ökonometrische Analyse in Kapitel 4.2.2 und 4.2.3 mit anderen vergleichen zu können, genug Beobachtungen in jeweils einer Bildungsart zu haben und aus Gründen der Vereinfachung, werden die neun verschiedenen Bildungsabschlüsse im Datensatz zu fünf Bildungsarten für die Datenaufbereitung bzw. zu drei für ökonometrische Analyse in 4.2.2 und 4.2.3 zusammengefasst (Tabelle 4.2).

4.1.1.2. Vergleich der Daten: Grundprogramm mit Sonderprogramm

Ein Problem, das sich aufgrund der Einschränkung des Datensatzes auf bestimmte Beobachtungen und der Verwendung des freiwilligen Sonderprogramms „Bildungslaufbahn“ ergibt, ist, dass es sich nicht mehr um eine Zufallsstichprobe handelt.
Tabelle 4.2.: Zusammenfassung der Bildungsabschlüsse in fünf bzw. drei Kategorien

<table>
<thead>
<tr>
<th>Bildungskategorie</th>
<th>Grundschule</th>
<th>Lehre</th>
<th>Gymnasium</th>
<th>Universität</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kein Pflichtschulabschluss</td>
<td>max. Pflichtschule</td>
<td>Lehrabschluss</td>
<td>Gymnasium</td>
<td>Universität</td>
</tr>
<tr>
<td>Pflichtschule</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lehrabschluss (Berufsschule)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berufsbildende Mittlere Schule</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allgemeinbildende Höhere Schule</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berufsbildende Höhere Schule, Normalform</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berufsbildende Höhere Schule, Kolleg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 4.3.: Vergleich Verteilung „Höchster Bildungsabschluss Kinder“

<table>
<thead>
<tr>
<th>Bildungskategorie</th>
<th>Grundprogramm</th>
<th>Sonderprogramm</th>
</tr>
</thead>
<tbody>
<tr>
<td>mind. Pflichtschule</td>
<td>7.787, 29,18%</td>
<td>5.744, 27,79%</td>
</tr>
<tr>
<td>Lehre</td>
<td>10.548, 39,53%</td>
<td>8.322, 40,27%</td>
</tr>
<tr>
<td>BMS</td>
<td>3.091, 11,58%</td>
<td>2.462, 11,91%</td>
</tr>
<tr>
<td>Matura</td>
<td>3.313, 12,42%</td>
<td>2.599, 12,57%</td>
</tr>
<tr>
<td>Hochschule</td>
<td>1.943, 7,28%</td>
<td>1.541, 7,46%</td>
</tr>
<tr>
<td>Gesamt</td>
<td>26.682, 100,00%</td>
<td>20.668, 100%</td>
</tr>
</tbody>
</table>

Aus Tabelle 4.3 kann man ablesen, dass die Verteilung der Daten der Bildungsabschlüsse im Grundprogramm sehr nahe an den später tatsächlich verwendeten Daten liegt. Im Appendix (A.1) findet man noch weitere Tabellen mit Vergleichen.

4.1.1.3. Bildung von Alterskohorten

Eine weitere wichtige Fragestellung dieser Diplomarbeit, neben der bloßen Transmission von Bildungsabschlüssen von einer Generation auf die nächste, ist, ob sich der Grad der Transmission im Laufe der Zeit verändert hat. Um diese Frage später beantworten zu können, werden folgende sieben Alterskohorten in 5-Jahres-Abständen (mit Ausnahme der 1. Kohorte) für die ökonometrische Analyse in Kapitel 4.2.1 und für die Datenaufbereitung in diesem Kapitel gebildet: geboren 1936-1939, geboren 1940-1944,

4.1.1.4. Bildungsexpansion

In den Abbildungen 4.1 und 4.2 wird die Bildungsexpansion in der Generation der Kinder, jeweils für männliche und weibliche getrennt voneinander, für die einzelnen 5-Jahres-Alterskohorten, die in 4.1.1.3 gebildet wurden, genauer untersucht.

In Abbildung 4.1 sieht man, dass der Anteil an Frauen, die höchstens einen Pflichtschulabschluss haben, für die Geburtenjahrgänge von 1939 bis 1969 im Laufe der Zeit stark gesunken ist: In der Alterskohorte 1936-1939 haben noch 61% der Frauen den niedrigsten Bildungsabschluss und in der letzten Kohorte 1965-1969 sind das nur mehr 22%. Der Anteil an weiblichen Kindern, die lediglich einen Pflichtschulabschluss haben, wird zudem in jeder Kohorte geringer. Bei fast allen anderen Bildungsabschlüssen (Lehre, BMS, Matura und Hochschule) steigt der Anteil von einer Kohorte auf die nächste an. In der ersten Kohorte 1936-1939 haben nur 2,30% der weiblichen Kinder einen Hochschulabschluss und in der letzten Kohorte sind es immerhin 8,2%. Auch bei den Matura-Abschlüssen zeigt sich ein ähnliches Bild: In der Kohorte 1936-1939 haben...
Tabelle 4.4.: Bildungsexpansion zw. Kinder und deren Eltern

<table>
<thead>
<tr>
<th>Bildungsabschluss</th>
<th>Kinder Weiblich</th>
<th>Prozent</th>
<th>Kumulativ</th>
<th>Mütter</th>
<th>Prozent</th>
<th>Kumulativ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflichtschule</td>
<td>36,60</td>
<td>36,66</td>
<td>78,44</td>
<td>78,44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lehre</td>
<td>29,91</td>
<td>66,57</td>
<td>12,36</td>
<td>90,81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMS</td>
<td>15,03</td>
<td>81,60</td>
<td>4,43</td>
<td>95,24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matura</td>
<td>12,14</td>
<td>93,73</td>
<td>3,58</td>
<td>98,82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hochschule</td>
<td>6,27</td>
<td>100,00</td>
<td>1,18</td>
<td>100,00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bildungsabschluss</th>
<th>Kinder Männlich</th>
<th>Prozent</th>
<th>Kumulativ</th>
<th>Väter</th>
<th>Prozent</th>
<th>Kumulativ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflichtschule</td>
<td>21,60</td>
<td>21,60</td>
<td>60,10</td>
<td>60,10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lehre</td>
<td>49,30</td>
<td>70,90</td>
<td>26,95</td>
<td>87,05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMS</td>
<td>8,09</td>
<td>78,99</td>
<td>3,75</td>
<td>90,80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matura</td>
<td>12,70</td>
<td>91,69</td>
<td>5,44</td>
<td>96,24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hochschule</td>
<td>8,31</td>
<td>100,00</td>
<td>3,76</td>
<td>100,00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 4.1.: Bildungsexpansion weibliche Kinder
lediglich 6,9% der weiblichen Kinder eine Matura und in der letzten sind es 18,8%, wobei man hier den größten Sprung von der Kohorte 1955-1959 mit 12,3% auf die nächste Kohorte 1960-1964 erkennen kann, in der bereits 16% aller weiblichen Kinder über einen Maturaabschluss verfügen.

Abbildung 4.2.: Bildungsexpansion männliche Kinder

Zusammenfassend kann man sagen, dass die Bildungsexpansion bei beiden Geschlechttern vorhanden ist und bei den weiblichen Kindern stärker ausgeprägt ist als bei den männlichen.
4.1.1.5. Unterschiedliche Bildungsabschlüsse: Stadt-Land

In Tabelle 4.5 ist ersichtlich, dass es ein starkes Stadt-Land-Gefälle bei den Bildungsabschlüssen gibt. Nur 15,87% der Kinder, die eher in einem städtischen Gebiet aufgewachsen sind, haben einen Pflichtschulabschluss und bei denen, die am Land aufgewachsen, beträgt dieser Anteil 33,84%. Bei den höheren Bildungsabschlüssen (Matura und Hochschule) ist der Stadt-Land-Unterschied ebenfalls groß: 33,66% der städtischen Kinder haben mindestens einen Maturaabschluss und nur 13,45% der Kinder aus ländlichen Regionen.

<table>
<thead>
<tr>
<th></th>
<th>Stadt</th>
<th>Land</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflichtschule</td>
<td>1.038</td>
<td>15,87</td>
</tr>
<tr>
<td>Lehre</td>
<td>2.437</td>
<td>37,25</td>
</tr>
<tr>
<td>BMS</td>
<td>865</td>
<td>13,22</td>
</tr>
<tr>
<td>Matura</td>
<td>1.321</td>
<td>20,19</td>
</tr>
<tr>
<td>Hochschule</td>
<td>881</td>
<td>13,47</td>
</tr>
<tr>
<td>Gesamt</td>
<td>6.542</td>
<td>100</td>
</tr>
</tbody>
</table>

Im Appendix A.2 findet man noch weitere Stadt-Land-Unterschiede getrennt nach Geschlechtern.

4.2. Methoden

4.2.1. OLS-Regressionen

Anhand von OLS-Regressionen wird die Korrelation zwischen den Bildungsjahren der Kinder und jenen der Eltern, also die Transmission von Bildungsabschlüssen von einer Generation auf die nächste, untersucht. Die Bildungsjahre der Kinder stellen die abhängige und die Bildungsjahre der Eltern die unabhängige Variable dar.

Im

Tabelle 4.6.: Umrechnung von Bildungsabschlüssen in (statutorische) Bildungsjahre

<table>
<thead>
<tr>
<th>Bildungsabschluss</th>
<th>in Jahren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höchstens Pflichtschule</td>
<td>9</td>
</tr>
<tr>
<td>Lehrabschluss (Berufsschule)</td>
<td>10</td>
</tr>
<tr>
<td>Berufsbildende Mittlere Schule</td>
<td>11</td>
</tr>
<tr>
<td>Allgemeinbildende Höhere Schule</td>
<td>12</td>
</tr>
<tr>
<td>Berufsbildende Höhere Schule</td>
<td>13</td>
</tr>
<tr>
<td>Hochschulverwandte Lehrlanstalt</td>
<td>15</td>
</tr>
<tr>
<td>Universität, Hochschule</td>
<td>17</td>
</tr>
</tbody>
</table>

Im Appendix A.3 sind die Mittelwerte für die errechneten statutorischen Bildungsjahre aus den Daten für unterschiedliche Gruppen dokumentiert.

Um die Bildungstransmission von einer Generation auf die nächste zu analysieren, wird ein OLS-Regressionsmodell wie bei Checchi u. a. (2008) und Fessler u. Schneebaum (2011) verwendet:

\[B_{ki}^p = \alpha + \beta B_{pi}^p + \epsilon_i \quad \text{für} \quad i = 1, \ldots, n; p = m, v, \text{max}(m, v) \quad (4.1) \]

wobei \(B_{ki}^p \) die Bildungsjahre von Kind \(i \) und \(B_{pi}^p \) die Bildungsjahre des Vaters (wenn \(p = v \)) bzw. der Mutter (wenn \(p = m \)) oder dem höchsten Bildungsabschluss eines Elternteils (wenn \(p = \text{max}(m, v) \)) von Kind \(i \) entsprechen.

Es werden folglich drei verschiedene Kleinst-Quadrat-Schätzungen durchgeführt: Bei der ersten werden die Bildungsjahre des Vaters, bei der zweiten die Bildungsjahre der Mutter und bei der dritten die höchsten Bildungsjahre eines Elternteils als unabhängige Variable verwendet.

Als erstes wird die Kleinst-Quadrat-Methode (OLS) für alle Personen der Geburtenjahrgänge 1936 bis 1969 angewendet und führt bei Anwendung des Modells aus (4.1) zu den in Tabelle 4.7 dokumentierten Koeffizienten.

