DIPLOMARBEIT

Titel der Diplomarbeit

„Hemerobiebewertung der Waldökosysteme im Wiener Anteil des Nationalpark Donau-Auen“

Verfasserin
Anna Ill edits

gemeinsam mit
Karoline Zsak

angestrebter akademischer Grad
Magistra der Naturwissenschaften (Mag.rer.nat.)

Wien, 2012

Studienkennzahl lt. Studienblatt: A 444
Studienrichtung lt. Studienblatt: Diplomstudium Ökologie
Betreuerin / Betreuer: Ass.-Prof. Mag. Dr. Karl Reiter
VORWORT

Die vorliegende wissenschaftliche Arbeit ist eine Zusammenarbeit zwischen Anna Illedits und Karoline Anna Zsak. Die Durchführung der Vegetations- und Hemerobieerhebung in der Lobau, sowie die Analyse der Daten erfolgte zu gleichen Teilen. Das nachfolgende Verfasserinnenverzeichnis gibt Auskunft über die Aufteilung der Kapitel unter den zwei Autorinnen. Im Text selbst ist noch einmal unter den Kapiteln die jeweilige Autorin vermerkt.

Hiermit wird festgehalten, dass die hier vorliegende Arbeit selbstständig verfasst wurde und die verwendete Literatur und alle andere Quellen im Literaturverzeichnis angegeben wurden.
INHALTSVERZEICHNIS

1 EINLEITUNG .. 1
 1.1 MOTIVATION UND ZIELSETZUNG .. 1
 1.2 DER MENSCHLICHE EINFLUSS AUF DIE VEGETATION 2
 1.3 DAS HEMEROBIEKONZEPT ... 3
 1.3.1 DIE ENTWICKLUNG DES HEMEROBIEKONZEPTS .. 4
 1.4 POTENTIELLE NATürLICHE VEGETATION ... 6

2 DAS UNTERSUCHUNGSGEBIET .. 8
 2.1 KURZE EINFÜHRUNG IN DIE ÖKOLOGIE DER FLUSSAUEN 8
 2.2 GEOGRAPHISCHE LAGE UND KLIMA .. 11
 2.3 GEOLOGIE ... 13
 2.4 AUENBÖDEN .. 14
 2.5 HYDROLOGIE DER DONAU ... 18
 2.6 AUENVEGETATION .. 21
 2.7 DER MENSCHLICHE EINFLUSS IM UNTERSUCHUNGSGEBIET 24
 2.7.1 BESITZVERHÄLTNISSE .. 24
 2.7.2 NUTZUNGSGESCHICHTE ... 25
 2.7.3 EINGRIFFE UND FOLGEN IN DEN WASSERHAUSHALT 29
 2.7.4 NEOPHYTEN .. 36
 2.7.5 NATURSCHUTZ ... 40

3 MATERIAL UND METHODE ... 42
 3.1 SAMPLINGDESIGN - AUSWAHL DER PROBEFLÄCHEN 42
 3.2 FELDERHEBUNG .. 44
 3.2.1 METHODIK UND ABGRENZUNG DER PROBEFLÄCHEN 44
 3.2.2 ERHEBUNGSPARAMETER ... 46
 3.3 PARAMETER AUS BESTEHENDEN DATENSÄTZEN .. 55
 3.3.1 BESTANDESALTER ... 55
 3.3.2 POTENTIELLE NATürLICHE VEGETATION (PNV) .. 56
 3.4 DATENVERARBEITUNG ... 60
 3.4.1 ERSTELLUNG DER DATENBANK (HEMEROBIE-Lobau.accdb) 60
 3.4.2 EINGABE DER VEGETATIONSDATEN ... 62
 3.5 VEGETATIONSANALYSE ... 62
 3.5.1 KLASSIFIKATION ... 62
ABBILDUNGSVERZEICHNIS

- Abbildung 1: Josephinische Landesaufnahme, "Sectio 61, Theil deren Vierteln unter Wiener Wald und unter Manhartsberg". Seite 33
- Abbildung 4: Karte der Potentiellen Natürlichen Vegetation (nach REITER). Seite 57
- Abbildung 5: Hauptformular (frmALLDATA) der ACCESS-Datenbank "Hemerobie-Lobau". Seite 61
- Abbildung 6: Hauptformular (frmALLDATA) mit Registersteuerelement der Unterformulare. Seite 61
- Abbildung 7: Verknüpfungsbaum der Hemerobiebewertung (aus Enzenhofer K., Mayrhofer S. & Reiter K., 2009). Seite 84
- Abbildung 8: Gegenüberstellung der mittleren Zeigerwerte für das Fraxino-Ulmetum (frax ulm), Fraxino-Populetum (frax pop) und das Salicetum. Seite 109
- Abbildung 11: Streudiagramm: Regression der mittleren Zeigerwerte „Nährstoffe“ bezüglich „Licht“ für alle untersuchten Flächen. Seite 113
- Abbildung 12: Gegenüberstellung der mittleren Zeigerwerte der Oberen Lobau für die Vegetationsklassen des Fraxino-Ulmetums (Frax Ulm) und des Fraxino-Populetums (Frax Pop). Seite 113
- Abbildung 13: Gegenüberstellung der mittleren Zeigerwerte der Oberen Lobau für die Vegetationsklassen des Fraxino-Ulmetums (Frax Ulm), Fraxino-Populetums (Frax Pop) und des Salicetums. Seite 114
- Abbildung 14: Box-Plot-Darstellung der mittleren Zeigerwerte Licht, Feuchtigkeit und Nährstoffe der Vegetationsklassen des Fraxino-Populetums (pop), Salicetums (sal) und des Fraxino-Ulmetums (ulm). Seite 115
- Abbildung 16: Box-Plot-Darstellung der mittleren Zeigerwerte Licht, Feuchtigkeit und Nährstoffe. Obere und Untere Lobau im Vergleich. Seite 116
- **Abbildung 17**: Ergebnisse: Verteilung der Hemerobiestufen auf die Stichprobenflächen der Lobau – Gesamtübersicht **Seite 117**
- **Abbildung 18**: Ergebnisse: Verteilung der Naturnächstenstufen auf die Stichprobenflächen der Lobau – Gesamtübersicht. **Seite 118**
- **Abbildung 19**: Ergebnisse: Median der Hemerobiewerte pro Waldbiotoptyp. **Seite 119**
- **Abbildung 20**: Ergebnisse: Median der Hemerobiewerte pro Syntaxon. **Seite 120**
- **Abbildung 21**: Ergebnisse: Verteilung der Hemerobiestufen auf die Stichprobenflächen getrennt für die Obere und Untere Lobau. **Seite 121**
- **Abbildung 22**: Verteilung der Relativwerte »Naturnähe der Baumartenkombination« auf die Probeflächen der Oberen und Unteren Lobau. **Seite 123**
- **Abbildung 23**: Anteile der potentiellen natürlichen Baumarten des „Querco-Ulmetum“ an den Abschlagswerten für das Kriterium „Naturnähe der Baumartenkombination“ (oben). Anteil der Abschlagswerte durch überpräsentierte und unterpräsentierte Baumarten des „Querco-Ulmetum“ (unten). **Seite 124**
- **Abbildung 24**: Deckungsanteile der Störungszeiger auf den Aufnahmeflächen der Oberen und Unteren Lobau. **Seite 125**
- **Abbildung 25**: Verteilung der Relativwerte „Naturnähe der Bodenvegetation“ auf die Probeflächen der Oberen und Unteren Lobau. **Seite 126**
- **Abbildung 26**: Neophytenanteil an den störungszeigenden Arten für die Stichprobenflächen der Oberen und Unteren Lobau, sowie für das gesamte Untersuchungsgebiet. **Seite 127**
- **Abbildung 27**: Anteile stickstoffliebender, für Auenwälder charakteristische Störungszeiger für die Stichprobenflächen der Oberen und Unteren Lobau, sowie für das gesamte Untersuchungsgebiet. **Seite 128**
- **Abbildung 28**: Verteilung der Relativwerte „Naturnähe der Bodenvegetation“ auf die Probeflächen der Oberen und Unteren Lobau (exklusiv der stickstoffzeigenden Arten *Geum urbanum, Aegopodium podagraria, Clematis vitalba*). **Seite 129**.
- **Abbildung 29**: Verteilung der Relativwerte „Verjüngungsart“ auf die Probeflächenanzahl der Oberen und Unteren Lobau. **Seite 131**
- **Abbildung 30**: Verteilung der Relativwerte „Nutzung – Beeinflussung“ auf die Probeflächenanzahl der Oberen und Unteren Lobau. **Seite 133**
- **Abbildung 31**: Nutzungsarten in Relation zu der Anzahl der beeinflussten Flächen – Gesamtübersicht. **Seite 134**
- **Abbildung 32**: Verteilung der Relativwerte „Entwicklungsstufe“ auf die Probeflächenanzahl der Oberen und Unteren Lobau. **Seite 135**
- **Abbildung 33:** Verteilung der Relativwerte „Totholz“ auf die Probeflächenanzahl der Oberen und Unteren Lobau. [*Seite 136*]

- **Abbildung 34:** Korrekturfaktoren in Relation zur Flächenanzahl – Gesamtübersicht. [*Seite 137*]

- **Abbildung 35:** Verteilung der Relativwerte „Bestandesaufbau“ auf die Probeflächenanzahl der Oberen und Unteren Lobau. [*Seite 138*]

- **Abbildung 36:** Verteilung der Relativwerte „Artendiversität der Bäume“ auf die Probeflächenanzahl der Oberen und Unteren Lobau. [*Seite 140*]

- **Abbildung 37:** Verteilung der Relativwerte „Artendiversität der Bodenvegetation“ auf die Probeflächenanzahl der Oberen Lobau und Unteren Lobau. [*Seite 141*]

- **Abbildung 38:** Verteilung der Relativwerte „Artendiversität der Bodenvegetation“ auf die Probeflächenanzahl der Oberen Lobau und Unteren Lobau (exklusive der stickstoffzeigenden Arten *Geum urbanum, Aegopodium podagraria, Clematis vitalba*). [*Seite 142*]

- **Abbildung 39:** Hemerobiekarte – Lobau 2011. [*Seite 145*]

- **Abbildung 40:** Übersichtskarte der Stichprobenpunkte – Obere Lobau. [*Seite 146*]

- **Abbildung 41:** Übersichtskarte der Stichprobenpunkte – Untere Lobau [*Seite 185*]
VERFASSERINNENVERZEICHNIS

1 EINLEITUNG..Illedits, Zsak
 1.1 MOTIVATION UND ZIELSETZUNG...Illedits, Zsak
 1.2 DER MENSCHLICHE EINFLUSS AUF DIE VEGETATION..Zsak
 1.3 DAS HEMEROBIEKONZEPT..Zsak
 1.3.1 DIE ENTWICKLUNG DES HEMEROBIEKONZEPTS..Zsak
 1.4 POTENTIELLE NATÜRLICHE VEGETATION..Zsak

2 DAS UNTERSUCHUNGSGEBIET...Illedits, Zsak
 2.1 KURZE EINFÜHRUNG IN DIE ÖKOLOGIE DER FLUSSAUE......................................Zsak
 2.2 GEOPHYSICAL LAGE UND KLIMA...Illedits
 2.3 GEOLIEGE..Zsak
 2.4 AUENBÖDEN..Illedits
 2.5 HYDROLOGIE DER DONAU..Illedits
 2.6 AUENVEGETATION...Illedits
 2.7 DER MENSCHLICHE EINFLUSS IM UNTERSUCHUNGSGEBIET....................................Illedits, Zsak
 2.7.1 BESITZVERHÄLTNISSE...Illedits
 2.7.2 NUTZUNGSGESCHICHTE...Illedits
 2.7.3 EINGRIFFE UND FOLGEN IN DEN WASSERHAUSHALT...Illedits
 2.7.4 NEOPHYTEN..Zsak
 2.7.5 NATURSCHUTZ..Illedits

3 MATERIAL UND METHODE...Illedits, Zsak
 3.1 SAMPLINGDESIGN- AUSWAHL DER PROBEFLÄCHEN...Zsak
 3.2 FELDERHEBUNG..Illedits, Zsak
 3.2.1 METHODIK UND ABGRENZUNG DER ROBEFLÄCHEN......................................Zsak
 3.2.2 ERHEBUNGSPARAMETER..Illedits, Zsak
 3.3 PARAMETER AUS BESTEHENDEN DATENSÄTZEN..Zsak
3.3.1 BESTANDESALTER...Zsak
3.3.2 POTENTIELLE NATÜRLICHE VEGETATION (PNV)...............................Zsak
3.4 DATENVERARBEITUNG...Illedits, Zsak
3.4.1 ERSTELLUNG DER DATENBANK (HEMEROBIE-Lobau.accdb)..................Zsak
3.4.2 EINGABE DER VEGETATIONSDATEN.....................................Illedits
3.5 VEGETATIONSDATEN..Illedits
3.5.1 KLASSIFIKATION..Illedits
3.5.2 ZEIGERWERTANALYSE...Illedits
3.6 HEMEROBIEBERECHNUNG..Zsak
3.6.1 RELATIVWERT VS. HEMEROBIESTUFE...Zsak
3.6.2 BEWERTUNG DER EINZELKRITERIEN..Zsak
3.6.3 AGGREGATION DER EINZELKRITERIEN..Zsak

4 ERGEBNISSE UND INTERPRETATION...Illedits, Zsak
4.1 ERGEBNISSE DER VEGETATIONSDATEN..Illedits
4.1.1 KLASSIFIKATION..Illedits
4.1.2 SYNTAXONOMISCHE ÜBERSICHT..Illedits
4.1.3 BESCHREIBUNG DER VEGETATIONSEINHEITEN..............................Illedits
4.1.4 ZEIGERWERTANALYSE...Illedits
4.2 ERGEBNISSE DER HEMEROBIEBEWERTUNG.......................................Zsak
4.2.1 ALLGEMEIN..Zsak
4.2.2 ERGEBNISSDARSTELLUNG DER EINZELKRITERIEN..............................Zsak
4.2.3 INTERPOLATION DER ERGEBNISSE UND KARTENERSTELLUNG IM PROGRAMM ARCGIS...Zsak
4.3 EINZELFLÄCHENBESCHREIBUNG..Illedits, Zsak
4.3.1 OBERE LOBAU..Zsak
4.3.2 UNTERE LOBAU..Illedits
5 DISKUSSION..Illedits, Zsak

5.1 ERGEBNISSE IM VERGLEICH MIT DEN RESULTATEN FÜR DIE GESAMTHEIT
DER ÖSTERREICHISCHEN WALDFLÄCHEN..Zsak

5.2 BESCHREIBUNG DER HEMEROBIESTUFEN..Zsak

5.3 METHODENREFLEXION.UND VERBESSERUNGSVORSCHLÄGE..................Illedits,Zsak

5.3.1 AUFWAHME DER VEGETATION..Illedits

5.3.2 KLASSIFIKATION DER VEGETATION..Illedits

5.3.3 ZEIGERWERTANLYSE..Illedits

5.3.4 HERLEITUNG DER POTENTIELLEN NATÜRLICHEN
WALDGESELLSCHAFT..Zsak

5.3.5 HEMEROBIEBERECHNUNG..Zsak

5.3.6 ABWEICHUNGEN IN DER DARSTELLUNG DER HEMEROBIEBERECHNUNG....
..Zsak

5.3.7 INTERPOLATION DER ERGEBNISSE UND KARTENERSTELLUNG..............Zsak

5.4 ZUSAMMENFASSUNG..Zsak, Illedits
1 EINLEITUNG

1.1 MOTIVATION UND ZIELSETZUNG

Anna Illedits, Karoline Zsak

1.2 DER MENSCHLICHE EINFLUSS AUF DIE VEGETATION

Karoline Zsak

„In den meisten Ländern der Erde ist die früher vorhanden gewesene natürliche Vegetation unter dem Einfluß des Menschen und seiner Wirtschaft und Technik je nach dem Alter der Besiedlung und der Dichte der Bevölkerung seit kürzeren oder längeren Zeiträumen zerstört, umgewandelt oder ersetzt worden.“ (zitiert aus TÜXEN 1956)

die Vegetation. Die Einflüsse können nach ihrer Intensität und Dauer grob einer Abstufung zugeordnet werden können. (vgl. DIERSCHKE 1994)

1.3 DAS HEMEROBIEKONZEPT

Karoline Zsak

Aus den bereits oben erläuterten Eingriffen und anthropogenen Störungen ergeben sich Veränderungen in der Flora, welche sich durch Abweichungen in der Artenkombination in Bezug zu unbbeeinflussten Standorten in der Vegetation niederschlagen. Diese Veränderungen ermöglichen somit eine Einstufung von Vegetationseinheiten nach dem Grad des menschlichen Einflusses und können so als Indikatoren für die Hemerobie eines Standortes herangezogen werden. Als bedeutende Kriterien bei der Einteilung in eine Hemerobieskala stellen sich der
Therophyten- und Neophytenanteil, sowie die Anzahl verloren gegangener Arten der natürlichen Vegetation dar. (vgl. SUKOPP & WITTIG 1998)

Ein weiterer Ansatz für die Bewertung der Vegetation, in Hinsicht auf die Intensität anthropogener Einwirkungen, ist die Einstufung nach dem Grad der Natürlichkeit in die vier Stufen natürliche und naturnahe Vegetation, halbnatürliche Vegetation, naturferne Vegetation und künstliche Vegetation. (vgl. DIERSCHKE 1994)

Die Bewertung der Hemerobie gestattet eine Darstellung der unterschiedlichen Intensität anthropogener Einwirkungen auf eine Landschaft oder mehrerer zu vergleichender Landschaftsausschnitte anhand einer geordneten Skala oder mittels kartographischer Verarbeitung und ist somit für die Interessen des Naturschutz und der Landschaftsplanung von Bedeutung. (vgl. GLAVAC 1996)

1.3.1 DIE ENTWICKLUNG DES HEMEROBIEKONZEPTS

Karoline Zsak

Tabelle 1: Hemerobiestufen nach SUKOPP (1972) nach GRABHERR et al. 1998

<table>
<thead>
<tr>
<th>Stufe</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ahemerober</td>
<td>kein Kultureinfluß vorhanden bzw. unbedeutend</td>
</tr>
<tr>
<td>oligohemerober</td>
<td>geringer Einfluß, ursprüngliche Vegetation noch deutlich erkennbar</td>
</tr>
<tr>
<td>mesohemerober</td>
<td>deutlicher oder periodischer Kultureinfluß (Kunstwiesen, Forste)</td>
</tr>
<tr>
<td>euhemerober</td>
<td>anhaltend starker Einfluß</td>
</tr>
<tr>
<td>polyhemerober</td>
<td>Veränderung des Standortes und neuartige Pflanzenkombinationen; naturfern</td>
</tr>
<tr>
<td>metahemerober</td>
<td>Einfluß sehr stark und einseitig; Tendenz der Vernichtung; künstlich</td>
</tr>
</tbody>
</table>

KOWARIK (1988, nach GRABHERR et al. 1998) definiert den Nullpunkt des Bewertungssystems der Hemerobie nach dem aktualistischen Ansatz, wie er auch für das Konzept der Potentiellen natürlichen Vegetation zu tragen kommt. Er beschreibt den Nullpunkt als den Zustand der Vegetation, der bisher nicht anthropogen beeinflusst wurde oder eine regressive Sukzession nach Aufhören der Einwirkungen,
welche das Endstadium der ursprünglichen Vegetation erreicht. Ebenso würde ein Stadium, welches als Resultat einer abgelenkten Entwicklung folge ein divergentes Endstadium bewirkt, einer Schlussgesellschaft am betrachteten Standort gleichkommen. (vgl. GRABHERR et al. 1998)

Im Hemerobieprojekt (siehe GRABHERR et al. 1998) und in Folge auch in dieser Arbeit, wurde die Potentielle Natürliche Vegetation bzw. die „potentielle natürliche Waldgesellschaft“ (siehe Kapitel 1.4) als Nullpunkt des Bewertungssystems für den Kultureinfluss gewählt.

