DIPLOMARBEIT

Titel der Diplomarbeit

„Kartographischer Zoom und Generalisierung in der interaktiven Freizeitkartographie“

Verfasserin

Elisabeth Baumgartner, BA

angestrebter akademischer Grad

Magistra der Naturwissenschaften (Mag. rer. nat.)

Wien, 2012

Studienkennzahl lt. Studienblatt: A 455
Studienrichtung lt. Studienblatt: Diplomstudium Kartographie und Geoinformation
Betreuer: Univ.-Prof., DI Dr. Wolfgang Kainz
Inhaltsverzeichnis

Inhaltsverzeichnis ... i
Abbildungsverzeichnis ... iii
Tabellenverzeichnis ... vii
Abkürzungsverzeichnis .. viii
KURZFASSUNG ... ix
ABSTRACT .. x
VORWORT ... xi

1 EINLEITUNG .. 1

2 THEORETISCHE GRUNDLAGEN ... 3
 2.1 Begriffserklärungen ... 3
 2.1.1 Generalisierung .. 3
 2.1.2 Kartographischer Zoom ... 4
 2.1.3 Freizeitkarte .. 6
 2.2 Theoretische Bezüge ... 9
 2.2.1 Arten der Generalisierung ... 9
 2.2.2 Generalisierung speziell bei Bildschirmkarten 17
 2.2.3 Intuitives und Regelhaftes Generalisieren 18
 2.2.4 Karten im Internet ... 20
 2.2.5 Bildschirmgerechte kartographische Visualisierung 22
 2.3 Forschungsfragen .. 33

3 KONZEPTION DER UNTERSUCHUNG 34
 3.1 Forschungsmethoden ... 34
 3.2 Kartenanbieter .. 36
 3.3 Fallbeispiele ... 40
 3.3.1 ALPSTEIN Tourismus GmbH & Co. KG 40
 3.3.2 Geo Marketing GmbH .. 46
 3.3.3 General Solutions Steiner GmbH 50
3.3.4 KOMPASS-Karten GmbH ... 54
3.3.5 Generelle Anregungen ... 56
3.4 Zoomstufeninhalte ... 57
 3.4.1 Flächen .. 58
 3.4.2 Linien .. 60
 3.4.3 Punkte .. 63
 3.4.4 Kartographische Umsetzung .. 64
4 ZUSAMMENFASSUNG .. 69
5 Literaturverzeichnis .. 72
6 Lebenslauf .. 76
Abbildungsverzeichnis

Abbildung 2.1 Der klassische Zoom. Quelle: KOMPASS Karten GmbH, Bearbeitung: Elisabeth Baumgartner ... 4

Abbildung 2.2 Der kartographische Zoom. Quelle: KOMPASS Karten GmbH, Bearbeitung: Elisabeth Baumgartner ... 4

Abbildung 2.3 Gewässernetzgeneralisierung; nach (Kohlstock, 2010, S. 87) 15

Abbildung 2.4 Darstellung von Bodenbedeckungen; nach (Hake, Grünreich, & Meng, 2002, S. 425) ... 16

Abbildung 2.5 Beispiele der Darstellung lokaler (a) und linearer (b) Einzelobjekte; nach (Hake et al., 2002, S. 425) ... 16

Abbildung 2.6 Schematische Beispiele der Reliefgeneralisierung. Höhenlinien im Ausgangsmaßstab und Folgemaßstab (Hake et al., 2002, S. 430) 17

Abbildung 2.8 „Leistung des menschlichen Auges. Oben: Eine gedruckte Karte aus dem Abstand von 30 cm. Unten: Ein Bildschirmpunkt aus 60 cm ist deutlich größer als die kleinste vom Auge wahrnehmbare Fläche.“ (Jenny et al., 2008, S. 37) (Übersetzt von Elisabeth Baumgartner) ... 24

Abbildung 2.10 „Unterschiedliche Abstände zwischen Flächen und Linien in voller Auflösung (links) und Bildschirmauflösung (rechts), gerendert mit Adobe Flash Player 9.“ (Übersetzt von Elisabeth Baumgartner) (Jenny et al., 2008, S. 39) ... 26

Abbildung 2.12 Oben: Kursiv (italic) mit Serifen. Unten: Normal (regular) ohne Serifen, nach (Jenny et al., 2008, S. 42) ... 29

Abbildung 2.13 Gute Bildschirmschrift (Jenny et al., 2008, S. 43) .. 30

Abbildung 3.1 Darstellung von Touren in Liniensignaturen ("Burgenland - ALPregio," 2012) ... 38

Abbildung 3.2 Punktsignaturen in interaktiven Freizeitkarten. (Geo Marketing GmbH, 2011) ... 39
Abbildung 3.3 outdooractive Tourenportal. ("outdooractive.com » Touren") .. 40
Abbildung 3.4 Kartographie der Alpstein Tourismus GmbH & Co. KG im outdooractive Tourenportal. ("outdooractive.com » Touren") .. 41
Abbildung 3.5 Kategorien des Tourenportals Outdooractive. ("outdooractive.com » Touren") .. 42
Abbildung 3.6 Kreise mit Nummern zeigen die Anzahl der im Gebiet verfügbaren Touren. ("outdooractive.com » Touren") .. 42
Abbildung 3.7 Suchfunktion bei Outdooractive ("outdooractive.com » Touren") 43
Abbildung 3.8 ALPSTEIN - Zoomstufe 12 im Grenzbereich Deutschland – Österreich. ("outdooractive.com » Touren") .. 43
Abbildung 3.9 ALPSTEIN - Zoomstufe 12 im Grenzbereich Österreich – Schweiz. ("outdooractive.com » Touren") .. 43
Abbildung 3.10 ALPSTEIN - Zoomstufe 13 im Grenzbereich. ("outdooractive.com » Touren") .. 44
Abbildung 3.11 ALPSTEIN - Zoomstufe 12 Mehrfachbeschrifungen. ("outdooractive.com » Touren") .. 44
Abbildung 3.12 ALPSTEIN - Zoomstufe 9 Beschriftung der Täler. ("outdooractive.com » Touren") .. 45
Abbildung 3.13 ALPSTEIN - Zoomstufe 17 Beschriftung der Bäche und Höhenlinien. ("outdooractive.com » Touren") .. 45
Abbildung 3.14 Zoomstufe 17 Flussbeschriftung entlang der Gewässerkontur. ("outdooractive.com » Touren") .. 46
Abbildung 3.15 Sentres. Tourenplaner für Südtirol. (Geo Marketing GmbH, 2011) 46
Abbildung 3.16 Kartographie der Geo Marketing GmbH im sentres Tourenportal. (Geo Marketing GmbH, 2010) .. 47
Abbildung 3.17 Auswahlmöglichkeiten der einzublenden Signaturen. (Geo Marketing GmbH, 2010) .. 47
Abbildung 3.18 Wege im sentres Tourenportal. (Geo Marketing GmbH, 2010) 49
Abbildung 3.19 Gewässerbeschreibungen im sentres Tourenportal. (Geo Marketing GmbH, 2010) .. 49
Abbildung 3.20 Kartographie der Zillertal Arena Map. („Interaktive Karte der Zillertal Arena“) .. 50
Abbildung 3.21 Piktogramme zur Auswahl der zuschaltbaren Informationen der Zillertal Arena Map. („Interaktive Karte der Zillertal Arena“) .. 51
Abbildung 3.22 Pistendarstellung in der Zillertal Arena Map („Interaktive Karte der Zillertal Arena“) .. 51
Abbildung 3.23 Autobahn. Zoomstufe 16 der Zillertal Arena Map („Interaktive Karte der Zillertal Arena“) .. 52
Abbildung 3.24 Autobahn. Zoomstufe 12 der Zillertal Arena Map („Interaktive Karte der Zillertal Arena“) .. 52
Abbildung 3.25 Einzelhäuser. Zoomstufe 17 der Zillertal Arena Map („Interaktive Karte der Zillertal Arena“) .. 53
Abbildung 3.26 Einzelhäuser. Zoomstufe 15 der Zillertal Arena Map („Interaktive Karte der Zillertal Arena“) .. 53
Abbildung 3.27 Einzelhäuser. Zoomstufe 13 der Zillertal Arena Map („Interaktive Karte der Zillertal Arena“) .. 53
Abbildung 3.28 Kartographie der KOMPASS Maps. (KOMPASS Karten GmbH) .. 54
Abbildung 3.29 Zoomstufe 8 der KOMPASS Maps. (KOMPASS Karten GmbH) .. 55
Abbildung 3.30 Gewässerdarstellung in Zoomstufe 8 der KOMPASS Map. (KOMPASS Karten GmbH) .. 55
Abbildung 3.31 Gewässerflächendarstellung mit Kontur bei KOMPASS Maps. Zoomstufe 11. (KOMPASS Karten GmbH; KOMPASS Karten GmbH) .. 56
Abbildung 3.32 Verwendung der Flächensignaturen in den unterschiedlichen Zoomstufen 58
Abbildung 3.33 Geländedarstellung der Zillertal Arena Map (General Solutions Steiner GmbH) .. 59
Abbildung 3.34 Verwendung der Liniensignaturen (Bereich Verkehr) in den unterschiedlichen Zoomstufen .. 60
Abbildung 3.35 Verwendung der Liniensignaturen (Bereich Gewässer) in den unterschiedlichen Zoomstufen .. 61
Abbildung 3.36 Verwendung der Liniensignaturen (Bereich Höhe) in den unterschiedlichen Zoomstufen .. 61
Abbildung 3.37 Verwendung der Liniensignaturen (Sonstige) in den unterschiedlichen Zoomstufen .. 62
Abbildung 3.38 Verwendung der Punktsignaturen in den unterschiedlichen Zoomstufen 63
Abbildung 3.39 Durchschnittlicher Einsatz von Flächensignaturen in den Zoomstufen 11-15 .. 64
Abbildung 3.40 Durchschnittlicher Einsatz von Liniensignaturen (Bereich Verkehr) in den Zoomstufen 11-15 .. 64
Abbildung 3.41 Durchschnittlicher Einsatz von Liniensignaturen (Bereich Gewässer) in den Zoomstufen 11-15 .. 65
Abbildung 3.42 Durchschnittlicher Einsatz von Liniensignaturen (Bereich Höhe) in den Zoomstufen 11-15 .. 65
Abbildung 3.43 Durchschnittlicher Einsatz von Punktsignaturen in den Zoomstufen 11-15
Abbildung 3.44 Zoomstufe 15. Grundlage (KOMPASS Karten GmbH), Bearbeitung: Elisabeth Baumgartner
Abbildung 3.45 Zoomstufe 14
Abbildung 3.46 Zoomstufe 13
Abbildung 3.47 Zoomstufe 12
Abbildung 3.48 Zoomstufe 11
Tabellenverzeichnis

Tabelle 2.1 Zoomstufen und „entsprechender“ Maßstab ("Zoom levels - OpenStreetMap Wiki") ..5

Tabelle 2.2 Gliederung topographischer Karten (Kohlstock, 2010, S. 77) und (Hake et al., 2002, S. 417) ..7

Tabelle 2.3 Elementare Vorgänge der kartographischen Generalisierung; nach (Hake et al., 2002, S. 169) ...11

Tabelle 2.4 Vorgänge der qualitativen Generalisierung; nach (Hake et al., 2002, S. 170)12

Tabelle 2.5 Wechselwirkung bei Interaktion nach (Gartner, 2000, S. 44)21

Tabelle 2.6 Bildschirmgrößennutzung Jänner 2011. Datengrundlage: (w3schools, 2011)...23

Tabelle 2.7 Größe und Auflösung von allgemein verwendeten Flüssigkristallbildschirmen (englisch liquid crystal display, LCD) (Jenny et al., 2008, S. 36) (Übersetzt von Elisabeth Baumgartner). ..24

Tabelle 2.8 „Graphische Mindestdimensionen für Papier und Bildschirm (nach Malić [1998], Neudeck [2001]).“ Nach (Lechthaler & Stadler, 2006a, S. 5). ...28

Tabelle 2.9 Schriftfamilien nach (Hake et al., 2002, S. 137) ..29

Tabelle 3.1 Auswahl an Webseiten die eine interaktive Karte anbieten.............................36

Tabelle 3.2 Auswahl an zuschaltbaren Touren in interaktiven Freizeitkarten..................38

Tabelle 3.3 Auswahl an zuschaltbaren Punktsignaturen in interaktiven Freizeitkarten39

Tabelle 3.4 Zur Analyse ausgewählte Fallbeispiele ...40

Tabelle 3.5 Zuschaltbare Touren zur Sentres Karte..48

Tabelle 3.6 Zuschaltbare Touren und POIs der Zillertal Arena Map. („Interaktive Karte der Zillertal Arena“) ..51

Tabelle 3.7 Zuschaltbare Touren speziell für die Winterversion der Zillertal Arena Map. („Interaktive Karte der Zillertal Arena“) ..51

Tabelle 3.8 Zuschaltbare Touren zu KOMPASS Maps ...54

Tabelle 3.9 Zuschaltbare POIs zu KOMPASS Maps ..54

Tabelle 3.10 Ausgewählte Elemente zum Kartenvergleich ..57
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AdV</td>
<td>Arbeitsgemeinschaft der Vermessungsverwaltungen der Länder der Bundesrepublik Deutschland</td>
</tr>
<tr>
<td>App</td>
<td>Applikation</td>
</tr>
<tr>
<td>ATKIS</td>
<td>Amtliches Topographisch-Kartographisches Informationssystem</td>
</tr>
<tr>
<td>POI</td>
<td>Point of Interest</td>
</tr>
<tr>
<td>POIs</td>
<td>Points of Interest</td>
</tr>
<tr>
<td>Px</td>
<td>Pixel</td>
</tr>
</tbody>
</table>
KURZFASSUNG

ABSTRACT

Besides commonly known and widely used interactive mapping services such as „Google Maps“ and „Virtual Earth“, zoomable leisure maps are currently being enhanced for the utilization in the tourism and leisure sector. They are intended for orientation and planning purposes in leisure and recreational activities.