Die Koeffizienten für die drei verschiedenen Regressionen in Tabelle 4.7 sind statistisch signifikant auf einem 1% Niveau. Weiters wurde ein White-Test durchgeführt, da
Tabelle 4.7.: Geschätzte Koeffizienten für Modell aus 4.1

<table>
<thead>
<tr>
<th></th>
<th>$\hat{\alpha}$</th>
<th>$\hat{\beta}$</th>
<th>R^2</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression p=m</td>
<td>3,541***</td>
<td>0,754***</td>
<td>0,166</td>
<td>20.352</td>
</tr>
<tr>
<td></td>
<td>(0,166)</td>
<td>(0,018)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regression p=v</td>
<td>5,077***</td>
<td>0,568***</td>
<td>0,209</td>
<td>19.903</td>
</tr>
<tr>
<td></td>
<td>(0,109)</td>
<td>(0,011)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regression p=max(m,v)</td>
<td>5,070***</td>
<td>0,564***</td>
<td>0,221</td>
<td>20.668</td>
</tr>
<tr>
<td></td>
<td>(0,103)</td>
<td>(0,011)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard errors in parentheses

$^* p < 0.05$, $^{**} p < 0.01$, $^{***} p < 0.001$

aufgrund nur einer erklärenden Variable die Vermutung naheliegt, dass die Annahme der Homoskedastie bei der Kleinst-Quadrat-Methode verletzt ist. Der White-Test ergibt, dass Heteroskedastie vorliegt. Um für diese Verletzung der Annahme, dass nicht alle Fehler identisch verteilt mit endlicher Varianz σ^2 sind, zu korrigieren, wird im Statistikprogramm Stata die Option für robuste Standardfehler für alle OLS-Regressionen in diesem Kapitel 4.2.1 gewählt, um effizientere geschätzte Koeffizienten zu haben.

Je höher der geschätzte Koeffizient $\hat{\beta}$ desto größer ist die Korrelation zwischen dem Bildungsabschluss der Kinder und jenem von Vater bzw. Mutter. Der Koeffizient $\hat{\beta}$ von 0,75 (für die Regression p=m) bedeutet, dass jedes zusätzliche Bildungsjahr der Mütter 0,75 zusätzliche Bildungsjahre der Kinder zur Folge hat, wenn alle anderen Faktoren nicht berücksichtigt werden. Ein Kind erreicht folglich 10,327 geschätzte Bildungsjahre, wenn die Mutter einen Pflichtschulabschluss (entspricht neun statutorischen Bildungsjahren) hat. Aus Tabelle 4.7 geht hervor, dass der Koeffizient $\hat{\beta}$ beim Modell mit den Bildungsjahren der Mutter wesentlich höher ist als bei jenem mit den Vätern, dem steht allerdings ein niedriges R^2 im Modell mit den Müttern gegenüber. Dies impliziert, dass die Regression mit den statutorischen Bildungsjahren der Vätern mehr Erklärungsgehalt als die Regression mit den Müttern hat. Das höchste R^2 erreicht man, wenn man ausschließlich den höchsten Bildungsabschluss eines Elternteils berücksichtigt.

In einem nächsten Schritt wird die Entwicklung des Koeffizienten \(\hat{\beta} \) für die einzelnen 5-Jahres-Kohorten von 1936 bis 1969, die in Kapitel 4.1.3 gebildet wurden, mithilfe des Modells aus 4.1 untersucht. Alle Koeffizienten sind statistisch signifikant auf einem 1%-Niveau.

Über alle Alterskohorten hinweg haben die statutorischen Bildungsjahre der Mütter einen stärkeren Einfluss auf die Bildungsjahre der Kinder als jene der Väter. In der ältesten Alterskohorte, geboren 1936 bis 1939, ist der Koeffizient \(\hat{\beta} \) in der Regression mit den Bildungsjahren der Mütter als unabhängige Variable auf extrem hohen Niveau mit 0,8243, sinkt danach leicht, und erreicht einen Höhepunkt in der Alterskohorte von 1950 bis 1954 mit 0,8288. Auch in den Regressionen für alle Alterskohorten, in denen die statutorischen Bildungsjahre der Väter als unabhängige Variable verwendet werden, ist der Koeffizient \(\hat{\beta} \) für die Geburtsjahrgänge 1950 bis 1954 am höchsten. Für alle Alterskohorten nach 1954 sinkt der Koeffizient \(\hat{\beta} \) für alle drei Modelle (\(p = m, p = v \) und \(p = \max(m,v) \)) und erreicht in der Kohorte 1965-1969 in der Regression mit den Bildungsabschlüssen der Männer als unabhängige Variable den niedrigsten Wert mit 0,518. Von der Kohorte 1955-1959 auf die Kohorte 1960-1964 sinkt der geschätzte Koeffizient in allen drei Modellen deutlich, gleichzeitig sinkt auch das \(R^2 \), was impliziert, dass die Kinder unabhängig von der Bildungsabschlüssen der Eltern sind bzw. die Bildung der Mutter/des Vaters weniger Erklärungsgehalt in den Regressionen hat.

Grundsätzlich lässt sich hier zusammenfassend sagen, dass die Bildung der Kinder stärker durch die statutorischen Bildungsjahre der Mütter beeinflusst wird als durch jene der Väter, allerdings erklärt die Bildung des Vaters aufgrund eines höheren \(R^2 \) mehr über die Familienverhältnisse als die Bildung der Mutter.

Anhand eines Chow-Tests wird untersucht, ob die unterschiedlichen Ergebnisse in Tabelle 4.9 auch tatsächlich statistisch signifikant unterschiedlich sind und es somit sinnvoll ist, ein eigenes Modell für weibliche und ein eigenes für männliche Kinder zu verwenden. Bei allen drei Modellen (\(p = m, p = v \) und \(p = \max(m,v) \)) sind die geschätzten Koeffizienten für die verschiedenen Gruppen (weibliche und männliche Kinder) statistisch signifikant verschieden. Im Modell \(p = m \) aus Tabelle 4.9 bekommen die weiblichen Kinder mehr zusätzliche Bildungsjahre nämlich 0,766 für jedes zusätzliche Bildungsjahr der Mütter als die männlichen Kinder, die 0,741 bekommen. Im geschätzten Modell mit den statutorischen Bildungsjahren des Vaters ist es genau umgekehrt. Das \(R^2 \) ist in Tabelle 4.9 bei den verschiedenen Modellen immer für die weiblichen Kindern höher als für die männlichen, was dafür spricht, dass die männlichen Kinder tendenziell unabhängig von ihren Eltern sind als die weiblichen.

Da mithilfe des Chow-Tests festgestellt wurde, dass es sinnvoll ist die Schätzungen für das Modell 4.1 getrennt für männliche und weibliche Kinder zu machen, wird die
<table>
<thead>
<tr>
<th>Year Period</th>
<th>N</th>
<th>(\hat{\alpha})</th>
<th>(\hat{\beta})</th>
<th>(R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1936-1939</td>
<td>2,465 * * *</td>
<td>0.824 * * *</td>
<td>0.145</td>
<td>1.836</td>
<td>4.456 * * *</td>
<td>0.585 * * *</td>
<td>0.226</td>
<td>1.764</td>
<td>4.574 * * *</td>
<td>0.572 * * *</td>
<td>0.226</td>
<td>1.862</td>
<td>(0.728)</td>
<td>(0.080)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1940-1944</td>
<td>3,113 * * *</td>
<td>0.771 * * *</td>
<td>0.198</td>
<td>2.865</td>
<td>4.866 * * *</td>
<td>0.558 * * *</td>
<td>0.240</td>
<td>2.752</td>
<td>4.965 * * *</td>
<td>0.547 * * *</td>
<td>0.242</td>
<td>2.914</td>
<td>(0.440)</td>
<td>(0.048)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1945-1949</td>
<td>3,639 * * *</td>
<td>0.724 * * *</td>
<td>0.147</td>
<td>2.757</td>
<td>5.281 * * *</td>
<td>0.527 * * *</td>
<td>0.202</td>
<td>2.683</td>
<td>5.403 * * *</td>
<td>0.512 * * *</td>
<td>0.204</td>
<td>2.808</td>
<td>(0.491)</td>
<td>(0.053)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1950-1954</td>
<td>2,909 * * *</td>
<td>0.829 * * *</td>
<td>0.149</td>
<td>2.841</td>
<td>4.644 * * *</td>
<td>0.617 * * *</td>
<td>0.209</td>
<td>2.819</td>
<td>4.603 * * *</td>
<td>0.618 * * *</td>
<td>0.219</td>
<td>2.894</td>
<td>(0.494)</td>
<td>(0.054)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1955-1959</td>
<td>3,217 * * *</td>
<td>0.804 * * *</td>
<td>0.179</td>
<td>3.312</td>
<td>4.806 * * *</td>
<td>0.607 * * *</td>
<td>0.217</td>
<td>3.263</td>
<td>4.743 * * *</td>
<td>0.612 * * *</td>
<td>0.237</td>
<td>3.360</td>
<td>(0.442)</td>
<td>(0.048)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1960-1964</td>
<td>4,588 * * *</td>
<td>0.666 * * *</td>
<td>0.127</td>
<td>3.542</td>
<td>5,640 * * *</td>
<td>0.533 * * *</td>
<td>0.168</td>
<td>3.493</td>
<td>5,670 * * *</td>
<td>0.525 * * *</td>
<td>0.177</td>
<td>3.592</td>
<td>(0.383)</td>
<td>(0.041)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1965-1969</td>
<td>4,563 * * *</td>
<td>0.670 * * *</td>
<td>0.181</td>
<td>3.199</td>
<td>5,822 * * *</td>
<td>0.518 * * *</td>
<td>0.209</td>
<td>3.129</td>
<td>5,671 * * *</td>
<td>0.526 * * *</td>
<td>0.228</td>
<td>3.238</td>
<td>(0.326)</td>
<td>(0.035)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Std. errors in parentheses

\(p < 0.05\), \(\ast\ast\; p < 0.01\), \(\ast\ast\ast\; p < 0.001\)
Tabelle 4.9: Geschätzte Koeffizienten: Modell 4.1 getrennt nach Geschlechtern

<table>
<thead>
<tr>
<th></th>
<th>Weibliche Kinder</th>
<th>Männliche Kinder</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{\alpha})</td>
<td>(\hat{\beta})</td>
<td>(R^2)</td>
</tr>
<tr>
<td>(p = \text{m})</td>
<td>3,291 ***</td>
<td>0,766 ***</td>
</tr>
<tr>
<td></td>
<td>(0,291)</td>
<td>(0,023)</td>
</tr>
<tr>
<td>(p = \text{v})</td>
<td>4,000 ***</td>
<td>0,563 ***</td>
</tr>
<tr>
<td></td>
<td>(0,148)</td>
<td>(0,016)</td>
</tr>
<tr>
<td>(p = \max \text{(m,v)})</td>
<td>4,993 ***</td>
<td>0,558 ***</td>
</tr>
<tr>
<td></td>
<td>(0,138)</td>
<td>(0,014)</td>
</tr>
</tbody>
</table>

Standard errors in parentheses
* \(p < 0.05 \), ** \(p < 0.01 \), *** \(p < 0.001 \)

Entwicklung des Koeffizienten \(\hat{\beta} \) für die einzelnen Alterskohorten getrennt für weibliche und männliche Kinder untersucht.