1.4 POTENTIELLE NATÜRLICHE VEGETATION

Karoline Zsak

TÜXEN (1956) beschreibt die potentielle natürliche Vegetation folglich als einen gedachten Zustand. Dieser lässt sich aus den zum betrachteten Zeitpunkt vorhandenen Pflanzengesellschaften in einem definierten Vegetationsgebiet über die natürich geltenden anorganischen und biotischen Standortsbedingungen sowie auch deren Wechselspiel konstruieren. Die potentielle natürliche Vegetation ist so für den
aktuellen, aber auch einen früheren Zeitabschnitt zu entwerfen. Man kann demnach bei der Konstruktion durch Kenntnis der im räumlichen Kontakt stehenden Gesellschaften und der Folge- und Ersatzgesellschaften, auf eine beschränkte Auswahl natürlicher Schlussgesellschaften zurückgreifen und so das zum betrachteten Zeitpunkt tatsächlich vorhandene Potential der natürlichen Wuchskräfte möglichst zuverlässig wiedergeben. (vgl. TÜXEN 1956)

Im Unterschied dazu steht die reale natürliche Vegetation, die an unberührten Standorten bzw. vor irreversiblen Veränderungen tatsächlich vorhanden ist bzw. war, jedoch in unseren Kulturlandschaften kaum bzw. gar nicht mehr zu finden ist. (vgl. TÜXEN 1956)

Die Rekonstruktion dieser ursprünglichen natürlichen Vegetation ist für Landschaften, welche bereits längere Zeit unter anthropogenen Einwirkungen standen, nur bedingt möglich und von großen Unsicherheiten geprägt. Als Vergleichsgröße für die Bewertung der aktuellen Vegetation ist die natürliche Vegetation bzw. ein historischer Ansatz auszuschließen, da im Untersuchungsgebiet durch anthropogene Eingriffe irreversible Veränderungen stattgefunden haben, die in der Vegetationszusammensetzung berücksichtigt werden müssen. Ein historischer Ansatz wäre bei der Bewertung dieser Landschaft somit unbefriedigend. (vgl. GRABHERR et al. 1998)

TÜXEN (1956) unterscheidet die potentielle natürliche Vegetation vergangener Zeiten und die heutige potentielle Vegetation, deren Bezugsgrundlage die gegenwärtig herrschenden Standortsfaktoren sind. (vgl. TÜXEN 1956, HÄRDTLE 1990)

Die Anforderungen des Hemerobiekonzeptes an die Nullgröße für die Beurteilung der aktuellen Naturnähe werden von der heutigen potentiellen Vegetation durch den ihr zugrundeliegenden aktualistischen Ansatz erfüllt, welcher die Unsicherheiten der Rekonstruktion der ursprünglichen Vegetation eines abgedämmten Auenökosystems, welches bereits längere Zeit dem menschlichem Einwirkungen ausgesetzt war, möglichst umgeht. (vgl. GRABHERR et al. 1998)
2 DAS UNTERSUCHUNGSGEBIET

2.1 KURZE EINFÜHRUNG IN DIE ÖKOLOGIE DER FLUSSAUEN

Karoline Zsak

Das Wort „Au“ leitet sich von einer indogermanischen Wurzel mit der Bedeutung „Land im oder am Wasser“ ab. (vgl. MARGL 1972)

MARGL (1972a) beschreibt als wesentliches Kennzeichen der Auwälder gegenüber anderen Wäldern mehr oder weniger periodische Überschwemmungen und einen in geringer Tiefe liegenden Grundwasserspiegel.

WENDELBERGER (1975) nennt den hohen Grundwasserspiegel, jährliche Überflutungen und die dadurch bedingte hohe Luftfeuchtigkeit als grundlegende, bestimmende Faktoren der Auwälder.

Die österreichische Fließstrecke der Donau weist Mittellaufcharakter eines Gebirgsflusses auf (vgl. HÜBL 1972), welcher somit die hydrologischen Verhältnisse des Untersuchungsgebiets beschreibt und hier aus diesem Grunde näher erläutert werden soll. Der Mittellauf eines Flusses ist relativ zum Oberlauf durch ein durchschnittlich geringeres Gefälle geprägt, wodurch der Fluss über eine geringere Transportkraft verfügt, was weiterhin zu Mäander-Bildung und einer Aufspaltung der Flussarme führt. (vgl. BRIX 1970, HÜBL 1972)

Die sich seitlich ausweitenden Fluten eines Hochwasserereignisses bewirken, durch mit Distanz zum Strombett abnehmende Fließgeschwindigkeit und
Transportfähigkeit, Unterschiede in der Menge und Mächtigkeit der sich ablagernden Materialien. (vgl. HÜBL 1972, ELLENBERG 1963/1996)

Eine ausführlichere Beschreibung der Begriffe folgt in Kapitel 2.6.

Der Fluss bildet in der Auenlandschaft durch Sedimentablagerungen und wechselnde hydrologische Verhältnisse eine Vielfalt unterschiedlicher Standorte. Die zerstörende Kraft der Hochwasser schafft offene Flächen, die auch gebietsfremden Arten eine Möglichkeit bieten sich anzusiedeln (vgl. HÜBL 1972).

Viele Auenpflanzen besitzen Fähigkeiten um den mechanischen Einwirkungen, die eine Überflutung auf sie ausübt, möglichst wenig Widerstand zu bieten. Hier wären beispielsweise die auffallend biegsamen Zweige oder schmalen Blätter der Weiden zu nennen. Weitere Wege, sich den Verwüstungen der Hochwässer möglichst gut
zum Ersatz von feuchtten und trockenen Verhältnissen, die Pflanzen ihre Anpassungsfähigkeit.

So sind die meisten Pflanzen befähigt Blüte- und Fruchtzeit nach größeren Beeinträchtigungen erneut zu initiieren. (vgl. HÜBL 1972)

Durch die natürlichen Nährstoffeinträge und die normalerweise gute Wasserversorgung bieten Auwälder ein besonders üppiges Vegetationsbild raschen Wachstums. Durch den optimierten Umgang der Auenpflanzen mit regelmäßigen Störungen und großem Nährstoffangebot sind sie vor allem auch an Ruderalstellen weit verbreitet. (vgl. HÜBL 1972)
2.2 GEOGRAPHISCHE LAGE UND KLIMA

Anna Illedits

An der südöstlichen Grenze von Wien erstreckt sich das etwa 2300 ha \(^1\) große Untersuchungsgebiet der Lobau auf einer Höhe von 150 bis 158 m ü. A. Es befindet sich am linksseitigen Donauufer zwischen Stromkilometer 1908 und 1927. (vgl. ROTTER & SCHRATT-EHRENDORFER 1999)

\(^1\) http://www.wien.gv.at/umwelt/wald/erholung/nationalpark/lobau/ 29.12.2011

Das durchschnittliche Jahresmittel der Temperatur im Bereich der Lobau bewegt sich um 10°C, somit zählt sie zu den wärmsten Gebieten Österreichs. Die mittlere Jahressumme des Niederschlags ist im Marchfeld unter 600mm. (vgl. AUER 2011)

Das unregelmäßige Angebot an Niederschlägen bewirkt auf Böden mit wenig Speicherkapazität die Ausbildung von steppenartiger Vegetation (Heißländern). (vgl. MARGL 1973)

² http://www.zamg.ac.at/fix/klima/oe71-00/klimadaten_oesterreich_1971_frame1.htm
2.3 GEOLOGIE

Karoline Zsak

In den Auböden findet man kaum lößähnliche Sedimente und in der Schichtserie folgt wenig Lehm und Silt, sehr bald jedoch die auch im Gebiet der Praterterrasse folgende Schicht aus Sand, Kies und Schotter. Darunter stößt man auf Blockpackungen aus einem großen Anteil aus Quarz, Kalk und Dolomit, Kristallin (Gneis, Granit, Amphibolit) und weiteren Sedimentgesteinen (Sandsteinen, Hornsteinen). Dem folgt eine Schicht aus feinsandigem, feinglimmerigem Ton, dem Drifton. (vgl. BRIX 1972)

Es besteht eine große Ähnlichkeit in der Entstehung und den Materialeigenschaften der in der Würm-Eiszeit abgelagerten Schotter der Praterterrasse und der holozänen
Ablagerungsmaterialien der „Zone der rezenten Mäander“, die eine klare Abtrennung der abgelagerten Schichten verhindert. (vgl. BRIX, 1972)

2.4 AUENBÖDEN

Anna Illedics

Kennzeichnend für Auböden sind die jungen, wechselhaft geschichteten Lockersedimente, der schwankende Grundwasserspiegel und die periodischen Überflutungen. Korngrößenverteilung der Sedimente und Grundwassereinfluss bestimmen die Unterschiede der Auenstandorte, wobei vor allem erstgenannter Faktor die Qualität eines Aubodens anzeigt. Die Sedimentation des Ausgangsmaterials, in Form von einerseits Anlandung und Auflandung oder andererseits Verlandung, ist wesentlich für die Bodenbildung in den Auen. (vgl. JELEM 1974)

Geschiebe- und Schwebstofftransport genauso wie Strömungsgeschwindigkeit sind für die Sedimentation verantwortlich. Im Wiener Raum wird Geschiebe mit Kornendurchmessern von über 0,85 mm, am häufigsten jedoch um 13 mm, und Schwebstoffe kleiner als 0,85 mm, bestehend aus Feinsand (0,2-0,06 mm), donauländisch als „Schlich“ bezeichnet, Schluff (0,06-0,002 mm) und Ton (<0,002 mm), transportiert. Schlich, hauptsächlich in den Korngrößen 0,1-0,2 mm vertreten
lagert sich vorwiegend bei Hochwasser, Schluff und Ton setzen sich aus dem langsam fließenden bis stehenden Wasser ab. Die Sedimente aus Schluff und Ton werden zum großen Teil aus 0,01-0,02 mm großen Partikeln aufgebaut, welche als „Letten“ bzw. Aulehm bezeichnet werden. Die Letten bewirkt auf lange Zeit gesehen eine allmähliche Verebnung der Aulandschaft, wenn das Gelände hoch von Wasser bedeckt ist. Dies geschieht rascher auf tieferen Geländeteilen. (vgl. MARGL 1972a)

Der Schlich, zum großen Teil feingemahlene Quarzteilchen, sedimentiert nach dem Schotter, tritt aber auch durchmischte mit Aulehm auf, der sich als letztes absetzt. Typische Auwaldpflanzen finden in der wasserspeichernden Letten das ideale Keimbett. (vgl. MARGL 1973)

Nur im Aulehm sind Rostflecken sichtbar, da hier organische Verbindungen beigemischt sind. Die hinzukommende Regenwurmtätigkeit durchmischt den Boden und macht aus ihm eine stabile gleichmäßig braune bis graubraune Struktur, die in Folge als Aulehmecke bezeichnet wird. Die Bodenart ist ein lehmiger Schluff. Ist das Sediment frisch und schmutziggrau handelt es sich um einen Aurohboden, befindet sich hingegen eine ca. 20 cm dicke Humusschicht, die Humusform ist Mull und nie Moder, darauf und ist der Boden bereits wie vorhin beschrieben bearbeitet und bräunlich, handelt es sich um einen braunen Auboden. MARGL (1972a) verweist darauf, dass die Bezeichnung „grauer Auboden“ keinen echten Bodentyp beschreibt,
sondern bloß auf ein Nichtvorhandensein von färbenden Eisenverbindungen herrührt, welche die Quarzteilchen grau erscheinen lassen. (vgl. MARGL 1972a)

Eine gute Durchlüftung des Bodens ist ausschlaggebend für die im Boden ablaufenden Atmungsprozesse der Bodenorganismen und Pflanzenwurzeln und ein essentieller Faktor für die Bodenbildung. (vgl. GISI et al. 1997) Das Wasser, welches durch Grundwasserschwankungen in die Bodenporen gebracht wird, funktioniert als Transportmittel für Sauerstoff und Nährstoffe und führt zu einer rascheren Mineralisation und somit zu einer hohen Massenleistung des Substrates, was die Ausbildung reifer Auböden hervorruft. Ein Boden mit hochanstehendem Grundwasser ist schlecht durchlüftet und bildet durch den Sauerstoffentzug graue Reduktionsflecken aus (Vergleyung), die sich bei darauffolgendem Sauerstoffzutritt in braune Rostflecken (dreiwertige Eisenverbindungen) umwandeln und ein Anzeichen für die Reifung des Bodens sind. (vgl. MARGL 1972a)

A. Unreife Böden
 1. Grundwasserspiegel höher als 60 cm; im Gleyboden Rostflecken im Schwankungsbereich des Grundwasserspiegels, unreife Böden der Nassen und Feuchten Pappelau
2. Grundwasserspiegel tiefer als 60 cm;
 a. unreife sandig-schluffige Böden der Frischen Weidenau
 b. auf trockenerem Sand: Schwarzpappelau
 c. bindige Böden mit Reduktionsflecken (Gleyboden): graue Böden der Feuchten Pappelau

3. Rostflecken tiefer als 60 cm; graue Böden der Frischen Pappelau.

B. Reifere Böden
4. Humushorizont mehr als 20-30 cm mächtig, tiefgründig reife Böden: Braune Auböden Harter Auen (Aulehme)

5. Tiefgründige, gereifte Auböden ohne Grundwassereinfluß
 a. bindige Aulehme, eventuell Tagwasserstau: Ahornau, Hainbuchenau
 b. sandige Böden: Lindenau

C. Schotterunterlagerte Böden
6. Schotter tiefer als 40 cm: Trockene Weiche Au und Trockene Harte Au
7. Schotter höher als 40 cm: Heißländen

Flusskorrektion, Eindeichung und Grundwasserabsenkung veränderten den charakteristischen Grundwasserhaushalt echter Auenböden, so dass heute eine terrestrische Dynamik in den Böden der Auenbereiche dominiert. (vgl. REHFUESS 1990)
2.5 HYDROLOGIE DER DONAU

Anna Illedits

Es können, in Anlehnung an die Differenzierung der Becken, drei Stromabschnitte der Donau unterschieden werden:

1. Obere Donau: Quellgebiet bis zur Marchmündung
2. Mittlere Donau: Marchmündung bis zum Eisernen Tor
3. Untere Donau: Eisernes Tor bis in das Schwarze Meer

Somit ist die 350km lange Fließstrecke auf österreichischem Gebiet, von Passau bis Hainburg, dem Oberlauf der Donau zuzuschreiben. Der Höhenunterschied in diesem Bereich beträgt ca. 150m bei einem mittleren Gefälle von 0,43‰ (d.i. 43 cm pro km) und einer mittleren Fließgeschwindigkeit von 1-3 m/s (vgl. JELEM 1974). Nach KNIE (1966) beträgt die mittlere Fließgeschwindigkeit bei Wien-Nußdorf 1,9 m/s. (vgl. KNIE 1966)

„Die Auwälder der Donau gehören auf österreichischem Boden verschiedenen Klimaräumen an.“ (JELEM 1974) Demnach lassen sie sich in zwei große Wuchsgebiete unterteilen:

1. Westliche Donauauen (Passau bis Melk) - humid-kühl
2. Östliche Donauauen (Krems bis Staatsgrenze) - kontinental geprägt

Obwohl die Donau in einem Mittelgebirge (Schwarzwald) entspringt, ist sie bis unterhalb von Wien ein Gebirgsfluss, mit Hochwassern im Sommer, das heißt zur Zeit der stärksten Gletscher- und Schneeschmelze im Hochgebirge („Gletscherregime“). Erst nach Wien verwandelt sie sich allmählich in einen Tieflandfluss. (vgl. ELLENBERG 1963/1996)

Die Donauwassermenge bei Wien variiert sehr stark. So beträgt sie im Mittel 1900 m³/s, bei Niederwasser etwa 900 m³/s, bei hundertjährigem Hochwasser um 10.400 m³/s, bei einem mittleren jährlichen Hochwasser liegt der Wert bei ca.5.700 m³/s. (vgl. SCHRATT-EHRENDORFER 2011) Die geringste gemessene Wassermenge wurde im Februar 1885 gemessen und lag bei 392 m³/s, extreme Hochwasserereignisse traten im August 2002 (11.000 m³/s) (vgl. MICHLMAYR 2005), September 1899 (10.500 m³/s) und November („Allerheiligenhochwasser“) 1787
(11.900m³/s) auf. Der höchste Abfluss, der je vermerkt wurde, war das Jahrtausendhochwasser im August 1501 und lag vermutlich bei 14.000m³/s. (vgl. BUCHMANN 1984)

2.6 AUENVEGETATION

Anna Illedits

Entlang eines Flusses entwickeln sich vom Uferbereich bis zum Rand der Aue in Folge eines Gradienten abnehmender Wasserversorgung und zunehmender Geländehöhe charakteristische naturnahe Waldgesellschaften, welche nach MARGL (1972 a) in drei Gruppen eingeteilt werden können:

1. Anfangsgesellschaften (Weiden- und Schwarzpappelauen)
2. Folgegesellschaften (Pappel-[Erlen-] Auen)
3. Endgesellschaften (Hartholzauen)

Tabelle 2 zeigt die einzelnen Pflanzengesellschaften der Auenökosysteme. „Volle und unterbrochene Linien in Richtung der Abszisse kennzeichnen die Haupt- und Nebensukzessionen, die Ordinate gibt die Zonation an.“ (MARGL 1972a)

Zusätzlich lassen sich noch an höhergelegenen schotterunterlagerten Trockenstandorten mit weniger als 70 cm Gründigkeit waldfreie „Heißländen“, sowie an tiefergelegenen Standorten Pflanzengesellschaften der Altarme, Auweiher und Autümpel unterscheiden. (vgl. MARGL 1972a/ 1973)

Das Artenspektrum und die Verteilung der Vegetation an bestimmten Auenstandorten sind abhängig von der Lage über dem Mittelwasser, von der Dauer
der mittleren Überflutung, vom Abstand zum Grundwasser und von der Beschaffenheit des Bodens. (vgl. SCHRATT-EHRENDORFER 2011)

Der Übergang von Anfangs- über Folge- zu Endgesellschaften, also von einer Weichholz- bis hin zur Hartholzau (Endgesellschaften) verläuft in der Regel schrittweise und in landseitiger Richtung.

Die Folgegesellschaften setzen eine Landbildung und somit eine Vegetation voraus, gedeihen also auf reiferen, braunen Böden mit Humushorizont und werden von den Weichhölzern *Populus alba* und auch *Populus x canadensis* beherrscht. Allgemein findet man sie durch Uferwälle abgeschirmt und noch innerhalb der Seitenarme. MARGL (1972a) gibt an, dass Pappelauen innerhalb von 500-1000 Jahren in Hartholzauen übergehen können.

Die Hartholz-Auwälder befinden sich in merklicher Entfernung zu den größeren Haupt- und Seitenarmen der Donau, wo durch die geringere Schleppkraft des
Hochwassers nur noch sandiges oder toniges Substrat abgelagert wurde und somit die Wuchsvoraussetzungen für eine stabile Waldvegetation gegeben waren. (vgl. GRÜNWEIS 2011)

Der dynamische flussnahe und von regelmäßigen Hochwassern beeinflusste Lebensraum der Weichholzau wird allgemein als >>dynamische Au<< bezeichnet. Ihr gegenübergestellt sind die flussfernen und nur noch episodisch überschwemmten Hartholzauwälder, die sogenannte >>stabilen Au<<. (mündliche Information Reiter)

Tabelle 2: Standörtliche Gliederung und Entwicklungslinien im Bereich der natürlichen Auwaldgesellschaften. (übernommen aus MARGL 1972a)
2.7 Der menschliche Einfluss im Untersuchungsgebiet

2.7.1 Besitzverhältnisse

Anna Illedits

Die von einem 3m hohen Drahtgitter eingezäunte Lobau, war somit für die Öffentlichkeit frei zugänglich. Allerdings, wie es in Ferdinand Strauß’ Führer durch die Lobau aus dem Jahre 1935 ausführlich zu lesen ist, gegen ein geringes Entgelt und

zu geregelteren Öffnungszeiten, von Ostersonntag bis Allerheiligen täglich von 7 Uhr Früh bis Sonnenuntergang.

2.7.2 NUTZUNGSGESCHICHTE

Anna Illedits

Durch die Nähe zur Großstadt sind die Auwälder unterhalb und oberhalb von Wien besonders starkem Nutzungsdruck ausgesetzt, „denn gerade hier durchdringen und überschneiden sich einander vielschichtige Interessen des Siedlungswesens, der Erholung und Wohlfahrt, der Industrie und der Wasserwirtschaft sowie der Forstwirtschaft, Jagd und Fischerei.“ (JELEM 1972)

Um die Fischerei zu fördern, wurden Altarme ausgebaggert, was zu ihrer Vertiefung führte. Die daraus erhaltenen Schotter wurden zu steilen und rutschgefährdeten Dämmen am Gewässerrand abgelagert und die stärkere Verdunstung der erneut offenen Wasserfläche führte zu einer Grundwasserabsenkung. Positiv ist zu sehen, dass manche Altarme ohne Baggerungen bereits verlandet wären. (vgl. DOPPLER 1991)

1905 wurde die Lobau erstmals unter Schutz gestellt (siehe Kapitel 2.7.5). Trotz dieses Prädikates konnte der Industrialisierung der Lobau in den darauffolgenden Jahrzehnten nicht Einhalt geboten werden.