In this thesis guidelines regarding cartographic on-screen visualization are presented. It is shown how these guidelines are implemented in interactive leisure maps and problematic issues are identified. In terms of the implementation of on-screen maps one should be mindful of the differences to a paper map. The cartographic zoom is a crucial point in the development of interactive maps. Using a comparative method several case studies are analyzed and the content of various zoom levels is clarified. Five map examples with the average content of zoom levels 11-15 were created. They include considerations of the design rules for screen-oriented cartographic visualization.

The research results show, that improvements are still possible in the field of cartographic implementation, especially in terms of generalization and cartographic screen design of each zoom level. Commonly known design rules are not always followed. In conclusion, a brief summary of current developments in automatic generalization and scale-adaptive projections is given.
Mein Dank geht an Dipl. Ing. Michael Schröder und die KOMPASS Karten GmbH für Inspiration und Anregungen zum Thema.

an Univ.-Prof., DI Dr. Wolfgang Kainz für Betreuung und Begutachtung der Diplomarbeit.

an meine Eltern, Robert und Zäzilia Baumgartner, deren Unterstützung mein Studium ermöglichte.
1 EINLEITUNG

Im Internet finden sich nun vermehrt Anbieter, die sich darauf spezialisieren der Tourismus- und Freizeitindustrie eine geeignete Karte anzubieten, die es auch ermöglicht, eigene Informationen zuschalten zu können. So werden beispielsweise Touren oder Points of Interest (POIs) aus einer Tourismusregion individuell gestaltet und eingesetzt.

Daraus ergibt sich die Frage:

Gelingt die Umsetzung nach kartographischen Gestaltungsrichtlinien in interaktiven Freizeitkarten?

Um diese Frage beantworten zu können ist es wichtig Überlegungen anzustellen, wo diese Karten angeboten werden und wer die Zielgruppe für die entsprechende Nutzung ist. Welche Inhalte werden in den einzelnen Zoomstufen angeboten? Werden Generalisierungsregeln und Richtlinien für die bildschirmgerechte Gestaltung eingehalten?

Es gibt bereits Forschungen zu den Themen Generalisierung, Karten im Internet und zur bildschirmgerechten kartographische Gestaltung. Aufbauend auf die dadurch gewonnenen Erkenntnisse, sollen diese nun bei der Forschung über die interaktive Freizeitkarte einen wichtigen Beitrag leisten.

Nach expliziter Formulierung der Untersuchungsziele werden in Kapitel 3 die Forschungsmethoden erläutert und aus einer Auflistung von Freizeitkartenanbieter im Internet die ausgewählten Fallbeispiele vorgestellt. Bezugnehmend auf die theoretischen Grundlagen werden, neben der Herausarbeitung von Stärken und Schwächen, die jeweiligen Zoomstufen inhaltlich analysiert und miteinander verglichen. Tabellen und Karten sollen die Untersuchungsergebnisse verdeutlichen. Es zeigt sich, dass die Gestaltungsvorschläge zur Generalisierung und bildschirmgerechten kartographischen Visualisierung nicht immer eingehalten werden.

In Kapitel 4 soll eine Zusammenfassung die Ergebnisse aufzeigen und zusätzlich auch Ausblick auf weitere Forschungsfelder geben, speziell in Bezug auf die automatisierte Generalisierung.
2 THEORETISCHE GRUNDLAGEN

Dieses Kapitel umfasst einleitende Begriffserklärungen und behandelt nachfolgend Themen aus der Literatur, die wichtig sind für die problemstellungsorientierte Anwendung. Es wird auf die Generalisierung im Allgemeinen Bezug genommen, ebenso wie auf die Karten im Internet und deren bildschirmgerechte Visualisierung im Speziellen. Daraus ergibt sich ein Überblick über den Stand der Forschung. Abschließend erfolgt eine explizite Formulierung der Untersuchungsziele.

2.1 Begriffserklärungen

2.1.1 Generalisierung

„Die Erdoberfläche ist mit all ihren Erscheinungsformen auch nicht annähernd vollständig in der Karte abbildbar."

(Kohlstock, 2010, S. 79)

Schon bei Grundkarten ist Generalisierung notwendig, da Objekte im Verhältnis zur Realität verkleinert dargestellt werden. Der Generalisierungsgrad ist relativ zum Darstellungsmaßstab. (Hake et al., 2002, S. 166)
2.1.2 Kartographischer Zoom

Abbildung 2.1 Der klassische Zoom. Quelle: KOMPASS Karten GmbH, Bearbeitung: Elisabeth Baumgartner

Anders der kartographische Zoom: Mit jedem Zoomschritt werden jeweils andere Kartenergebnisse präsentiert, mit unterschiedlichen Generalisierungsmaßnahmen. (Gartner, 2000, S. 45)

Abbildung 2.2 Der kartographische Zoom. Quelle: KOMPASS Karten GmbH, Bearbeitung: Elisabeth Baumgartner

Die Tabelle oben gibt einen ungefähren Vergleich der Zoomstufen mit herkömmlichem Maßstab. Der Kartenmaßstab ist jedoch nur eine annähernde Vergleichsgröße und bezieht sich auf Distanzen am Äquator. ("Zoom levels - OpenStreetMap Wiki," 2011)

Der Kartenmaßstab ist zudem abhängig vom Monitor (die angegebenen Werte beziehen sich auf einen Monitor mit 0,3 mm/Pixel) ("Zoom levels - OpenStreetMap Wiki")

„Durch die noch nicht gelöste Problematik der vollautomatischen kartographischen Generalisierung und Harmonisierung ist es derzeit nicht möglich, on-the-fly kartographisch hochwertige, maßstabsabhängige Datenvisualisierungen bereitzustellen."

(Lechthaler & Stadler, 2006b, S. 253)

Lechthaler und Stadler (Lechthaler & Stadler, 2006b, S. 253) halten es daher für sinnvoll, eine Maßstabsreihe vorzubereiten, an derer sich der Benutzer, die Benutzerin fortbewegen kann. Wendet man die Zoomfunktion an, so zeigt das System eine vorbereitete (generalisier-

„Mit dem intelligenten Zoom wird die Anpassung des Karteninhalts an den gewählten Maßstab erreicht. Das Verfahren ist eine wesentliche interaktive Funktion."

(Neudeck, 2001, S. 107)

„In den verschiedenen Maßstabsbereichen ändern sich auch die Lagemerkmale. […] Die Änderung des Lagemerkmals (grundrisstreu nach grundrissähnlich oder lagetreu bei Verkleinerung und umgekehrt) ist mit dem Qualitätsumschlag verbunden. Der Qualitätsumschlag beschreibt den Übergang von einem Darstellungsmittel (zum Beispiel Fläche) zum anderen (z.B. Signatur) bei Maßstabsänderung."

(Neudeck, 2001, S. 108)

Reichen die Zoomstufen vom kleinen zum großen Maßstabsbereich ergibt dies natürlich einen erheblichen Datenumfang, was wiederum mit einem hohen Erfassungsaufwand verbunden ist. (Neudeck, 2001, S. 108)

2.1.3 Freizeitkarte

Eine Freizeitkarte setzt sich aus der klassischen topographischen Karte und zusätzlichen Informationen im Freizeitbereich zusammen.

- Topographische Karte

Als Topographische Karte gilt laut Internationaler Kartographischer Vereinigung 1973, zitiert nach Hake et al. (Hake et al., 2002, S. 416), im Allgemeinen eine
„Karte, in der Situation, Gewässer, Geländeformen, Bodenbewachsung und eine Reihe sonstiger zur allgemeinen Orientierung notwendiger oder ausgezeichneter Erscheinungen den Hauptgegenstand bilden und durch Kartenbeschriftung eingehend erläutert sind.“

Eine weitere Definition (Institut für Angewandte Geodäsie 1971) spricht in kürzerer Form von

„... Karten aller Maßstäbe, in denen die Landschaft charakteristisch vereinfacht dargestellt ist."

Zitiert nach (Hake et al., 2002, S. 416)

<table>
<thead>
<tr>
<th>Maßstab</th>
<th>Topographische Karte</th>
</tr>
</thead>
<tbody>
<tr>
<td>im engeren Sinn</td>
<td>Grundkarte</td>
</tr>
<tr>
<td>M ≥ 1:10.000</td>
<td></td>
</tr>
<tr>
<td>1:10.000 > M > 1:100.000</td>
<td>Spezialkarte</td>
</tr>
<tr>
<td>1:100.000 ≤ M ≤ 1:500.000</td>
<td>Übersichtskarte</td>
</tr>
<tr>
<td>im weiteren Sinn</td>
<td>Chorographische Karten</td>
</tr>
<tr>
<td>M < 1:500.000</td>
<td></td>
</tr>
<tr>
<td>M ≥ 1:10 Mio.</td>
<td>Darstellung v. Ländern</td>
</tr>
<tr>
<td>M < 1:10 Mio.</td>
<td>Darstellung v. Kontinenten u der ges. Erde</td>
</tr>
</tbody>
</table>

Tabelle 2.2 Gliederung topographischer Karten (Kohlstock, 2010, S. 77) und (Hake et al., 2002, S. 417)

Topographische Karten im weiteren Sinn stellen die landschaftlichen Raumverhältnisse charakteristisch vereinfacht dar. Auf Details wird weitgehend verzichtet, um die großen Zusammenhänge besser darstellen zu können. Sie gelten auch als geographische, chorographische („raumbeschreibende“) oder physische Karten. (Hake et al., 2002, S. 417)
Erfassung → Kartierung → Entwurf → Originalisierung

So ist der ursprüngliche Entstehungsprozess einer topographischen Karte. Heute entsteht sie zunehmend durch Ableitung aus einem topographischen Informationssystem. (Hake et al., 2002, S. 416) Hake et al. (Hake et al., 2002, S. 416) kennzeichnen die Zukunft topographischer Karten durch folgende Einflüsse:

- **Methodisch** ... bedeutet eine Einbettung ins Geo-Informationssysteme (GIS) und somit die einfachere Verarbeitung bezüglich Inhalt, Graphik, Maßstab, Format und Ähnliches.

- **Inhaltlich** ... Neuere kartentechnische Möglichkeiten lassen weitere Farbdifferenzierung zu und vermindern dadurch den Signaturengebrauch. Weiters können höhere graphische Mindestgrößen festgelegt werden, somit wird auf die veränderten Lesegewohnheiten der Benutzer, die Benutzerin reagiert.

- **Organisatorisch** ... liegt der Schwerpunkt topographisch-kartographischer Arbeiten in der Aktualisierung. Diese erzwingen die umfangreichen und raschen Veränderungen im Landschaftsbild.

- **Freizeitinformationen**

Als *Freizeitkarte* sei in dieser Arbeit eine topographische Karte gemeint, die um thematische Inhalte speziell im Bereich Freizeit und Tourismus erweitert wurde. Karten, deren Nutzer, Nutzerinnen sie vordergründig verwenden um ihre Freizeitaktivitäten zu verorten und zu planen.

Als *linienhafte Objekte* seien hier als Beispiel Wander-, Rad- und Reitwege sowie Mountainbike- und Skirouten genannt.

2.2 Theoretische Bezüge

Hier erfolgt eine Auflistung von in der Literatur gefundenen „Regeln“ in Bezug auf Generalisierung und Kartengestaltung mit besonderem Augenmerk auf bildschirmgerechte Visualisierung. Im Folgenden wird bei der Analyse der Fallbeispiele (Kapitel 3.3) darauf Bezug genommen, ob diese Regeln eingehalten wurden.