Die Resultate, die in Tabelle 4.11 dokumentiert sind und die statutorischen Bildungsjahre des Vaters als erklärende Variable verwenden, sind wieder alle statistisch signifikant auf einem 1%-Niveau. Der Koeffizient \(\hat{\beta} \) ist sowohl für männliche als auch für weibliche Kinder in allen Kohorten geringer und das \(R^2 \) höher, wenn die statutorischen Bildungsjahre der Väter die unabhängige Variable sind anstatt die der Mütter.
Tabelle 4.10.: Geschätzte Koeffizienten: Modell 4.1 \((p = m) \) getrennt nach Geschlechtern für Alterskohorten

<table>
<thead>
<tr>
<th></th>
<th>Weibliche Kinder</th>
<th></th>
<th>Männliche Kinder</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\hat{\alpha})</td>
<td>(\beta)</td>
<td>(R^2)</td>
<td>(N)</td>
</tr>
<tr>
<td>1936-39</td>
<td>1,978 ***</td>
<td>0,851 ***</td>
<td>0,231</td>
<td>943</td>
</tr>
<tr>
<td></td>
<td>(0,810)</td>
<td>(0,089)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1940-44</td>
<td>3,425 ***</td>
<td>0,707 ***</td>
<td>0,245</td>
<td>1,514</td>
</tr>
<tr>
<td></td>
<td>(0,543)</td>
<td>(0,060)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1945-49</td>
<td>3,294 ***</td>
<td>0,738 ***</td>
<td>0,197</td>
<td>1,470</td>
</tr>
<tr>
<td></td>
<td>(0,587)</td>
<td>(0,064)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1950-54</td>
<td>2,558 ***</td>
<td>0,848 ***</td>
<td>0,187</td>
<td>1,477</td>
</tr>
<tr>
<td></td>
<td>(0,542)</td>
<td>(0,059)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1955-59</td>
<td>2,794 ***</td>
<td>0,841 ***</td>
<td>0,207</td>
<td>1,702</td>
</tr>
<tr>
<td></td>
<td>(0,574)</td>
<td>(0,062)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1960-64</td>
<td>4,302 ***</td>
<td>0,692 ***</td>
<td>0,136</td>
<td>1,854</td>
</tr>
<tr>
<td></td>
<td>(0,519)</td>
<td>(0,056)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1965-69</td>
<td>4,574 ***</td>
<td>0,697 ***</td>
<td>0,196</td>
<td>1,603</td>
</tr>
<tr>
<td></td>
<td>(0,412)</td>
<td>(0,044)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard errors in parentheses
* \(p < 0.05 \), ** \(p < 0.01 \), *** \(p < 0.001 \)

Tabelle 4.11.: Geschätzte Koeffizienten: Modell 4.1 \((p = v) \) getrennt nach Geschlechtern für Alterskohorten

<table>
<thead>
<tr>
<th></th>
<th>Weibliche Kinder</th>
<th></th>
<th>Männliche Kinder</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\hat{\alpha})</td>
<td>(\beta)</td>
<td>(R^2)</td>
<td>(N)</td>
</tr>
<tr>
<td>1936-39</td>
<td>4,26 ***</td>
<td>0,579 ***</td>
<td>0,333</td>
<td>912</td>
</tr>
<tr>
<td></td>
<td>(0,510)</td>
<td>(0,054)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1940-44</td>
<td>5,174 ***</td>
<td>0,498 ***</td>
<td>0,251</td>
<td>1,461</td>
</tr>
<tr>
<td></td>
<td>(0,373)</td>
<td>(0,040)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1945-49</td>
<td>5,277 ***</td>
<td>0,506 ***</td>
<td>0,232</td>
<td>1,429</td>
</tr>
<tr>
<td></td>
<td>(0,402)</td>
<td>(0,043)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1950-54</td>
<td>4,508 ***</td>
<td>0,616 ***</td>
<td>0,228</td>
<td>1,461</td>
</tr>
<tr>
<td></td>
<td>(0,426)</td>
<td>(0,045)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1955-59</td>
<td>4,33 ***</td>
<td>0,653 ***</td>
<td>0,243</td>
<td>1,678</td>
</tr>
<tr>
<td></td>
<td>(0,351)</td>
<td>(0,037)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1960-64</td>
<td>5,733 ***</td>
<td>0,515 ***</td>
<td>0,164</td>
<td>1,825</td>
</tr>
<tr>
<td></td>
<td>(0,361)</td>
<td>(0,038)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1965-69</td>
<td>5,735 ***</td>
<td>0,527 ***</td>
<td>0,214</td>
<td>1,568</td>
</tr>
<tr>
<td></td>
<td>(0,320)</td>
<td>(0,033)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard errors in parentheses
* \(p < 0.05 \), ** \(p < 0.01 \), *** \(p < 0.001 \)

Im nächsten Modell 4.2 wird zusätzlich zu den statutorischen Bildungsjahren der Väter bzw. der Mütter dafür kontrolliert, ob die Kinder eher in einem ländlichen Gebiet aufgewachsen sind oder eher in einem städtischen Umfeld. Da das Bildungsangebot in ländlichen Gebieten wesentlich schlechter ausgebaut ist als in der Stadt, ist zu erwarten, dass die Dummy-Variable „ländlich“ einen negativen Effekt auf die Bildungsjahre der Kinder hat. Folgendes Modell wird verwendet:

$$B_k^i = \alpha + \beta_1 B_p^i + \beta_2 L + \epsilon_i \text{ für } i = 1, \ldots, n; p = m, v, \text{max}(m, v) \quad (4.2)$$

, wobei die Variablen die gleiche Bedeutung wie in Modell 4.1 haben und L den Wert „1“ annimmt, wenn die Person aus einem ländlichen Gebiet kommt und den Wert „0“, wenn nicht.

| Tabelle 4.12.: Geschätzte Koeffizienten Modell 4.2 getrennt nach Geschlechtern |
|-----------------|-----------------|-----------------|
| | Weibliche Kinder | Männliche Kinder |
| $p=m$ | $\hat{\alpha}$ | $\hat{\beta}_1$ | $\hat{\beta}_2$ |
| | $\hat{\beta}_1$ | $\hat{\beta}_2$ | $\hat{\alpha}$ | $\hat{\beta}_1$ | $\hat{\beta}_2$ |
| $p=m$ | 4,431*** | 0,693*** | -0,652*** | 5,255*** | 0,649*** | -0,813*** |
| | (4,431) | (0,024) | (0,042) | (0,285) | (0,029) | (0,052) |
| $p=v$ | 5,867*** | 0,515*** | -0,583*** | 6,231*** | 0,515*** | -0,691*** |
| | (0,170) | (0,016) | (0,042) | (0,189) | (0,018) | (0,053) |
| $p=\text{max}(m,v)$ | 5,764*** | 0,517*** | -0,521*** | 6,123*** | 0,517*** | -0,630*** |
| | (0,159) | (0,015) | (0,041) | (0,179) | (0,017) | (0,050) |

Standard errors in parentheses
* $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$

Modell weibliche Kinder: $p=m$: $N=10.192$; $p=v$: $N=9.969$; $p=\text{max}(m,v)$: $N=10.340$

Modell männliche Kinder: $p=m$: $N=9.471$; $p=v$: $N=9.256$; $p=\text{max}(m,v)$: $N=9.626$

Modell weibliche Kinder: $p=m$: $R^2=0.217$; $p=v$: $R^2=0.240$; $p=\text{max}(m,v)$: $R^2=0.252$

Modell männliche Kinder: $p=m$: $R^2=0.172$; $p=v$: $R^2=0.218$; $p=\text{max}(m,v)$: $R^2=0.225$

Die Schätzer $\hat{\alpha}$, $\hat{\beta}_1$ und $\hat{\beta}_2$ sind statistisch hoch signifikant. In allen drei Regressionen, deren Ergebnisse in 4.12 dokumentiert sind, haben die geschätzten Koeffizienten $\hat{\beta}_1$ und $\hat{\beta}_2$ die davor erwarteten Effekte. Die Bildungsjahre der Kinder korrelieren positiv mit
den statutorischen Bildungsjahren der Väter/Mütter/Eltern und der geschätzte Koeffizient der Dummy-Variable \(L \) hat eine negative Auswirkung auf die Bildungsabschlüsse der Kinder. Vergleicht man anhand des Gütemaßes \(R^2 \) die Ergebnisse aus Tabelle 4.12 mit jenen aus Tabelle 4.9 sieht man, dass das \(R^2 \) leicht gestiegen ist, da eine zusätzliche erklärende Variable hinzugefügt wurde. Bei der Regression mit dem höchsten \(R^2 \), also bei jener mit dem höchsten Bildungsabschluss der Eltern als unabhängige Variable, verringert die Dummy Variable \(L \) die Konstante \(\hat{\alpha} \) um \(-0,521\) Bildungsjahre für weibliche Kinder bzw. \(-0,630\) für männliche Kinder.

Interessant ist weiteres, ob sich der negative Effekt der Dummy-Variable „ländlich“ auf die statutorischen Bildungsjahre der Kinder, im Laufe der Zeit verändert hat. Für die folgenden Regressionen, deren Ergebnisse in Tabelle 4.13 zusammengefasst sind, wird wieder Model 4.2 verwendet, wobei bei den Regressionen für die einzelnen Kohorten ausschließlich der höchste Bildungsabschluss - umgerechnet in statutorische Bildungsjahre - der Eltern als erklärende Variable verwendet wird \((p = \text{max}(v, m))\), weil der Fokus auf der Veränderung der Dummy-Variable liegt. Die Regressionen für die einzelnen Kohorten werden wieder für männliche Kinder und weibliche Kinder getrennt durchgeführt (siehe Tabelle 4.13).

Die Ergebnisse in Tabelle 4.13 sind statistisch hoch signifikant und weisen darauf hin, dass der negative Effekt von „auf dem Land leben“ stärkere Auswirkungen auf männliche Kinder hat, da der Koeffizient \(\hat{\beta}_2 \) in den Regressionen für die männlichen Kinder tendenziell stärker negativ im Vergleich zu den weiblichen ist. Über die Zeit hinweg nimmt der Koeffizient \(\hat{\beta}_2 \) für männliche Kinder (mit wenigen Ausnahmen) ab. Bei den weiblichen Kindern lässt sich ein derartiger Trend nicht beobachten. Besonders auffällig ist der Sprung des Koeffizienten \(\hat{\beta}_2 \) von der vorletzten auf die letzte Kohorte bei beiden Geschlechtern: In der Regression für die weiblichen verringert sich die negative Korrelation des geschätzten Koeffizienten \(\hat{\beta}_2 \) von \(-0,547\) für die Alterskohorte 1960-64 auf \(-0,251\) für die Kohorte 1965-69, bei den männlichen Kinder ist die Veränderung sogar noch größer. Anfang der 70er-Jahre werden weitreichende Bildungsreformen durchgeführt, wobei hier die Einführung der Freifahrt für alle SchülerInnen ab dem Schuljahr 1971/72 und der Ausbau der Bildungsinfrastruktur zu erwähnen ist (3.2). Die Kosten für Kinder, die auf dem Land und damit weit entfernt von vor allem höheren Bildungseinrichtungen leben, wurden durch diese Maßnahme reduziert. Natürlich kann an dieser Stelle kein kausaler Zusammenhang zwischen der Reform und dem weniger negativem Koeffizienten \(\hat{\beta}_2 \) hergestellt werden, dennoch weisen die Ergebnisse in 4.13 deutlich auf eine positive Wirkung der SchülerInnenfreifahrt und auf Verringerung des Nachteils für auf dem Land leben hin.

Im nächsten Modell wird untersucht, welche Auswirkung das Hinzufügen einer Dummy-Variable für „weiblich“ hat. Modell 4.1 wird wie folgt erweitert:

\[
B_i^k = \alpha + \beta_1 B_i^p + \beta_2 W + \epsilon_i \quad \text{für } i = 1, \ldots, n; p = m, v, \text{max}(m, v) \quad (4.3)
\]

wobei die Variablen die gleiche Bedeutung wie in Modell 4.1 haben und \(W \) den
Tabelle 4.13.: Schätzer für Modell 4.2 für \(p = \max(v, m) \) nach Alterskohorten

<table>
<thead>
<tr>
<th></th>
<th>Weibliche Kinder</th>
<th>Männliche Kinder</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\hat{\alpha})</td>
<td>(\hat{\beta}_1)</td>
</tr>
<tr>
<td>1936-39</td>
<td>4,942***</td>
<td>0,537***</td>
</tr>
<tr>
<td></td>
<td>(0,527)</td>
<td>(0,053)</td>
</tr>
<tr>
<td>1940-44</td>
<td>6,381***</td>
<td>0,424***</td>
</tr>
<tr>
<td></td>
<td>(0,388)</td>
<td>(0,038)</td>
</tr>
<tr>
<td>1945-49</td>
<td>6,571***</td>
<td>0,424***</td>
</tr>
<tr>
<td></td>
<td>(0,413)</td>
<td>(0,040)</td>
</tr>
<tr>
<td>1950-54</td>
<td>5,148***</td>
<td>0,577***</td>
</tr>
<tr>
<td></td>
<td>(0,466)</td>
<td>(0,0462)</td>
</tr>
<tr>
<td>1955-59</td>
<td>5,319***</td>
<td>0,593***</td>
</tr>
<tr>
<td></td>
<td>(0,398)</td>
<td>(0,038)</td>
</tr>
</tbody>
</table>

Standard errors in parentheses

* \(p < 0.05 \), ** \(p < 0.01 \), *** \(p < 0.001 \)
Wert „1“ annimmt, wenn die Person weiblich ist und den Wert „0“, wenn nicht. Da nun dem Modell 4.1 eine Dummy-Variable für alle Frauen hinzugefügt wird, werden dementsprechend die OLS-Regressionen für alle Kinder durchgeführt und nicht mehr getrennt nach Geschlecht.