In der Unteren Lobau befindet sich das für die Wiener Wasserversorgung bedeutendste Grundwasserwerk, welches bis zu 86.000 m³ Trinkwasser pro Tag

So vollzogen sich stetige Eingriffe in den Naturhaushalt, die Lobau, vor allem die Obere Lobau, war vielen Bedrohungen und Nutzungen ausgesetzt, die sich bis in die Gegenwart hin ziehen.

Das aktuellste Projekt und damit die brisanteste Bedrohung des Nationalparkgebietes Lobau startet 2018. Im Zuge des Ausbaues der S1, Teilstrecke Wiener Außenring Schnellstraße Schwechat-Süssenbrunn, soll ein 8 km langer zweiröhriger Tunnel 60m unter der Oberen Lobau bis nach Esßling gegraben werden. Welche Auswirkungen diese Vorhaben schlußendlich auf das Auenökosystem haben wird, ist vorerst noch nicht abzusehen.

2.7.3 EINGRIFFE UND FOLGEN IN DEN WASSERHAUSHALT

2.7.3.1 DONAUREGULIERUNG

Anna Illedits

Nachdem die Donau die Wiener Pforte durchbrochen hatte spaltete sie sich in mehrere Arme auf von denen einige verlandeten und der „Wiener Arm“, heutiger Donaukanal, wegen seiner unmittelbaren Nähe vor den Toren Wiens, er führte

Der frühere Verlauf der Donau bei Wien, vor der Regulierung, ist in Abbildung 1 ersichtlich. Hierbei handelt es sich um einen Teil der Josephinischen Landesaufnahme, welche als erste kartographische Aufnahme der österreichischen Monarchie in den Jahren zwischen 1764 und 1786, von Kaiserin Maria Theresia in Auftrag gegeben, erstellt wurde. (vgl. WRBKA 2011)

Es waren nicht nur die Überschwemmungen der Wohngebiete und bewirtschafteten Flächen, welche eine Fluss regulierung erforderten, auch der Handelsverkehr und der
Brückenbau litt unter den wechselnden und unberechenbaren Wassertiefen und Wasserläufen. Im Führer durch die Jubiläums-Ausstellung der Donau-Regulirungs-Commission von 1898 werden als wichtigste Ziele der einheitlichen Donau regulierung folgende angegeben: *Mit Ausnahme des Donaukanals sollten alle Arme abgebaut, der Strom in einem Normalbett konzentriert und durch den Durchstich, in einer gegen die Stadt hin konkav gekrümmten Linie, der Strom der Stadt näher gebracht werden.* Es werden vier Hauptzwecke, die dadurch angestrebt werden, angeführt:

- Beseitigung der großen Überschwemmungsgefahren
- Durch Näherrücken des Stromes an die Stadt: Möglichkeit der Anlage naher und vorteilhafter Stapelplätze
- Stadtvergrößerung sollte sich am neuen Stromufer entwickeln
- Durch Erbauung stabiler Brücken bei Wien, bisher waren nur leicht zerstörbare Holzbrücken möglich gewesen, sollte eine ungestörte Verbindung zwischen Süden und Norden durch Eisenbahn- und Straßenverkehr entstehen.

Vor Entwicklung der Dampfschifffahrt und Eisenbahn war der Donaukanal „*fast das einzige bedeutende Communicationsmittel für Wien, welche Zufuhr von Lebensmittel zum größten Theil besorgte.*“ (DONAU-REGULIERUNGS-COMMISSION WIEN 1898) Jetzt sollte der Schwerpunkt des Handels an die große Donau verlegt werden und dem Donaukanal somit bloß regionale Bedeutung beigemessen werden. (vgl. DONAU-REGULIERUNGS-COMMISSION WIEN 1898) Man erhoffte sich demnach, neben einem gelungenen Hochwasserschutz, eine Verbesserung der Wasserstrasse für Handel und Verkehr. So ist im Bericht der Donau-Regulirungs-Commission zur Eröffnung der Schifffahrt im neuen Strombett der Donau am 30.Mai 1875 zu lesen: „*Möge der heutige Tag eine neue Aera volkswirtschaftlichen Aufschwunges glückverheissend inaugurieren*“. (DONAU-REGULIERUNGS-COMMISSION WIEN 1875)

Das 13,27 km lange, von Nußdorf bis Albern reichende, neue Donaubett hatte eine Regelbreite von 284,5 m und ein 474,17 m breites Überschwemmungsgebiet. Es mussten zwei Durchstiche vorgenommen werden, die ein Aushubmaterial von 12, 277.767 m³ zu Tage beförderten. (vgl. DONAU-REGULIERUNGS-COMMISSION
Die tatsächlichen Kosten für dieses Projekt beliefen sich auf etwa 32,7 Millionen Gulden. Das alte Flussbett ist noch heute in Form der „Alten Donau“ erhalten. (vgl. BUCHMANN 1984)

Welchen Einfluß die Regulierungsvorgänge auf den Zustand der natürlichen Audynamik haben würden, blieb dabei zweitrangig und unberücksichtigt. Mit einem

Abbildung 1: Josephinische Landesaufnahme, "Sectio 61, Theil deren Vierteln unter Wiener Wald und unter Manhartsberg" (1773 -1781) (Quelle: WRBKA 2011)

2.7.3.2 FOLGEN DER DONAUREGULIERUNG FÜR DIE HYDROLOGIE DER AULANDSCHAFT

Die Regulierungsarbeiten und damit vor allem die Abdämmung der Au durch den Marchfeldschutzdamm bedeuteten für die Hydrologie der Aulandschaft gravierende Veränderungen. (vgl. MARGL 1973)

Die erhofften Auswirkungen der Donauregulierung wurden komplett erreicht: Der Strom fließt mit verbessertem Abfluss in einem stabilen Bett und die Überschwemmungsgefahr konnte praktisch beseitigt werden. Die feuchten Auwälder
mussten trockenen Acker- und Bauland weichen, was ein Vordringen der Stadt bis an den Donaustrom ermöglichte. Außerdem wurden die Wasser- und Land-Verkehrsverbindungen deutlich verbessert. Für die einstige Naturlandschaft jedoch hatte die Regulierung gravierende Auswirkungen. (vgl. BRIX 1972)

Durch die Regulierung wurde der Lauf der Donau als Folge der Begradigung verkürzt und dadurch ihr Gefälle und ihre Fließgeschwindigkeit erhöht, was zu einer Absenkung des Grundwasserspiegels im Bereich der Lobau führte. Durch den schnelleren Wasserfluss wurde das Grundwasser sowohl links als auch rechts der Donau regelrecht abgesaugt und im Mittel um 1 m gesenkt. (vgl. BRIX 1972) Große Teile des mineralischen Flussbettes in der Lobau fielen darauf hin trocken. (vgl. MARGL 1972a)

Die Seitenarme und Flussschlingen der Donau wurden durch den Damm vom Hauptstrom abgetrennt. Sie haben ihre vitale Verbindung zur Donau verloren, werden nicht mehr regelmäßig überschwemmt, sondern nur noch durch Grund- und Niederschlagswasser gespeist. Donauhochwasser bewirken eine zeitlich verzögerte Änderung des Grundwasserspiegels in Abhängigkeit der Entfernung von der Donau. In einer Entfernung von 0,5 km gleicht sich der Grundwasserspiegel nach einem halben Tag an, in 1,5 km nach einer Woche und bei einer Entfernung von 4 km nach 28 Tagen. (vgl. BRIX 1972)

Die Obere Lobau ist zur Gänze abgedämmt, in der Unteren Lobau hingegen tritt rückstauendes Donauhochwasser über den „Schönauer Schlitz“ ein, verteilt sich dann über das Kühwörther Wasser und Mittelwasser bis zum Schwarzen Loch sowie bis zum Eberschüttwasser und führt dadurch zu dynamischeren Verhältnissen, die
ein Wandern von Organismen zwischen dem offenen Strom und den abgedämmten Altarmen ermöglichen. (vgl. SCHRATT-EHRENDORFER 2011)

Die stehenden Gewässer (Altwässer) von Lobau und Prater, welche erst nach der Regulierung entstanden sind, führen stagnierendes Wasser, das wärmer als das Donauwasser ist und dadurch zur Verschlammung und zu erhöhtem Pflanzenwuchs neigt. (vgl. BRIX 1972)

Im Jahre 1770 wurden zwischen Wiener Pforte und Alberner Hafen noch 20 km² Auwälder überschwemmt, wohingegen es heute nur noch 4 km² sind. Im selben Zeitraum reduzierten sich Uferschotter und Schotterinseln um 95 %, Wiesenflächen um 50 % und die Gesamtuferlänge der Altarme von 152 km auf 28 km. (vgl. EDER & EICHERT 2005)

In den abgedämmten Abschnitten der Au verbraunen und reifen die Böden rascher, was sich in den unterschiedlichen Entwicklungsgraden des Bodens und der Vegetation äußert. Während der Boden eine schon höhere Entwicklungsstufe erreicht hat, findet man im Bestandesaufbau noch einen hohen Anteil an Weichhölzern, ein Zustand wie vor dem Dammbau. (vgl. JELEM 1974)

Altarmsysteme konnten somit revitalisiert und mit qualitätvollerem Wasser versorgt, der Zustand der Gewässer verbessert und der Wasserstand stabilisiert werden.

2.7.4 NEOPHYTEN

2.7.4.1 EINFÜHRUNG UND BEGRIFFSERKLÄRUNG

Karoline Zsak

Aufgrund der Sonderstellung des Untersuchungsgebietes bei der Ausbreitung gebietsfremder Arten soll in dieser Arbeit das Thema der Neophyten im Nationalpark Donau-Auen eingehender behandelt werden.

Durch die eingewanderten Pflanzenarten der letzten Jahrhunderte kam es in Mitteleuropa zu einer Abweichung in der Artenzusammensetzung natürlicher und anthropogener Pflanzengesellschaften, wie auch zur Entwicklung neuer Vegetationseinheiten. (vgl. SUKOPP 1966)

Den »Nichteinheimischen«, »Hemerochoren« oder »Neobiota« werden die »Einheimischen« oder »Indiochorophyten« gegenübergestellt, welche sich

postglazial unabhängig vom menschlichen Wirken in ein Gebiet ausbreiten konnten oder aus solchen »indigenen Arten« entstanden. (vgl. KOWARIK 2003)

Die Begriffsbestimmung orientiert sich einmal an zeitlichen Kriterien, einmal am Grad der Einbürgerung oder auch an beiden Faktoren und wird zum Teil an natürliche Wuchsorte gebunden, zum anderen nicht. (vgl. SUKOPP 1995, KOWARIK 2003)

2.7.4.2 NEOPHYTEN IM NATIONALPARK DONAU-AUEN

Karoline Zsak

Durch anthropogene Störung geprägte Standorte bieten ganz ähnliche, die Ansiedlung gebietsfremder Arten fördernde Voraussetzungen. Durch mechanische Eingriffe kommt es zur Offenlegung der geschlossenen Vegetationsdecke und zur Förderung lichtbedürftiger Arten. Einwirkungen und Nutzungen (z.B.: Umwandlung der Bodeneigenschaften und Ressourcenverfügbarkeit, Beweidung) verursachen Konkurrenzverhältnisse zugunsten neuer Arten, welche die veränderten Bedingungen effektiver für sich nutzen können. Diese und weitere Faktoren erklären
die bestehende Korrelation zwischen dem Anteil anthropochorer Spezies und der Hemerobiestufe eines Landschaftsraumes. (vgl. KOWARIK 2003)

Das Untersuchungsgebiet stellt folglich nicht nur durch die natürlichen Prozesse und Umweltbedingungen einer Auenlandschaft, sondern auch durch seine Nähe zur Großstadt, seiner vielfältigen aktuellen und historischen Nutzung durch den Menschen, durch zahlreiche Eingriffe in die Hydrologie des Gebietes durch die Regulierung der Donau und den Hochwasserschutz (siehe Kapitel 2.7 „Der menschliche Einfluss im Untersuchungsgebiet“), einen von gebietsfremden Arten bevorzugten Besiedlungsraum dar.

2.7.5 NATURSCHUTZ

Anna Illedits

„Die Lobau und die östlich angrenzenden Donau-Auen sind die letzten geschlossenen Flussauen dieser Größe in ganz Mitteleuropa. Sie sind Lebensraum und Rückzugsgebiet für zahlreiche vom Aussterben bedrohte Tier- und Pflanzenarten.“ (LANGE 2004)

10 http://www.nationalpark-donauauen.at/?area=nationalpark&subarea=history 27.12.2011
laevis, Ulmus minor, Fraxinus excelsior oder Fraxinus angustifolia (Ulmenion minoris). (vgl. ELLMAUER & TRAXLER 2000)

3 MATERIAL UND METHODE

3.1 SAMPLINGDESIGN - AUSWAHL DER PROBEBLÄCHEN

Karoline Zsak

Konkret wurde in ARCGIS-Desktop ein GIS-Layer der Erhebungspunkte erstellt, welche die Voraussetzung „waldtragend“ erfüllen und deren Lage innerhalb eines Pufferbereiches von 50 Metern Entfernung zum Wegenetz ist (siehe Abbildung 2). (mündliche Information Reiter)

Einige Waldbiotoptypen blieben, aufgrund ihrer geringen Flächenausdehnung im Untersuchungsgebiet bei der Auswahl der Stichprobenpunkte unberücksichtigt, und sind in den Karten dementsprechend gekennzeichnet (siehe Abbildung 3).

3.2 FELDERHEBUNG

3.2.1 METHODIK UND ABGRENZUNG DER PROBEFLÄCHEN

Karoline Zsak

Die Erhebungsparameter, sowie auch die Aufnahmemethodik wurden vorwiegend von der MaB-Hemerobiestudie (vgl. GRABHERR et al. 1998) übernommen. Es wurde jedoch versucht, bestmöglich auf die Erfordernisse, die aufgrund des veränderten Maßstabes der Bewertung (z.B.: geringere Differenzierung der Waldstandorte, geringeres Flächenausmaß des Untersuchungsgebietes) und der
speziellen Problematik des Nationalparks Donauauen als Erholungsgebiet in Großstadtfläche entstehen, einzugehen und die Arbeitsweise bzw. die Aufnahmekriterien dahingehend abzuändern.

So wurde, aufgrund des kleineren Umfanges des Untersuchungsgebietes und des somit entstehenden engeren Rasters der Aufnahmeflächen, im Unterschied zur MaB-Hemerobiestudie der Traktgedanke verworfen und ausgehend vom Trakthaupunkt (bzw. Stichprobenpunkt) die erforderlichen Parameter nur auf einer Aufnahmefläche von 625 m² (25 Meter Seitenlänge) aufgenommen. (vgl. GRABHERR et al. 1998)

Waren die Aufnahmeflächen trotz abgeänderter Ausrichtung, aufgrund ihres überwiegenden Anteils an Freifläche (Schlagfläche, Wasserfläche, Acker) bzw. ihres geringen Baumbestandes nicht als Waldbiotop zu beurteilen, wurden sie aus der Hemerobiebewertung der Waldökosysteme ausgeschlossen.

Eine weitere Abweichung zur MaB-Hemerobiestudie (vgl. GRABHERR et al. 1998) besteht in der geringfügigen Erweiterung der Störungszeigerliste (siehe Kapitel 3.2.2.1.1) und der Erfassung des Totholzes auf der gesamten Probefläche. Die Analyse der Verjüngungsart wurde, wie auch in der MaB-Hemerobiestudie, auf einer Sondererhebungsfläche von 300 m² durchgeführt (vgl. GRABHERR et al. 1998), die jedoch hier vom Probepunkt ausgehend in die Aufnahmefläche vermessen wurde. Somit stellt der Stichprobenpunkt bei der Felderhebung den Eckpunkt für die gesamte Aufnahme (625 m²), sowie auch für die Sondererhebungsfläche (300 m²) dar.

Die Erhebungsparameter wurden schriftlich auf Aufnahmeformularen festgehalten, welche von der MaB-Hemerobiestudie übernommen und geringfügig abgeändert wurden. Alle Aufnahmebögen sind anhand der Aufnahmenummer (»Relevé Number«) und der Stichprobennummer (»FID-Invent Nummer«) eindeutig
identifizierbar und enthalten Informationen über Größe und Orientierung der Probefläche und das Aufnahmedatum (siehe Anhang 1).

3.2.2 ERHEBUNGSPARAMETER

3.2.2.1 STRUKTUR- UND VEGETATIONSPARAMETER

Karoline Zsak

Tabelle 3: Artemächtigkeitsskala nach BRAUN-BLANQUET (1921, 1928 ff, verändert übernommen nach DIERSCHKE 1994)

<table>
<thead>
<tr>
<th>Klassenzahl</th>
<th>Deckungsrate</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>75 - 100%</td>
<td>Deckung; Individuenzahl beliebig</td>
</tr>
<tr>
<td>4</td>
<td>50 – 75%</td>
<td>Deckung; Individuenzahl beliebig</td>
</tr>
<tr>
<td>3</td>
<td>25 – 50%</td>
<td>Deckung; Individuenzahl beliebig</td>
</tr>
<tr>
<td>2</td>
<td>5 - 25%</td>
<td>Deckung oder sehr zahlreich bei geringem Deckungsgrad</td>
</tr>
<tr>
<td>1</td>
<td>1 – 5%</td>
<td>Deckung; reichlich, aber mit geringem Deckungsgrad oder ziemlich spärlich, aber mit größerem Deckungsgrad</td>
</tr>
<tr>
<td>+</td>
<td>< 1%</td>
<td>Deckung; spärlich, mit sehr geringem Deckungsgrad</td>
</tr>
<tr>
<td>r</td>
<td>ganz vereinzelt (meist nur ein Exemplar)</td>
<td></td>
</tr>
</tbody>
</table>

Ebenso wurde der Baumbestand auf der Aufnahmefläche in Hinblick auf die Faktoren Bestandesschluß, Baumanomalien, Schichtung und Altersspanne der Bäume, entsprechend der MaB-Hemerobiestudie beurteilt und den dort beschriebenen Klassen zugeordnet (vgl. GRABHERR et al 1998, Erhebungsformular Anhang 1).

Das Bestandesalter wurde aus einem bestehenden Datensatz aus der Österreichischen Naturrauminventur (Wald) (1998 / 1999) der Österreichischen Bundesforste entnommen (siehe Kapitel 3.3.1).

3.2.2.1.1 STÖRUNGSZEIGER

Karoline Zsak

Die Ansprache der Störungszeiger erfolgte, abweichend von der MaB-Hemerobiestudie (GRABHERR et al. 1998), nicht gesondert von der Aufzählung der anderen Arten. Für die weitere Bewertung dieses Kriteriums und die Gewichtung der

Die vollständige Störungszeigerliste, die in dieser Arbeit für die Bewertung der Naturnähe der Bodenvegetation zur Anwendung kam, ist in [Anhang 2](#) einzusehen.
3.2.2.2 STANDORTSDATEN, BESTANDES- UND HEMEROBIEKRITERIEN
(NACH GRABHERR ET AL. 1998)

Anna Illedits

3.2.2.2.1 STANDORTSDATEN

- Großrelief
 Die Großreliefform sollte in der topographischen Karte im Maßstab 1:50 000 (ÖK 50) abzulesen sein. Ihre Ausdehnung geht über die Probeflächengröße von 625 m² hinaus. Die Einteilung erfolgte innerhalb der 15 Klassen der Großreliefformen.

- Kleinrelief
 Das Kleinrelief wurde innerhalb der Probefläche von 625m² beurteilt. Es standen 8 Kleinrelief-Klassen zur Verfügung, von homogen über wellig, rinnig, konvex, konkav bis hin zur anthropogenen Geländekante. Die Geländeunterschiede bezogen sich auf Höhendifferenzen unter 1,5 m.