2.2.1 Arten der Generalisierung

Objekt zur Karte

Abbildung 2.3 Minimaldimensionen graphischer Elemente in der Karte (etwa 6-fach vergrößert); nach (Kohlstock, 2010, S. 80)

Die Minimaldimensionen orientieren sich am Auflösungsvermögen des menschlichen Auges: Bis wann ist es fähig feine Details und Formen noch wahrzunehmen. Eine Rolle spielen auch die reproduktionstechnischen Möglichkeiten bei der Herstellung und Präsentation von Karten. Geht man von einem Leseabstand von 30 cm aus, dann lassen sich bei gutem Kontrast noch Linienstärken von 0,05 mm wahrnehmen.

Der Abstand zwischen zwei Objekten muss bereits mindestens 0,15 mm betragen und für Flächen ist eine Mindestgröße von 0,3x0,3 mm² erforderlich. Beim Erkennen von farbigen Objekten ist mindestens eine Verdopplung der Werte nötig. (Kohlstock, 2010, S. 80–81)

Wenn man nun nur die Objektgröße beachtet, würde das bedeuten, dass je kleiner der Maßstab wird umso mehr wesentliche Objekte wegfallen würden: Bei einer Karte im Maßstab 1:100.000 wären nur noch Gebäude mit einer Mindestgröße von 30x30m² darstellbar. Auf einer Karte 1:1 Mio wären kaum noch Straßen abzbilden (diese würden eine Mindestbreite von 50m bedürfen), Eisenbahlinien zum Beispiel wären überhaupt nicht mehr enthalten.

Um wesentliche Merkmale für eine Karte zu erhalten, ist es also nicht möglich, einfach schrittweise der Größe nach einzelne Objekte wegzulassen. Bei Unterschreitung der Minimaldefinitionen bedeutet Generalisierung in diesem Fall:
- *Relativ unwesentliche Objekte* können weggelassen werden.
- *Wesentliche Objekte* werden geometrisch verändert, bzw. in weiterer Folge durch eine Signatur ersetzt. (Kohlstock, 2010, S. 81)

Bei der Generalisierung treten laut Hake (Hake et al., 2002, S. 169) folgende elementare Vorgänge auf:
Elementarer Vorgang	Ausgangskarte 1:m	Folgekarte 1:m	Folgekarte 1:4m
Vereinfachen | | | |
Vergrößern | | | |
Verdrängen | | | |
Zusammenfassen | | | |
Auswählen | | | |
Klassifizieren | (Wald in Farbe) | | |
Bewerten | | | |

Tabelle 2.3 Elementare Vorgänge der kartographischen Generalisierung; nach (Hake et al., 2002, S. 169)

Diese Vorgänge sind nicht völlig unabhängig voneinander. So folgt auf Vergrößern oft der Vorgang des Verdrängens. (Hake et al., 2002, S. 169–170)

Hake et al. (Hake et al., 2002, S. 170–171) unterscheiden zwischen semantischer (sachbezogener), geometrischer (raumbezogener) und temporaler (zeitbezogener) Generalisierung. Im Hinblick auf diese Arbeit sollen speziell die Punkte, die für topographische Karten relevant sind, herausgearbeitet werden.

Semantische Generalisierung

Merkmal d. Qualitäten	**Vorgang**	**Beispiele**
Gleichwertig | Auswählen (tlw. auch Bewerten und Zusammenfassen) | Straße, Haus, Wald, See
Geordnet | Auswählen und Zusammenfassen | Bach-Fluss-Strom-Meer Weg-Straße-Autobahn
Hierarchisch | Klassifizieren und Zusammenfassen | Laub-, Nadel-, Mischwald → Wald Gemeinde → Bezirk → Land

Tabelle 2.4 Vorgänge der qualitativen Generalisierung; nach (Hake et al., 2002, S. 170)

Geometrische Generalisierung

Bei der Generalisierung geometrischer Objektinformationen haben folgende Ausprägungen der elementaren Vorgänge eine große graphische Bedeutung:

- **Glätten.** Wichtigster Fall des Vereinfachens. Wird angewandt bei stärker gekrümmten Linien. (Flüsse, Wege, Höhenlinien)
- **Verbreitern.** Wichtigster Fall des Vergrößerns. Bei linearen Objekten (Verkehr, Gewässer) ist dies meist unvermeidlich.

Temporale Generalisierung

Diese zeitbezogene Generalisierung tritt hauptsächlich im Rahmen thematischer Generalisierungen auf. (Hake et al., 2002, S. 170–171)

Situationsdarstellung

„Unter *Situation* werden alle natürlichen und künstlichen Objekte der Erdoberfläche zusammengefasst, deren Grundriss messtechnisch erfassbar und damit in der Karte relativ einfach darstellbar ist.“

(Kohlstock, 2010, S. 83)

Zu Situation zählt man:

- Siedlungen
- Verkehrswege
- Gewässer
- Topographische Einzelobjekte
- Vegetation
Im Folgenden sollen diese Objekte speziell im Hinblick auf Generalisierung untersucht werden.

Siedlungen

Bis zum Maßstab von 1:10.000 lassen sich wesentliche Gebäude (mit ihren Einzelheiten, wie Vorsprüngen, Erker,...) *grundrisstreu* wiedergegeben. (Kohlstock, 2010, S. 83)

- *Grundrisstreu Darstellung* (Hake et al., 2002, S. 174)

Diese Darstellungsweise findet man vorwiegend in Karten großen Maßstabs. Sie wird auch als Maßstabstreue bezeichnet.

Ab 1:25.000 werden bei Gebäuden Grundrisse vereinfacht und zusammengefasst (bis zu einer Minimalgröße von 7,5 x 7,5 m²). Diese Darstellung der Bebauung nennt man *grundrissähnlich*. (Kohlstock, 2010, S. 85)

- *Grundrissähnliche Darstellung* (Hake et al., 2002, S. 175)

Ab 1:100.000 wirken die Darstellungen durch die Generalisierung sehr schematisiert, so dass hier vermehrt schon zur Umrissdarstellung übergegangen wird. Ab 1:500.000 ist die Umrissdarstellung schließlich zwingend. Kleinere Siedlungen werden zunehmend durch Signaturen ersetzt, bzw. weggelassen. Entscheidend für die Darstellung ist neben der Einwohnerzahl auch die Bedeutung des Ortes in kultureller oder verkehrstechnischer Hinsicht. (Kohlstock, 2010, S. 85)
Verkehrswege

In großmaßstäbigen Karten können alle wesentlichen Objekte lagerrichtig und grundrisstreu dargestellt werden. Bereits ab 1:25.000 können Straßen nur noch einlinig dargestellt werden. Um die Unterscheidbarkeit jedoch weiterhin gewährleisten zu können, werden vermehrt lineare Signaturen eingesetzt.

„Straßen und Wege werden nicht mehr entsprechend ihrer tatsächlichen Breite, sondern nach Bedeutung sowie Ausbauzustand unterschieden.“

(Kohlstock, 2010, S. 86)

Abbildung 2.3 Beispiele der Darstellung von Straßen und Wegen; nach (Hake et al., 2002, S. 423)

Gewässer

„Zum Gewässernetz zählen alle dauernd oder zeitweise mit Wasser bedeckten Flächen.“

(Hake et al., 2002, S. 423)

Fallen ganze Wasserläufe weg ist es wichtig, darauf zu achten, die Charakteristik der geomorphologischen wie hydrologischen Verhältnisse des Gebietes zu erhalten. (Hake et al., 2002, S. 423–424)

Abbildung 2.3 Gewässernetzgeneralisierung; nach (Kohlstock, 2010, S. 87)

Bodenbedeckungen

„Zur Bodenbedeckung gehören alle flächenhaften topographischen Erscheinungen natürlicher Herkunft (z.B. Urwald, Wüste) oder als Folge menschlichen Wirkens (z.B. Garten).“

(Hake et al., 2002, S. 424)

Die Bodenbedeckung in Karten in großen und mittleren Maßstäben wurde bisher vorwiegend mit flächenhaften Signaturen dargestellt.

Topographische Einzelobjekte

... sind Objekte, die in anderen Bereichen (Siedlung, Verkehr, Gewässer, etc.) eine herausragende topographische Erscheinung bilden, oder von großer thematischer Bedeutung sind.

Zudem sind es Objekte, die wegen ihrer geringen Größe nur als Signaturen darstellbar sind. Diese müssen in der Zeichenerklärung speziell erläutert werden. (Hake et al., 2002, S. 425)
Generalisierung von Höhenlinien

Höhenlinien können als fiktive Teilobjekte des Kontinuumobjekts Gelände gesehen werden. Die Generalisierungsregeln können auch auf Höhenlinien angewendet werden, Formcharakter und Nachbarschaftstreue sollten hierbei soweit als möglich berücksichtigt werden.

![Abbildung 2.6 Schematische Beispiele der Reliefgeneralisierung. Höhenlinien im Ausgangsmaßstab und Folgemaßstab (Hake et al., 2002, S. 430)](image)

2.2.2 Generalisierung speziell bei Bildschirmkarten

Informationsdichte und Symbolisierung

Im Vergleich zur Papierkarte muss die Informationsdichte in einer Bildschirmkarte reduziert werden, um eine gute Lesbarkeit zu erhalten. (Jenny et al., 2008, S. 40) Wie in Kapitel 2.2.5 zur bildschirmgerechten kartographischen Visualisierung erläutert, seien hier zusammenfassend die Gründe hierfür beschrieben:

- Größerer Augenabstand (siehe Abbildung 2.8)
- Niedrige Bildschirmauflösung
- Verwendung von Antialiasing

Antialiasing verbessert das graphische Erscheinungsbild und erhöht die Lesbarkeit, benötigt jedoch zusätzlichen Raum entlang der Objektkanten, aufgrund des unscharfen Renderings. (Jenny et al., 2008, S. 40)
Will man eine eingescannte Papierkarte am Bildschirm darstellen, müsste diese 2,5 bis 3 fach vergrößert werden. Solch eine Karte wäre jedoch schwer zu lesen, da die nötigen Vorkehrungen, um den Ansprüchen einer Bildschirmvisualisierung zu genügen, nicht getroffen wurden. Scannen und Vergrößern von Papierkarten wird daher nicht empfohlen. Eine Papierkarte kann jedoch als Ausgangspunkt für die Erstellung einer Bildschirmkarte dienen, die Informationsdichte muss jedoch verringert und gleichzeitig das graphische Design vereinfacht werden. (Jenny et al., 2008, S. 40)

Formvereinfachung

Um eine gute Lesbarkeit von Bildschirmkarten zu erreichen, müssen Kartenelemente einer Bildschirmkarte stärker generalisiert werden, als die einer Papierkarte. Die Punktdichte von Linien muss reduziert werden, da eine Linie mit hoher Punktdichte, die im Druck klar erscheint, am Bildschirm unästhetisch wirken kann, aufgrund der größeren Linienstärke, die hier erforderlich ist. Unterbrochene Linien können visuelle Störungen hervorrufen und sind daher in Bildschirmkarten nur mit Vorsicht einsetzbar. (Jenny et al., 2008, S. 41)

2.2.3 Intuitives und Regelhaftes Generalisieren

Die beschriebenen elementaren Vorgänge der Generalisierung führen zu zwei typischen Arbeitsweisen: (Hake et al., 2002, S. 172–173)

- Intuitives Vorgehen kartographischer Experten, Expertinnen oder
- dem Folgen verbindlicher Regeln in Form von Gestaltungsvorschriften und Rechenprogrammen.

Intuitives Generalisieren

Diese Regeln lassen sich nicht oder nur schwierig in formale Vorgaben fassen. Hake et al. nennen hier als Beispiel die Betonung bestimmter Strukturen.

Regelhaftes Generalisieren

Mit den gestiegenen Anforderungen an Generalisierungsergebnisse und speziell im Hinblick auf den Einsatz in automatisierten Verfahren haben die Methoden des regelhaften Generalisierens verstärkt an Bedeutung gewonnen.

Man unterscheidet zwei Ansätze: (Hake et al., 2002, S. 172–173)

a) Die *empirische* Methode

Entscheidend sind hier Erfahrungen und Analyse von Karten, sowie deren Generalisierungsergebnisse.

b) Die *konstruktive* Methode

Hier stützt man sich auf feste Vorgaben sach- und zeitbezogener, sowie geometrischer Art.