Tabelle 4.14: Geschätzte Koeffizienten für Modell 4.3

<table>
<thead>
<tr>
<th></th>
<th>(\hat{\alpha})</th>
<th>(\hat{\beta}_1)</th>
<th>(\hat{\beta}_2)</th>
<th>(R^2)</th>
<th>(N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p=m)</td>
<td>3,691 ***</td>
<td>0,754 ***</td>
<td>-0,288 ***</td>
<td>0,171</td>
<td>20,352</td>
</tr>
<tr>
<td></td>
<td>(0,166)</td>
<td>(0,178)</td>
<td>(0,026)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p=v)</td>
<td>5,229 ***</td>
<td>0,567 ***</td>
<td>-0,276 ***</td>
<td>0,214</td>
<td>19,903</td>
</tr>
<tr>
<td></td>
<td>(0,110)</td>
<td>(0,011)</td>
<td>(0,025)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p=\max(v,m))</td>
<td>5,221 ***</td>
<td>0,564 ***</td>
<td>-0,280 ***</td>
<td>0,226</td>
<td>20,668</td>
</tr>
<tr>
<td></td>
<td>(0,103)</td>
<td>(0,011)</td>
<td>(0,025)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard errors in parentheses
* \(p < 0.05\), ** \(p < 0.01\), *** \(p < 0.001\)

Die Koeffizienten \(\hat{\alpha}\), \(\hat{\beta}_1\) und \(\hat{\beta}_2\) der verschiedenen Regressionen in Tabelle 4.14 sind statistisch hoch signifikant. Der Nachteil für weibliche Kinder spiegelt sich in ca. \(-0,28\) Bildungsjahren im Vergleich zu den männlichen Kindern wider - der Wert \(\hat{\beta}_2\) ist in allen drei Regression beinahe gleich hoch, die Konstante \(\hat{\alpha}\) hat allerdings unterschiedliche Werte. Nun wird weiters untersucht, ob sich der Nachteil für weibliche Kinder im Laufe der Zeit verändert hat. Das Modell 4.3 wird für jede Kohorte einzeln geschätzt, wobei als unabhängige Variable die höchsten statutorischen Bildungsjahre eines Elternteil verwendet werden.

Abschließend wird in diesem Kapitel noch eine Regression mit Interaktionstermen, dem Unterschied zwischen den statutorischen Bildungsjahren von Mutter und Vater und anderen unabhängigen Variablen geschätzt. Folgendes Modell wird dafür verwendet:

\[
B^k_i = \alpha + \beta_1 B^p_i + \beta_2 B^{dif}_i + \beta_3 L + \beta_4 W + \beta_5 \frac{B^p_i L}{L} + \epsilon_i
\]

(4.4)

für \(i = 1, ..., n; p = \max(m, v)\); \(B^{dif}_i = \text{abs}(B^v_i - B^m_i)\), wobei die Variablen die gleiche Bedeutung wie in Modellen 4.3 und 4.2 haben, \(B^{dif}\) für den Absolutwert des Unterschieds zwischen statutorischen Bildungsjahren von Vater
Tabelle 4.15.: Regressionen für Modell 4.3 für \(p = \max(v,m) \) nach Alterskohorten

<table>
<thead>
<tr>
<th>Jahr</th>
<th>(\hat{\alpha})</th>
<th>(\hat{\beta}_1)</th>
<th>(\hat{\beta}_2)</th>
<th>(R^2)</th>
<th>(N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1936-39</td>
<td>4,819***</td>
<td>0,575***</td>
<td>-0,535***</td>
<td>0,250</td>
<td>1.862</td>
</tr>
<tr>
<td></td>
<td>(0,391)</td>
<td>(0,042)</td>
<td>(0,070)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1940-44</td>
<td>5,270***</td>
<td>0,548***</td>
<td>-0,597***</td>
<td>0,267</td>
<td>2.914</td>
</tr>
<tr>
<td></td>
<td>(0,268)</td>
<td>(0,028)</td>
<td>(0,061)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1945-49</td>
<td>5,626***</td>
<td>0,513***</td>
<td>-0,450***</td>
<td>0,218</td>
<td>2.808</td>
</tr>
<tr>
<td></td>
<td>(0,283)</td>
<td>(0,030)</td>
<td>(0,063)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1950-54</td>
<td>4,796***</td>
<td>0,615***</td>
<td>-0,322***</td>
<td>0,225</td>
<td>2.894</td>
</tr>
<tr>
<td></td>
<td>(0,291)</td>
<td>(0,30)</td>
<td>(0,068)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1955-59</td>
<td>4,808***</td>
<td>0,612***</td>
<td>-0,125*</td>
<td>0,238</td>
<td>3.360</td>
</tr>
<tr>
<td></td>
<td>(0,264)</td>
<td>(0,028)</td>
<td>(0,062)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1960-64</td>
<td>5,727***</td>
<td>0,525***</td>
<td>-0,108</td>
<td>0,178</td>
<td>3.592</td>
</tr>
<tr>
<td></td>
<td>(0,251)</td>
<td>(0,026)</td>
<td>(0,062)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1965-69</td>
<td>5,664***</td>
<td>0,526***</td>
<td>0,011</td>
<td>0,228</td>
<td>3.238</td>
</tr>
<tr>
<td></td>
<td>(0,222)</td>
<td>(0,023)</td>
<td>(0,064)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard errors in parentheses

* \(p < 0.05 \), ** \(p < 0.01 \), *** \(p < 0.001 \)

und Mutter steht und \(B^PL \) den Interaktionsterm zwischen Bildungsjahren der Eltern und der Dummy-Variable „ländlich“ darstellt.

Tabelle 4.16.: Geschätzte Koeffizienten für Modell 4.4, \(p = \max(m,v) \)

<table>
<thead>
<tr>
<th>Jahr</th>
<th>(\hat{\alpha})</th>
<th>(\hat{\beta}_1)</th>
<th>(\hat{\beta}_2)</th>
<th>(\hat{\beta}_3)</th>
<th>(\hat{\beta}_4)</th>
<th>(R^2)</th>
<th>(N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1936-39</td>
<td>4,690***</td>
<td>0,679***</td>
<td>-0,316***</td>
<td>-1,447***</td>
<td>-0,288***</td>
<td>0,089***</td>
<td>0,258</td>
</tr>
<tr>
<td></td>
<td>(0,222)</td>
<td>(0,023)</td>
<td>(0,030)</td>
<td>(0,233)</td>
<td>(0,025)</td>
<td>(0,024)</td>
<td></td>
</tr>
</tbody>
</table>

Standard errors in parentheses

* \(p < 0.05 \), ** \(p < 0.01 \), *** \(p < 0.001 \)

4.2.1.1. Wichtigste Ergebnisse der OLS-Regressionen

Anhand des Modells 4.1 wurde festgestellt, dass die statutorischen Bildungsjahre der Eltern, der Mutter oder des Vaters positiv mit jenen der Kinder korrelieren. Jedes zusätzliche Bildungsjahr der Eltern \((p = \max(m, v))\) hat 0,564 zusätzliche Bildungsjahre der Kinder zur Folge (Tabelle 4.7). Aufgrund des höheren \(R^2\) in der Regression mit den Vätern, haben die Bildungsjahre des Vaters einen höheren Erklärungsgehalt als jene der Mutter. Dies gilt für alle geschätzten OLS-Regressionen, wenn man den Erklärungsgehalt der Bildungsjahre des Vaters mit jenen der Mutter vergleicht.

Der geschätzte Koeffizient \(\hat{\beta}\) für die jeweiligen Alterskohorten in T abellen 4.8, 4.10 und 4.11 sinkt mit wenigen Ausnahmen für alle Alterskohorten, die nach 1954 geboren sind. Dies legt nahe, dass sich die Bildungsreformen (3.2) positiv auf die intergenerationale Bildungsmobilität ausgewirkt haben und somit die Bildungstransmission im Laufe der Zeit zurückgegangen ist.

4.2.2. Ordered-Logit-Modelle

Um weitere Evidenz für die Transmission von Bildungsabschlüssen von einer Generation auf die nächste zu dokumentieren, wird diese anhand eines Ordered-Logit-Modells untersucht. Als abhängige Variable wird der höchste Bildungsabschluss der Kinder, der in Tabelle 4.2 in drei Bildungskategorien (Niedrig, Mittel, Hoch) zusammengefasst wurde, verwendet. Bei dieser Variable handelt es sich um eine kategoriale Variable mit drei Ausprägungen, die man ordnen kann, wobei die Abstände zwischen den jeweiligen Kategorien unterschiedlich groß sind. Für die Analyse bei einer derartigen Form der abhängigen Variable verwendet man Ordered Logit bzw. Ordered Probit Modelle (Long (1997)). Der Unterschied zwischen diesen beiden Modellen liegt lediglich in der für die Schätzung verwendeten kumulativen Verteilungsfunktion. Bei Logit-Modellen wird die
Die logistische Funktion angenommen und bei Probit Modellen die Standardnormalverteilung. Bei der folgenden Analyse wird die kumulative logistische Verteilungsfunktion verwendet.

Das Ordered-Logit-Modell kann ähnlich wie das normale Logit-Modell, bei dem die abhängige Variable im Gegensatz zum Ordered-Logit-Modell nur die Ausprägungen 0 oder 1 annimmt, mithilfe einer unbeobachteten latenten stetigen Variable y^* für die wahren Ausprägungen der abhängigen Variable y_i erklärt werden (Long (1997)), wobei x'_i für den Reihenvektor der unabhängigen Variablen steht und β für den Vektor der jeweiligen Koeffizienten:

\[
y_i = m \text{ if } \tau_{m-1} \leq y^*_i < \tau_m \text{ for } m = 1, \ldots, J
\]

\[
y^*_i = x'_i \beta + \epsilon_i
\]

mit

\[
y_i = \begin{cases}
1 \Rightarrow \text{Niedrig wenn } & \tau_0 = -\infty \leq y^*_i < \tau_1 \\
2 \Rightarrow \text{Mittel wenn } & \tau_1 \leq y^*_i < \tau_2 \\
3 \Rightarrow \text{Hoch wenn } & \tau_2 \leq y^*_i < \tau_3 = \infty
\end{cases}
\]

wobei τ für den jeweiligen Schwellenwert steht. Um die Maximum-Likelihood-Methode für Schätzungen durchführen zu können, muss eine bestimmte Verteilungsfunktion für den Störterm ϵ angenommen werden. Für das Ordered-Logit-Modell wird die logistische Verteilung mit Mittelwert 0 und Varianz $\pi^2/3$ angenommen. Die Dichtefunktion $f(.)$ der logistischen Verteilung für den Störterm lautet (Long (1997)):

\[
\lambda(\epsilon) = \frac{\exp(\epsilon)}{[1 + \exp(\epsilon)]^2}
\]

und die kumulative Verteilungsfunktion $F(.)$:

\[
\Lambda(\epsilon) = \frac{\exp(\epsilon)}{1 + \exp(\epsilon)}
\]