3.2.2.2 BESTANDES- UND HEMEROBIEKRITERIEN

- Baumartenanteil
 Um später das Kriterium der 'Naturnähe der Baumartenkombination' rechnen zu können, wurden, zusätzlich zur regulären Vegetationsaufnahme, der aktuelle und der potentiell natürliche Baumartenanteil für jede Probefläche in einer reduzierten Deckungsskala angegeben.

- Stärkster Stammdurchmesser
 Das Alter eines Bestandes lässt sich anhand von Stammbohrungen bestimmen. Eine alternative indirekte Bestimmung des Alters eines Baumes, ist unter Verwendung des Brusthöhendurchmessers (BHD) durchführbar. Für
die vorliegende Arbeit wurden die BHD (in cm) in einer Höhe von 1,3 m von
den fünf stärksten Bäumen bestimmt und der Artname des jeweiligen Baumes
notiert.

- **Entwicklungsphase, Naturnahe Waldbauphase, Wuchsklasse**

Entwicklungsphase, Naturnahe Waldbauphase und Wuchsklasse definieren
den Entwicklungszustand eines Bestandes. Ihre Flächenanteile zueinander
sind äußerst aussagekräftige Kriterien zur Beurteilung der Intensität
menschlichen Einflusses.

Man spricht von **Entwicklungsphase**, wenn es sich um einen Waldbestand
mit natürlicher Entwicklungsdynamik handelt, ohne jegliche forstliche Nutzung.
Eine Entwicklungsphase ist ein aggregiertes Kriterium, das sich aus den
Parametern Stammzahlverteilung, Baumartenkombination, Durchmesser-
=verteilung, Schichtung, Bestandesschluß, Verjüngung, Mortalität und
Bestandesbild zusammensetzt.

Es standen folgende drei Klassen an Entwicklungsphasen zur Auswahl:
- J/I = Jungwuchsphase, Initialphase
- O/P = Optimalphase, Terminalphase
- Z/V = Zerfallphase, Verjüngungsphase

Der Begriff **Naturnahe Waldbauphase** bezeichnet naturnah bewirtschaftete
Wälder, Plenterwälder, welche ausschließlich aus Naturverjüngung
ergangen sind. In ihnen sind die Baumarten der PNWG enthalten. Die
Bewirtschaftung erfolgt, je nach Waldtyp, als Einzelstammmutzung,
Kleingruppenschlag/ Femelnutzung oder Kleinschirmschlag.

Ist ein Bestand durch flächenhafte Kultur, also überwiegend künstlich
entstanden, handelt es sich um eine oder mehrere **Wuchsklassen**. Die
Bestandesstruktur ist hier mehr oder weniger gleichaltrig und meistens
überwiegen eine oder wenige Durchmesserklassen.
Es ist unter folgenden 8 Wuchsklassen, gemäß der Waldinventur (FORSTLICHEN BUNDESVERSUCHSANSTALT 1995 aus WILLNER & GRABHERR 1998), zu unterscheiden:

- Blößen
- Bestandeslücken
- Jugend I
- Jugend II
- Stangenholz
- Baumholz I
- Baumholz II
- Starkholz

Nutzung/ Beeinflussung

„Unter diesem Punkt werden unmittelbar anthropogene und semianthropogene Einwirkungen auf den Wald verstanden, welche sich im Waldaufbau und Gesundheitszustand widerspiegeln (..).“ (GRABHERR et al. 1998)

Hinter dem Begriff „anthropogenes trampling“ verstecken sich vor allem „Gassigeheer“, die ihren Hunden in der Lobau Auslauf und ihr Toilettengeschäft gewähren. Bei dieser Nutzungsart stellt das Hinterlassen von Hundekot,
besonders am Wegesrand und der daran anschließenden Areale, einen wesentlichen Einfluss auf das Auenökosystem dar, der nicht unterschätzt werden darf.

Außerdem erfolgte eine detaillierte und gesonderte Erfassung der Wege, welche den Trakt durchschneiden. Hier wurden Böschungsbreite, Begrünung und Wegtyp (Erdweg, Forststraße, öffentliche Straße) festgehalten.

Für jede Nutzungsart wurde eine der 3 allgemeinen Stufen der Nutzungsintensität vergeben:

Intensität 1: gering – betrifft nur Teile der Probefläche (625m²) oder tritt punktförmig auf
Intensität 2: mittel – betrifft mindestens die Hälfte der Probefläche oder die Beeinflussung (z.B. Kahlenschlag) fand auf einer Fläche bis zu 5000m² statt.
Intensität 3: stark – betrifft die gesamte Probefläche oder aber eine Fläche von über 5000m² auch außerhalb des Traktes.

- **Nutzungsgeschichte**

Beim Beurteilen der Nutzungsintensität wurde gleichzeitig für jede Beeinflussung des Zeitraums angegeben, in welchem die Nutzung auf der Probefläche stattgefunden hat (=Nutzungsgeschichte). Es erfolgte hier die Einteilung in eine der 3 Klassen:

Aktuell (1) – Nutzung bis zu 10 Jahre vor der Erhebung
Historisch (2) – Nutzung mehr als 10 Jahre zurückliegend
Aktuell und Historisch (3) – beide Nutzungen auf der Probefläche vorhanden
Verjüngungsart

Die Verjüngung wurde auf der Sondererhebungsfläche von 300m² aufgenommen.

Die Art wie sich Baumarten verjüngen, ob natürlich (Naturverjüngung) oder künstlich (Kunst- bzw. Kulturverjüngung), und das Verhältnis dieser beiden zueinander, widerspiegelt den menschlichen Einfluss auf das Waldökosystem. Die Verjüngung wird als standortgerecht oder standortfremd angesprochen, wobei sich die Standortgerechtigkeit nach der potentiell natürlichen Waldgesellschaft (PNWG) orientiert. Die Verjüngung wurde nur dann erhoben, wenn die vorgegebene Mindestpflanzenzahl je mittlerer Pflanzenhöhe (max. 130 cm, min. 10 cm) erreicht wurde. Die Flächenanteile der Verjüngung wurden in 10tel Anteile der Überdeckung angegeben. Da die Informationen über die Verjüngung in der Sonderprobenfläche nicht unbedingt repräsentativ für die gesamte Traktfläche von 625m² ist, wurde separat vermerkt, ob auf der restlichen Probefläche zusätzlich Baum- und Strauchverjüngung vorhanden war.

Baumartenanteil in der Verjüngung

Ergänzend zur Art der Verjüngung wurden die Baumartenanteile der aktuellen Verjüngung mit Hilfe vereinfachter Deckungsintervalle angegeben. Es standen 4 Deckungsklassen von dominant (>50%), subdominant (26-50%), beigemischt (5-25%) bis zu eingesprengt (<5%) zur Auswahl.

Fläche der Freiverjüngung

Dieser Punkt war zu berücksichtigen, wenn die Probefläche zur Gänze oder teilweise eine Schlagfläche im Stadium der Verjüngung darstellte. Das Kriterium war bei keiner unserer Flächen gegeben, wir hatten keine Schlagflächen, und es wurde deshalb nicht beurteilt.
• **Totholzanteil**

Der Totholzanteil wurde, genauso wie die Verjüngung, auf der Sonderprobefläche von 300 m² aufgenommen.

Schwaches Totholz (2-10 cm Durchmesser an der stärksten Stelle) wurde getrennt von starkem Totholz (>= 10 cm Durchmesser) bewertet. Dabei wurde zur quantitativen Bestimmung für das schwache Totholz ein Deckungsanteil aus einer 4-klassigen Skala (wenig, mittel, viel, sehr viel) vergeben und für das starke Totholz das Volumen ermittelt.

Beim starken Totholz war zwischen Totholzstämmen (-stümpfen) und Stöcken, als Reste einer Holznutzung, zu differenzieren und diese getrennt zu notieren. Außerdem wurden Volumina von Stämmen bzw. Stöcken >20 cm, auf Grund der zu dünnerem Totholz unterschiedlicheren Qualität, separat festgehalten.

Als wichtiges qualitatives Merkmal von Totholz gilt der Zersetzungsgrad. Dieser wurde in 4 Klassen eingeteilt:

- 1 = Totholz hart (frisch);
- 2 = peripherer Stammbereich weich, Zentrum hart
- 3 = peripherer Stammbereich hart, Zentrum weich
- 4 = Holz vermodert, durchgehend weich.

Weitere Totholzparameter waren:

- Anteil an stehendem Totholz > 50% - ja/nein
- Anteil an anthropogenem Totholz > 50% - ja/nein
- Besonders wenig Totholz vorhanden - ja/nein
3.3 PARAMETER AUS BESTEHENDEN DATENSÄTZEN

Karoline Zsak

3.3.1 BESTANDESALTER

Im Zuge des Samplingdesign der Hemerobieerhebung erfolgte eine abweichende Codierung der Stichprobenummern, jedoch waren die ursprünglichen 6-stelligen Probeflächen-codes der Waldinventur in den neu erstellten Datensätzen noch enthalten. So konnten die Informationen über das Alter der Bestände (OP_ALT) aus der ACCESS-Datenbank (inventur.mdb) einfach im Programm ARCGIS 10 über die Aufnahmenummern der Waldinventur mit den Flächenattributen der Hemerobieprobeflächen verbunden werden.

Die aus der Datenbank entnommenen Altersangaben (OP_ALT) stammen aus dem Operat bzw. der Waldorteliste (vgl. FLECK & POSCH 1998) und wurden auf ihren aktuellen Wert hin korrigiert.
3.3.2 POTENTIELLE NATÜRLICHE VEGETATION (PNV)

Karoline Zsak

Für die Ableitung der Potentiellen Natürlichen Vegetation im Zuge der Hemeroobieerhebung im Wiener Anteil des Nationalparks Donauauen (2011) stand digitales Kartenmaterial des Untersuchungsgebietes zur Verfügung, welches ebenso auf der Analyse vegetationsökologischer Freilanderhebungen und räumlicher Geländefaktoren beruht. (mündliche Information REITER)

3.3.2.1 KARTE DER POTENTIELLEN NATÜRLICHEN VEGETATION NACH REITER

Karoline Zsak

Die Grundlage für die Erstellung der digitalen Karte nach Reiter (siehe Abbildung 4) bilden 150 Vermessungspunkte unterschiedlicher Höhenlagen und 10 Querprofile mit mehr als 1200 Punkten, sowie die Erhebung der dort auftretenden vegetationsökologischen Parameter. Die im Freiland erfassten Daten wurden durch Verschneidung des Mittelpunktes der Aufnahmefläche mit den Informationen aus einem hochauflösenden Höhenmodell in räumlichen Bezug gesetzt und dienten der Validierung der Berechnung bzw. der errechneten Vegetationsgrenzen.
Für die auftretenden Baumarten wurde die Verteilung in Abhängigkeit der Geländehöhe in „cm über Mittelwasser“ ermittelt und somit der sogenannte »ecological envelop« für die Baumarten im Auenbereich östlich von Wien bestimmt. Über die pflanzensoziologische Auswertung der Freilanderhebungen konnte so, zusätzlich zur direkten Erstellung des »ecological envelop« für die Vegetationstypen im Höhenmodell, indirekt aus der Höhenamplitude der Baumbestände auf die Verteilung der von ihnen aufgebauten Vegetationseinheiten geschlossen werden. (mündliche Information REITER)

Abbildung 4: Karte der Potentiellen Natürlichen Vegetation (nach REITER)

Aufgrund der begrenzten Aussagekraft der Geländehöhe bzw. des Flurabstandes in Hinblick auf die hohe Komplexität der Auenvegetation, wurde für die Parametrisierung des Modells zusätzlich die Karte der dynamischen bzw. der stabilen Au herangezogen, welche für den Bereich der Unteren Lobau auf der „Standorts – Vegetationskarte ‚Untere Lobau‘“ nach MARGL (1974) im Auftrag der
Wiener Wasserwerke beruht. Dieses Modell wurde jedoch nur auf die waldtragenden Flächen angewendet (siehe Tabelle 4). Um eine flächendeckende Vegetationskarte zu erhalten, wurde die so modellierte Karte durch Interpretation der nicht waldtragenden Flächen anhand von Luftbildern und Zuordnung zu den Biototypen der Firma Umweltdata ergänzt. (mündliche Information REITER)

Die Ausprägung von unterschiedlichen Auwaldgesellschaften in den stabilen und dynamischen Aubereichen (siehe Tabelle 4) auf derselben relativen Höhe ist vorwiegend durch unterschiedliche Reife und Struktur des Bodens zu erklären. (mündliche Information REITER)

Tabelle 4: Höhenabstufung in cm über dem Mittelwasser der einzelnen erarbeiteten Vegetationstypen (nach Reiter)

<table>
<thead>
<tr>
<th>„Stabile Au"</th>
<th>„Dynamische Au"</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 – 209 Weidenau der stabilen Au</td>
<td>80 – 159 Weidenau</td>
</tr>
<tr>
<td>210 – 279 Feuchte Feldulmen - Eschenau Au</td>
<td>160 – 289 Feuchte Pappelau</td>
</tr>
<tr>
<td>280 – 379 Feldulmen - Eichenau</td>
<td>290 – 379 frische Pappelau</td>
</tr>
<tr>
<td>380 – 430 Eichen – Lindenau</td>
<td>380 – 470 Schwarzpappelau</td>
</tr>
</tbody>
</table>

3.3.2.2 VERSCHNEIDUNG DER DIGITALEN KARTE MIT DEN RÄUMLICHEN INFORMATIONEN DER ERHEBUNGSFLÄCHEN

Karoline Zsak

der Basis des Samplingdesign wurde ausgehend von den Probepunkten der Hemerobieerhebung ein Shapefile mit den 41 quadratischen Erhebungsflächen unterschiedlicher Ausrichtung (Seitenlänge 25 Meter) erzeugt.

Durch Verschneidung der Aufnahmequadrate mit den räumlichen und thematischen Informationen der „Karte der Potentiellen Natürlichen Vegetation“ (nach REITER) resultierte eine Datengrundlage, die alle für die Ansprache der PNV notwendigen Informationen enthielt. Die geometrischen Attribute bilden hier die Aufnahmequadrate, die nun zusätzlich Informationen zu den Waldbiotoptypen erhalten.

Da einige Probenquadrate mehrere unterschiedliche Ausprägungen der Potentiellen Natürlichen Vegetation aufwiesen (siehe Abbildung, Kartenauschnitt), wurde nach Errechnung der Flächenanteile diejenige PNV gewählt, welche auf der Aufnahmefläche die größte Ausdehnung (m²) erreichte.

3.4 DATENVERARBEITUNG

3.4.1 ERSTELLUNG DER DATENBANK (HEMEROBIE-Lobau.accdb)

Karoline Zsak

Die Flächenmerkmale der einzelnen Aufnahmen wurden über eine Abfrage der gesamten Kopfdaten in einem Hauptformular („frmALLDATA“) zusammengefasst und können somit gesammelt nach Aufnahmenummer (Relevé Nr.) eingesehen werden (siehe Abbildung 5). Um Informationen zu denjenigen Flächenmerkmalen zu integrieren, welche pro Aufnahmenummer mehrere Dateneinträge aufweisen und dabei trotzdem einen guten Überblick zu erhalten, wurden dem Hauptformular
insgesamt fünf Unterformulare (siehe Abbildung 6) beigefügt. Diese kann man über ein Registersteuerelement anwählen. (vgl. HÖLSCHER 2007)

Abbildung 5: Hauptformular (frmALLDATA) der ACCESS-Datenbank "Hemorobie-Lobau"

Abbildung 6: Hauptformular (frmALLDATA) mit Registersteuerelement der Unterformulare
Bei der Erstellung der Datenbank „HEMEROBIE-Lobau“ wurde darauf geachtet redundante Daten möglichst zu vermeiden, den Verbrauch an Speicherplatz gering zu halten und dem Benutzer eine übersichtliche und einfache Arbeitsoberfläche zu bieten. (vgl. HÖLSCHER 2007)

3.4.2 EINGABE DER VEGETATIONSDATEN

Anna Illedits

3.5 VEGETATIONSANALYSE

Anna Illedits

3.5.1 KLASSIFIKATION

TWINSPLAN (Two Way INdicator SPecies Analysis) wurde von HILL (1979) in Anlehnung an die klassische pflanzensoziologische Tabellenarbeit nach BRAUN-BLANQUET entwickelt. Da das Hauptergebnis dieser Analyse, eine geordnete Tabelle, der vertrauten pflanzensoziologischen Tabelle sehr ähnlich ist, hat diese
Methode bereits sehr weite Verbreitung in der Vegetationskunde gefunden. Im Gegensatz zu anderen Methoden (zum Beispiel Clusteranalysen), welche nur Objekte gruppieren, hat TWINSPLAN den großen Vorteil, Objekte (Aufnahmen) und Variablen (Arten) gleichzeitig zu klassifizieren. Sowohl Arten als auch Aufnahmen sind im Idealfall entlang einer Diagonalen in der Tabelle angeordnet (two way analysis). Das Ergebnis kann in Form einer dendrogrammartigen Struktur dargestellt werden. (vgl. LEYER & WESCHE 2007)

TWINSPLAN ist ein hierarchisch divisives Klassifikationsverfahren, basierend auf der ihr zu Grunde liegenden Korrespondenzanalyse, welches ausgehend vom gesamten Datensatz, diesen während mehrerer Klassifikationsschritte in immer kleiner werdende Gruppen, entlang des stärksten floristischen Gradienten (vgl. WILLNER & GRABHERR 2007), dichotom aufspaltet. Um eine möglichst klare Gruppenbildung herauszule sen, werden die Aufnahmen nach der ersten Korrespondenzanalyse mit Hilfe von Indikatorarten, Arten mit einer klaren Präferenz für die linke (negative) bzw. rechte (positive) Seite des Ordinationsdiagrammes, entlang der Ordinationsachse aufgeteilt (Indikatorordination). Für die Definition der Indikatorarten dient der Indikatorwert, in dessen Berechnung der pflanzensoziologische Begriff der Frequenz bzw. die Treue der Art mit hinein fließt. Weil jedoch das Prinzip der Indiaktorarten nur qualitativ ist, fließen die Artabundanzen in Form von kreierten Pseudoarten (pseudospecies), durch geeignete Schwellenwerte (pseudospecies cut levels) begrenzt, mit in die Berechnung hinein (quantitativer Aspekt). Nach etlichen Klassifizierungsschritten sind die Aufnahmen nach ihrer Ähnlichkeit und die Arten anhand ihrer Bindung an die Aufnahmegruppen sortiert. (vgl. LEYER & WESCHE 2007)

3.5.2 ZEIGERWERTANALYSE

Im Rahmen des Softwarepakettes JUICE erfolgte des Weiteren eine automatische Berechnung der durchschnittlichen ökologischen Zeigerwerte nach ELLENBERG für jede einzelne Aufnahme.

Nachfolgend eine Auflistung der Zeigerwerte nach ELLENBERG (1996/2001)

Lichtzahl (L)

Kennzeichnet den Bereich des Vorkommens in Abhängigkeit von der relativen Beleuchtungsstärke (r.B.) zur Zeit der vollen Belaubung der sommergrünen Pflanzen (etwa von Juli bis September) 1=Tiefschattenpflanze, 9=Volllichtpflanze

Temperaturzahl (T)
Beruht auf arealgeographischen Grundlagen und bezeichnet das Vorkommen im Wärmegefälle von der nivalen Stufe bis in die wärmsten Tieflagen. 1 = Kältezeiger (alpine und nivale Arten) 9 = extreme Wärmezeiger (mediterrane Arten)

Kontinentalitätszahl (K)

Bezeichnet das Vorkommen im Kontinentalitätsgefälle von der Atlantikküste bis ins Innere Eurasiens, besonders in Hinblick auf die Temperaturschwankungen. 1 = euozeanisch, 9 = eukontinental

Feuchtezahl (F)

Bezeichnet das Vorkommen im Gefälle der Bodenfeuchtigkeit vom flachgrundig-trockenen Felshang bis zum Sumpfboden, sowie vom seichten bis zum tiefen Wasser. 1 = Starktrockniszeiger, 7 = Feuchtezeiger, 9 = Nässezeiger, 12 = Unterwasserpflanze

Reaktionszahl (R)

Bezeichnet das Vorkommen im Gefälle der Bodenreaktion und des Kalkgehaltes. 1 = Starksäurezeiger, 9 = Basen- und Kalkzeiger

Stickstoffzahl, Nährstoffzahl (N)

Bezeichnet das Gefälle der Mineralstickstoffversorgung während der Vegetationszeit. 1 = Stickstoffärmste Standorte anzeigend, 9 = an übermäßig Stickstoffreichen Standorten konzentriert.