Empirische Methode

Auf empirisch gefundenen und erprobten Regeln beruhen auch Zeichenvorschriften, wenn die Erfahrungen aus ersten Entwürfen oder Probekarten verarbeitet werden.

\[nF = nA \sqrt{mA/mF} \]

- \(nA \): Anzahl der Objekte im Ausgangsmaßstab
- \(nF \): Anzahl der Objekte im Folgemaßstab
- \(mA \): Maßstabszahl im Ausgangsmaßstab
- \(mF \): Maßstabszahl im Folgemaßstab

Die Formel klärt nicht, welche Objekte, aus den vorhandenen, für den Zielmaßstab ausgewählt werden. Es gibt jedoch Bestrebungen mit Hilfe statistischer Methoden hierfür Lösungen zu finden. (Hake et al., 2002, S. 173)

Konstruktive Methode (Hake et al., 2002, S. 173–174)

Ein konsequenter konstruktiver Ansatz besteht aus einer Vielzahl an formalen Bedingungen:

- zur Bearbeitungsreihenfolge
- zur Geometrie
- zur Klassenbildung

Wichtig hierbei ist es, dass sich diese Ansätze nicht nur auf diese Objekte allein beziehen. Es sollen auch die Bedingungen untereinander berücksichtigt werden. Eingesetzt werden diese Methoden hauptsächlich in der graphischen Datenverarbeitung. Treten bei der Bearbeitung durch das Programm Problemfälle auf, müssen diese später interaktiv unter visueller Kontrolle korrigiert werden.

2.2.4 Karten im Internet

Im Folgenden wird mit dem Begriff „Internet“ speziell das „World Wide Web“ gemeint, da sich „Internet“ im Zusammenhang mit Karten meist auf das WWW bezieht. (Gartner, 2000, S. 43)

Interaktivität

Bedeutend für die häufige Nutzung von Internet-Karten ist auch deren Interaktivität, die in Papier-Karten nicht gegeben ist.

Gartner (Gartner, 2000, S. 44) bezeichnet Interaktivität als wichtigste Eigenschaft von Karten im Internet. Als Interaktion bezeichnet man generell die Wechselbeziehung von zwei oder mehreren Handlungspartnern. Wichtig dafür sind

Wechselwirkung b. Interaktion

<table>
<thead>
<tr>
<th>Art der Wechselwirkung</th>
<th>Aktiv/passiv, bewusst/unbewusst, geplant/ungeplant, gesteuert/frei</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Handlungspartners</td>
<td>Mensch, Computer, weitere zu Handlungen/Reaktionen fähige Lebewesen oder Maschinen</td>
</tr>
<tr>
<td>Eigenschaften des Handlungspartners</td>
<td>Grad der Intelligenz, Kommunikationsmittel, Speicherfähigkeit, Interaktionsfähigkeit</td>
</tr>
</tbody>
</table>

Tabelle 2.5 Wechselwirkung bei Interaktion nach (Gartner, 2000, S. 44)

Eine Karte reagiert, auf eine vom Kartographen, von der Kartographin vorbestimmten Weise, auf die Aktionen des menschlichen Kommunikationspartners. So kann man diese Wechselwirkung als kartographische Interaktion bezeichnen.

Bei kartographischen Interaktionen handelt es sich nicht um völlig freie Interaktion zweier Handlungspartner. Es ist eine Interaktion zwischen einem Menschen (Nutzer, Nutzerin) und einem Computer, wobei die Eigenschaften der möglichen Reaktionen des Computers in der Regel von einem Menschen (Kartograph, Kartographin) vorgegeben sind. (Gartner, 2000, S. 44)

Interaktivität setzt eine Handlung (Aktion) voraus. Folgt auf diese Aktion eine Reaktion so kann man von Interaktion sprechen. (Gartner, 2000, S. 44–45)

\[\text{Aktion} + \text{Reaktion} = \text{Interaktion} \]
Einteilung kartographischer Interaktionen (Gartner, 2000, S. 45)

- Interaktionen zur Vermittlung unterschiedlicher Ansichten einer Karte
 Diese stehen vor allem im Zusammenhang mit der beschränkten Größe und Auflösung des Bildschirms. Maßnahmen zur Benutzungsführung, wie *Zoom*, *Pan* oder *Scroll*. In der Regel werden hierbei keine Änderungen des Inhalts vorgenommen, eine Ausnahme bildet der *Kartographische Zoom*. (wie bereits erwähnt in Kapitel 2.1.2)

- Interaktionen zur Zusatzinformationsgewinnung
 Das sind Interaktionen, in der zusätzliche, nicht in der Karte vorhandene, Informationen gewonnen werden. Dies können Texte, Bilder, Videos, etc. sein. Dazu zählt das Identifizieren besonders gekennzeichneter Punkte, Linien oder Flächen.

- Graphische Interaktionen
 Hier sind Veränderungen einer oder mehrerer Präsentationsvariablen gemeint. In der Praxis sind dies meist die Variablen Farbe, Muster, Helligkeit, die der Nutzer, die Nutzerin individuell wählen kann. Die Variablen Form und Größe sind aufgrund ihrer Auswirkungen auf das Kartenbild eher ungeeignet.

- Interaktionen bei thematischen Darstellungen
 Interaktionen in der thematischen Kartographie ermöglichen die nutzungsspezifische Anpassung verwendeter Darstellungsmethoden. So ist zum Beispiel die Wahl von Klassengrenzen, Diagrammarten, etc. möglich.

Karten im Internet ermöglichen *Interaktivität* und somit ist ein *Umdenken* nötig von der sonst so *statischen* Kommunikation mit Karten. (Gartner, 2000, S. 45)

2.2.5 Bildschirmgerechte kartographische Visualisierung

„Papier und Bildschirm sind technisch und dadurch kapazitätsmäßig ganz unterschiedliche Ausgabemedien.“

(Lechthaler, 2005, S. 407)
Gewisse Regeln und Richtlinien für die Erstellung einer kartographischen Visualisierung für den Bildschirm gilt es zu beachten.

Kartographische Visualisierungen für unterschiedliche Bildschirmgrößen und Auflösungen untersuchen auch Jenny et al. (Jenny et al., 2008, S. 35)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><1024x768</td>
<td>1%</td>
</tr>
<tr>
<td>1024x768</td>
<td>14%</td>
</tr>
<tr>
<td>1280x1024</td>
<td>14,8%</td>
<td>14,8%</td>
<td>14,4%</td>
<td>14,4%</td>
<td>14,4%</td>
<td>14,4%</td>
<td>14,4%</td>
<td>14,4%</td>
<td>14,4%</td>
<td>14,4%</td>
<td>14,4%</td>
</tr>
<tr>
<td>1280x800</td>
<td>10,1%</td>
</tr>
<tr>
<td>1366x768</td>
<td>45,8%</td>
</tr>
<tr>
<td>Andere >1024x768</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 2.6 Bildschirmgrößennutzung Jänner 2011. Datengrundlage: (w3schools, 2011)

Eine Karte für das Web sollte daher so gestaltet sein, dass sie sich dynamisch der Größe des verfügbaren Platzes anpasst. Die einfachste Lösung ist es, laut Jenny et al., die gleiche Karte vergrößert darzustellen. Besser ist es jedoch die Karte zu vergrößern und zusätzliche Karteninformationen hinzuzufügen (Voraussetzung dafür ist skalierbare Karteninformationen) oder die Fläche, die von der Karte abgedeckt wird, zu erweitern. (Jenny et al., 2008, S. 35)

Auflösung

Die Auflösung bestimmt wie viele Details am Bildschirm sichtbar sind. Die Anzahl der Bildpunkte (Pixel) wird für gewöhnlich als dpi (dots per inch) angeben. Ein durchschnittlicher Pixel hat einen Durchmesser von 0,26mm. Das entspricht einer Dichte von 96 dpi. Die Auflösung, die auf gedrucktem Papier erreicht werden kann ist 10mal höher. (Jenny et al., 2008, S. 35–36)

<table>
<thead>
<tr>
<th>Bildschirmgröße</th>
<th>Pixelanzahl</th>
<th>Sichtbare Fläche</th>
<th>Pixelgröße</th>
<th>Auflösung dpi</th>
</tr>
</thead>
<tbody>
<tr>
<td>17"</td>
<td>1280x1024</td>
<td>338x270 mm</td>
<td>0.264 mm</td>
<td>96</td>
</tr>
<tr>
<td>19"</td>
<td>1280x1024</td>
<td>376x301 mm</td>
<td>0.294 mm</td>
<td>86</td>
</tr>
<tr>
<td>20"</td>
<td>1400x1050</td>
<td>408x306 mm</td>
<td>0.292 mm</td>
<td>87</td>
</tr>
<tr>
<td>20"</td>
<td>1600x1200</td>
<td>408x306 mm</td>
<td>0.255 mm</td>
<td>100</td>
</tr>
</tbody>
</table>

Tabelle 2.7 Größe und Auflösung von allgemein verwendeten Flüssigkristallbildschirmen (englisch *liquid crystal display, LCD*) (Jenny et al., 2008, S. 36) (Übersetzt von Elisabeth Baumgartner)

Abbildung 2.8 „Leistung des menschlichen Auges. Oben: Eine gedruckte Karte aus dem Abstand von 30 cm. Unten: Ein Bildschirmpunkt aus 60 cm ist deutlich größer als die kleinste vom Auge wahrnehmbare Fläche.“ (Jenny et al., 2008, S. 37) (Übersetzt von Elisabeth Baumgartner)
Abbildung 2.8 zeigt, dass der Leseabstand zu einer Papierkarte ungefähr 30 cm beträgt. Das kleinste Objekt, das vom Auge klar identifiziert werden kann, misst 0,09 mm. Dies entspricht auch der Mindestdimension von 0,1 mm für eine schwarze Linie auf hellem Hintergrund auf Papier (siehe Tabelle 2.8: Graphische Mindestdimensionen). Computerbildschirme betrachtet man ungefähr aus 60 cm Entfernung. Dieser zweifache Abstand verdoppelt auch die Größe des kleinsten identifizierbaren Objekts. (Jenny et al., 2008, S. 36) Das entspräche einer Größe von 0,17 mm. Da bei einer Bildschirmauflösung von 96 dpi die Pixelgröße 0,26 mm beträgt, kann das menschliche Auge einzelne Pixel eines Bildschirms identifizieren. Dies gilt bei durchschnittlichen Betrachtungsbedingungen und bei genügend Farbkontrast zwischen zwei benachbarten Pixel. Je höher dieser Kontrast, umso stärker erscheint der Treppeneffekt von Linien. Dem entgegen wirkt das so genannte Antialiasing. (Jenny et al., 2008, S. 36)

- Antialiasing

Mindestdimensionen

Abbildung 2.10 „Unterschiedliche Abstände zwischen Flächen und Linien in voller Auflösung (links) und Bildschirmauflösung (rechts), gerendert mit Adobe Flash Player 9.“ (Übersetzt von Elisabeth Baumgartner) (Jenny et al., 2008, S. 39)

Für Punktsignaturen gilt bei einer Papierkarte ein Durchmesser von etwa 0,8 mm (entspricht ungefähr 3 Pixel) als ausreichend. Bildschirmkarten erfordern einen Mindestdurchmesser von 6 Pixel. Speziell bei komplexen Symbolen werden noch größere Durchmesser empfohlen. (Jenny et al., 2008, S. 39)

Es gilt also eigene Mindestdimensionen für die Verwendung von Kartengraphiken am Bildschirm festzulegen. Die Auflösung des Bildschirms stellt die eigentlichen technischen Restriktionen dar. Lechthaler und Stadler untersuchten die bildschirmgerechte Visualisierung in Abhängigkeit von der Bildschirmauflösung, Bildelementform, Bildstörung, Farbtiefe und Bildwiederholrate. (Lechthaler & Stadler, 2006a, S. 4)

- Graphische Mindestdimensionen

Wie auch bei der Papierkarte, müssen bei der Bildschirmkarte gewisse Mindestdimensionen eingehalten werden. Diese unterscheiden sich jedoch zu den Mindestdimensionen einer Papierkarte (siehe Tabelle 2.8) (Lechthaler, 2005, S. 408)

Die grafische Qualität eines Kartenbildes ist abhängig von bildschirm eigenen Parametern, „wie Bildschirmtyp, von dem die Bildschirmpunktgröße ausgeht (...), Pixelform und -größe, Bildschirmgröße und Bildschirmauflösung”

(Lechthaler, 2005, S. 408)

Das Ziel ist es, nach Lechthaler und Stadler (Lechthaler & Stadler, 2006a, S. 4) ein attraktives Kartenbild zu schaffen.

Dafür entscheidend sind:

- eine gut wahrnehmbare und lesbare Bilddichte an übertragenen Karteninformatio-
nen in der Kartengraphik
- eine möglichst feine Auflösung der Darstellungen
- Anpassung an das Ausgabemedium (Bildschirm)
- gut unterscheidbare Signaturen
- eine harmonische Farbgebung
- ein gutes, überzeugendes Layout der Darstellungen.