In einem nächsten Schritt können die Wahrscheinlichkeiten einer bestimmte Ausprägung der beobachteten abhängigen Variable y gegeben die unabhängigen Variablen x' berechnet werden (vgl. Long (1997)):

\[
Pr(y_i = m | x'_i) = Pr(\tau_{m-1} \leq y^*_i < \tau_m | x'_i)
\]

\[
Pr(y_i = m | x'_i) = Pr(\tau_{m-1} \leq x'_i \beta + \epsilon_i < \tau_m | x'_i)
\]

\[
Pr(y_i = m | x'_i) = Pr(\tau_{m-1} - x'_i \beta \leq \epsilon_i < \tau_m - x'_i \beta | x'_i)
\]

\[
Pr(y_i = m | x'_i) = Pr(\epsilon_i < \tau_m - x'_i \beta | x'_i) - Pr(\epsilon_i \leq \tau_{m-1} - x'_i \beta | x'_i)
\]

\[
= F(\tau_m - x'_i \beta) - F(\tau_{m-1} - x'_i \beta)
\]

\[
= Pr(y_i = m | x'_i, \beta, \tau)
\]
Die Wahrscheinlichkeit den Wert \(y \) bei der \(i \)-ten Beobachtung zu erhalten ist demnach (vgl. Long (1997)):

\[
p_i = \begin{cases}
 Pr(y_i = 1|x'_i, \beta, \tau) & \text{wenn } y = 1 \\
 Pr(y_i = 2|x'_i, \beta, \tau) & \text{wenn } y = 2 \\
 Pr(y_i = 3|x'_i, \beta, \tau) & \text{wenn } y = 3
\end{cases}
\]

Wenn die Beobachtungen unabhängig sind führt das zu folgender Likelihood-Funktion:

\[
L(\beta, \tau|yX) = \prod_{i=1}^{3} p_i
\]

bzw. für die jeweiligen Ausprägungen und Bildung des Logs zu (vgl. Long (1997)):

\[
L(\beta, \tau|yX) = \prod_{j=1}^{3} \prod_{y_i=j} \left[F(\tau_j - x_i \beta) - F(\tau_{j-1} - x_i \beta) \right]
\]

\[
ln L(\beta, \tau|yX) = \sum_{j=1}^{3} \sum_{y_i=j} ln \left[F(\tau_j - x_i \beta) - F(\tau_{j-1} - x_i \beta) \right]
\]

Die logarithmierte Funktion kann mit Hilfe von numerischen Methoden maximiert werden, daraus erhält man die Schätzer \(\hat{\beta} \) und \(\hat{\tau} \). Anzumerken ist hier, dass bei der Schätzung mittels des Statistikprogramms Stata angenommen wird, dass die Konstante \(\beta_0 = 0 \). Für eine genauere Diskussion zu diesem Thema siehe Long (1997). Die Interpretation der Koeffizienten \(\hat{\beta} \) ist wenig aussagekräftig, da sich der marginale Effekt immer auf unbeobachtbare latente Variable \(y^* \) bezieht. Sinnvoller ist es daher mit den geschätzten Wahrscheinlichkeiten zu arbeiten:

\[
\hat{P}(y = m|x) = F(\hat{\tau}_m - x'\hat{\beta}) - F(\hat{\tau}_{m-1} - x'\hat{\beta})
\]

Die folgenden geschätzten Modelle werden anhand der durchschnittlichen geschätzten Wahrscheinlichkeiten und mit Hilfe der diskreten marginalen Veränderungen einer unabhängigen Variable interpretiert. Die diskrete marginale Veränderung einer unabhängigen Variable ist die Veränderung der geschätzten Wahrscheinlichkeit der Variable \(x_k \) von einem Startwert \(x_s \) zu einem Endwert \(x_E \) und kann folgendermaßen berechnet werden (vgl.: Long (1997)):

\[
\frac{\Delta Pr(y = m|x)}{\Delta x_k} = Pr(y = m|x, x_k = x_E) - Pr(y = m|x, x_k = x_s)
\]

Tabelle 4.17.: Ordered Logit alle Kinder

<table>
<thead>
<tr>
<th></th>
<th>Kind niedrig</th>
<th>Kind mittel</th>
<th>Kind hoch</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(Y</td>
<td>X)$</td>
<td>0,692***</td>
<td>0,260***</td>
</tr>
<tr>
<td>(0,004)</td>
<td>(0,003)</td>
<td>(0,002)</td>
<td></td>
</tr>
<tr>
<td>Mutter mittel</td>
<td>-0,254***</td>
<td>0,181***</td>
<td>0,073***</td>
</tr>
<tr>
<td>(0,015)</td>
<td>(0,009)</td>
<td>(0,006)</td>
<td></td>
</tr>
<tr>
<td>Mutter hoch</td>
<td>-0,330***</td>
<td>0,221***</td>
<td>0,109***</td>
</tr>
<tr>
<td>(0,036)</td>
<td>(0,017)</td>
<td>(0,020)</td>
<td></td>
</tr>
<tr>
<td>Vater mittel</td>
<td>-0,336***</td>
<td>0,231***</td>
<td>0,106***</td>
</tr>
<tr>
<td>(0,013)</td>
<td>(0,008)</td>
<td>(0,006)</td>
<td></td>
</tr>
<tr>
<td>Vater hoch</td>
<td>-0,474***</td>
<td>0,272***</td>
<td>0,202***</td>
</tr>
<tr>
<td>(0,018)</td>
<td>(0,006)</td>
<td>(0,016)</td>
<td></td>
</tr>
<tr>
<td>Land</td>
<td>0,156***</td>
<td>-0,119***</td>
<td>-0,036***</td>
</tr>
<tr>
<td>(0,008)</td>
<td>(0,006)</td>
<td>(0,002)</td>
<td></td>
</tr>
<tr>
<td>Alter</td>
<td>0,006***</td>
<td>-0,005***</td>
<td>-0,001***</td>
</tr>
<tr>
<td>(0,000)</td>
<td>(0,000)</td>
<td>(0,000)</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>18.922</td>
<td>18.922</td>
<td>18.922</td>
</tr>
</tbody>
</table>

Standard errors in parentheses
Cox-Snell $R^2 = 0,190$; McFadden $R^2 = 0,131$

* $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$

Die durchschnittlichen geschätzten Wahrscheinlichkeiten für ein Kind einen bestimmten Bildungsabschluss zu haben werden in der Zeile $P(Y|X)$ widergegeben. Die durchschnittliche geschätzte Wahrscheinlichkeit für ein Kind einen niedrigen Bildungsabschluss zu haben beträgt 69,2%, einen mittleren 26% und einen hohen nur 4,7%. Als Startwert oder Basis x_s für die Berechnung der Veränderung der geschätzten Wahrscheinlichkeit wird bei den Schätzungen in Tabelle 4.17 jeweils der niedrigste Bildungsabschluss der Mutter bzw. des Vaters und in der Stadt leben herangezogen. Die Bildung des Vaters und die Bildung der Mutter wurde in die gleichen Kategorien wie die der Kinder eingeteilt: Niedrig, Mittel und Hoch (Tabelle 4.2). Eine Mutter mit einem mittleren Schulabschluss anstelle eines niedrigen verringert die Wahrscheinlichkeit für das Kind einen niedrigen Bildungsabschluss zu haben um 25,4 Prozentpunkte und einen Vater mit einem mittleren Bildungsabschluss anstelle eines niedrigen zu haben, verringert die Wahrscheinlichkeit um 33,6 Prozentpunkte. Der diskrete marginale Effekt

Vergleicht man die durschnittlichen geschätzten Wahrscheinlichkeiten der beiden Modelle in Tabelle 4.18 für den jeweiligen Bildungsabschluss, so stellt man fest, dass weibliche Kinder eine niedrigere Wahrscheinlichkeit einen niedrigen (67%) und einen hohen (3,8%) zu haben als ihre männlichen Kollegen, die mit einer Wahrscheinlichkeit von 71,7% einen niedrigen und 5,7% einen hohen Bildungsabschluss haben. Bei den mittleren Bildungsabschlüssen der Kinder ist es dementsprechend umgekehrt: mit einer geschätzten durchschnittlichen Wahrscheinlichkeit von 29,3% fallen weibliche Kinder in diese Bildungskategorie und bei männlichen Kindern sind es nur 22,6%. Betrachtet man die geschätzten diskreten marginalen Effekte für die beiden Modelle im Vergleich, so kann man feststellen, dass der Bildungsabschluss der Mutter eine größere Auswirkung auf die Veränderung der Wahrscheinlichkeit der weiblichen Kinder hat als auf die männlichen. Eine Mutter mit hohem Bildungsabschluss anstelle eines niedrigen zu haben, verringert die Wahrscheinlichkeit für weibliche Kinder einen niedrigen Bildungsabschluss um 45,2 Prozentpunkte und bei männlichen nur um 16,8 Prozentpunkte. Die ceteris paribus Veränderung, wenn die Bildung der Väter die unabhängige Variable ist, hat in manchen Fällen eine stärkere Auswirkung auf den Bildungsabschluss im Modell mit den weiblichen Kindern und in anderen auf das Modell mit den männlichen. Ein Vater mit hohem Bildungsabschluss anstelle eines niedrigen erhöht im Modell mit den weiblichen Kindern die Wahrscheinlichkeit einen mittleren Bildungsabschluss zu haben.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Mittel w</th>
<th>Mittel m</th>
<th>Hoch w</th>
<th>Hoch m</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(Y</td>
<td>X)</td>
<td>0,670</td>
<td>0,717</td>
<td>0,293</td>
</tr>
<tr>
<td>Mutter mi</td>
<td>-0,284</td>
<td>-0,231</td>
<td>0,215</td>
<td>0,152</td>
</tr>
<tr>
<td>Mutter ho</td>
<td>-0,452</td>
<td>-0,168</td>
<td>0,288</td>
<td>0,116</td>
</tr>
<tr>
<td>Vater mi</td>
<td>-0,339</td>
<td>-0,339</td>
<td>0,253</td>
<td>0,211</td>
</tr>
<tr>
<td>Vater ho</td>
<td>-0,453</td>
<td>-0,495</td>
<td>0,299</td>
<td>0,242</td>
</tr>
<tr>
<td>Land</td>
<td>0,158</td>
<td>0,154</td>
<td>-0,129</td>
<td>-0,109</td>
</tr>
<tr>
<td>Alter</td>
<td>0,010</td>
<td>0,003</td>
<td>-0,008</td>
<td>-0,002</td>
</tr>
<tr>
<td>N</td>
<td>9,821</td>
<td>9,101</td>
<td>9,821</td>
<td>9,101</td>
</tr>
</tbody>
</table>

Standard errors in parentheses

Modell weibliche (w) Kinder: Cox-Snell $R^2 = 0,204$; McFadden $R^2 = 0,142$

Modell männliche (m) Kinder: Cox-Snell $R^2 = 0,183$; McFadden $R^2 = 0,128$

* $p < 0,05$, ** $p < 0,01$, *** $p < 0,001$

In Tabelle 4.19 findet man die Ergebnisse für die geschätzten durchschnittlichen Wahrscheinlichkeiten und für die geschätzten diskreten marginalen Effekte für alle Kinder für die jeweilige Alterskohorte. Die geschätzte durchschnittliche Wahrscheinlichkeit einen niedrigen Bildungsabschluss zu haben, sinkt von einer Kohorte zur nächsten: In der Alterskohorte 1936-1947 beträgt die durchschnittliche Wahrscheinlichkeit einen niedrigen Bildungsabschluss noch 77,8% und in der Kohorte 1959-1969 sinkt diese auf 62,6%. Je später ein Kind geboren ist desto höher ist die durchschnittliche geschätzte Wahrscheinlichkeit einen mittleren und einen hohen Bildungsabschluss zu haben: In der ersten Kohorte ist die durchschnittliche Wahrscheinlichkeit einen mittleren Bildungsabschluss zu haben 19,1% und in der letzten 31,1%. Ein ähnliches Bild zeigt sich bei den Hochschulabschlüssen: In der Kohorte 1939-47 hat ein Kind nur mit einer durchschnittlichen geschätzten Wahrscheinlichkeit von 3,1% einen Hochschulabschluss und in der letzten mit einer Wahrscheinlichkeit von 6,3%, was ein deutlicher Unterschied ist. Diese Entwicklung der geschätzten durchschnittlichen Wahrscheinlichkeiten ist auf die Bildungsexpansion zurückzuführen. Sowohl ein hoher als auch ein mittlerer Bildungsabschluss der Mutter anstelle eines niedrigen beeinflußt die Wahrscheinlichkeiten für die Kinder, einen niedrigen, mittleren oder hohen Bildungsabschluss zu haben, am stärksten in der Alterskohorte 1948-58, am niedrigsten ist der Einfluss der
| Jahr | P(Y|X) | Mutter mittel | Vater mittel | Mutter hoch | Vater hoch | Land |
|----------|--------|---------------|--------------|-------------|------------|------|
| 1936-1947 | 0,694*** | -0,200*** | -0,344*** | -0,291*** | -0,486*** | 0,177*** |
| | (0,004) | (0,029) | (0,025) | (0,068) | (0,034) | (0,014) |
| 1948-1958 | 0,778*** | -0,299*** | -0,333*** | -0,413*** | -0,496*** | 0,177*** |
| | (0,006) | (0,026) | (0,021) | (0,063) | (0,030) | (0,014) |
| 1959-1969 | 0,680*** | -0,258*** | -0,326*** | -0,310*** | -0,440*** | 0,116*** |
| | (0,006) | (0,021) | (0,019) | (0,011) | (0,025) | (0,014) |