Salzzahl (S)

Bezeichnet das Vorkommen im Gefälle der Salz- insbesondere der Chlorid Konzentration im Wurzelbereich. 0 = nicht salzertragend, 9 = euhalin bis hypersalin.

An dieser Stelle sei darauf hingewiesen, dass das Programm JUICE den Faktor Salz nicht berücksichtigt, ihn damit nicht in die Berechnungen mit einschließt und er somit von uns nicht ausgewertet wurde.

„Über die Ansprüche kann man nur durch physiologische Untersuchungen und konkurrenzfreie Kulturen Zuverlässiges aussagen.“ (ELLENBERG 2001)

ELLENBERG erläutert weiters, dass der Bereich des Zeigerwertes nicht das „physiologische Optimum“ einer Pflanzenart, das heißt den Anspruch an eine ihr günstige Umwelt wiederspiegelt, sondern bloß ihren Existenzbereich, also ihr „ökologisches Verhalten“. Viele Arten ertragen extremere Bedingungen besser als andere Arten und werden so von diesen, durch höheren und schnelleren Wuchs sich auszeichnenden Konkurrenten, in ein abgegrenztes Fenster ihres größeren Potenzbereiches („physiologischen Verhaltens“) hineingedrängt. (vgl. ELLENBERG 2001)

Oft ist die Methode der einfacher durchzuführenden, ungewichteten mittleren Zeigerwertberechnung, auch der richtigere Weg, „denn die Menge bzw. der Deckungsgrad, den eine Pflanzenart im Bestand mit anderen erreicht, hängt nicht nur von der Standortsgunst sondern auch von ihrer spezifischen Wuchsweise ab“ (ELLENBERG 2001) ELLENBERG führt hier als Beispiel die Familie der Orchideen an, die im Gegensatz zu Gräsern und Kräutern, welche meist die Hauptmasse in einem Pflanzenbestand bilden, wertvolle einzelgängerisch lebende Indikatoren darstellen, in der Hauptmasse aber, wegen ihrer geringen Deckung, untergehen. Die gewichtete Methode findet gute Anwendung bei sehr artenarmen Beständen.

3.5.2.1 DARSTELLUNG UND STATISTISCHE AUSWERTUNG DER ZEIGERWERTE NACH ELLENBERG

3.6 HEMEROBIEBERECHNUNG

Karoline Zsak

Die Berechnung der Hemerobiewerte erfolgte nach den Bewertungsschritten, wie sie in der der MaB-Hemerobiestudie zur Anwendung kamen und in GRABHERR et al. 1998 in Kapitel 2.6 „Methodik der Hemerobiebewertung“ ausführlich beschrieben sind. (vgl. GRABHERR et al. 1998)

Aus diesem Grund wird im Folgenden auf eine detailliertere Darstellung der Bewertungsmethode und ihrer Entwicklung verzichtet und nur kurz auf die einzelnen Berechnungsschritte und eventuelle Abweichungen bzw. Unklarheiten eingegangen.
Die für die Hemerobieberechnung notwendigen Tabellen und Verrechnungsmatrizen, sowie deren Benennung wurden aus der MaB-Hemerobiestudie entnommen. (vgl. GRABHERR et al. 1998)

3.6.1 RELATIVWERT VS. HEMEROBIESTUFE

Karoline Zsak

Die für das Hemerobieprojekt (GRABHERR et al. 1998) erarbeitete Terminologie der Hemerobiestufen (siehe Tabelle 5) ist Resultat des Meinungsaustausches zwischen Naturschutz, Forstpolitik und Wissenschaft. (vgl. KIRCHMEIR 2008)\(^{12}\)

Tabelle 5: Transformierte Relativwerte mit wissenschaftlicher Bezeichnung der Hemerobiestufen und vereinfachter Benennung der Naturnähestufen im Hemerobleieprojekt (nach GRABHERR et al. 1998)

<table>
<thead>
<tr>
<th>Relativ-Wert</th>
<th>Hemerobiestufen GRABHERR et al.</th>
<th>Naturnähestufe BLUME & SUKOPP 1976</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>ahemerob</td>
<td>natürlich</td>
</tr>
<tr>
<td>8</td>
<td>γ-oligohemerob</td>
<td>naturnah</td>
</tr>
<tr>
<td>7</td>
<td>β-oligohemerob</td>
<td>naturnah</td>
</tr>
<tr>
<td>6</td>
<td>α-oligohemerob</td>
<td>mäßig verändert</td>
</tr>
<tr>
<td>5</td>
<td>β-mesoherob</td>
<td>mäßig verändert</td>
</tr>
<tr>
<td>4</td>
<td>α-mesoherob</td>
<td>stark verändert</td>
</tr>
<tr>
<td>3</td>
<td>β-euhemerob</td>
<td>stark verändert</td>
</tr>
<tr>
<td>2</td>
<td>α-euhemerob</td>
<td>künstlich</td>
</tr>
<tr>
<td>1</td>
<td>polyherob</td>
<td>künstlich</td>
</tr>
</tbody>
</table>

3.6.2 BEWERTUNG DER EINZELKRITERIEN

Karoline Zsak

3.6.2.1 NATURNÄHE DER BAUMARTENKOMBINATION

Die Beurteilung des Kriteriums „Naturnähe der Baumartenkombination“ resultiert aus dem Vergleich der aktuell auf den Erhebungsflächen erfassten Baumarten mit der „Soll“-Situation der Baumartenkombination, wie sie durch die Potentielle Natürliche Waldgesellschaft beschrieben ist. (vgl. GRABHERR et al. 1998)

Für diese Gegenüberstellung werden jeder aktuell auftretenden Baumart, von den Stufen der erhobenen Artmächtigkeitsskala abweichende Häufigkeitsklassen (siehe Tabelle 6) zugeordnet. (vgl. GRABHERR et al. 1998)

Um auch den Baumarten der potentiellen natürlichen Waldgesellschaft repräsentative Häufigkeitsklassen zuzuteilen, wurden die vegetationskundlichen Ergebnisse der MaB-Hemerobiestudie für die potentiellen natürlichen Waldgesellschaften „Fraxino-Populetum“ und „Querco-Ulmetum“ herangezogen (siehe Tabelle 3.4-6 und Tabelle 3.4-9 „Häufigkeit der Baumarten je PNWG und

Tabelle 6: Häufigkeitsklassen der aktuellen Baumartenkombination (nach GRABHERR et al. 1998)

<table>
<thead>
<tr>
<th>Häufigkeitsklassen</th>
<th>Bezeichnung</th>
<th>Deckung (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>Baumart dominiert</td>
<td>> 50</td>
</tr>
<tr>
<td>2a</td>
<td>Baumart subdominant</td>
<td>25 - 50</td>
</tr>
<tr>
<td>3a</td>
<td>Baumart beigemischt</td>
<td>6 – 25</td>
</tr>
<tr>
<td>4a</td>
<td>Baumart eingesprengt</td>
<td>1 – 5</td>
</tr>
<tr>
<td>5a</td>
<td>Baumart außerhalb der Probeflächevorhanden und pot. möglich</td>
<td>1 - 5</td>
</tr>
<tr>
<td>0a</td>
<td>Baumart fehlt (pot. erwartet)</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabelle 7: Häufigkeitsklassen der potentiellen natürlichen Baumartenkombination (nach GRABHERR et al. 1998)

<table>
<thead>
<tr>
<th>Häufigkeitsklassen</th>
<th>Bezeichnung</th>
<th>Deckung (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1p</td>
<td>Baumart dominiert</td>
<td>> 50</td>
</tr>
<tr>
<td>2p</td>
<td>Baumart subdominant</td>
<td>26 - 50</td>
</tr>
<tr>
<td>3p</td>
<td>Baumart beigemischt</td>
<td>5 – 25</td>
</tr>
<tr>
<td>4p</td>
<td>Baumart eingesprengt</td>
<td>1 – 5</td>
</tr>
<tr>
<td>5p</td>
<td>Baumart ist standortsfremd oder Neophyt</td>
<td>vereinzelt</td>
</tr>
<tr>
<td>6p</td>
<td>Baumart ist standortsfremd oder Neophyt</td>
<td>häufig</td>
</tr>
<tr>
<td>7p</td>
<td>Pionierbaumart (standortsgerecht)</td>
<td>beliebig</td>
</tr>
</tbody>
</table>
Tabelle 8: Baumarten der Potentiellen Natürlichen Waldgesellschaften und die für sie angenommen Häufigkeitsklassen (stark modifiziert übernommen nach GRABHERR et al. 1998)

<table>
<thead>
<tr>
<th>PNWG</th>
<th>Baumart</th>
<th>Häufigkeitsklasse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraxino-Populetum</td>
<td>Fraxinus excelsior</td>
<td>2p</td>
</tr>
<tr>
<td></td>
<td>Populus nigra</td>
<td>3p</td>
</tr>
<tr>
<td></td>
<td>Populus alba</td>
<td>3p</td>
</tr>
<tr>
<td></td>
<td>Prunus padus</td>
<td>3p</td>
</tr>
<tr>
<td>Querco-Ulmetum</td>
<td>Fraxinus excelsior</td>
<td>2p</td>
</tr>
<tr>
<td></td>
<td>Quercus robur</td>
<td>2p</td>
</tr>
<tr>
<td></td>
<td>Ulmus minor</td>
<td>4p</td>
</tr>
<tr>
<td></td>
<td>Acer campestre</td>
<td>4p</td>
</tr>
<tr>
<td></td>
<td>Acer pseudoplatanus</td>
<td>2p</td>
</tr>
<tr>
<td></td>
<td>Prunus padus</td>
<td>4p</td>
</tr>
<tr>
<td></td>
<td>Tilia cordata</td>
<td>3p</td>
</tr>
<tr>
<td>Salicetum albae</td>
<td>Salix alba</td>
<td>1p</td>
</tr>
<tr>
<td></td>
<td>Populus alba</td>
<td>2p</td>
</tr>
</tbody>
</table>

Die Zuordnung zu den Häufigkeitsklassen der MaB-Hemerobiestudie (siehe Tabelle 6 und 7) soll durch die hier breiter gesetzten Intervallgrenzen eine für diesen Zweck anschaulichere Einschätzung der Baumartenkombination der aktuellen und der Potentiellen Natürlichen Waldgesellschaft gewährleisten. (vgl. GRABHERR et al. 1998)

Über eine Verrechnungsmatrix (siehe Matrix 1) werden anhand der Häufigkeitsklassen der aktuellen (siehe Tabelle 6) und der potentiellen natürlichen Baumartenkombination (siehe Tabelle 7) Abschlagswerte ermittelt, welche die Abweichungen von dem potentiell natürlichen „Soll“-Zustand der Baumartenkombination repräsentieren. Durch die Erniedrigung des maximalen Wertes (RW = 9) um die Summe der Abschlagswerte ergibt sich der Relativwert für dieses Kriterium. (vgl. GRABHERR et al. 1998)
Matrix 1: Verrechnungsmatrix für die Kombination der Dominanzklassen aus der aktuellen und potentiellen natürlichen Baumartenkombination (nach GRABHERR et al. 1998)

<table>
<thead>
<tr>
<th>aktuelle Häufigkeitsklassen</th>
<th>potentielle Häufigkeitsklassen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1p</td>
<td>2p</td>
</tr>
<tr>
<td>1a</td>
<td>0</td>
</tr>
<tr>
<td>2a</td>
<td>-1</td>
</tr>
<tr>
<td>3a</td>
<td>-2</td>
</tr>
<tr>
<td>4a</td>
<td>-3</td>
</tr>
<tr>
<td>5a</td>
<td>-3</td>
</tr>
<tr>
<td>0a</td>
<td>-3</td>
</tr>
</tbody>
</table>

3.6.2.2 NATURNÄHE DER BODENVEGETATION

Die Relativwerte für das Kriterium „Naturnähe der Bodenvegetation“ beruhen auf der Auswertung der Artenlisten der Strauch- und Krautschicht in Hinblick auf Vorkommen und Häufigkeit störungszeigender Arten. (vgl. GRABHERR et al. 1998)

Die Ermittlung des Störungszeigerindex (SI) für die Vegetationsaufnahme berücksichtigt sowohl die Deckung (DI) und Störwahrscheinlichkeit (SW) der einzelnen Störungszeiger, wie auch die Gesamtdeckung der Störer (D_{Ges Stör}) in Relation zu der Gesamtdeckung der Bodenvegetation (D_{Ges Auf}) (siehe Gleichung 1). Für die Berechnung werden die Artmächtigkeitswerte nach BRAUN-BLANQUET (1964) der einzelnen Arten in eine numerische und eine logarithmische Prozentskala transformiert. (vgl. GRABHERR et al. 1998)
Gleichung 1: Störungsindex (SI) für die Bodenvegetation einer Vegetationsaufnahme (nach GRABHERR et al. 1998)

\[
SI = \left\{ \sum (SW^*DI) \right\} \cdot \left\{ \frac{\sum D_{Ges\ Stör}}{\sum D_{Ges\ Auf}} \right\}
\]

SW: Störwahrscheinlichkeit
SI: Störungsindex
DI: Deckungsindex
DGes Stör: Gesamtdeckung der Störungszeiger auf der Probefläche
DGes Auf: Gesamtdeckung aller Arten auf der Probefläche

Der Relativwert ergibt sich entsprechend einer Transformationsmatrix (siehe Tabelle 9).

Tabelle 9: Transformationsmatrix zur Bestimmung des Relativwerts für die „Naturnähe der Bodenvegetation“ (nach GRABHERR et al. 1998)

<table>
<thead>
<tr>
<th>Störungsindex</th>
<th>Relativwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 0,001</td>
<td>9</td>
</tr>
<tr>
<td>0,002 - 2,0</td>
<td>7</td>
</tr>
<tr>
<td>2,1 - 5,0</td>
<td>5</td>
</tr>
<tr>
<td>5,1 - 10,0</td>
<td>3</td>
</tr>
<tr>
<td>> 10,0</td>
<td>1</td>
</tr>
</tbody>
</table>

3.6.2.3 VERJÜNGUNGSART

Gleichung 2: Berechnung des Relativwertes der Verjüngungsart (nach GRABHERR et al. 1998)

$$RW = \sum (A \cdot GW_{va})$$

RW: Relativwert für das Kriterium „Verjüngungsart“
A: Flächenanteil in 1/10
GW_{va}: Gewicht der Verjüngungsart (va)

Tabelle 10: Gewichte für die Grundtypen der Verjüngungsarten, welche in die Gleichung 2 einfließen

<table>
<thead>
<tr>
<th>Grundtypen der Verjüngungsart (nach GRABHERR et al. 1998)</th>
<th>Gewicht (GW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturverjüngung mit Baumarten der PNWG oder spontanen (standortsgerechten) Pionierbaumarten</td>
<td>0,9</td>
</tr>
<tr>
<td>Stockausschlag von Baumarten der PNWG</td>
<td>0,7</td>
</tr>
<tr>
<td>Kultur mit Baumarten der PNWG</td>
<td>0,5</td>
</tr>
<tr>
<td>Naturverjüngung mit standortsfremden Baumarten</td>
<td>0,3</td>
</tr>
<tr>
<td>Kultur standortsfremder Arten oder Neophyten; Naturverjüngung mit Neophyten</td>
<td>0,1</td>
</tr>
</tbody>
</table>

3.6.2.4 FLÄCHE DER FREIVERJÜNGUNG

Die Bewertung des Kriteriums „Fläche der Freiverjüngung“ erfolgt über die direkte Transformation der erfassten Freiflächengröße in die Relativwerte, wie sie in Tabelle 11 dargestellt sind.

Tabelle 11: Matrix für die Transformation der Freiflächengröße in den Relativwert der „Fläche der Freiverjüngung“ (nach GRABHERR et al. 1998)

<table>
<thead>
<tr>
<th>Flächengröße</th>
<th>Relativwert RW-A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine Freifläche</td>
<td>9</td>
</tr>
<tr>
<td>bis 500 m²</td>
<td>8</td>
</tr>
<tr>
<td>500 - 1000 m²</td>
<td>7</td>
</tr>
<tr>
<td>1000 - 5000 m²</td>
<td>3</td>
</tr>
<tr>
<td>> 5000 m²</td>
<td>1</td>
</tr>
</tbody>
</table>
3.6.2.5 NUTZUNG - BEEINFLUSSUNG

Tabelle 12: Matrix der Gewichte für die Nutzungs-/Beeinflussungsarten im Zuge der Hemerobieerhebung im Wiener Anteil des Nationalparks Donauauen (stark modifiziert übernommen nach GRABHERR et al. 1998)

<table>
<thead>
<tr>
<th>Beeinflussungsart</th>
<th>Gewicht (GW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trampling</td>
<td>1</td>
</tr>
<tr>
<td>Radfahrer</td>
<td>1</td>
</tr>
<tr>
<td>Müll</td>
<td>1</td>
</tr>
<tr>
<td>Lagern</td>
<td>1</td>
</tr>
<tr>
<td>Verbauung</td>
<td>1</td>
</tr>
<tr>
<td>Wildschäden</td>
<td>2</td>
</tr>
<tr>
<td>Forstliche Endnutzung</td>
<td>3</td>
</tr>
</tbody>
</table>

Die Tabelle 12 weicht von der in der MaB-Hemerobiestudie dargestellten Matrix ab, da hier nur diejenigen Beeinflussungsarten angeführt wurden, welche in dem Untersuchungsgebiet vorgefunden wurden. Die Gewichtung der einzelnen Nutzungsarten orientiert sich jedoch an der Hemerobiestudie. (vgl. GRABHERR et al. 1998)

Die Nutzungsart „Verbauung“ beschreibt Eingriffe, wie Verrohrungen oder Ableitungen an Wegrädern etc., welche nur wenig Einfluss auf die Vegetation hatten und wurde aus diesem Grund gering gewichtet (siehe Tabelle 12).
Tabelle 13: Intensitätsklassen der Nutzungen und Beeinflussungen (nach GRABHERR et al. 1998)

<table>
<thead>
<tr>
<th>Intensität</th>
<th>Klasse (I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>schwach (punktuell)</td>
<td>1</td>
</tr>
<tr>
<td>mittel (teils flächig)</td>
<td>2</td>
</tr>
<tr>
<td>stark (flächig)</td>
<td>3</td>
</tr>
</tbody>
</table>

Tabelle 14: Klassen und Gewichte der Nutzungsgeschichte (nach GRABHERR et al. 1998)

<table>
<thead>
<tr>
<th>Klasse</th>
<th>Gewicht (GW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AKTUELL: bis 10 Jahre vor der Erhebung</td>
<td>1</td>
</tr>
<tr>
<td>HISTORISCH: mehr als 10 Jahre zurückliegend</td>
<td>0,5</td>
</tr>
<tr>
<td>AKTUELL & HISTORISCH</td>
<td>1,5</td>
</tr>
</tbody>
</table>

Gleichung 3: Ermittlung der Beeinflussungszahl aus den Beeinflussungsarten und deren Gewichtungen (nach GRABHERR et al. 1998)

\[
BFZ = \sum_{NA} (GW*I*NG)
\]

BFZ: Beeinflussungszahl
I: Intensität der Nutzung
NA: Nutzungsart
NG: Gewicht der Nutzungsgeschichte
GW: Gewicht der Nutzungsart

Tabelle 15: Matrix zur Transformation der Beeinflussungszahl in den Relativwert der Nutzung (nach GRABHERR et al. 1998)

<table>
<thead>
<tr>
<th>Beeinflussungszahl</th>
<th>Relativwert RW-A5</th>
</tr>
</thead>
<tbody>
<tr>
<td>>= 18,5</td>
<td>1</td>
</tr>
<tr>
<td>>= 16 < 18,5</td>
<td>2</td>
</tr>
<tr>
<td>>= 13,5 < 16</td>
<td>3</td>
</tr>
<tr>
<td>>= 11 < 13,5</td>
<td>4</td>
</tr>
<tr>
<td>>= 8,5 < 11</td>
<td>5</td>
</tr>
<tr>
<td>>= 6 < 8,5</td>
<td>6</td>
</tr>
<tr>
<td>>= 3,5 < 6</td>
<td>7</td>
</tr>
<tr>
<td>>= 1 < 3,5</td>
<td>8</td>
</tr>
<tr>
<td>< 1</td>
<td>9</td>
</tr>
</tbody>
</table>
3.6.2.6 ENTWICKLUNGSSTUFE

Tabelle 16: Gewichte für die Grundtypen der Wuchsklassen und Entwicklungsphasen (nach GRABHERR et al. 1998)

<table>
<thead>
<tr>
<th>Phasen / Wuchsklassen-Grundtypen</th>
<th>Gewicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entwicklungsphase</td>
<td>0,9</td>
</tr>
<tr>
<td>Naturnahe Waldbauphase (NWP)</td>
<td>0,6</td>
</tr>
<tr>
<td>mehr als 3 Wuchsklassen(^a)</td>
<td>0,4</td>
</tr>
<tr>
<td>3 Wuchsklassen</td>
<td>0,3</td>
</tr>
<tr>
<td>1 oder 2 Wuchsklassen</td>
<td>0,1</td>
</tr>
</tbody>
</table>

\(^a\) Blößen bleiben unberücksichtigt.