Da jeder Bildschirm unterschiedliche eigene Parameter hat, ist es schwierig geeignete Min-
destdimensionen für die kartographische Visualisierung am Bildschirm festzulegen. Die Er-
fahrungswerte dafür sind derzeit gering. (Lechthaler, 2005, S. 409)

Die Größe der Ausgabepixel am Bildschirm betragen zwischen 0,2 mm x 0,2 mm und 0,4 mm x 0,4 mm. Der typografische Punkt (1 pt = 0,375 mm) wurde als Umrechnungsfaktor zwischen der Anzahl der Ausgabepixel und dem Platzbedarf am Bildschirm eingeführt. Die durchschnittliche Druckauflösung liegt bei 0,1 mm. Somit ergibt sich bei der so definierten durchschnittlichen Bildschirmauflösung ein Multiplikationsfaktor von 4. Die Auflösung des Med-
iums Bildschirm muss also 4 mal größer sein als die Auflösung des Mediums Papier. Am Papier beträgt die minimale Linienstärke 0,1 mm (dies entspricht auch der Druckauflösung), für den Bildschirm benötigt man jedoch 0,4 mm Linienstärke. (Lechthaler & Stadler, 2006a, S. 5) Folgende Tabelle gibt Aufschluss über weitere wichtige Mindestdimensionen:

<table>
<thead>
<tr>
<th>Mindestdimensionen für Papier</th>
<th>Mindestdimensionen für den Bildschirm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strichstärke</td>
<td>0,1 mm</td>
</tr>
<tr>
<td>Linienabstand</td>
<td>0,2 mm</td>
</tr>
<tr>
<td>Quadrat, voll</td>
<td>0,3 mm</td>
</tr>
<tr>
<td>Kreisscheibe, voll</td>
<td>0,4 mm</td>
</tr>
<tr>
<td>Rechteck, voll</td>
<td>0,3 x 0,6 mm</td>
</tr>
<tr>
<td>Schrift horizontal</td>
<td>5 pt 1,9 mm</td>
</tr>
<tr>
<td>Schrift gebogen</td>
<td>7 pt 2,6 mm</td>
</tr>
</tbody>
</table>

Tabelle 2.8 „Graphische Mindestdimensionen für Papier und Bildschirm (nach Malič [1998], Neudeck [2001]).“ Nach (Lechthaler & Stadler, 2006a, S. 5)

- Schrift

Die Besonderheit der Kartenschrift als Bestandteil des Karteninhalts erklärt sich wie folgt:
Während sie die geringste geometrische Aussagemöglichkeit besitzt, gilt sie gleichzeitig als

Man unterscheidet folgende Gruppen von Schriftarten, sogenannte Schriftfamilien:

<table>
<thead>
<tr>
<th>Schriftfamilie</th>
<th>Kennzeichen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antiqua oder römische Schrift</td>
<td>Wechselnde Strichbreiten; Fußstriche (Serifen, Endstriche)</td>
</tr>
<tr>
<td>Grotesk-, Block- oder Balkenschrift</td>
<td>Konstante Strichbreiten; ohne Serifen (Sans Serif)</td>
</tr>
<tr>
<td>Fraktur- oder gebrochene Schrift</td>
<td>In Karten überwiegend nur bis zum 16. Jh. angewandt.</td>
</tr>
<tr>
<td>Normschrift</td>
<td>Schreibschrift für einfachere Darstellungen, konstante Strichbreiten, gerundete Ecken (Schablonenschrift). Schriften der ISO 3098</td>
</tr>
</tbody>
</table>

Tabelle 2.9 Schriftfamilien nach (Hake et al., 2002, S. 137)

- Schriftgröße

Abbildung 2.12 Oben: Kursiv (*italic*) mit Serifen. Unten: Normal (*regular*) ohne Serifen, nach (Jenny et al., 2008, S. 42)

Ebenso sind normale (regular) und fette (bold) Schriftarten am Bildschirm leichter lesbar als dünne, verdichtete Schriftarten. (Jenny et al., 2008, S. 42)

Abbildung 2.13 Gute Bildschirmschrift (Jenny et al., 2008, S. 43)

Eine am Bildschirm gut lesbare Schrift braucht genügend Zeichenabstand und große x-Höhe. (Jenny et al., 2008, S. 42)

- Grafische Dichte des Kartenbildes

- Flächendarstellung

Zur Flächendarstellung für die Bildschirmvisualisierung gibt Neudeck (Neudeck, 2001) entsprechende Gestaltungsvorschläge.

Siedlungsflächen

In kleinen bis mittleren Maßstäben haben Ortssignaturen für die Siedlungsdarstellung in der Bildschirmvisualisierung eine große Bedeutung. Die Größe der Ortssignatur steht im Zusammenhang mit der Bedeutung der jeweiligen Siedlung. Wie aus Tabelle 2.8 hervorgeht, benötigen Kreise eine höhere Mindestgröße als Quadrate. *Quadratische Signaturen* weisen zudem die geringste Bildstörung auf und sollten daher bevorzugt eingesetzt werden. (Neudeck, 2001, S. 73)

Gewässerflächen

Bei kleinen und kleinsten Maßstäben sei die Verwendung des blauen Volltons zu überdenken, so Neudeck. Auf Konturen sollte verzichtet werden. (Neudeck, 2001, S. 75)

Wenn die Größe der Wasserrläufe die Wiedergabe der Gewässerfläche nicht zulässt, so können diese durch *Linien* blauen Volltons dargestellt werden. (Neudeck, 2001, S. 75)

Abbildung 2.15 Wasserlauf als Linie in RGB 0 0 255. Nach (Neudeck, 2001, S. 75)
Bodenbedeckung

2.3 Forschungsfragen

- Gelingt die Umsetzung nach kartographischen Gestaltungsrichtlinien in interaktiven Freizeitkarten?

Es gibt in der Literatur bereits einige Forschungsarbeiten, die Regeln und Vorschläge zur bildschirmgerechten kartographischen Gestaltung verfasst haben. Werden diese auch befolgt? Anlehnd an diese Regeln sollen Fallbeispiele auf deren Umsetzung untersucht werden.

Ausgehend von dieser zentralen Fragestellung sollen weitere Forschungsfragen zur zielführenden Beantwortung beitragen.

- Wo werden interaktive Freizeitkarten angewendet?

Diese Frage soll klären, wo im Internet solche Karten angeboten werden, wer sie nutzt oder um welche Zusatzinformationen die topographischen Karten ergänzt werden.

- Welche Informationen finden sich in den einzelnen Zoomstufen?

Welche Inhalte treten in welchen Zoomstufen auf. In wie viele Zoomstufen ist die Karte gegliedert? Wann kommen Geländeschummerung, Straßen, Orte, Flüsse hinzu? Welche Unterteilung ist sinnvoll?

- Unterschiede zwischen analoger und digitaler Generalisierung

Diese Unterschiede sollen im Rahmen der Arbeit herausgearbeitet werden. (Maßstab vs. Zoomstufe)

Hypothese:

3 KONZEPTION DER UNTERSUCHUNG

3.1 Forschungsmethoden

- Komparatives Verfahren

Kartenportale, die bereits zoombare topographische Karten (im Bereich Freizeit) anbieten, sollen verglichen werden. Eine deskriptive Auflistung der Inhalte, sowie Stärken und Schwächen in der Umsetzung in Bezug auf kartographische Richtlinien, sollen herausgearbeitet werden.

Um die Fragen nach dem Inhalt der einzelnen Zoomstufen beantworten zu können, wird ein komparatives Verfahren auf verschiedene Kartenportale angewandt.

Die vorgestellten interaktiven Freizeitkarten werden miteinander verglichen Um dies zu ermöglichen, werden einzelne Punkte einheitlich erhoben.

Diese wären:

- Url
- Autor (Umsetzende Firma)
- Gebiet
- Welche Zusatzinformationen können zugeschalten werden?
- Wie viele Zoomstufen hat die Karte?
- Welche Inhalte gibt es in welchen Zoomstufen?
- Inwieweit gelingt die Umsetzung nach kartographischen Gestaltungsrichtlinien in interaktiven Freizeitkarten? Wo sind die Problembereiche?

Arbeitsvorgang

Eine Tabelle wird erstellt, die in Flächen-, Linien- und Punktsignaturen aufgeteilt ist. Die jeweils wichtigsten Elemente einer Karte finden sich darin wieder. Es gibt eine Unterteilung nach Zoomstufen. Es werden nun die bestehenden Zoomkarten nach Inhalt untersucht und erforscht, welche Signaturen, ab welcher Zoomstufe in Erscheinung treten. Es werden dabei

Während der Analyse der Inhalte werden beobachtete Vor- und Nachteile notiert und im Anschluss für jede der Zoomkarten die Besonderheiten herausgearbeitet.

Leider lassen sich aufgrund der unterschiedlichen Verwendung der Zoomstufen nur fünf davon direkt vergleichen: In allen Beispielen kommen die Zoomstufen 11-15 zum Einsatz.

- Deskriptive Methode

Mittels deskriptiver Methode sollen aus vorhandenen Werken, Texten die grundlegenden Regeln und Richtlinien der bildschirmgerechten kartographischen Visualisierung und Generalisierung zusammengefasst werden. Diese dienen dann zur Untersuchung in Bezug auf die gewählten Fallbeispiele.
3.2 Kartenanbieter

- Wo werden diese Karten im Internet angeboten?

Eine Internetrecherche ergibt folgende Tabelle (Auszug):

<table>
<thead>
<tr>
<th>Anbieter</th>
<th>Link</th>
<th>Kartenumsetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARGE Skitourengehen</td>
<td>http://www.skitourengehen.info</td>
<td>Hubermedia und KOMPASS Karten GmbH</td>
</tr>
<tr>
<td>Burgenland Tourismus</td>
<td>http://www.burgenland.info/de/themen/sport/tourenguide</td>
<td>ALPSTEIN Tourismus GmbH & Co. KG</td>
</tr>
<tr>
<td>Sentres Steirische Tourismus</td>
<td>http://sentres.com/suedtirol</td>
<td>Geo Marketing GmbH</td>
</tr>
<tr>
<td></td>
<td>http://www.steiermark.com/urlaubskarte</td>
<td>ALPSTEIN Tourismus GmbH & Co. KG</td>
</tr>
<tr>
<td>Tiroler Wanderhotels</td>
<td>http://www.wanderhotels.at/de/wandergebiete/</td>
<td>Google Maps</td>
</tr>
<tr>
<td>Tourismus Au-Schoppernau</td>
<td>http://maps.au-schoppernau.at</td>
<td>ALPSTEIN Tourismus GmbH & Co. KG</td>
</tr>
<tr>
<td>Tourismus- und Kulturportal des Landes Niederösterreich</td>
<td>http://www.niederoesterreich.at</td>
<td>ALPSTEIN Tourismus GmbH & Co. KG</td>
</tr>
<tr>
<td>Tourismusverband München-Oberbayern e. V.</td>
<td>http://maps.oberbayern.de/</td>
<td>Hubermedia und Bayerische Vermessungsverwaltung</td>
</tr>
<tr>
<td>Tourismusverband Pitztal</td>
<td>http://maps.pitztal.com</td>
<td>General Solutions Steiner GmbH</td>
</tr>
<tr>
<td>Zillertal Arena</td>
<td>http://maps.zillertalarena.com</td>
<td>General Solutions Steiner GmbH</td>
</tr>
</tbody>
</table>

Tabelle 3.1 Auswahl an Webseiten die eine interaktive Karte anbieten

Wie Tabelle 3.1 zeigt, wird man bei der Suche nach zoombaren Freizeitkarten speziell auf Webseiten verschiedener Tourismusverbände fündig. Freizeit und Tourismus liegen nah beieinander.
Basieren die interaktiven Karten auf „Google Maps“ bzw. „Bing Maps“, können zwar Touren darauf eingebunden werden, für die Orientierung im Gelände sind diese Kartenausschnitte meist nur sehr bedingt, bzw. häufig auch ungeeignet.

Zusatzinformationen

„In Zell am Ziller hat man sich den Kopf zerbrochen, wie die große Auswahl einmaliger Angebote für Urlauber, potenzielle Zillertal-Besucher oder kurzentschlossene Ausflügler ansprechend und vor allem übersichtlich aufbereitet werden kann.“

(General Solutions Steiner GmbH, 2011)

Als Lösung fand man also die Aufbereitung der Inhalte in einer Karte. Alle so genannten „Points of Interest“ (POI) wurden darin verbunden und können vom Nutzer, von der Nutzerin je nach Bedarf ausgewählt oder ausgeblendet werden. (General Solutions Steiner GmbH, 2011)

Die Firma Alpstein, die viele Kartenprojekte für Webauftritte im touristischen Bereich realisiert, sieht in der interaktiven Kartentechnologie die Basis jeder modernen Darstellungslösung von touristischen Inhalten. Der Vorteil liegt darin, dass so Touren, POIs, topographische Informationen und mehr dem Kunden oder Gast näher gebracht werden können. (ALPSTEIN Tourismus GmbH & Co. KG, 2011b)

„Die Touristeninformationen und die –verbände sind natürlich begeistert, weil die sagen: „wir wollten das schon immer‘. Wanderkarten [...] ins Internet zu transportieren und da drauf Gastgeber darzustellen, ist genau das was sie wollten. Es war nur die letzten Jahre technisch zu schwer möglich bzw. zu teuer.“

(Image-Film auf hubermedia GmbH, 2011)

Stefan Huber und sein Team von hubermedia ermöglichen die Realisierung solcher interaktiven Karten mit ihrem Produkt „eContent.Maps“. Zum Beispiel nutzt www.skitourengehen.info diese Software.