Standard errors in parentheses

Cox-Snell $R^2 = 0.191$; McFadden $R^2 = 0.132$

* $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$

4.2.2.1. Wichtigste Ergebnisse des Ordered-Logit-Modells

Die Ergebnisse in Tabelle 4.17 zeigen deutlich, dass der Bildungsabschluss der Mutter und des Vaters die Bildungsabschlüsse stark beeinflusst. Hat ein Kind eine Mutter mit hohem Bildungsabschluss anstelle eines niedrigen, verringert sich für das Kind die Wahrscheinlichkeit lediglich einen niedrigen Bildungsabschluss zu erreichen um 33 Prozentpunkte und bei einem Vater mit einem hohen anstelle eines niedrigen gar um 47,4 Prozentpunkte.

Wie bei den Regressionen ist der Unterschied bei der Transmission von Bildungsabschlüssen zwischen männlichen und weiblichen Kindern beim Ordered-Logit-Modell statistisch signifikant. In Tabelle 4.18 kann man sehen, dass die Bildung der Mutter eine stärkere Auswirkung auf die Bildung des weiblichen Kindes hat als auf jene des männlichen. Eine Mutter mit hohem Bildungsabschluss anstelle eines niedrigen zu haben, verringert die Wahrscheinlichkeit für weibliche Kinder einen niedrigen Bildungsabschluss um 45,2 Prozentpunkte und bei männlichen nur um 16,8 Prozentpunkte. Ob sich der
<table>
<thead>
<tr>
<th>Jahrzeit</th>
<th>Niedrig w</th>
<th>Niedrig m</th>
<th>Mittel w</th>
<th>Mittel m</th>
<th>Hoch w</th>
<th>Hoch m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1936-1947</td>
<td>0,763***</td>
<td>0,718***</td>
<td>0,290***</td>
<td>0,225***</td>
<td>0,037***</td>
<td>0,057***</td>
</tr>
<tr>
<td>1948-1958</td>
<td>0,646***</td>
<td>0,716***</td>
<td>0,312***</td>
<td>0,227***</td>
<td>0,042***</td>
<td>0,057***</td>
</tr>
<tr>
<td>1959-1969</td>
<td>0,579***</td>
<td>0,683***</td>
<td>0,372***</td>
<td>0,251***</td>
<td>0,056***</td>
<td>0,067***</td>
</tr>
</tbody>
</table>

Mutter mittel

<table>
<thead>
<tr>
<th>Jahrzeit</th>
<th>Niedrig w</th>
<th>Niedrig m</th>
<th>Mittel w</th>
<th>Mittel m</th>
<th>Hoch w</th>
<th>Hoch m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1936-1947</td>
<td>-0,216***</td>
<td>-0,187***</td>
<td>0,183***</td>
<td>0,132***</td>
<td>0,033***</td>
<td>0,055***</td>
</tr>
<tr>
<td>1948-1958</td>
<td>-0,302***</td>
<td>-0,296***</td>
<td>0,220***</td>
<td>0,186***</td>
<td>0,081***</td>
<td>0,110***</td>
</tr>
<tr>
<td>1959-1969</td>
<td>-0,298***</td>
<td>-0,218***</td>
<td>0,193***</td>
<td>0,138***</td>
<td>0,105***</td>
<td>0,080***</td>
</tr>
</tbody>
</table>

Mutter hoch

<table>
<thead>
<tr>
<th>Jahrzeit</th>
<th>Niedrig w</th>
<th>Niedrig m</th>
<th>Mittel w</th>
<th>Mittel m</th>
<th>Hoch w</th>
<th>Hoch m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1936-1947</td>
<td>-0,436***</td>
<td>-0,132</td>
<td>0,338***</td>
<td>0,0957</td>
<td>0,098**</td>
<td>0,036</td>
</tr>
<tr>
<td>1948-1958</td>
<td>-0,474***</td>
<td>-0,317***</td>
<td>0,269***</td>
<td>0,195***</td>
<td>0,205**</td>
<td>0,122**</td>
</tr>
<tr>
<td>1959-1969</td>
<td>-0,414***</td>
<td>-0,122</td>
<td>0,207***</td>
<td>0,083</td>
<td>0,207***</td>
<td>0,039</td>
</tr>
</tbody>
</table>

Vater mittel

<table>
<thead>
<tr>
<th>Jahrzeit</th>
<th>Niedrig w</th>
<th>Niedrig m</th>
<th>Mittel w</th>
<th>Mittel m</th>
<th>Hoch w</th>
<th>Hoch m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1936-1947</td>
<td>-0,324***</td>
<td>-0,370***</td>
<td>0,268***</td>
<td>0,238***</td>
<td>0,056***</td>
<td>0,131***</td>
</tr>
<tr>
<td>1948-1958</td>
<td>-0,332***</td>
<td>-0,338***</td>
<td>0,242***</td>
<td>0,210***</td>
<td>0,090***</td>
<td>0,129***</td>
</tr>
<tr>
<td>1959-1969</td>
<td>-0,329***</td>
<td>-0,330***</td>
<td>0,212***</td>
<td>0,195***</td>
<td>0,117***</td>
<td>0,134***</td>
</tr>
</tbody>
</table>

Vater hoch

<table>
<thead>
<tr>
<th>Jahrzeit</th>
<th>Niedrig w</th>
<th>Niedrig m</th>
<th>Mittel w</th>
<th>Mittel m</th>
<th>Hoch w</th>
<th>Hoch m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1936-1947</td>
<td>-0,412***</td>
<td>-0,545***</td>
<td>0,328***</td>
<td>0,274***</td>
<td>0,085***</td>
<td>0,271***</td>
</tr>
<tr>
<td>1948-1958</td>
<td>-0,522***</td>
<td>-0,465***</td>
<td>0,276***</td>
<td>0,241***</td>
<td>0,246***</td>
<td>0,224***</td>
</tr>
<tr>
<td>1959-1969</td>
<td>-0,405***</td>
<td>-0,480***</td>
<td>0,224***</td>
<td>0,215***</td>
<td>0,181***</td>
<td>0,264***</td>
</tr>
</tbody>
</table>

Land

<table>
<thead>
<tr>
<th>Jahrzeit</th>
<th>Niedrig w</th>
<th>Niedrig m</th>
<th>Mittel w</th>
<th>Mittel m</th>
<th>Hoch w</th>
<th>Hoch m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1936-1947</td>
<td>0,181***</td>
<td>0,175***</td>
<td>-0,156***</td>
<td>-0,128***</td>
<td>-0,025***</td>
<td>-0,047***</td>
</tr>
<tr>
<td>1948-1958</td>
<td>0,176***</td>
<td>0,177***</td>
<td>-0,141***</td>
<td>-0,124***</td>
<td>-0,035***</td>
<td>-0,053***</td>
</tr>
<tr>
<td>1959-1969</td>
<td>0,114***</td>
<td>0,115***</td>
<td>-0,087***</td>
<td>-0,080***</td>
<td>-0,027***</td>
<td>-0,035***</td>
</tr>
</tbody>
</table>

Standard errors in parentheses

Modell weibliche (w) Kinder: Cox-Snell $R^2 = 0.206$; McFadden $R^2 = 0.143$
Modell männliche (m) Kinder: Cox-Snell $R^2 = 0.185$; McFadden $R^2 = 0.129$

* $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$

4.2.3. Übergangsmatrizen

Der Ausgangspunkt von Markow-Ketten wird durch den endlichen Zustandsraum \(E = \{1, 2, ..., e\} \) gebildet, bei dem \(e_i \in E \) dem jeweiligen Zustand und \(e \) der Anzahl der Zustände entspricht. Die Übergangsmatrix \(P = [p_{ij}] \in \mathbb{R}^{e \times e} \) ist eine stochastische Matrix, wobei die Wahrscheinlichkeit von Zustand \(i \) in Zustand \(j \) übergehen durch \(Pr(j|i) = p_{ij} \geq 0 \) definiert und \(\sum_{j=1}^{e} p_{ij} = 1 \) ist. Die jeweiligen Zustände \(e_i \) entsprechen in diesem Fall den jeweiligen Bildungskategorien (Niedrig, Mittel, Hoch). Die Übergangswahrscheinlichkeit ist gegeben durch \(Pr(j|i) = p_{ij} = w_{ij}/\sum_{j=1}^{e} w_{ij} \), wobei \(w_{ij} \) der Summe der Eltern-Kinder-Paare im Datensatz entspricht, die sich in der Bildungskategorie \(i \) für die Eltern-Generation und in Kategorie \(j \) für die Generation der Kinder befinden (i, j = 1, 2, 3) (vgl. Fessler u. Schneebaum 2011).

Die Übergangsmatrix \(P^{E \rightarrow K} \) in Tabelle 4.21 gibt die bedingte Wahrscheinlichkeit für ein Kind in einer bestimmten Bildungskategorie (Niedrig, Mittel, Hoch) zu sein - gegeben Bildungskategorie der Eltern (Niedrig, Mittel, Hoch) - an. Da jedes Kind -
Tabelle 4.21.: Übergangsmatrix Eltern-Kinder: $P^{E\rightarrow K}$

<table>
<thead>
<tr>
<th>Kind</th>
<th>Niedrig</th>
<th>Mittel</th>
<th>Hoch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niedrig</td>
<td>0,76</td>
<td>0,2</td>
<td>0,04</td>
</tr>
<tr>
<td>Eltern</td>
<td>0,31</td>
<td>0,48</td>
<td>0,21</td>
</tr>
<tr>
<td>Hoch</td>
<td>0,14</td>
<td>0,41</td>
<td>0,45</td>
</tr>
</tbody>
</table>

gegeben eine bestimmte Kategorie der Eltern - entweder in die niedrige, die mittlere oder die hohe Bildungskategorie fällt, ergibt die Addition der Wahrscheinlichkeiten einer Zeile der Matrix immer genau 1.

Da in dieser Diplomarbeit der Fokus auf geschlechtspezifischen Unterschieden bei der Transmission von Bildung von einer Generation auf die nächste liegt, werden in Folge Übergangsmatrizen für Mutter-Tochter ($P^{M\rightarrow K_w}$), Mutter-Sohn ($P^{M\rightarrow K_m}$), Vater-Tochter ($P^{V\rightarrow K_w}$) und Vater-Sohn ($P^{V\rightarrow K_m}$) berechnet.