Gleichung 4: Berechnung des Relativwerts (RW) für das Kriterium „Entwicklungstufe“ (nach GRABHERR et al. 1998)

\[
RW = \sum_{es} (A \cdot GW_{pw})
\]

RW: Relativwert für das Kriterium „Entwicklungstufe"

es: Entwicklungsstufentyp

A: Flächenanteil in Zehntel auf der Probefläche

GW_{pw}: Gewichtung je Phase/Wuchsklasse

3.6.2.7 TOTHOLZ

Die Bewertung des Totholzes orientiert sich sowohl an quantitativen, wie auch qualitativen Merkmalen. (vgl. GRABHERR et al. 1998)

Anhand der erhobenen Totholzmenge (> 10 cm Mittendurchmesser) wird ein Zwischenwert ermittelt (siehe Tabelle 17), welcher über Zu- und Abschläge für
definierte Qualitätsmerkmale (siehe Tabelle 18) des Holzes nachkorrigiert werden kann. Die Tabelle 18 wurde der Beschreibung der Korrekturfaktoren in GRABHERR et al. (1998) entsprechend korrigiert und folgend geringfügig modifiziert dargestellt. (vgl. GRABHERR et al. 1998)

Tabelle 17: Matrix zur Transformation der Totholzmenge (> 10 cm Mittendurchmesser) in einen Zwischenwert (nach GRABHERR et al 1998)

<table>
<thead>
<tr>
<th>m³ Totholz am Ort</th>
<th>m³ Totholz am Hektar</th>
<th>Zwischenwert (ZW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 1,87</td>
<td>> 30</td>
<td>9</td>
</tr>
<tr>
<td>0,94 - 1,87</td>
<td>30 - 15</td>
<td>7</td>
</tr>
<tr>
<td>0,26 - 0,93</td>
<td>14 - 4</td>
<td>5</td>
</tr>
<tr>
<td>0,064 - 0,25</td>
<td>3 – 1</td>
<td>3</td>
</tr>
<tr>
<td>0,01 - 0,063</td>
<td>< 1 und > 0</td>
<td>1</td>
</tr>
<tr>
<td>< 0,01</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabelle 18: Berücksichtigung von Zu- und Abschlagswerten bei der Bestimmung des Relativwertes aus dem Zwischenwert (modifiziert übernommen aus GRABHERR et al. 1998)

<table>
<thead>
<tr>
<th>Kor-Faktor</th>
<th>Qualitätsmerkmale</th>
<th>Ab-/Zuschlag vom ZW</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1</td>
<td>100% Stockholz</td>
<td>RW = 1</td>
</tr>
<tr>
<td>K2</td>
<td>> 50% Stockholz, nat. Totholz vorhanden</td>
<td>* 0,5</td>
</tr>
<tr>
<td>K3</td>
<td>> 50% nat. Starktotholz (> 20 cm)</td>
<td>+ 1</td>
</tr>
<tr>
<td>K4</td>
<td>> 50% Totholz stehend</td>
<td>+ 1</td>
</tr>
<tr>
<td>K5</td>
<td>> 50% Totholz anthropogen</td>
<td>- 0,5</td>
</tr>
<tr>
<td>K6</td>
<td>sehr viel Totholz fein (10 cm)</td>
<td>- 0,5</td>
</tr>
<tr>
<td>K7</td>
<td>Frisches Totholz²</td>
<td>- 0,5</td>
</tr>
</tbody>
</table>

² Zersetzungsgrad 1 = hartes Totholz
Der Relativwert für das Kriterium ergibt sich nach folgender Formel (siehe Gleichung 5):

\[
RW = ZW \times K2 + (K3 + K4 + K5 + K6 + K7)
\]

3.6.2.8 STRUKTURZUSCHLAG

Der Strukturzuschlag, als Korrektur für den Relativwert des Kriteriums „Entwicklungsstufe“, beurteilt Merkmale der Bestandesstruktur und des Alters, getrennt für jede Waldgesellschaft. (vgl. GRABHERR et al. 1998)

Flächen, welche eine unter naturnahen bzw. natürlichen Bedingungen entwickelte Strauchschicht von über 15% aufweisen, werden durch den Strauchschichtzuschlag (ZS_str) aufgewertet (siehe **Tabelle 19**). Das Vorhandensein dieser Mindestdeckung wird hier als Indikator für geringe bzw. fehlende Einflüsse durch Bewirtschaftung angenommen. Außerdem werden Zuschlagswerte für ein hohes Bestandesalter (ZS_140, ZS_a, ZS_bhd) vergeben, welches über unterschiedliche Faktoren beurteilt werden kann (siehe **Tabelle 19**).

Tabelle 19: Auszug aus der Strukturmatrix mit Zuschlagswerten je Waldgesellschaft
(modifiziert übernommen nach GRABHERR et al. 1998, Anhang 4)

<table>
<thead>
<tr>
<th>Name des Syntaxon</th>
<th>GES_CODE</th>
<th>zs_str</th>
<th>zs_140</th>
<th>zs_a</th>
<th>zs_bhd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraxino-Populetum</td>
<td>FRAXPOPU</td>
<td>1,5</td>
<td>0</td>
<td>70</td>
<td>0</td>
</tr>
</tbody>
</table>

GES_CODE: Code der Waldgesellschaft
ZS_str: Strauchschichtzuschlag
ZS_140: Zuschlag bei Überschreiten des Alters 140 J. (Akl. 9)
ZS_a: Zuschlag bei festgelegtem Alter
ZS_bhd: Zuschlag bei Überschreiten des angegebenen BHD

Tabelle 20: Auszug aus der Strukturmatrix mit Zuschlagswerten je Waldgesellschaft
(schriftliche Mitteilung KIRCHMEIR)

<table>
<thead>
<tr>
<th>Name des Syntaxon</th>
<th>GES_CODE</th>
<th>zs_str</th>
<th>zs_140</th>
<th>zs_a</th>
<th>zs_bhd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queco-Ulmetum</td>
<td>QUERULME</td>
<td>1,25</td>
<td>0</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>Salicetum albae</td>
<td>SALIALBA</td>
<td>1,5</td>
<td>0</td>
<td>40</td>
<td>0</td>
</tr>
</tbody>
</table>

Der Strukturzuschlag (SZ) errechnet sich, wie in **Gleichung 6** dargestellt.

Gleichung 6: Berechnung des Strukturzuschlags (nach GRABHERR et al. 1998)

\[
SZ = ZS_{str} + (ZS_{140} \text{ oder } ZS_{a} \text{ oder } ZS_{bhd})
\]

SZ: gesamter Strukturzuschlag
ZS_str: Zuschlag für die Strauchschicht
ZS_140: Zuschlag für die Altersklasse
ZS_a: Zuschlag für das Höchstalter
ZS_bhd: Zuschlag für den Durchmesser

1 oder 1,25 oder 1,5
1
0,5
0,5
0,5
3.6.2.9 BESTANDESAUFBAU, ARTENDIVERSITÄT DER BÄUME UND ARTENDIVERSITÄT DER BODENVEGETATION

Für diejenigen Waldgesellschaften, welche in dieser Arbeit beurteilt wurden, sind in den folgenden Tabellen Auszüge der hier angewendeten Matrizen zusammengefasst (siehe Tabelle 21, 22 und 23).

<table>
<thead>
<tr>
<th>Syntaxon</th>
<th>GES_CODE</th>
<th>1_sch</th>
<th>schw_2</th>
<th>2_sch</th>
<th>3_sch</th>
<th>stufig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraxino-Populetum</td>
<td>FRAXPOPU</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Querco-Ulmetum</td>
<td>QUERULME</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Salicetum albae</td>
<td>SALIALBA</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>3</td>
</tr>
</tbody>
</table>

GES_CODE: Code der Waldgesellschaft
1_sch: einschichtig
schw_2: schwach zweischichtig
2_sch: zweischichtig
3_sch: drei- oder mehrschichtig

Tabelle 22: Auszug aus der Bewertungsmatrix für die Transformation der Baumartenzahl je Waldgesellschaft in einen Relativwert von 1, 5 oder 9 (nach GRABHERR et al. 1998, Anhang 6)

<table>
<thead>
<tr>
<th>Syntaxon</th>
<th>GES_CODE</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraxino-Populetum</td>
<td>FRAXPOPU</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Querco-Ulmetum</td>
<td>QUERULME</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Salicetum albae</td>
<td>SALIALBA</td>
<td>9</td>
</tr>
</tbody>
</table>
Tabelle 23: Auszug aus der Bewertungsmatrix für die Transformation der Artenzahl in der Bodenvegetation je Waldgesellschaft in einen Relativwert von 1, 5, 7 oder 9 (nach GRABHERR et al. 1998, Anhang 5)

<table>
<thead>
<tr>
<th>Name des Syntaxon</th>
<th>GES_CODE</th>
<th>-5</th>
<th>6-10</th>
<th>11-15</th>
<th>16-20</th>
<th>21-30</th>
<th>31-40</th>
<th>41-50</th>
<th>51-60</th>
<th>61-70</th>
<th>71-80</th>
<th>81-90</th>
<th>>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraxino-Populetum</td>
<td>FRAXPOPU</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>9</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Querco-Ulmetum</td>
<td>QUERULME</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Salicetum albae</td>
<td>SALIALBA</td>
<td>0</td>
</tr>
</tbody>
</table>
3.6.3 AGGREGATION DER EINZELKRITERIEN

Karoline Zsak

Der Hemerobiegrad der Einzelflächen ergibt sich als synoptischer Wert durch dichotome Verknüpfung der Einzelkriterien (siehe Abbildung 7). Hierbei kommen drei unterschiedliche Aggregationsverfahren zur Anwendung (vgl. GRABHERR et al. 1998):

- **Aggregation durch logische Kombination**

- **Aggregation durch gewichtetes arithmetisches Mittel**

 Für die Verknüpfung zweier Einzelkriterien, welche einen mehr oder weniger linearen Einfluss aufeinander ausüben, kann eine Aggregation durch das gewichtete arithmetische Mittel erfolgen. Hierbei wird die Summe der gewichteten Relativwerte der Einzelkriterien durch die Summe der Gewichtungsfaktoren dividiert. (vgl. GRABHERR et al. 1998)

- **Zuschlagsverfahren**

 Für unregelmäßig auftretende Flächenmerkmale, die jedoch trotzdem für die Hemerobiebewertung entscheidend sind, besteht die Möglichkeit einen direkten Punktezuschlag zu vergeben. Im Konkreten kam dieses Verfahren lediglich für das Kriterium „Strukturzuschlag“ in Gebrauch. (vgl. GRABHERR et al. 1998)
3.6.3.1 NATURNÄHE DER VEGETATION

Matrix 2: Naturnähe der Vegetation, bei einer Überschirmung der Baumschicht von >= 25% (nach GRABHERR et al. 1998)

3.6.3.2 NATURNÄHE DER VERJÜNGUNG

Matrix 3: Naturnähe der Verjüngung (nach GRABHERR et al. 1998)
3.6.3.3 NATURNÄHE DES BESTANDES

Gleichung 7: Aggregation zum Kriterium „Naturnähe des Bestandes“ durch eine gewichtete Mittelbildung (nach GRABHERR et al. 1998)

\[NN_{best} = \frac{NN_{veg} \cdot GW_{veg} + NN_{verj} \cdot GW_{verj}}{GW_{veg} + GW_{verj}} \]

\(NN_{best} \): Relativwert für das Kriterium „Naturnähe des Bestandes“
\(NN_{veg} \): Relativwert der „Naturnähe der Vegetation“
\(GW_{veg} \): Gewicht für das Kriterium „Naturnähe der Vegetation“
\(NN_{verj} \): Relativwert der „Naturnähe der Verjüngung“
\(GW_{verj} \): Gewicht für das Kriterium „Naturnähe der Verjüngung“

3.6.3.4 NATURNÄHE DER ARTENZUSAMMENSETZUNG

3.6.3.5 ENTWICKLUNGSSTADIUM

\[ES = RW_{est} + ZS_{str} \]

ES: Relativwert für das Kriterium „Entwicklungsstadium“
RW_{est}: Relativwert des Kriteriums „Entwicklungstufe“
ZS_{str}: Zuschlag für Strukturmerkmale

3.6.3.6 BESTANDESREIFE

Matrix 4: Naturnähe der Artenzusammensetzung (nach GRABHERR et al. 1998)
kann und auch ein erfassbares, regelhaftes Vorhandensein für eine definierte Fläche hier nicht gegeben ist. (vgl. GRABHERR et al. 1998)

<table>
<thead>
<tr>
<th>Entwicklungsstadium</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 5 6 7 8 9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Totholz</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
</tbody>
</table>

Matrix 5: Relativwert des Kriteriums „Bestandesreife“ (nach GRABHERR et al. 1998)

3.6.3.7 ARTENREICHTUM

<table>
<thead>
<tr>
<th>Diversität d. Baumarten</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 5 9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diversität d. Bodenveg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 5 9</td>
</tr>
<tr>
<td>1 1 5 9</td>
</tr>
<tr>
<td>5 2 5 5</td>
</tr>
<tr>
<td>7 4 5 7</td>
</tr>
<tr>
<td>9 6 8 9</td>
</tr>
</tbody>
</table>

Matrix 6: Relativwerte des Kriteriums „Artenreichtum“ (nach GRABHERR et al. 1998)
Die Stufen der Transformationsmatrix resultieren aus den Relativwerten der Artenzahl-Klassen im Zuge der Bewertung der Einzelkriterien (siehe Kapitel 3.6.2.9). (vgl. GRABHERR et al. 1998)

3.6.3.8 DIVERSITÄT

<table>
<thead>
<tr>
<th>Bestandesaufbau</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

Matrix 7: Relativwerte des Kriteriums „Diversität“ (nach GRABHERR et al. 1998)

3.6.3.9 NATURNÄHE DER BESTANDESSTRUKTUR

Für die Ermittlung des Relativwertes der „Naturnähe der Bestandesstruktur“ erfolgt eine Verknüpfung durch ein gewichtetes arithmetisches Mittel der Relativwerte der „Bestandesreife“ und der „Diversität“ (siehe Gleichung 9). Die Gewichtung von 1,5:1
zu Gunsten des Kriteriums »Bestandereife« resultiert aus dem in Relation zur »Diversität«, höheren Informationsgehalt des Totholzteils für die Beurteilung der Hemerobie (siehe GRABHERR et al 1998).

Gleichung 9: Gewichtete arithmetische Mittelbildung zur Herleitung des Relativwertes für die „Naturnähe der Bestandesstruktur“ (nach GRABHERR et al. 1998)

\[BST = \frac{(RW_{br} \times GW_{br} + RW_{div} \times GW_{div})}{(GW_{br} + GW_{div})} \]

BST = Relativwert für das Kriterium „Bestandesstruktur“
RWbr: Relativwert des Kriteriums „Bestandereife“
GWbr: Gewicht des Kriteriums „Bestandereife“
RWdiv: Relativwert des Kriteriums „Diversität“
GWdiv: Gewicht des Kriteriums „Diversität“

3.6.3.10 HEMEROBIEWERT

Die Darstellung der Formel für den höchst aggregierten Relativwert in GRABHERR et al. (1998) erweist sich aus der Beschreibung dieses Verknüpfungsschrittes als fehlerhaft und wird aus diesem Grunde hier sinngemäß abgeändert bzw. korrigiert angeführt. (vgl. GRABHERR et al. 1998)
Gleichung 10: Gewichtete arithmetische Mittelbildung zur Herleitung des Hemerobiewertes
(stark modifiziert übernommen nach GRABHERR et al. 1998)

\[\text{HEM} = \frac{\text{RWar} \times \text{GWar} + \text{RWbst} \times \text{GWbst}}{\text{GWar} + \text{GWbst}} \]

HEM = Hemerobiewert
RWar: Relativwert des Kriteriums „Naturnähe der Artenzusammensetzung“
GWar: Gewicht des Kriteriums „Naturnähe der Artenzusammensetzung“
RWbst: Relativwert des Kriteriums „Naturnähe der Bestandesstruktur“
GWbst: Gewicht des Kriteriums „Naturnähe der Bestandesstruktur“
4 ERGEBNISSE UND INTERPRETATION

4.1 ERGEBNISSE DER VEGETATIONSANALYSE

Anna Illedsits

4.1.1 KLASSIFIKATION

Schon bei JELEM 1972 ist zu lesen, dass sich in der abgedämmten Au ehemalige Pappelauen ökologisch zu „Harten“ Auen verändert haben, sich noch einige Generationen mittels Stockausschlag und Wurzelbrut halten können, aber nach und
nach durch Harthölzer abgelöst werden. In der Krautschicht treten Arten der Hartholzau in den Vordergrund, es ist zum Beispiel viel *Parietaria officinalis* zu finden. (vgl. JELEM 1972)

Da die Unterschiede in der Artengarnitur der 39 Flächen nur sehr diffizil und schwer auszumachen waren, wurden somit alle Aufnahmen bis auf eine dem Verband Alnion incanae, der Großteil davon, wie bereits weiter oben angeführt, insgesamt 33 Aufnahmen, der Gesellschaft Fraxino-Ulmetum unterstellt.

Die differenzierte Vegetationstabelle ist so aufgebaut, dass an oberster Stelle die Klasse als höchste Hierarchiestufe angeführt wird. Darunter folgen in abnehmender Hierarchie Ordnung, Verband, Unterverband, insofern vorhanden, Assoziation und Subassoziation. Für jede Einheit sind ihre Charakterarten (=Kennarten) beziehungsweise auf Assoziationsniveau ist ihre diagnostische Artenkombination angegeben.

Mit Hilfe von Differentialarten lassen sich also Syntaxa derselben Rangstufe unterscheiden, während Charakterarten gegenüber allen Syntaxa derselben Rangstufe Gültigkeit haben. Bei der Bestimmung von Pflanzengesellschaften ist „eine sichere Zuordnung von Phytocoenosen indess nur anhand der diagnostischen Arten (DA) möglich.“ (vgl. WILLNER & GRABHERR 2007)

4.1.2 SYNTAXONOMISCHE ÜBERSICHT NACH WILLNER & GRABHERR 2007

Anna Illédić

Gebüsche und Vorwälder

Klasse Salicetea purpurea Moor 1958

Ordnung Saliceta purpureae Moor 1958

Verband Salicion albae Soó 1951

Assoziation *Salicetum albae* Issler 1926

Sommergrüne Laubwälder

Klasse Querco-Fagetea Braun-Blanquet & Vlieger 1937

Ordnung Fagetalia sylvaticae Pawlowski 1928

Verband Alnion incanae Pawlowski 1928

Unterverband Alnenion glutinoso-incanae Oberdorfer 1953

Assoziation *Fraxino Populetum* Jurko 1958

Unterverband Ulmenion Oberdorfer 1953

Assoziation *Fraxino Ulmetum* Tüxen ex Oberdorfer 1953
4.1.3 BESCHREIBUNG DER VEGETATIONSEINHEITEN

Anna Illedits

I. Klasse Salicetea purpurea Moor 1958

Uferweidengesellschaften

II. Ordnung Salicetalia purpureae Moor 1958

Es ist die einzige Ordnung der Klasse der Uferweidengebüšche im Gebiet. Somit untergliedert sich die Aufnahme 25 / 306 automatisch dieser Ordnung. Ihr unterstehen drei Verbände. (vgl. WILLNER & GRABHERR 2007)
I.I.I Verband Salicion albae Soó 1951

Weiden-Weichholzauen

Im Salicion albae Verband sind drei Assoziationen zu unterscheiden. Die Aufnahme 25 / 306 lässt sich durch ein hohes Vorkommen von Salix alba als Charakterart diesem Verband zuordnen.