Michael Braun vom Tourismusverband Ostbayern sieht große Zukunft in der interaktiven Nutzung als mobile Landkarte, nachdem Touren für Radfahrer, Wanderer, etc. eingespeist wurden.
„Es wird sehr große Zukunft haben. Gerade durch die zunehmende Technisierung der Bevölkerung, oder auch Ausstattung mit PDAs, iPhone wird es die Möglichkeit geben Routen [...] für Mountainbiking, für Wandern, für Radfahren einzuspeisen und das dann als mobile Landkarte auch zu nutzen."

(Image-Film auf hubermedia GmbH, 2011)

- Um welche Zusatzinformationen werden die topographischen Karten ergänzt?

Touren

Auf vielen Seiten im Internet, die Freizeitkarten anbieten, gibt es die Möglichkeit sich Touren anzeigen zu lassen. Als Liniensignaturen blendet man sie über der eigentlichen Karte ein. Zusätzlich gibt es Punktsignaturen am Startpunkt der Touren, die Rückschluss auf die Tätigkeit ermöglichen.

Abbildung 3.1 Darstellung von Touren in Liniensignaturen ("Burgenland - ALPregio," 2012)

Es wird nach verschiedensten Arten von Touren unterschieden. Hier eine Auswahl

<table>
<thead>
<tr>
<th>Touren</th>
<th>Wandern</th>
<th>Nordicwalken</th>
<th>Skitouren</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mountainbiken</td>
<td>Reiten</td>
<td>Radfahren</td>
</tr>
</tbody>
</table>

Tabelle 3.2 Auswahl an zuschaltbaren Touren in interaktiven Freizeitkarten

Neben Liniensignaturen finden auch Punktsignaturen ihren Einsatz.
Punktsignaturen

![Diagramm](image)

Abbildung 3.2 Punktsignaturen in interaktiven Freizeitkarten. (Geo Marketing GmbH, 2011)

Zuschaltbare Punktsignaturen ermöglichen zum Beispiel (siehe Abbildung 3.2) die Darstellung von Museen. Fährt man mit der Maus über das Museumssymbol, öffnet sich ein weißes Feld mit näheren Informationen. In diesem Fall die Bezeichnung des Museum, sowie einem Bild desselben.

Punktsignaturen

<table>
<thead>
<tr>
<th>Unterkünfte</th>
<th>Almhütten</th>
<th>Bäder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasthäuser</td>
<td>Museen</td>
<td>Infostelle</td>
</tr>
<tr>
<td>Bushaltestelle</td>
<td>Burgen</td>
<td>Kletterpark</td>
</tr>
</tbody>
</table>

Tabelle 3.3 Auswahl an zuschaltbaren Punktsignaturen in interaktiven Freizeitkarten

- **Wer nutzt diese Karten?**

3.3 Fallbeispiele

Hier folgt zuerst eine Auswahl, der im Internet angebotenen zoombaren Freizeitkarten, welche im späteren Verlauf genauer analysiert und verglichen werden. Es wird zudem ein Auszug an Besonderheiten aufgezeigt und Verbesserungsvorschläge werden hinsichtlich der, in den theoretischen Bezügen behandelten, Regeln zur bildschirmgerechten kartographischen Visualisierung gebracht.

<table>
<thead>
<tr>
<th>Name</th>
<th>Anbieter</th>
<th>Gebiet</th>
<th>Zoomstufen</th>
</tr>
</thead>
<tbody>
<tr>
<td>outdooractive</td>
<td>ALPSTEIN Tourismus GmbH & Co. KG</td>
<td>Deutschland, Österreich</td>
<td>9</td>
</tr>
<tr>
<td>http://www.outdooractive.com/de/touren</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sentres</td>
<td>Geo Marketing GmbH</td>
<td>Südtirol</td>
<td>9</td>
</tr>
<tr>
<td>http://sentres.com/suedtirol/karte</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zillertalarena entdecken</td>
<td>General Solutions Steiner GmbH</td>
<td>Zillertal</td>
<td>8</td>
</tr>
<tr>
<td>http://maps.zillertalarena.com</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KOMPASS.maps</td>
<td>KOMPASS Karten GmbH</td>
<td>Raum Innsbruck</td>
<td>8</td>
</tr>
<tr>
<td>http://maps.kompass.at/</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 3.4 Zur Analyse ausgewählte Fallbeispiele

3.3.1 ALPSTEIN Tourismus GmbH & Co. KG

Die ALPSTEIN Tourismus GmbH & Co. KG entwickelt und vermarktet Tourismus-Service-Dienstleistungen. Durch Mitarbeiter, Mitarbeiterinnen aus den Bereichen Geographie und Tourismus, sowie Technologie und Produktentwicklung entstanden u. a. viele Touren- und Freizeitportale, die eine zoombare Freizeitkarte zur Verfügung stellen.

Abbildung 3.3 outdooractive Tourenportal ("outdooractive.com » Touren")
Neben vielen Produkten für Kunden im regionalen Bereich ist Outdooractive das größte Portal, das die ALPSTEIN Tourismus GmbH & Co. KG anbietet.

„Unsere Vision ist es, dass es jedem Menschen von überall aus - auch mobil - möglich ist, topografische Karten anzuschauen, Tourenvorschläge zu entdecken und 'Draußen zu erleben'."

(„Über uns » outdooractive.com“)

Aufbauend auf dieser Vision ist dieses Tourenportal entstanden, hinter dem die ALPSTEIN Tourismus GmbH & Co. KG steht.

Abbildung 3.4 Kartographie der Alpstein Tourismus GmbH & Co. KG im outdooractive Tourenportal. ("outdooractive.com » Touren")

Die Karte, die in das Portal von Outdooractive integriert ist, kann über ein Symbol auf die gesamte Bildschirmbreite vergrößert werden.

Als Beispiel für einen regionalen Einsatz von outdooractive sei hier die Steiermark Karte genannt. Die Steirische Tourismus GmbH setzt hier die Kartographie der ALPSTEIN Tourismus GmbH ein um ein regionales Tourenportal anzubieten. („Steiermark Karte“)

Zoomstufen

In Österreich bietet ALPSTEIN eigene Kartographie für die Zoomstufen 9-17 an. Die kleineren Zoomstufen (0-8) zeigen die Kartographie von „Google Maps“.

Zielgruppe & Nutzung

„Unsere Produkte und Dienstleistungen richten sich an Kunden, wenn es darum geht, Outdoor-Inhalte mit interaktiver Karte und vieldimensionalen Infos lebendig und Touren mit wenigen Klicks planbar zu machen. Sie richten sich aber auch an Urlaubsdestinationen und Verlage, die mit unseren CMS-Variationen Outdoor-Inhalte komfortabel verwalten und hochqualitativ und mit breiter Streuung verteilen wollen.“

(ALPSTEIN Tourismus GmbH & Co. KG, 2011a)

Zusatzinformationen

Reicht der Platz für die Signaturen im gewählten Kartenausschnitt nicht aus, so erscheint speziell in den kleineren Zoomstufen, anstelle der einzelnen Signatur, ein Kreis mit der Anzahl an Touren im gewählten Gebiet. Die Größe der Kreissignaturen ist hierbei abhängig von der Tourenanzahl.

![Abbildung 3.5 Kategorien des Tourenportals Outdooractive. (“outdooractive.com » Touren”)](image1)

![Abbildung 3.6 Kreise mit Nummern zeigen die Anzahl der im Gebiet verfügbaren Touren. (“outdooractive.com » Touren”)](image2)
Einhaltung der Gestaltungsrichtlinien für bildschirmgerechte kartographische Visualisierung

ALPSTEIN Tourismus GmbH zeigt mit der Plattform Outdooractive die größte flächenmäßige Abdeckung als Zoomkarte: Deutschland, Österreich, Schweiz, Norditalien.

Eine Suchfunktion ermöglicht die Suche nach Namen in der Karte und erlaubt so ein schnelles Finden und Navigieren in der Karte.

Abbildung 3.7 Suchfunktion bei Outdooractive ("outdooractive.com » Touren")

Abbildung 3.8 ALPSTEIN - Zoomstufe 12 im Grenzbereich Deutschland - Österreich. ("outdooractive.com » Touren")

Abbildung 3.9 ALPSTEIN - Zoomstufe 12 im Grenzbereich Österreich - Schweiz. ("outdooractive.com » Touren")

Abbildung 3.10 verdeutlicht erneut die Problematik der unvollständigen Beschriftungen (hier in Zoomstufe 13).

Abbildung 3.11 zeigt: Mehrfachbeschriftungen und unterschiedliche Schriftarten, sowie Zeichenabstände (siehe „Bucklige Welt“) tragen nicht zur besseren Lesbarkeit der Karte bei.
Schrift

Wie in Kapitel 2.3.5 zur bildschirmgerechten Visualisierung erläutert, sind Schriften ohne Serifen für den Bildschirmgebrauch zu bevorzugen. Laut Tabelle 2.8 wird für horizontale Schriften eine Größe von 10pt, bei gebogenen Schriften 14pt empfohlen. Diese Empfehlungen werden in folgenden Beispielen nicht befolgt:

Abbildung 3.12 ALPSTEIN - Zoomstufe 9 Beschriftung der Täler. ("outdooractive.com » Touren")

Das obige Beispiel stammt aus Zoomstufe 9, die Tälenamen sind nur schwer lesbar. Die Beschriftung der Täler erfolgt mit serifen Schriften, mit geringem Zeichenabstand und kleiner Schriftgröße und ist daher laut Kapitel 2.3.5 wenig für eine Bildschirmkarte geeignet. Die Ortsnamen in Abbildung 3.12 (wie z.B. Fulpmes, Neustift im Stubaital, ...) wurden zwar zur besseren Lesbarkeit freigestellt, jedoch die Mindestdimensionen nicht eingehalten und sind somit auch nur schwer lesbar.

Bei der Beschriftung der Bäche und Höhenlinien zeigt sich erneut selbige Problematik. (Schriftgröße zu klein, Höhenlinienzahlen trotz Freistellung kaum lesbar.) Die Beschriftung der Jagdhütte lässt keinen Rückschluss auf die genauere Ortlichkeit zu, denn es fehlt ein Symbol zur punktuellen Verortung. Hier ein Beispiel aus Zoomstufe 17:

Abbildung 3.13 ALPSTEIN - Zoomstufe 17 Beschriftung der Bäche und Höhenlinien. ("outdooractive.com » Touren")
Abbildung 3.14 Zoomstufe 17 Flussbeschriftung entlang der Gewässerkontur. ("outdooractive.com » Touren")

Die Beschriftung breiterer Flussläufe erfolgt in der outdooractive Karte nicht im Fluss, sondern entlang der Gewässerkontur. Im Beispiel erkennt man auch, dass die Beschriftung der Höhenlinienzahlen über dem Fluss und der Autobahn verlaufen.

3.3.2 Geo Marketing GmbH

Die Geo Marketing GmbH aus Bozen steht hinter sentres.com. Ihre Mission:

„Wir entwickeln eine E-Business-Plattform, welche Tourismusdestinationen einschließlich relevanter, georeferenzierter und multimedialer Informationen digital abbildet: DigitalReality. Wir bieten damit einen neuen, einheitlichen Kommunikationskanal und vertreiben digitale Dienstleistungen und Produkte für die Tourismus- und Freizeitindustrie."

("Mission « geomark/ blog")

Sentres.com ist eine solche Plattform. „Explore the area. Entdecke Südtirol.“ So lautet der Leitspruch, der den Besucher auf der Website erwartet. Sentres beschreibt sich als Touren- und Reiseplaner – online und mobil.

Abbildung 3.15 Sentres. Tourenplaner für Südtirol. (Geo Marketing GmbH, 2011)
Es gibt Auswahlmöglichkeiten betreffend Regionen und Orte, sowie die Wahlmöglichkeit verschiedener Aktivitäten. (Touren, Sehenswürdigkeiten in den Themen Natur oder Kultur, Essen und Schlafen, Ausgehen und Erleben, sowie Shoppen und Entspannen.) (Geo Marketing GmbH, 2011)

Die Karte bei sentres.com

Abbildung 3.16 Kartographie der Geo Marketing GmbH im sentres Tourenportal. (Geo Marketing GmbH, 2010)

Die Seite ist klar strukturiert, die anzeigbare Karte erfüllt die ganze Browserbreite und ermöglicht somit einen guten Überblick. Runde farbige Symbole stehen für die Kategorien, die in der Karte angezeigt werden.