Tabelle 4.22.: Übergangsmatrix Mutter-Tochter: $P^{M\rightarrow K_w}$

<table>
<thead>
<tr>
<th>Kind (weiblich)</th>
<th>Niedrig</th>
<th>Mittel</th>
<th>Hoch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niedrig</td>
<td>0,71</td>
<td>0,25</td>
<td>0,04</td>
</tr>
<tr>
<td>Mutter</td>
<td>0,2</td>
<td>0,55</td>
<td>0,25</td>
</tr>
<tr>
<td>Hoch</td>
<td>0,06</td>
<td>0,37</td>
<td>0,57</td>
</tr>
</tbody>
</table>

Die Interpretation der Übergangsmatrizen $P^{M\rightarrow K_w}$, $P^{M\rightarrow K_m}$, $P^{V\rightarrow K_w}$, $P^{V\rightarrow K_m}$ in Tabellen 4.22, 4.23, 4.24 und 4.25 ist einfach und selbst erklärend. Ein weibliches Kind, deren Mutter einen hohen Bildungsabschluss hat, hat mit einer Wahrscheinlichkeit von 57% auch einen hohen Bildungsabschluss und mit einer Wahrscheinlichkeit von 6% einen niedrigen. Die Wahrscheinlichkeit für ein männliches Kind einen einen hohen Bildungsabschluss zu haben, wenn die Mutter in dergleichen Kategorie ist, beträgt 46% und 21% einen niedrigen zu haben. Gegeben, dass der Vater einen niedrigen Bil-
Tabelle 4.23.: Übergangsmatrix Mutter-Sohn: $P^{M→K_m}$

<table>
<thead>
<tr>
<th>Kind (männlich)</th>
<th>Niedrig</th>
<th>Mittel</th>
<th>Hoch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niedrig</td>
<td>0,75</td>
<td>0,19</td>
<td>0,06</td>
</tr>
<tr>
<td>Mutter</td>
<td>0,25</td>
<td>0,43</td>
<td>0,32</td>
</tr>
<tr>
<td>Hoch</td>
<td>0,21</td>
<td>0,33</td>
<td>0,46</td>
</tr>
</tbody>
</table>

Tabelle 4.24.: Übergangsmatrix Vater-Tochter: $P^{V→K_w}$

<table>
<thead>
<tr>
<th>Kind (weiblich)</th>
<th>Niedrig</th>
<th>Mittel</th>
<th>Hoch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niedrig</td>
<td>0,72</td>
<td>0,24</td>
<td>0,03</td>
</tr>
<tr>
<td>Vater</td>
<td>0,27</td>
<td>0,52</td>
<td>0,2</td>
</tr>
<tr>
<td>Hoch</td>
<td>0,13</td>
<td>0,42</td>
<td>0,45</td>
</tr>
</tbody>
</table>

Tabelle 4.25.: Übergangsmatrix Vater-Sohn: $P^{V→K_m}$

<table>
<thead>
<tr>
<th>Kind (männlich)</th>
<th>Niedrig</th>
<th>Mittel</th>
<th>Hoch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niedrig</td>
<td>0,77</td>
<td>0,18</td>
<td>0,05</td>
</tr>
<tr>
<td>Vater</td>
<td>0,3</td>
<td>0,45</td>
<td>0,26</td>
</tr>
<tr>
<td>Hoch</td>
<td>0,14</td>
<td>0,38</td>
<td>0,48</td>
</tr>
</tbody>
</table>
dungsabschluss hat, haben weibliche Kinder mit einer Wahrcheinlichkeit von 72% und männliche Kinder mit 77% ebenfalls einen niedrigen.

Um zu untersuchen, bei welchen Übergangsmatrizen ($P_{M\rightarrow Kw}$, $P_{M\rightarrow Km}$, $P_{V\rightarrow Kw}$, $P_{V\rightarrow Km}$), die Transmission von Bildungsabschlüssen stärker ausgeprägt ist als bei den anderen, kann man in einem ersten Schritt die Diagonalelemente, also jene Werte bei denen die Generation der Eltern und der Kinder den gleichen Bildungsabschluss aufweisen, für jede Übergangsmatrix addieren. Je höher die Summe der Diagonalelemente desto weniger Mobilität gibt es zwischen den Generationen. Bei Anwendung dieser Methode, weist die Matrix $P_{M\rightarrow Km}$ die höchste Mobilität auf, danach kommt die Matrix $P_{V\rightarrow Kw}$, gefolgt von der Matrix $P_{V\rightarrow Km}$ und die niedrigste Mobilität hat die Matrix $P_{M\rightarrow Kw}$. Diese Methode ist lediglich ein erster Hinweis dafür, dass die Mutter stärker den Bildungsstatus auf weibliche Kinder überträgt, der Vater stärker auf männliche und dass die Übertragung der Mutter auf männliche Kinder bzw. Vater auf weibliche Kinder schwächer ist. Um den Grad der Übertragung von Bildungschancen von einer Generation auf die nächste für die jeweiligen Übergangsmatrizen festzustellen und die Übergangsmatrizen reihen zu können, werden in einem nächsten Schritt verschiedene Mobilitätsmaße verwendet.

4.2.3.1. Mobilitätsmaße

Shorrocks (1978) hat einige Indizes entwickelt, um die Mobilität zu messen, wenn die Daten in Form von Übergangsmatrizen dargestellt sind. Bei einem Mobilitätsindex handelt es sich um eine stetige reelle Funktion $M(\cdot) : P \mapsto \mathbb{R}$, die transformiert wird, so dass sie im Intervall $[0, 1]$ liegt. Anzumerken ist hier, dass alle berechneten Übergangsmatrizen monoton sind. Das bedeutet, dass in der Generation der Kinder, diejenigen eine bessere „Lotterie“ vorfinden, deren Eltern höhere Bildungsabschlüsse haben (Fessler u. a. (2011)).

In dieser Diplomarbeit werden drei Mobilitätsindizes verwendet (Shorrock 1978):

- Second Eigenvalue Index: \(M_{SE}(P) \equiv 1 - |\lambda_2| \)
- Shorrock's Index: \(M_{S}(P) \equiv \frac{e - \text{spur}(P)}{e-1} \)
- Determinanten Index: \(M_{D}(P) \equiv 1 - |\text{det}(P)|^{1/n-1} \)

Wenn die Mobilitätsindizes den Wert 0 annehmen weist die Übergangsmatrix die niedrigste Mobilität auf und wenn die Übergangsmatrix den Wert 1 annimmt die höchste. In Folge können die Übergangsmatrizen \(P_{M \rightarrow K_w} \) \(P_{M \rightarrow K_m} \) \(P_{V \rightarrow K_w} \) \(P_{V \rightarrow K_m} \) nach Mobilitätsgrad gereiht werden.

Tabelle 4.26.: Übergangsmatrix mit höchster Mobilität

<table>
<thead>
<tr>
<th>Kind</th>
<th>Niedrig</th>
<th>Mittel</th>
<th>Hoch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niedrig</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
</tr>
<tr>
<td>Eltern</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
</tr>
<tr>
<td>Hoch</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
</tr>
</tbody>
</table>

Die Ergebnisse in Tabelle 4.27 enthalten den Wert des errechneten Index und die Reihung der Übergangsmatrizen \(P_{M \rightarrow K_w} \) \(P_{M \rightarrow K_m} \) \(P_{V \rightarrow K_w} \) \(P_{V \rightarrow K_m} \) nach diesen Indizes. Dem folgend sind männliche Kinder nach allen drei Indizes am wenigsten von ihren Müttern abhängig. Die Übergangsmatrix \(P_{V \rightarrow K_w} \) erreicht beim Second Eigenvalue Index und beim Shorrock's Index Platz zwei und somit sind weibliche Kinder von ihren Vätern in jedem Fall unabhängig als von ihren Müttern. Die höchste Abhängigkeit besteht zwischen weiblichen Kindern und ihren Müttern bei der Übertragung von Bildungschancen. Aus den Ergebnissen in Tabelle 4.27 kann man folgern, dass Kinder bei der Übertragung der Bildungskategorien dem gleichen Geschlecht der Eltern folgen.

Tab. 4.28.: Mobilitätsindizes für $P^M\rightarrow K_w$ nach Alterskohorten

<table>
<thead>
<tr>
<th>Kohorte</th>
<th>$M^{SE}(P)$</th>
<th>$M^S(P)$</th>
<th>$M^D(P)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1936-1947</td>
<td>0,388</td>
<td>2</td>
<td>0,634</td>
</tr>
<tr>
<td>1948-1958</td>
<td>0,342</td>
<td>3</td>
<td>0,569</td>
</tr>
<tr>
<td>1959-1969</td>
<td>0,439</td>
<td>1</td>
<td>0,694</td>
</tr>
</tbody>
</table>

5. Fazit

Die in Kapitel 1.2 formulierten Fragestellungen dieser Diplomarbeit können nun mit den Ergebnissen aus empirischen Analyse (Abschnitt 4) beantwortet werden. Mittels verschiedener Methoden wurde die Transmission von Bildungsabschlüssen von einer Generation auf die nächste untersucht und geschlechtsspezifische Unterschiede analysiert.

Sowohl der Bildungsabschluss des Vaters, der Mutter und der höchste von beiden Elternteilen ist positiv mit dem Bildungsabschluss der Kinder korreliert. Der Grad der Transmission erscheint im internationalen Vergleich zudem überaus hoch. So erreichen Kinder für jedes zusätzliche Bildungsjahr des Vaters 0,568 und für jedes der Mutter 0,754 zusätzliche Bildungsjahre (Tabelle 4.7), wenn OLS-Regressionen für die Analyse angewandt werden.

Mithilfe von Tests auf Strukturbrech bei den OLS-Regressionen und beim Ordered-Logit-Modell wurde festgestellt, dass man für weibliche und für männliche Kinder zwei unterschiedliche Modelle schätzen muss. Es wurden also bei der Bildungstransmission geschlechtsspezifische Unterschiede identifiziert. Dies war zu erwarten, da die geschlechtsspezifische Bildungsungleichheit bei den älteren Geburtenjahrgängen besonders groß ist und im Laufe der Zeit zurückgeht. Da bei allen geschätzten OLS-Regression, bei denen die statutorischen Bildungsjahre des Vaters die unabhängige Variable sind, ein höheres R^2 erzielt wird, kann man folgern, dass die Bildung des Vaters generell mehr Erklärungsgehalt sowohl für weibliche als auch für männliche Kinder hat, als die statutorischen Bildungsjahre der Mutter. Die Bildung der Mutter hat einen stärkeren Einfluss auf die weiblichen Kinder als auf die männlichen, sowohl bei den OLS-Regressionen als auch beim Ordered-Logit-Modell. Durch Berechnung von Übergangsmatrizen (4.2.3) und zugehörigen Mobilitätsmaßen kann man folgern, dass der Bildungsabschluss der Mutter die Bildungschancen von männlichen Kindern am
wenigsten beeinflusst und die höchste Abhängigkeit zwischen weiblichen Kindern und ihren Müttern besteht. Geschlechtsspezifische Rollenbilder spielen folglich eine zentrale Rolle bei der Bildungstransmission von einer Generation auf die nächste.

Kinder, die in einer ländlichen Region aufwachsen, haben einen statistisch signifikanten Nachteil bei den Bildungsbereichen (Tabelle 4.12). Für weibliche Kinder beträgt der geschätzte Nachteil 0,521 Bildungsjahre und für männliche 0,517 in der OLS-Regression mit dem höchsten Bildungsexpansion der Eltern. Auf dem Land aufgewachsen erhöht die Wahrscheinlichkeit für ein Kind, lediglich einen niedrigen Bildungsexpansion zu erreichen um 15,6 Prozentpunkte im Ordered-Logit-Modell (Tabelle 4.17). In Tabelle 4.13 ist ersichtlich, dass der Nachteil im Laufe der Zeit zurückgeht: So haben männliche Kinder, wenn sie auf dem Land aufwachsen, in der Kohorte 1960-1964 0,636 Bildungs-

Die Transmission von Bildungsabschlüssen von einer Generation auf die nächste ist in Österreich stark ausgeprägt. Im empirischen Teil (Abschnitt 4) konnte gezeigt werden, dass die erwarteten Effekte in Kapitel 1.2 zutreffend sind. Ein Problem des in dieser Diplomarbeit verfolgten Ansatzes ist, dass es keinen aktuelleren Datensatz gibt, mit dem die Fragestellung für Österreich behandelt werden kann.