I.I.I.I Assoziation Salicetum albae Issler 1926

Silberweidenauwald

In der Aufnahme 25 / 306 sind alle diagnostischen Arten (Salix alba, Urtica dioica, Rubus caesius, Phalaris arundinacea) der Assoziation vorhanden.
Subassoziation:

-cornetosum Wendelberger-Zelinka 1952

Diese Subassoziation hat eine gut entwickelte Strauchschicht und gedeiht auf Anlandungen rasch fließender Flussbereiche über Sand und Schotter („Hohe Weidenau“). (vgl. WILLNER & GRABHERR 2007)

II. Klasse Querco-Fagetea Braun-Blanquet & Vlieger 1937

Europäische sommergrüne Laubwälder

In der Klasse der Querco-Fagetea befinden sich klimax- und klimaxnahe sommergrüne Laubwälder der gemäßigten Klimazone Europas. Nadelhölzer sind in höheren Lagen kodominant. Es handelt sich um die potentiell natürliche Vegetation

Es lassen sich alle Aufnahmen bis auf eine der Klasse Querco-Fagetea zuordnen. Hiervon wurden 33 Aufnahmen in die Gesellschaft des Fraxino-Ulmetums und fünf Aufnahmen in die Gesellschaft des Fraxino-Populetums gestellt. (siehe Anhang 4/1 und 4/2)

II.1 Ordnung Fagetalia sylvaticae Pawlowski 1928

Alle 38 Aufnahmen in der Klasse der Querco-Fagetea werden zur Ordnung Fagetalia sylvaticae gestellt. Von den der Fagetalia sylvaticae vier untergeordneten Verbänden, lassen sich alle 38 Aufnahmen dem Verband Alnion incanae zuordnen.

II.1.1 Verband Alnion incanae Pawlowski 1928

Erlen- und Edellaubbaumreiche Feuchtwälder

Es wurden alle 38, der Ordnung Fagetalia sylvaticae zugeordneten Aufnahmen, in den Verband Alnion incanae gestellt. Es sind sowohl im Fraxino-Populetum als auch im Fraxino-Ulmetum alle Charakterarten (Prunus padus, Circaea lutetiana, Stachys sylvatica) bis auf Festuca gigantea vertreten. Letzgenannte Charakterart kommt nur in einer einzigen Aufnahme der trockenen Subassoziation des Fraxino-Ulmetums vor.

II.I.I.I Unterverband Alnenion glutinoso-incanae Oberdorfer 1953

Schwarzerlen-Eschen- und Grauerlenwälder, Erlenauwälder

Diesem Unterverband, sowie der ihm untergeordneten Assoziation des Fraxino-Populetums konnten insgesamt fünf Aufnahmen zugeordnet werden. Charakterarten des Unterverbandes waren keine vorhanden.

Silberpappel-Auwald

Dem Silberpappel-Auwald konnten fünf Aufnahmen unterstellt werden.

Subassoziationen:

-phalaridetosum

typicum

trocken

In der Vegetation finden sich vor allem die in Massen auftretende Solidago gigantea und Clematis vitalba, welche an Altbäumen hoch hinauf klettert und gemeinsam mit Crataegus monogyna und weiteren Sträuchern eine fast undurchdringliche Strauchschicht bildet. In abgedämmten Bereichen geht die Schwarzpappelau sehr schnell in eine Hartholzau, im Marchfeld meist eine Eichen-Lindenau, über. (vgl. JELEM 1974)

Die Strauchschicht ist in der Aufnahme 24 / 182, welche dieser Subassoziation zugeordnet werden konnte, zwar nicht undurchdringlich, aber relativ dicht. Clematis vitalba lässt sich tatsächlich auch in der Baumschicht auffinden und klettert an
manchen Baumindividuen hoch hinauf. *Solidago gigantea* tritt nicht in großen Massen auf, ist aber zumindest vorhanden. Die Probefläche befindet sich im stromnahen, überschwemmungsgefährdeten Bereich der Au.

II.I.I.II Unterverband Ulmenion Oberdorfer 1953

Hartholz-Auwälder, Eichen-Ulmen-Eschen-Auwälder

Die Auwaldgesellschaften des Ulmenion sind von *Quercus robur, Fraxinus excelsior* und *Fraxinus angustifolia, Ulmus minor* sowie *Ulmus laevis* aufgebaut. Selten treten *Acer campestre* oder *Tilia cordata* beigemischt auf. Ihre Standorte werden in der Regel überflutet, das heißt es erreichen zu Zeiten von Hochwasser zumindest die Baumwurzeln den Grundwasserspiegel. Sie begleiten die Ströme und Flüsse außerhalb der Alpen.

Die restlichen 33 Vegetationsaufnahmen der hiesigen Kartierung wurden dem Unterverband Ulmenion unterstellt.

Es sind folgende Charakterarten definiert: *Ulmus minor* (schwach), *Ulmus laevis*, *Populus x canescens, Vitis vinifera subsp. sylvestris, Rumex sanguineus*.

Die schwache Charakterart *Ulmus minor* kommt fast durchgehend in allen 33 Aufnahmen vor, nur in sechs Aufnahmen ist sie nicht vertreten. Sie ist die häufigste Ulmenart und innerhalb von Au en auf die Hartholzau beschränkt (vgl. HÜBL 1972) Im Gegensatz zur Flatterulme kann sie mittels Wurzelsprossung und Stockausschlag sowohl feuchte als auch trockene Standorte erfolgreich erobern. Die Feldulme ist
schattenfest, vermag daher lange in der Strauchschicht zu überdauern und bildet, wie oft in der abgedämmte Au der Fall, Ulmen-Reinbestände aus. *Ulmus laevis* ist vom Ulmensterben nicht betroffen, kommt aber seltener vor als die Feldulme und wird nicht bestandsbildend. (vgl. JELEM 1972) Sie dringt von allen Harthölzern am weitesten in die Weichholzau vor. (vgl. HÜBL 1972) *Ulmus laevis* kam in unseren gesamten Aufnahmen auf nur zwei Flächen vor, davon auf nur einer Fläche des Verbandes Ulmenion.

Populus x canescens ist ein natürliches Kreuzungsprodukt zwischen *Populus alba* und *Populus tremula*. Ihr Hauptwuchsereich beschränkt sich, im Gegensatz zur Weißpappel, auf trockenere Böden. (vgl. JELEM 1972) Die Graupappel konnte in keiner einzigen Vegetationsaufnahme der Lobau angesprochen werden.

Rumex sanguineus konnte auf nur einer Fläche mit einer Individuenzahl von 1 bestimmt werden.

II.I.I.II.I Assoziation Fraxino Ulmetum Tüxen ex Oberdorfer 1953

Mitteleuropäischer Stieleichen-Ulmen-Eschen-Auwald

Synonym: *Querco-Ulmetum* Issler 1926 nom. inval.

Geographische Differenzierung:

Subassoziationen:

-alnetosum glutinosae Oberdorfer 1957 [Inkl. Querco-Ulmetum phalaridetosum sensu Seibert 1992]

Die Fläche 15 / 259, welche dieser Subassoziation zugeordnet ist, befindet sich am Rande des Großenzersdorfer Armes und weist eine Reihe feuchtliebender Arten auf. An diagnostischen Arten konnten *Symphytum officinale* und *Iris pseudacorus* angesprochen werden.

-typicum

Die Subassoziation Fraxino-Ulmetum – typicum kommt auf frischen bis sehr frischen Standorten in ebenen Lagen der mittleren Austufe vor. Sie wird durch keine Differentialart von den anderen Subassoziationen unterschieden. (vgl. WILLNER & GRABHERR 2007)

Der Großteil der Aufnahmen im Fraxino-Ulmetum, 21 von insgesamt 33, ist dieser Subassoziation, der Frischen Harten Au, zugeordnet, davon befinden sich 11 Probeflächen in der Oberen und 10 in der Unteren Lobau. In der Frischen Harten Au sind die braunen Auböden am besten entwickelt. Sie werden alle paar Jahre überschwemmt und haben mit ihrem guten Humushorizont eine ausgezeichnete Fähigkeit Wasser zu speichern. (vgl. MARGL 1972a)

In der Aufnahmefläche 16 / 85, ebenfalls der Subassoziation –typicum untergeordnet, hat *Acer campestre* in der Baumschicht einen Br.-Bl.-Deckungsanteil von (4), was recht erstaunlich ist, wenn man bedenkt, dass der Feldahorn meist strauchförmig anzutreffen ist. Vorwiegend in der Au erreicht der sonst eigentlich häufig anzutreffende *Acer campestre*baumförmigen stattlichen Wuchs. (vgl. JELEM 1972) Es muss allerdings erwähnt werden, dass die Fläche 16 / 85 explizit als Ahornforst ausgewiesen wurde.

-caricetosum albae Oberdorfer 1957

4.1.4 ZEIGERWERTANALYSE

Anna Illedits

In den folgenden Abbildungen werden einerseits Unterschiede zwischen Unterer und Oberer Lobau dargestellt und andererseits werden die drei Vegetationsklassen des Fraxino-Populetums, Fraxino-Ulmetums und Salicetums miteinander verglichen.

Es wurden nicht alle mittleren Zeigerwerte zur Darstellung ausgewählt, sondern nur jene, bei denen bereits aus **Abbildung 8** eine Differenzierung zwischen den

108
Vegetationseinheiten ersichtlich war und signifikante Korrelationen zu erkennen sein sollten. Somit wurden allein die Zeigerwerte Licht, Feuchtigkeit und Nährstoffe für weitere Analysen verwendet.

Anhand von Tabelle 24 und der Tabelle in Anhang 3 wurden alle ausgewerteten mittleren Zeigerwerte besprochen.

Abbildung 8: Gegenüberstellung der mittleren Zeigerwerte für das Fraxino-Ulmetum (frax ulm), Fraxino-Populetum (frax pop) und das Salicetum.

Tabelle 24: gemittelte Zeigerwerte für jede der drei Vegetationsklassen

<table>
<thead>
<tr>
<th>Vegetationsklasse</th>
<th>Licht</th>
<th>Feuchtigkeit</th>
<th>Nährstoffe</th>
<th>Temperatur</th>
<th>Kontinentalität</th>
<th>Bodenreaktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>frax ulm</td>
<td>5.6</td>
<td>5.4</td>
<td>6.4</td>
<td>5.8</td>
<td>3.8</td>
<td>7.2</td>
</tr>
<tr>
<td>frax pop</td>
<td>5.8</td>
<td>5.7</td>
<td>6.8</td>
<td>5.9</td>
<td>3.8</td>
<td>7.2</td>
</tr>
<tr>
<td>salicetum</td>
<td>6.0</td>
<td>6.3</td>
<td>7.0</td>
<td>5.8</td>
<td>4.4</td>
<td>7.1</td>
</tr>
</tbody>
</table>

Licht: Die mittleren Zeigerwerte der Lichtzahlen zeigen eine leichte Abstufung von 5,6 (Fraxino-Ulmetum) über 5,8 (Fraxino-Populetum) bis zu 6 (Salicetum) (siehe Tabelle 24). Sie bewegen sich demnach alle im Bereich der Lichtzahl 5 (Halbschattenpflanzen), welche nur ausnahmsweise in vollem Licht, meist aber bei mehr als 10% r.B. vorkommen, und der intermediären Lichtzahl 6, zwischen 5 und 7
(Halblichtpflanzen) gelegen, welche ein Vorkommen bei selten weniger als 20% r.B. kennzeichnet (vgl. ELLENBERG 2001)

Feuchtigkeit: Auf Grund zahlreicher Untersuchungen und Beobachtungen zu Beziehungen zwischen Pflanzengesellschaften und Bodenwasser, die seit Anbeginn ökologischer Fragestellungen durchgeführt wurden, ist nach ELLENBERG die Feuchtezahl der gesichertste von allen sieben Zeigerwerten (vgl. ELLENBERG 2001). Die mittleren Werte der Feuchtezahl der einzelnen Standorte reichen von 4,6 bis 6,4 (siehe [Anhang 3]), das heißt sie bewegen sich hauptsächlich im Bereich der Frischezeiger (5), mit Tendenz in Richtung Feuchtezeiger (7). Unter den drei Vegetationsklassen lässt sich eine leichte Abstufung von frisch (Fraxino Ulmetum) bis hin zu etwas feuchter (Salicetum) erkennen (siehe [Tabelle 24]).

Nährstoffe: Betrachtet man die gesamten Aufnahmen (siehe [Anhang 3]) bewegen sich die Zeigerwert der mittleren Nährstoffzahlen im Bereich zwischen 5,2 (5-an mäßig stickstoffreichen Standorten) und 7,4 (7-an stickstoffreichen Standorten). Die mittleren Nährstoffzahlen der drei Vegetationsklassen zeigen eine leichte Abstufung in Richtung stickstoffreiche Standorte, von 6,4 (Fraxino-Ulmetum) über 6,8 (Fraxino-Populetum) zu 7 (Salicetum).

Temperatur: In dieser Kategorie gruppieren sich die mittleren Zeigerwerte aller Aufnahmeflächen (siehe [Anhang 3]) um den Faktor 6 (Mäßigwärmezeiger-Wärmezeiger), welcher typisch für die planar, colline Höhenstufe ist (vgl. ELLENBERG 2001), in der sich die Lobau befindet. Die Lobau liegt, wie schon eingangs im Kapitel 2.2 erwähnt, auf 150-158 m ü. A. Auf sämtlichen Probeflächen kommen auch einige echte Wärmezeiger (7-9) vor, wie zum Beispiel Juglans regia, Quercus cerris, Cornus mas, Pinus nigra, Lonicera caprifolium und die Neophyten Ailanthus altissima und Impatiens glandulifera.

Kontinentalität: Die mittleren Zeigerwerte der Kontinentalität liegen, bezogen auf alle kartierten Standorte (siehe [Anhang 3]), zwischen 3,4 und 4,4, das heißt um den Wert 4 (subozeanisch) verteilt. Pflanzen mit der Kontinentalitätszahl 4 haben ihren Verbreitungsschwerpunkt in Mitteleuropa, nach Osten hin ausgreifend (vgl. ELLENBERG 2001). Sieht man sich die angegebenen mittleren Zeigerwerte aller Pflanzen aller Aufnahmen an, gibt es eine sehr weitgestreute Verteilung von 2
(ozeanisch) bis 7 (subkontinental-kontinental), wobei der Großteil der Pflanzen einen Wert von 3 (ozeanisch-subozeanisch), 4 oder 5 (intermediär) besitzt.

Nachfolgende drei Abbildungen (Abbildung 9, 10 und 11) veranschaulichen Korrelationen zwischen den Zeigerwerten Licht, Feuchtigkeit und Nährstoffe. Es wurde eine lineare Regressionsgerade durch die Messpunkte gelegt und das Bestimmtheitsmaß R^2 angegeben.

Das Bestimmtheitsmaß (B) sagt aus, wie gut der Anteil der Variabilität einer Variablen durch die andere erklärt wird. Es ist also ein Gütemaß für die Korrelation zwischen zwei Variablen. R^2 liegt immer zwischen 0 und 1, wobei $R^2=1$ als das beste Ergebnis angesehen wird, bei welchem alle Punkte auf einer Geraden liegen. Bei $R^2=0$, besteht kein linearer Zusammenhang zwischen den Variablen. Hat die unabhängige Variable gar keinen Einfluss auf die abhängige ($R^2=0$), verläuft die Regressionsgerade parallel zur x-Achse (vgl. TREMP 2005). Ein Wert $R^2>0,6$ bedeutet, bezogen auf ökologische Fragestellungen, es besteht eine gute Korrelation. Alle Ergebnisse $R^2<0,2$ sind bereits nicht mehr aussagekräftig genug und werden als zusammenhanglos beurteilt.

In Abbildung 9 ist die Regressionsgerade so gut wie parallel zur x-Achse und R^2 mit dem Wert 0,002 bereits sehr nahe gegen 0. Es besteht demnach kein Zusammenhang zwischen den Zeigerwerten Licht und Feuchtigkeit.

Bei der Gegenüberstellung der Zeigerwerte Nährstoffe und Feuchtigkeit ließ sich eine leichte Korrelation feststellen. $R^2 = 0,3361$ (siehe Abbildung 10).
Abbildung 9: Streudiagramm: Regression der mittleren Zeigerwerte „Licht“ bezüglich „Feuchtigkeit“ für alle untersuchten Flächen

Abbildung 10: Streudiagramm: Regression der mittleren Zeigerwerte „Nährstoffe“ bezüglich „Feuchtigkeit“ für alle untersuchten Flächen

Der Vergleich der Zeigerwerte Nährstoffe und Licht ergab bei der Berechnung des Bestimmtheitsmaßes keinen linearen Zusammenhang. $R^2 = 0,0205$ (siehe Abbildung 11).
Abbildung 11: Streudiagramm: Regression der mittleren Zeigerwerte „Nährstoffe“ bezüglich „Licht“ für alle untersuchten Flächen

Abbildung 12: Gegenüberstellung der mittleren Zeigerwerte der Oberen Lobau für die Vegetationsklassen des Fraxino-Ulmetums (Frax Ulm) und des Fraxino-Populetums (Frax Pop).
Abbildung 13: Gegenüberstellung der mittleren Zeigerwerte der Oberen Lobau für die Vegetationsklassen des Fraxino-Ulmetums (Frax Ulm), Fraxino-Populetums (Frax Pop) und des Salicetums.

Da die Unterschiede nur äußerst geringfügig sind, wurde ein Box-Plot im Programm R erstellt und die Daten einem Kruskal-Wallis-Test (H-Test) unterzogen, um detailliertere Auskunft über die Zusammenhänge zu bekommen.

Für die Box-Plot-Darstellung (siehe Abbildung 14) wurden die Daten der gesamten Lobau herangezogen. Auf Grund der kleinen Probengröße (insgesamt 39 Aufnahmepunkte) konnte nicht mehr in Obere und Untere Lobau differenziert werden. Da nur eine einzige Aufnahme dem Salicetum zugeordnet werden konnte, wurde diese in der Graphik nicht als Box, sondern als horizontale Linie dargestellt. Der Kruskal-Wallis-Test lieferte folgende Ergebnisse: P=0.0838 für Licht, P=0.0704 für Feuchtigkeit, P=0.2147 für Nährstoffe. Das Konfidenzintervall wurde bei 90% angesetzt, somit sind für alle P<0,1 in unserer Analyse signifikante Unterschiede festzustellen. Demnach gibt es bei den Zeigerwerten Licht und Feuchtigkeit, gerade noch, signifikante Unterschiede zwischen den einzelnen Vegetationsklassen.
Abbildung 14: Box-Plot-Darstellung der mittleren Zeigerwerte Licht, Feuchtigkeit und Nährstoffe der Vegetationsklassen des Fraxino-Populetums (pop), Salicetums (sal) und des Fraxino-Ulmetums (ulm).

Folgende zwei Abbildungen wurden erstellt, um zu sehen, ob sich Obere und Untere Lobau hinsichtlich der drei mittleren Zeigerwerte unterscheiden. Im Balkendiagramm (Abbildung 15) erkennt man, dass sich die Standorte der Unteren von der Oberen Lobau hinsichtlich der Nährstoffzahl praktisch nicht voneinander unterscheiden, jedoch bei der Licht- und Feuchtigkeitszahl wiederum leichte Differenzen erkennbar sind.

Um die Signifikanz dieser Behauptung statistisch zu überprüfen wurde erneut ein Box-Plot erstellt (siehe Abbildung 16) und darauffolgend ein Kruskal-Wallis-Test durchgeführt. Die Ergebnisse des H-Test: Licht (P-Wert = 0.1599), Feuchtigkeit (P-Wert = 0.2059), Nährstoffe (P-Wert = 0.5836). Die P-Werte aller Faktoren sind über dem angesetzten Konfidenzintervall, was bedeutet, dass sich Obere und Untere Lobau in keinem der drei mittleren Zeigerwertzahlen signifikant unterschieden.