Abbildung 3.17 Auswahlmöglichkeiten der einzublendenden Signaturen. (Geo Marketing GmbH, 2010)
Fährt man mit der Maus über die runden Symbole, öffnen sich kleine Menüs, in denen individuell, die in der Karte darstellbaren Touren, Sehenswürdigkeiten, etc. ausgewählt werden können.

In folgenden Kategorien hat der Nutzer, die Nutzerin die Möglichkeit sich Zusatzinformationen in der Karte anzeigen zu lassen:

<table>
<thead>
<tr>
<th>Wandern</th>
<th>Alpin</th>
<th>Rad</th>
<th>Winter</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wanderung</td>
<td>Bergtour</td>
<td>Mountainbike</td>
<td>Winterwandern</td>
<td>Stadtrundgang</td>
</tr>
<tr>
<td>Familienwanderung</td>
<td>Hochtour</td>
<td>Rennrad</td>
<td>Rodeln</td>
<td>Promenade</td>
</tr>
<tr>
<td>Themenwanderung</td>
<td>Klettersteig</td>
<td>Radtour</td>
<td>Langlauf</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alpinklettern</td>
<td>Schneeschuh</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Klettergarten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ski-Rundfahrt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ski-Freeride</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 3.5 Zuschaltbare Touren zur Sentres Karte.

Zudem gibt es zuschaltbare POIs aus folgenden Themenbereichen:

<table>
<thead>
<tr>
<th>Natur</th>
<th>Kultur</th>
<th>Unterkunft</th>
<th>Essen & Trinken</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nightlife</td>
<td>Shopping</td>
<td>Wasser & Wellness</td>
<td>Tourenservice</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 3.5 Zusatzschaltbare POIs zur Sentres Karte.

Zoomstufen

Beim sentres werden neun Zoomstufen eingesetzt: Zoomstufen 9-17, wobei die kleinste (9) Südtirol im Überblick mit den wichtigsten Städten und Straßenverbindungen zeigt.

Daten

Zielgruppe und Nutzung

„Mit sentres.com wollen wir den Freiluftsportlern und Aktivurlaubern eine inhaltstarke Plattform anbieten.“

(Demetz)

Einhaltung der Gestaltungsrichtlinien für bildschirmgerechte kartographische Visualisierung

In der Karte fehlt ein Maßstab. Ein graphischer Maßstab in Form einer Maßstabsleiste wäre sinnvoll um Rückschlüsse auf das Verhältnis Kartenstrecke zu Naturstrecke ziehen zu können.

Die _Wanderwege_ (rot strichliert) sind oft nicht an die Straßengeometrie angepasst, wodurch ein unruhiges Kartenbild entsteht.

![Abbildung 3.18](image1.jpg)

Die Abbildung 3.18 Wege im sentres Tourenportal. (Geo Marketing GmbH, 2010)

Die Beschriftung der Bäche verläuft teilweise mitten durch stehende Gewässer.

![Abbildung 3.19](image2.jpg)

Die Abbildung 3.19 Gewässerbeschreibungen im sentres Tourenportal. (Geo Marketing GmbH, 2010)
3.3.3 General Solutions Steiner GmbH

Zielgruppe und Nutzung

„Die Kartensoftware Contwise Maps wurde speziell zum Management und zur Visualisierung von standortbezogenen Informationen entwickelt.“

(General Solutions Steiner GmbH)

Die interaktiven Karten eignen sich gut als Instrument für *Regionalmarketing*. General Solutions Steiner GmbH spricht die Tourismus- und Freizeitindustrie an und sieht in Contwise Maps eine optimale Vermarktungsmöglichkeit für Tourismusdestinationen. Auch Unternehmen soll durch die praktischen Darstellungsmöglichkeiten ein besseres *Geomarketing* ermöglicht werden. (General Solutions Steiner GmbH)

„Gäste können sich vorab über ihre Urlaubsdestination informieren, Routen erkunden, Hotels ausfindig machen, interessante Hotspots suchen – kurz ihren Urlaub planen.“

(General Solutions Steiner GmbH)

Abbildung 3.20 Kartographie der Zillertal Arena Map. („Interaktive Karte der Zillertal Arena“)

Zusatzinformationen

Abbildung 3.21 Piktogramme zur Auswahl der zuschaltbaren Informationen der Zillertal Arena Map. („Interaktive Karte der Zillertal Arena“)

Touren und POIs können aus folgenden Themen zugeschalten werden:

<table>
<thead>
<tr>
<th>Wandern</th>
<th>Mountainbike</th>
<th>Run and Walk</th>
<th>Seilbahn</th>
<th>Unterkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Essen</td>
<td>Gesundheit</td>
<td>Freizeit und Sport</td>
<td>Öffentliche Einrichtung</td>
<td>Öffentlicher Veranstaltungsort</td>
</tr>
<tr>
<td>Trinken</td>
<td>und Soziales</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geschäft</td>
<td>Hütte</td>
<td>KFZ Servicestation</td>
<td>Kultur und Tradition</td>
<td>Livecam</td>
</tr>
<tr>
<td>Video</td>
<td>Information</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 3.6 Zuschaltbare Touren und POIs der Zillertal Arena Map. („Interaktive Karte der Zillertal Arena“)

In der Winterkarte gibt es, der Saison angepasst, noch folgende Themen:

<table>
<thead>
<tr>
<th>Wandern im Winter</th>
<th>Run and Walk im Winter</th>
<th>Langlauf</th>
<th>Piste</th>
</tr>
</thead>
</table>

Tabelle 3.7 Zuschaltbare Touren speziell für die Winterversion der Zillertal Arena Map. („Interaktive Karte der Zillertal Arena“)

Abbildung 3.22 Pistendarstellung in der Zillertal Arena Map („Interaktive Karte der Zillertal Arena“)
Pisten, dargestellt in den allgemein gebräuchlichen Schwierigkeitsfarben blau (leicht), rot (mittel) oder schwarz (schwer), können zur Karte zugeschalten werden. Um auch die natürliche Breite der Pisten zu verdeutlichen, wurden keine Linien-, sondern Flächensignaturen gewählt.

Zoomstufen und Daten

Es kann zwischen einer Sommer und Winteransicht gewechselt werden. Bei der Winterkarte verschwindet das Grün des Waldes; Berge, Felder und Wege, als auch die Hausdächer, scheinen schneebedeckt. (KOMPASS Karten GmbH)

Einhaltung der Gestaltungsrichtlinien für bildschirmgerechte kartographische Visualisierung

Abbildung 3.23 Autobahn. Zoomstufe 16 der Zillertal Arena Map („Interaktive Karte der Zillertal Arena“)

Abbildung 3.24 Autobahn. Zoomstufe 12 der Zillertal Arena Map („Interaktive Karte der Zillertal Arena.“)

Ähnliches zeigt sich bei der Darstellung der Siedlungen.

Abbildung 3.25 Einzelhäuser. Zoomstufe 17 der Zillertal Arena Map („Interaktive Karte der Zillertal Arena“)

Abbildung 3.26 Einzelhäuser. Zoomstufe 15 der Zillertal Arena Map („Interaktive Karte der Zillertal Arena“)

Abbildung 3.27 Einzelhäuser. Zoomstufe 13 der Zillertal Arena Map („Interaktive Karte der Zillertal Arena“)
Ab Zoomstufe 13 sind die einzelnen Häuser nicht mehr genau zu differenzieren. Wie in Kapitel 2.3.5 zur bildschirmgerechten kartographischen Visualisierung von Siedlungsflächen erläutert, empfiehlt Neudeck (Neudeck, 2001, S. 74) hier die Verwendung von Flächensignaturen.

Es fehlt wie bei der Sentres Karte eine Maßstabsleiste.

3.3.4 KOMPASS-Karten GmbH

Touren von www.geo-coaching.net können zugeschalten werden. Diese unterteilen sich in folgende Kategorien:

<table>
<thead>
<tr>
<th>Biken</th>
<th>Radfahren</th>
<th>Nordicwalken</th>
<th>Bergwandern/-steigen</th>
<th>Wandern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reiten</td>
<td>Skitouren</td>
<td>Langlauf</td>
<td>Schneeschuh</td>
<td>Bootswandern</td>
</tr>
</tbody>
</table>

Tabelle 3.8 Zuschaltbare Touren zu KOMPASS Maps

Zusätzlich besteht die Möglichkeit POIs zu folgenden Themenbereichen zu integrieren:

<table>
<thead>
<tr>
<th>Veranstaltungen</th>
<th>Gastronomie</th>
<th>Gastgeber</th>
<th>Sehenswürdigkeiten</th>
</tr>
</thead>
</table>

Tabelle 3.9 Zuschaltbare POIs zu KOMPASS Maps
Zoomstufen und Daten

Abbildung 3.29 Zoomstufe 8 der KOMPASS Maps. (KOMPASS Karten GmbH)

Zielgruppe und Nutzung

KOMPASS Karten GmbH spricht Unternehmen aus der Tourismus- und Freizeitindustrie an. Die interaktive KOMPASS Karte findet Einsatz zum Beispiel im Naturfreunde Tourenportal (maps.naturfreunde.at) oder im Oberösterreich Tourismus. (maps.wandern.at oder maps.biken.at)

Einhaltung der Gestaltungsrichtlinien für bildschirmgerechte kartographische Visualisierung

Abbildung 3.30 Gewässerdarstellung in Zoomstufe 8 der KOMPASS Map. (KOMPASS Karten GmbH)
Die bei KOMPASS Maps dargestellten Gewässerflächen liegen teilweise deutlich unter den Mindestdimensionen nach Jenny et al. (siehe Abbildung 2.11), die für Punktsignaturen einen Mindestdurchmesser von 6 px vorschlagen. Bei komplexen Symbolen, wie es hier bei den Gewässerflächen der Fall ist, werden noch größere Durchmesser empfohlen (siehe Kapitel 2.3.5). Es gilt zu überlegen, die Darstellung kleinerer Gewässerflächen in den kleineren Zoomstufen entfallen zu lassen.

Abbildung 3.31 Gewässerflächendarstellung mit Kontur bei KOMPASS Maps. Zoomstufe 11. (KOMPASS Karten GmbH; KOMPASS Karten GmbH)

Wie in Kapitel 2.3.5 erläutert, rät Neudeck (Neudeck, 2001, S. 75) bei der Darstellung von Gewässerflächen zum Verzicht von Konturen.

Anders als bei den drei vorangegangenen Fallbeispielen, findet man bei KOMPASS Maps keine Straßennamen.

Es fehlt zudem auch hier eine Maßstabsleiste.

3.3.5 Generelle Anregungen

Maßstabsleiste

Oft fehlt bei untersuchten Kartenanbietern eine Maßstabsleiste. Diese wäre jedoch notwendig, um Entfernungen auf der Karte, sowie auch die Größe von Objekten abzuschätzen.

Legende

Bei herkömmlichen Papierkarten ist eine Legende nicht wegzudenken. Eine Legende enthält für den Kartennutzer, die Kartennutzerin wichtige Informationen über die Bedeutung der Signaturen, die in der Karte verwendet wurden.
In keiner der untersuchten interaktiven Karten war eine Legende ersichtlich. Zwar sind zuschaltbare Touren und POIs bei der Auswahl schriftlich gekennzeichnet, über die verwendeten Symbole der Grundkarte findet man jedoch keine Informationen. Denkbar wäre beispielsweise eine Legende, die sich in einem zusätzlichen Fenster öffnen lässt.

3.4 Zoomstufeninhalte

Welche Informationen findet man in den einzelnen Zoomstufen?

Es wurde eine Auswahl aus den wesentlichsten Kartenelementen, unterteilt nach Flächen, Linien, und Punkten getroffen.

Zum Vergleich der Karten wurden die Elemente wie folgt ausgewählt:

<table>
<thead>
<tr>
<th>Flächen</th>
<th>Linie</th>
<th>Punkt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wald</td>
<td>Autobahn</td>
<td>Autobahn</td>
</tr>
<tr>
<td>Gewässer</td>
<td>Straße 1. Ordnung</td>
<td>Bundesstraße</td>
</tr>
<tr>
<td>Bebauung</td>
<td>Straße 2. Ordnung</td>
<td>Einzelgebäude</td>
</tr>
<tr>
<td>Gletscher</td>
<td>Eisenbahn</td>
<td>Gipfel</td>
</tr>
<tr>
<td>Geröll</td>
<td>Gewässerkontur</td>
<td>Kirche</td>
</tr>
<tr>
<td>Bäche</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forstweg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fußweg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fußsteig</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Höhenlinien</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landesgrenze</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seilbahn</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 3.10 Ausgewählte Elemente zum Kartenvergleich

Aufbau der Tabellen

Der besseren Übersichtlichkeit wegen, werden die Tabellen in die Kartenelemente Flächen, Linien und Punkte unterteilt. Linienelemente unterteilen sich zusätzlich in die Bereiche Verkehr, Gewässer, Höhe und Sonstige.