Geschlechtsspezifische Unterschiede sind im Laufe der Zeit zurückgegangen. Das bedeutet aber nicht, dass Frauen gar keine Nachteile mehr im Bildungssystem haben. Mittlerweile haben mehr Frauen Sekundar- und Tertiäraschlüsse als Männer, allerdings kehrt sich dieses Verhältnis auf universitärer Ebene bei den Doktorats- bzw. PhD-Studien (Statistik Austria (2010b)) wieder um.
A. Appendix

A.1. Vergleich der Daten: Grundprogramm mit Sonderprogramm

Tabelle A.1.: Vergleich: Geschlecht und Stadt/Land

<table>
<thead>
<tr>
<th></th>
<th>Grundprogramm</th>
<th></th>
<th>Sonderprogramm</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Freq.</td>
<td>Percent</td>
<td>Freq.</td>
<td>Percent</td>
</tr>
<tr>
<td>Männer</td>
<td>13.243</td>
<td>49,63</td>
<td>9.951</td>
<td>48,15</td>
</tr>
<tr>
<td>Frauen</td>
<td>13.439</td>
<td>50,37</td>
<td>10.717</td>
<td>51,58</td>
</tr>
<tr>
<td>Stadt</td>
<td>6.542</td>
<td>30,62</td>
<td>5.969</td>
<td>29,9</td>
</tr>
<tr>
<td>Land</td>
<td>14.825</td>
<td>69,38</td>
<td>13.997</td>
<td>70,1</td>
</tr>
</tbody>
</table>

Tabelle A.2.: Vergleich: Prozentueller Anteil an Frauen in jeweiliger Alterskohorte

<table>
<thead>
<tr>
<th>Alterskohorte</th>
<th>Grundprogramm</th>
<th>Sonderprogramm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1936-1939</td>
<td>50,44</td>
<td>51,29</td>
</tr>
<tr>
<td>1940-1944</td>
<td>51,58</td>
<td>52,78</td>
</tr>
<tr>
<td>1945-1949</td>
<td>51,77</td>
<td>53,42</td>
</tr>
<tr>
<td>1950-1954</td>
<td>50,48</td>
<td>52,00</td>
</tr>
<tr>
<td>1955-1959</td>
<td>49,35</td>
<td>51,19</td>
</tr>
<tr>
<td>1960-1964</td>
<td>50,85</td>
<td>52,26</td>
</tr>
<tr>
<td>1965-1969</td>
<td>48,41</td>
<td>50,09</td>
</tr>
</tbody>
</table>

Tabelle A.3.: Vergleich: Mittelwert Alter in Jahren

<table>
<thead>
<tr>
<th>Alter</th>
<th>Grundprogramm</th>
<th>Sonderprogramm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter</td>
<td>42,62</td>
<td>42,47</td>
</tr>
<tr>
<td>Alter Frauen</td>
<td>42,79</td>
<td>42,59</td>
</tr>
<tr>
<td>Alter Männer</td>
<td>42,47</td>
<td>42,34</td>
</tr>
</tbody>
</table>
Tabelle A.4.: Vergleich: Prozentsualer Anteil nach Geschlecht in Stadt bzw. Land

<table>
<thead>
<tr>
<th>Grundprogramm</th>
<th>Sonderprogramm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frauen Stadt</td>
<td>31,06</td>
</tr>
<tr>
<td>Frauen Land</td>
<td>68,94</td>
</tr>
<tr>
<td>Männer Stadt</td>
<td>30,15</td>
</tr>
<tr>
<td>Männer Land</td>
<td>69,85</td>
</tr>
</tbody>
</table>

A.2. Vergleich Bildungsabschlüsse: Stadt–Land

Tabelle A.5.: Vergleich Bildungsabschlüsse Stadt: Weibliche und männliche Kinder

<table>
<thead>
<tr>
<th></th>
<th>Stadt weibliche Kinder</th>
<th>Stadt männliche Kinder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflichtschule</td>
<td>685</td>
<td>20,06</td>
</tr>
<tr>
<td>Lehre</td>
<td>1.065</td>
<td>31,2</td>
</tr>
<tr>
<td>BMS</td>
<td>604</td>
<td>17,69</td>
</tr>
<tr>
<td>Matura</td>
<td>670</td>
<td>19,63</td>
</tr>
<tr>
<td>Hochschule</td>
<td>390</td>
<td>11,42</td>
</tr>
<tr>
<td>Gesamt</td>
<td>3.414</td>
<td>100</td>
</tr>
</tbody>
</table>

Tabelle A.6.: Vergleich Bildungsabschlüsse Land: Weibliche und männliche Kinder

<table>
<thead>
<tr>
<th></th>
<th>Land weibliche Kinder</th>
<th>Land männliche Kinder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflichtschule</td>
<td>3.315</td>
<td>43,74</td>
</tr>
<tr>
<td>Lehre</td>
<td>2.249</td>
<td>29,67</td>
</tr>
<tr>
<td>BMS</td>
<td>1.065</td>
<td>14,05</td>
</tr>
<tr>
<td>Matura</td>
<td>666</td>
<td>8,79</td>
</tr>
<tr>
<td>Hochschule</td>
<td>284</td>
<td>3,75</td>
</tr>
<tr>
<td>Gesamt</td>
<td>7.579</td>
<td>100</td>
</tr>
</tbody>
</table>
A.3. Mittelwerte statutorische Bildungsjahre

Tabelle A.7.: Mittelwerte statutorische Bildungsjahre

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Mittelwert in Jahren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alle Kinder</td>
<td>10,615</td>
</tr>
<tr>
<td>Weibliche Kinder</td>
<td>10,484</td>
</tr>
<tr>
<td>Männliche Kinder</td>
<td>10,749</td>
</tr>
<tr>
<td>Mütter</td>
<td>9,420</td>
</tr>
<tr>
<td>Väter</td>
<td>9,820</td>
</tr>
<tr>
<td>Kinder Stadt</td>
<td>11,369</td>
</tr>
<tr>
<td>Kinder Land</td>
<td>10,290</td>
</tr>
</tbody>
</table>

A.4. Übergangsmatrizen

Tabelle A.8.: Übergangsmatrix $P^{M\rightarrow K_w}$ nach Alterskohorten

<table>
<thead>
<tr>
<th>Kind (weiblich)</th>
<th>Niedrig</th>
<th>Mittel</th>
<th>Hoch</th>
</tr>
</thead>
<tbody>
<tr>
<td>1936-1947</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mutter Niedrig</td>
<td>0,8</td>
<td>0,18</td>
<td>0,02</td>
</tr>
<tr>
<td>Mutter Mittel</td>
<td>0,26</td>
<td>0,57</td>
<td>0,17</td>
</tr>
<tr>
<td>Mutter Hoch</td>
<td>0,11</td>
<td>0,43</td>
<td>0,46</td>
</tr>
</tbody>
</table>

1948-1958			
Mutter Niedrig	0,7	0,25	0,05
Mutter Mittel	0,18	0,51	0,3
Mutter Hoch	0,06	0,22	0,72

<p>| 1959-1969 | | | |
| Niedrig | 0,63 | 0,32 | 0,06 |
| Mittel | 0,17 | 0,56 | 0,27 |
| Hoch | 0,03 | 0,42 | 0,55 |</p>
<table>
<thead>
<tr>
<th>Vater</th>
<th>Kind (männlich)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1936-1947</td>
<td>Niedrig</td>
</tr>
<tr>
<td></td>
<td>0,81</td>
</tr>
<tr>
<td></td>
<td>0,3</td>
</tr>
<tr>
<td></td>
<td>0,17</td>
</tr>
<tr>
<td>1948-1958</td>
<td>Niedrig</td>
</tr>
<tr>
<td></td>
<td>0,77</td>
</tr>
<tr>
<td></td>
<td>0,31</td>
</tr>
<tr>
<td></td>
<td>0,14</td>
</tr>
<tr>
<td>1959-1969</td>
<td>Niedrig</td>
</tr>
<tr>
<td></td>
<td>0,73</td>
</tr>
<tr>
<td></td>
<td>0,28</td>
</tr>
<tr>
<td></td>
<td>0,11</td>
</tr>
</tbody>
</table>

Tabelle A.9: Übergangsmatrix $P^{V \rightarrow K_m}$ nach Alterskohorten
A.5. Lebenslauf

Daten
Name: Pia Kranawetter
Kontakt: pia.kranawetter@gmail.com

Ausbildung
2004 Matura, Bundeshandelsakademie I, Wels
2005 Diplomstudium Volkswirtschaft an der Universität Wien
2008/09 Erasmusaufenthalt in Lissabon, Universidade Nova de Lisboa
2012 Abschluss: Magistra in Volkswirtschaft, Universität Wien

Beruf
2008 & 2010 & 2011 Tutorin, Technische Universität Wien (Einführung Volkswirtschaft)

Engagement
2006-2010 Mitarbeit bei der Studienrichtungsvertretung VWL
2007-2009 Vorsitzende der gewählten Studienvertretung
2010-2011 Pressesprecherin der Bundesvertretung der Österreichischen HochschülerInnschaft
A.6. Abstract

In dieser Diplomarbeit wird die Transmission von Bildungsabschlüssen von einer Generation auf die nächste mit einem besonderen Fokus auf die geschlechtsspezifischen Unterschiede untersucht. Die empirische Analyse erfolgt mittels OLS-Regressionen, einem Ordered-Logit-Modell und aus Transitionsmatrizen errechneten Mobilitätsmaßen.

Die Datengrundlage dieser Diplomarbeit sind Teile des Grundprogramms und das freiwillige Sonderprogramm „Bildungslaufbahn“ des Mikrozensusdatensatzes 1996 (2. Quartal) der Statistik Austria.

Weiters wird die Auswirkung auf den Bildungsabschluss für Kinder, die in einer ländlichen Region aufwachsen, analysiert. Diese Kinder haben bei den Bildungsabschlüssen einen Nachteil gegenüber Kindern, die in einem städtischen Umfeld aufwachsen, der wiederum für Geburtenjahrgänge ab Mitte der 1960er-Jahre zurückgeht.

Literaturverzeichnis

[Checchi u. a. 2008] Checchi, Daniele; Fiorio, Carlo V.; Leonardi, Marco: *Intergenerational Persistence in Educational Attainment in Italy*. 2008

[Checchi u. a. 1999] Checchi, Daniele; Ichino, Andrea; Rustichini, Aldo: More equal but less mobile?: Education financing and intergenerational mobility in Italy and in the US. In: *Journal of Public Economics* 74 (1999), December, Nr. 3, 351-393. http://ideas.repec.org/a/eee/pubeco/v74y1999i3p351-393.html

[Daouli u. a. 2008] Daouli, Joan; Demoussis, Michael; Giannakopoulos, Nicholas: Mothers, Fathers and Daughters: Intergenerational Transmission of Education in Greece. (2008)

[Festerer 2001] Festerer, Josef: *Erträge der Schulbildung in Österreich - Eine empirische Untersuchung*, University of Linz, Austria, Diss., 2001

[Hertz u. a. 2007] Hertz, Tom; Jayasundera, Tamara; Piraino, Patrizio; Selcuk, Sibel; Smith, Nicole; Verashchagina, Alina: The Inheritance of Educational Inequality: International Comparisons and Fifty-Year Trends. In: The B.E. Journal of Economic Analysis & Policy 7(2) (2007)

[Statistik Austria 2007] Statistik Austria: Einkommen, Armut und Lebensbedin-

[Statistik Austria 2010a] Statistik Austria: Bildung in Zahlen 2008/09: Schlüsse-
lingikatoren und Analysen. (2010)

[Steiner 1998] Steiner, Mario: Empirische Befunde zur Chancengleichheit im öster-

[Zach a] Zach, Angelika: Autonome Frauenbewegung in Österreich. – Available
online at http://www.renner-institut.at/frauenmachengeschichte/autonome/
automne.htm visited on February 2012.

[Zach b] Zach, Angelika: Frauenpolitik in Österreich seit 1970. – Available on-
line at http://www.renner-institut.at/frauenmachengeschichte/sp_70er/sp_
frpol.htm visited on February 2012.