Hinweis
Zur flüssigeren Lesbarkeit werden im Text die Namen der Firmen wie folgt abgekürzt: **ALPSTEIN, Geo Marketing, KOMPASS und General Solutions.**

3.4.1 Flächen

Abbildung 3.32 Verwendung der Flächensignaturen in den unterschiedlichen Zoomstufen

Die Flächeninhalte der untersuchten digitalen Zoomkarten unterscheiden sich, in Bezug auf ihren Einsatz, grundsätzlich wenig.

- **Schummerung**

Bei allen Anbietern ist eine Schummerung in den Karten vorhanden, sie ist jeweils Bestandteil aller Zoomstufen.

- **Gewässer**

Gewässer dienen als gute Orientierungsbasis, bei allen Anbietern sind Gewässerflächen in sämtlichen Zoomstufen vorhanden.
- Gletscher

- Wald

Bis auf die Geo Marketing Karte, in welcher erst ab Zoomstufe 13 der Wald erscheint, ist bei allen Anbietern die Flächensignatur *Wald* in jeweils allen Zoomstufen enthalten. Dies entspricht nicht dem Gestaltungsvorschlag (siehe Kapitel 2.3.5) von Neudeck (Neudeck, 2001, S. 76), der empfiehlt auf die Darstellung der Bodenbedeckung, auch die des Waldes, in kleinen und kleinsten Maßstäben zu verzichten.

- Geröll/Fels

Diese Flächensignatur tritt allgemein erst in größeren Zoomstufen auf (KOMPASS ab 12, ALPSTEIN und Geo Marketing ab 13). Die Karte von General Solutions weist hier eine Besonderheit auf.

Abbildung 3.33 Geländedarstellung der Zillertal Arena Map (General Solutions Steiner GmbH)

Es gibt hier keine Geröll- oder Felszeichnung im herkömmlichen Sinn. Ein digitales Oberflächenmodell hilft einen Eindruck der Oberflächenbeschaffenheit zu gewinnen.

- Bebauung

3.4.2 Linien

Um den Überblick zu wahren, wurden die Liniensignaturen nach folgenden Themenbereichen unterteilt: Verkehr, Gewässer, Höhe, sowie Sonstige.

Abbildung 3.34 Verwendung der Liniensignaturen (Bereich Verkehr) in den unterschiedlichen Zoomstufen

- Straßen

Autobahnen und Straßen 1. Ordnung werden durchgehend (in allen Zoomstufen) dargestellt

- Eisenbahn

Eisenbahnstrecken helfen auch bei der besseren Orientierung und werden schon in den kleineren Zoomstufen eingesetzt. Anders als bei der Autobahn, nehmen die Geo Marketing-Karte, wie auch KOMPASS die Eisenbahn noch nicht ab der jeweils „ersten“ Zoomstufe (in deren Fall: 9 (Geo Marketing) bzw. 8 (KOMPASS) auf, sondern erst ab Zoomstufe 11.
Abbildung 3.35 Verwendung der Liniensignaturen (Bereich Gewässer) in den unterschiedlichen Zoomstufen

- **Bäche**

Große Fließgewässer (Flüsse, große Bäche) werden schon in den kleinsten Zoomstufen dargestellt. Mit größer werdender Zoomstufen erscheinen sukzessive auch die kleineren Fließgewässer.

- **Gewässerkontur**

Gewässerkonturen, die flächenhafte Darstellungen der Gewässer begrenzen, werden bei den Anbietern in sämtlichen Zoomstufen verwendet. Ausgenommen Geo Marketing, hier wird diese Liniensignatur generell ausgelassen, was den Anforderungen für Bildschirmkarten laut Neudeck (Neudeck, 2001, S.75) entspreche.

Abbildung 3.36 Verwendung der Liniensignaturen (Bereich Höhe) in den unterschiedlichen Zoomstufen
Bei der Darstellung der Höhenschichtlinien gibt es bei den ausgewählten Kartenanbietern eine sehr unterschiedliche Verwendung. Höhenschichtlinien mit 100m Äquidistanz werden bei allen 4 Anbietern dargestellt. Die weitere Unterteilung erfolgt jedoch unterschiedlich.

ALPSTEIN verwendet 50m und 25m Äquidistanz. Für die Karte von General Solutions, KOMPASS sowie Geo Marketing kommen, neben der 100m Höhenschichtlinien, in größeren Zoomstufen Höhenschichtlinien mit einer Äquidistanz von 20m zum Einsatz.

Abbildung 3.37 Verwendung der Liniensignaturen (Sonstige) in den unterschiedlichen Zoomstufen

Bei der Linienauswahl im Bereich Sonstige fällt auf, dass die General Solutions keine dieser Signaturen verwendet.

- **Landesgrenze**

Statt einer Landesgrenze (Linie) gibt es bei General Solutions eine *Abschattung* über der außerhalb des Gebietes liegenden Bereiche.

- **Seilbahn**

Seilbahnen können bei General Solutions unabhängig von der Zoomstufe zugeschalten werden. ALPSTEIN und Geo Marketing zeigen Seilbahnen ab der Zoomstufe 11 bzw. 14, KOMPASS ab Zoomstufe 12.
3.4.3 Punkte

Abbildung 3.38 Verwendung der Punktsignaturen in den unterschiedlichen Zoomstufen

- Einzelhäuser

- Autobahn, Bundesstraße

ALPSTEIN als auch KOMPASS beschriften im Gegensatz zu General Solutions und Geo Marketing Autobahnen und Bundesstraßen mit den entsprechenden Nummern (zum Beispiel A12 oder 100).

- Gipfel

Gipfelsignaturen werden bei allen Anbietern angewandt, beginnend mit den Zoomstufen 11-13 bis zu jeweils größten.
3.4.4 Kartographische Umsetzung

Um die Ergebnisse der Analyse, der vier, in Kapitel 3.3.2 vorgestellten, Fallbeispiele, besser veranschaulichen zu können, folgen hier Kartenbeispiele aus den Zoomstufen 11-15. Diese fünf Zoomstufen finden sich in allen genannten Fallbeispielen.

Folgende Diagramme zeigen die errechneten Durchschnittsinhalte, aufbauend auf diese wurden im Anschluss die Karten erstellt.

Abbildung 3.39 Durchschnittlicher Einsatz von Flächensignaturen in den Zoomstufen 11-15

Abbildung 3.40 Durchschnittlicher Einsatz von Liniensignaturen (Bereich Verkehr) in den Zoomstufen 11-15
Abbildung 3.41 Durchschnittlicher Einsatz von Liniensignaturen (Bereich Gewässer) in den Zoomstufen 11-15

Abbildung 3.42 Durchschnittlicher Einsatz von Liniensignaturen (Bereich Höhe) in den Zoomstufen 11-15

Abbildung 3.43 Durchschnittlicher Einsatz von Punktsignaturen in den Zoomstufen 11-15

Beschriftung

Es ist schwierig aus den 4 Fallbeispielen, die unterschiedliche örtliche Gebiete abdecken ein Mittel aus den Beschriftungen zu bilden, daher wurde hier die Formel nach Töpfer zur Generalisierung von Karten (siehe Kapitel 2.3.3) angewandt. In Zoomstufe 15, die als Ausgangskarte dient wurde die Beschriftung nach eigenem Ermessen ausgewählt. Nach Anwenden der Formel ergibt sich somit für die Karte in Zoomstufe 14 die Namensanzahl 10.

\[nF = nA \sqrt{mA/mF} \]

Als Ausgangs-, bzw. Folgemaßstab wurden die entsprechenden Maßstabszahlen zu den Zoomstufen aus Tabelle 2.1 gewählt. Somit ergibt sich folgende Berechnung:

\[nF = \text{Anzahl der Namen in Zoomstufe 14} \]
\[nA = \text{Anzahl der Namen aus Zoomstufe 15} \]
\[mA = \text{Maßstabszahl entsprechen Zoomstufe 15} \]
\[mF = \text{Maßstabszahl entsprechen Zoomstufe 14} \]
\[nF = 16 \sqrt{\frac{15000}{35000}} = 10,47 \]

\textbf{Abbildung 3.44} Zoomstufe 15. Grundlage (KOMPASS Karten GmbH), Bearbeitung: Elisabeth Baumgartner
Grundlagendaten von KOMPASS Maps (KOMPASS Karten GmbH) wurden verwendet, um die Zoomstufe 15 mittels Grafiksoftware Macromedia FreeHand MX zu visualisieren. Ausgehend davon wurden die Zoomstufen 11-14 abgeleitet.

Zoomstufe 15 zeigt noch viele Details, wie Fußwege, Einzelhäuser, ein Kirchensymbol, kleine Flussläufe, Höhenzahlen sowie Höhenlinien mit 50m Äquidistanz.

Abbildung 3.45 Zoomstufe 14.

Zoomstufe 14 zeigt größtenteils noch die gleichen Inhalte wie Zoomstufe 15. Die Mittellinie der Autobahn entfällt.
In Zoomstufe 13 werden bereits die Einzelhäuser nicht mehr in die Karte integriert, aus Gründen der zu geringen Mindestdimensionen (auch wenn der errechnete Durchschnitt aus den gewählten Fallbeispielen noch bis Stufe 12 Einzelhäuser zeigen würde). An ihre Stelle tritt eine Siedlungsdarstellung in grauer Flächenfarbe.

Für Zoomstufe 13 werden hier als Beschriftung, statt der, nach genannter Formel errechneten, 7, zur besseren Lesbarkeit nur 6 Namen (exklusive der Straßenbezeichnungen) verwendet.

In Zoomstufe 12 werden, wie in Kapitel 2.2.1 beschrieben, die Straßen weiter generalisiert, kleinere Verkehrswege weggelassen. Bei gleichzeitigem Wegfall kleinerer Krümmungen wird die Charakteristik der Straßenläufe beibehalten. Die Flächenkonturen der Siedlungen werden stärker vereinfacht.

Bereits starke Vereinfachung ist in Zoomstufe 11 ersichtlich. Straßennummern werden nicht mehr angezeigt, und beim Fluss weicht die Flächensignatur einer Liniensignatur.
ZUSAMMENFASSUNG

Gelingt die Umsetzung nach kartographischen Gestaltungsrichtlinien in interaktiven Freizeitkarten?

Ergebnisse

Diese Regeln wurden bei den untersuchten Fallbeispielen nicht immer befolgt, so werden häufig die Mindestdimensionen unterschritten und der Generalisierungsgrad einzelner Objektgruppen fällt zu gering aus. Es fehlen teilweise Maßstabsleisten, GPS-Tracks sind nicht an Verkehrswege angepasst, die Darstellung, speziell die Beschriftung in Grenzbereichen, ist oft nicht optimal gelöst, um nur einige Problembereiche zu nennen.

Schlussfolgerung

Ausblick

- Rechnergestützte Generalisierung

ATKIS®-Generalisierung

Die Arbeitsgemeinschaft der Vermessungsverwaltungen der Länder der Bundesrepublik Deutschland (AdV) arbeitet am amtlichen topographisch-kartographischen Informationssystem (ATKIS). Ziel des Gesamtprojektes ist die Entwicklung eines Generalisierungssystems zur automatisierten Ableitung des Digitalen Landschaftsmodells und der Digitalen Topographischen Karte. (Schürer & Lörks, 2009)

Generell ist die automatische kartographische Generalisierung von großer Komplexität und bedarf noch weiterer Forschung und Entwicklung.

Maßstabsadaptive Projektion

Diese Forschung geht in eine Richtung, die bestimmt in Zukunft auch für die Anbieter, der in dieser Arbeit behandelten Zoomkarten, von Bedeutung sein wird.
5 Literaturverzeichnis

6 Lebenslauf

Elisabeth Baumgartner, BA

Weigunystr. 4a, 4040 Linz
elisabeth.baumgartner@univie.ac.at
geboren 30.01.1986 in Linz

AUSBILDUNG

2005-2012
Universität Wien
Studium Kartographie und Geoinformation

2004-2009
Universität Wien

1996-2004

1992-1996
Volksschule in Linz

ERFAHRUNG

Sept 2011 – Dez 2011
Universität Wien
Projektmitarbeit „Lives on the Move“

Okt 2010 – März 2011
KOMPASS-Karten GmbH, A-6063 Rum/Innsbruck
Praktikantin

LEADER Region Tourismusverband Moststraße, A-3362 Öhling
Projektbetreuerin Vierkanter

2007 - 2010
Universität Wien
Tutorin für folgende Lehrveranstaltungen: „Grundlagen der Kartographie“, „Thematische Kartographie“, „Schulkartographie“

Juli – September 2008
Nationalpark Hohe Tauern, Osttirol
Volontärin

Datum

Unterschrift