115

Abbildung 16: Box-Plot-Darstellung der mittleren Zeigerwerte Licht, Feuchtigkeit und Nährstoffe. Obere und Untere Lobau im Vergleich.
4.2 ERGEBNISSE DER HEMEROBIEBEWERTUNG

Karoline Zsak

4.2.1 ALLGEMEIN

Karoline Zsak

Abbildung 17 : Ergebnisse: Verteilung der Hemerobiestufen auf die Stichprobeflächen der Lobau – Gesamtübersicht

Abbildung 18: Ergebnisse: Verteilung der Naturnähestufen auf die Stichprobeflächen der Lobau - Gesamtübersicht

In Abbildung 19 sind die Medianwerte der berechneten Hemerobiegrade für die einzelnen Waldbiotoptypen in Relation zu der jeweiligen Flächenanzahl dargestellt. Der große Anteil der als »alpha-mesohemerob« einzustufenden Flächen, ergibt sich vorwiegend durch die erhobenen Forstflächen, welche zu einem Großteil dieser Hemerobiestufe zugeordnet wurden. Ebenso ergab die Beurteilung der beiden Aufnahmeflächen im Überschwemmungsgebiet bzw. in der „dynamischen Au“ der Biotoptypen „Weidenauwald“ und „Schwarzpappelauwald“ eine Zuordnung zu dieser Hemerobiestufe.

Abbildung 20 zeigt die Medianwerte der Hemerobie für die Syntaxonne der Vegetationsklassifikation in Relation zu der jeweiligen Flächenanzahl.
Abbildung 20: Ergebnisse: Median der Hemerobiewerte vs. Syntaxon

Für die Syntaxonome Fraxino-Ulmetum und Fraxino-Populetum ergibt sich ein Median von 6 bzw. die Hemerobiestufe »alpha-oligohemerob«. Da dem Salicetum albae nur eine Fläche zugeordnet wurde, entspricht der Wert hier dem berechneten Hemerobiewert. Daher ergibt sich für das Syntaxon die Hemerobiestufe »alpha-mesohemerob«.

Die Resultate für die Obere und Untere Lobau gesondert betrachtet (siehe Abbildung 21) zeigen für die Flächen der Unteren Lobau einen um rund 15% höheren Anteil an der Hemerobiestufe »alpha-mesohemerob«. Die Differenz verteilt sich für die Flächen der Oberen Lobau auf die Hemerobiegrade »beta-mesohemerob«, »beta-oligohemerob« und »gamma-oligohemerob«. Folglich ergeben sich für die Stichprobeflächen der Oberen Lobau, mit einem Anteil von 26,32% an der Naturnähestufe »natunah« (siehe Tabelle 5), positivere Resultate als für die Untere Lobau. Hier können lediglich 15% der Aufnahmen als »natunah« eingestuft werden (siehe Abbildung 21).
Eine detailliertere Gegenüberstellung der Hemerobiebewertung der Oberen und Unteren Lobau soll anhand der Ergebnisdarstellung für die Einzelkriterien erfolgen (siehe Kapitel 4.2.2).
4.2.2 ERGEBNISSDARSTELLUNG DER EINZELKRITERIEN

Karoline Zsak

4.2.2.1 NATURNÄHE DER BAUMARTENKOMBINATION

In Abbildung 23 (oben) sind die Anteile der, für die Abweichungen der potentiellen natürlichen Baumarten vergebenen Abschlagswerte, im Vergleich mit der potentiell natürlichen Waldgesellschaft „Querco-Ulmetum“ dargestellt. Diese potentiell natürliche Waldgesellschaft wurde für die Bewertung von 35 Stichprobenflächen herangezogen. Da eine Gegenüberstellung mit den potentiellen natürlichen
Baumarten der Waldgesellschaften „Salicetum albae“ und „Fraxino-Populetum“ jeweils auf nur zwei Flächen durchgeführt wurde und daher die Ergebnisse nicht repräsentativ sein können, werden diese hier nicht gesondert abgebildet.

![Diagramm A](attachment:diagramm_a.png)

![Diagramm B](attachment:diagramm_b.png)

Abbildung 22: Verteilung der Relativwerte »Naturnähe der Baumartenkombination« auf die Probeflächen der Oberen und Unteren Lobau

Besonders deutlich im Vergleich mit der Gesellschaft „Querco-Ulmetum“ ist das Fehlen der Stiel-Eiche (*Quercus robur*) in der Baumschicht zu verzeichnen, die mit 30% der vergebenen Abschlagswerte einen großen Einfluss auf die Ergebnisse in diesem Kriterium hatte. Ebenso stark unterpräsentiert waren die potentiell natürlichen Baumarten *Acer campestre* und *Fraxinus excelsior*, deren Abweichung von den erwarteten Häufigkeitsklassen 28% bzw. 25% der Abschlagspunkte
bewirkten. Der Anteil an den Abschlagswerten durch *Tilia cordata* ist vorwiegend auf ihr Fehlen in der Baumschicht zurückzuführen (siehe Abbildung 23 (oben)).

Die hohen Abschlagswerte der Baumartenkombination ergeben sich fast ausschließlich durch die Unterpräsenz der bestandesbildenden Arten der Potentiellen Natürlichen Waldgesellschaften. Eine Erniedrigung des Relativwertes aufgrund einer zu großen Häufigkeit der aktuellen Baumarten ergab sich lediglich in wenigen Einzelfällen (siehe Abbildung 23 (unten)) und ist überwiegend auf die Überpräsenz der aufgeforsteten Baumart *Acer pseudoplatanus* zurückzuführen, worauf rund 2% der Abschlagswerte begründet ist.

In der Darstellung der Ergebnisse für die aktuelle Baumartenkombination des „Querco-Ulmetum“ (siehe Abbildung 23) wurden nur jene Baumarten einbezogen,
welche in der Potentiellen Natürlichen Baumartenkombination erwartet werden und somit in die Bewertung jeder Aufnahme mit der entsprechenden potentiellen natürlichen Waldgesellschaft mit eingeflossen sind. Baumarten, welche aktuell auf den Flächen erfasst wurden, jedoch nicht potentiell erwartet oder neophytisch sind, konnten ebenso zu einer Erniedrigung der Relativwerte führen, beeinflussten die Ergebnisse jedoch in geringerem Ausmaß.

4.2.2.2 NATURNÄHE DER BODENVEGETATION

Die Beurteilung der Bodenvegetation erfolgte in Abhängigkeit des Verhältnisses zwischen logarithmischem Deckungsprozent der störungszeigenden Arten und der gesamten Bodenvegetation (siehe Kapitel 3.6.2.2, vgl. GRABHERR et al. 1998). In Abbildung 24 sind die Anteile der Störungszeiger an der Bodenvegetation für die Aufnahmen der Oberen und die Unteren Lobau in Prozent dargestellt (siehe Abbildung 24).

Abbildung 24: Deckungsanteile der Störungszeiger auf den Aufnahmeflächen der Oberen und Unteren Lobau
In der Gesamtheit ergibt sich für die Aufnahmeflächen der Oberen und der Unteren Lobau nahezu der gleiche Deckungsanteil der störungszeigenden Arten von rund 23% bzw. 21% an der Bodenvegetation. Daraus resultiert eine ähnliche Verteilung der Relativwerte für das Kriterium „Naturnähe der Bodenvegetation“ (siehe Abbildung 25). Aufgrund der weniger großen Differenzierbarkeit dieses Kriteriums wurde hier eine 5-stufige Skala der Relativwerte (1, 3, 5, 7 oder 9) angewendet. (vgl. GRABHERR et al. 1998)

Deutliche Abweichungen in der Verteilung der Relativwerte der Oberen und Unteren Lobau zeigen sich in der Verschiebung der Bewertungen für die Aufnahmeflächen der Unteren Lobau zum Relativwert »3« mit insgesamt 40% Probeflächenanteil hin, wodurch auch die Hemerobiestufen »polyhemerob« mit 20% und »beta-
mesohemerob mit 15% einen geringeren Anteil einnehmen als in der Oberen Lobau. Hier verteilen sich die Probeflächenanteile auf die drei Hemerobiestufen mit je 26,3% gleichmäßig. Für keine der Stichprobeflächen konnte hier der höchste Relativwert vergeben werden (siehe Abbildung 25).

Von größerer Bedeutung für die „Naturnähe der Bodenvegetation“ waren in Summe die stickstoffzeigenden Arten, insbesondere *Aegopodium podagraria*, *Clematis vitalba* und *Sambucus nigra*. (vgl. FISCHER et al. 2008)

Alle hier erwähnten Arten gelten nach Expertenbewertung als Störungszeiger für die Waldgruppe „Harte Auwälder“. (vgl. GRABHERR et al. 1998)

Aegopodium podagraria nimmt mit 10% bzw. 21%, vor allem in der Unteren Lobau einen großen Prozentanteil der Gesamtdeckung der störungszeigenden Arten ein. Die Pionierpflanze *Clematis vitalba* (mit 17% bzw. 13% Deckungsanteil) und *Sambucus nigra* (mit 14% bzw. 13% Deckungsanteil) zeigen in der Oberen und Unteren Lobau eine ähnlich große Verbreitung. *Geum urbanum* beteiligt sich mit 5% in der Oberen Lobau bzw. 3% in der Unteren Lobau an der Gesamtdeckung der Störungszeiger.

Andere Störungszeiger nehmen aufgrund geringer Deckung bzw. weniger häufiges Auftreten geringen Einfluss auf die Ergebnisse.

![Abbildung 27: Anteile stickstoffliebender, für Auenwälder charakteristische Störungszeiger für die Stichprobeflächen der Oberen und Unteren Lobau, sowie für das gesamte Untersuchungsgebiet](image-url)
In der Gegenüberstellung der Deckungsanteile der Störungszeiger für die Obere und Untere Lobau zeigt sich, dass in der Oberen Lobau die neophytischen und die stickstoffzeigenden Arten mehr oder weniger ähnlichen Einfluss auf die Bewertung der Bodenvegetation hatten, während in der Unteren Lobau die Einflussnahme der stickstoffzeigenden Störungszeiger klar überwog (siehe Abbildung 27).

Abbildung 28 zeigt die Verteilung der Relativwerte in dem Kriterium »Naturnähe der Bodenvegetation« ohne die Bewertung der stickstoffzeigenden Arten *Aegopodium podagraria, Clematis vitalba, Geum urbanum und Sambucus nigra* als Sztörungszeiger.

Abbildung 28: Verteilung der Relativwerte „Naturnähe der Bodenvegetation“ auf die Probeflächen der Oberen und Unteren Lobau (exklusive der stickstoffzeigenden Arten *Aegopodium podagraria, Clematis vitalba, Geum urbanum und Sambucus nigra*)
Die Resultate verschieben sich hier deutlich in Richtung der höheren Relativwerte. Ein wesentlich höherer Anteil der Flächen der Oberen bzw. der Unteren Lobau (53% bzw. 60%) wird hier als »beta-oligohemero« beurteilt. Dies verdeutlicht den großen Einfluss der genannten Stickstoffzeiger in der Bewertung der Bodenvegetation (vgl. auch Abbildung 25).

Wie auch für das Kriterium „Artendiversität der Bäume“ wird für die Bewertung in Hinblick auf die Diversität der Bodenvegetation eine abgeänderte Relativwertskala mit breiteren Relativwertstufen (»1«, »5«, »7« und »9«) herangezogen. (vgl. GRABHERR et al. 1998)

4.2.2.3 VERJÜNGUNGSART

Sowohl in der Oberen und auch der Unteren Lobau wurde zum größten Teil, mit 63,16% bzw. 55% der Stichprobeflächen, eine ausschließliche Naturverjüngung mit Baumarten der Potentiellen Natürlichen Waldgesellschaft oder spontanen (standortsgerechten) Pionierbaumarten erfasst, wodurch für diese in diesem Einzelkriterium der höchste Relativwert von »9« entsprechend der Hemerobiestufe »ahemero« vergeben werden konnte. (vgl. GRABHERR et al. 1998)
Auf die übrigen Hemerobiestufen verteilt sich mit rund 5% bzw. 10% nur eine geringe Anzahl an Probeflächen (siehe Abbildung 29).
Abbildung 29: Verteilung der Relativwerte „Verjüngungsart“ auf die Probeflächenanzahl der Oberen und Unteren Lobau

Auf 20% der Flächen in der Unteren Lobau wurde keine Verjüngung vorgefunden, welche den Kriterien der Hemerobieerhebung entsprach (vgl. GRABHERR et al. 1998). In diesem Fall wurde der Relativwert von »0« vergeben (siehe Abbildung 29).
4.2.2.4 FLÄCHE DER FREIVERJÜNGUNG

Keine der Stichprobenflächen wies eine Fläche der Freiverjüngung auf. Daher konnte für alle Flächen in diesem Kriterium der höchste Relativwert »9« entsprechend der Hemerobiestufe »ahemero« vergeben werden.

4.2.2.5 NUTZUNG – BEEINFLUSSUNG

Ein geringer Prozentsatz der Stichprobeflächen in der Unteren Lobau (5% bzw. 10%) wurden mit den Relativwerten »4« und »5« negativer beurteilt. Bei den Flächen handelt es sich um zwei Forstflächen und eine Fläche im Überschwemmungsgebiet, auf denen mehrere Nutzungsarten festgestellt wurden.
Abb. 30: Verteilung der Relativwerte „Nutzung – Beeinflussung“ auf die Probeflächenanzahl der Oberen und Unteren Lobau

Die Obere Lobau unterscheidet sich von der Unteren Lobau erwartungsgemäß in der Frequentierung der Flächen durch Besucher, was durch die Nutzungsarten „Trampling (anthropogen)“ und „Müll“ bestätigt wurde. Während diese Beeinflussung auf rund 68% bzw. 53% der Stichproben der Oberen Lobau festgestellt werden konnten, wurden in der Unteren Lobau lediglich auf 205 bzw. 35% der Aufnahmeflächen Hinweise auf diese Einwirkungen erfasst.

Abbildung 31: Nutzungsarten in Relation zu der Anzahl der beeinflussten Flächen – Gesamtübersicht

4.2.2.6 ENTWICKLUNGSSTUFE

57,9% bzw. 85% der Aufnahmeflächen in der Oberen bzw. Unteren Lobau weisen ausschließlich naturnahe Entwicklungsphasen auf, wodurch sie in diesem Kriterium der Hemerobiestufe »ahemerob« zugeordnet werden können. Ein wesentlich geringerer Anteil der Flächen von 26,3% bzw. 10% wurde aufgrund rein
anthropogen bedingter Altersklassen mit einem Relativwert von »1 « beurteilt. Flächen die sowohl wirtschaftlich bedingte Wuchsklassen wie auch naturnahe Entwicklungsphasen aufwiesen, traten in der Oberen und in der Unteren Lobau nur vereinzelt auf und verteilen sich auf die übrigen Hemerobiestufen (siehe Abbildung 32).

Abbildung 32: Verteilung der Relativwerte „Entwicklungsstufe“ auf die Probeflächenanzahl der Oberen und Unteren Lobau

4.2.2.7 TOTHOLZ

Die Relativwerte des Kriteriums „Totholz“ basieren vor allem auf der Menge bzw. dem Volumen (m³) des auf den Stichprobeflächen erhobenen Totholzes. Darüber hinaus kann die Bewertung qualitativer Merkmale über Korrekturfaktoren den
Relativwert erhöhen oder erniedrigen (siehe Kapitel 3.6.2.7, vgl. GRABHERR et al. 1998).

Die Verteilung der Relativwerte in der Bewertung des Totholzes für die Stichprobenflächen der Oberen und Unteren Lobau zeigt in beiden Fällen, dass der größte Anteil von rund 30% der Flächen der Hemerobiestufe »beta-mesohemerob« zuzuordnen ist (siehe Abbildung 33).

Ähnlichkeiten bestehen auch in dem Anteil, der als »ahemerob« einzustufenden Flächen, welche in der Oberen Lobau und der Unteren Lobau mit 26,32% bzw. 20% einen bedeutenden Anteil einnehmen (siehe Abbildung 33). Weitere 20% der Stichproben der Unteren Lobau wurden in diesem Kriterium dem Relativwert »8« bzw. der Hemerobiestufe »gamma-oligohemerob« zugeteilt und 15% dem
Relativwert »6«, entsprechend dem Hemerobiegrad »alpha-oligohemerob«. Für Aufnahmeflächen auf denen kein Totholz vorhanden war wurde der Relativwert »0« vergeben.

Die übrigen Flächenanteile der Oberen Lobau verteilen sich mehr oder weniger gleichmäßig auf die restlichen Hemerobiestufen (siehe Abbildung 33).

In Abbildung 34 sind die für die Bewertung der qualitativen Merkmale des Totholzes vergebenen Korrekturfaktoren in Relation zu der Flächenanzahl dargestellt, auf der sie zur Anwendung kamen. 11 Flächen wiesen einen Anteil von über 50% natürliches Starktotholz auf und 5 Flächen über 50% stehendes Totholz, wofür eine Relativwerterhöhung um den Faktor »1« entsprechend der Korrekturfaktoren „K3“ und „K4“ erfolgte (siehe Tabelle 18). Die übrigen Korrekturfaktoren kamen mehr oder weniger nur vereinzelt zur Anwendung (siehe Abbildung 34).

Abbildung 34: Korrekturfaktoren in Relation zur Flächenanzahl - Gesamtübersicht
4.2.2.8 BESTANDESAUFBAU

Die Relativwerte der Stichprobenflächen in der Beurteilung des Kriteriums „Bestandesaufbau“ verteilen sich auf die Hemerobiestufen »beta-meso-hemerob« bis »ahemerob«. Die größten Anteile der Stichprobenflächen der Oberen Lobau mit 47,4% und 26,3% sind hier als »beta-oligohemerob« und »gamma-oligohemerob« einzustufen.

Die Aufnahmen der Unteren Lobau verteilen sich mit 35% und 30% vorwiegend auf die Hemerobiegrade »gamma-oligohemerob« und »beta-meso-hemerob«, während hier im Vergleich mit der Oberen Lobau nur 25% der Erhebungsflächen als »beta-oligohemerob« klassifiziert wurden (siehe Abbildung 35).

Abbildung 35: Verteilung der Relativwerte „Bestandesaufbau“ auf die Probeflächenanzahl der Oberen und Unteren Lobau

4.2.2.9 ARTENDIVERSITÄT DER BÄUME

Die Beurteilung in dem Kriterium „Artendiversität der Bäume“ erfolgt anhand einer differenzierten Relativwertskala mit breiten Intervallklassen und ist auf die Relativwerte »1«, »5« und »9« beschränkt. (vgl. GRABHERR et al. 1998)

Sowohl in der Oberen wie auch in der Unteren Lobau ist der Großteil der Erhebungsf lächen mit rund 47% bzw. 50% in diesem Kriterium als »polyhemerob« einzustufen (siehe Abbildung 36), da die erfassten Baumartenzahlen das Minimum der naturnahen Waldgesellschaften unterschreiten. (vgl. GRABHERR et al. 1998)

Den höchsten Relativwert in der Bewertung erreichen mit einem Anteil von rund 16% bzw. 5% in der Oberen bzw. Unteren Lobau nur wenige Flächen.

Die übrigen Flächenanteile fallen entsprechend der Relativwertskala auf den Relativwert »5«. Folglich sind rund 37% der Aufnahmen in der Oberen Lobau der Hemerobiestufe »beta-meso-hemerob« zuzuordnen (siehe Abbildung 36).

In der Unteren Lobau sind 40% der Stichproben als »beta-meso-hemerob« einzustufen. Der Relativwert »0« wurde für einen Bestand vergeben, der rein aus standortsfremden Baumarten aufgebaut war und betrifft eine Erhebungsfläche bzw. 5% (siehe auch Kapitel 4.3).
ARTENDIVERSITÄT DER BODENVEGETATION

Wie auch für das Kriterium „Artendiversität der Bäume“ wird für die Bewertung in Hinblick auf die Diversität der Bodenvegetation eine abgeänderte Relativwertskala mit breiteren Relativwertstufen (»1«, »5«, »7« und »9«) herangezogen. (vgl. GRABHERR et al. 1998)

In der Bewertung dieses Kriteriums wird ein klarer Unterschied in der Gegenüberstellung der Oberen und Unteren Lobau deutlich. Während auf rund 53% der Stichprobenflächen der Oberen Lobau die Minimalwerte der naturnahen Vergleichswerte nicht erreicht und als »polyhemerob« eingestuft werden, können 55% der Aufnahmeflächen der Unteren Lobau einem Hemerobiewert von »7«
entsprechend der Hemerobiestufe »beta-oligohemerob« zugeordnet werden (siehe Abbildung 37).

Aufgrund fehlender Vergleichswerte für die Waldgesellschaft „Salicetum albae“ blieben zwei Flächen der Oberen Lobau ohne Bewertung und erhielten den Relativwert »0« (siehe Abbildung 37, vgl. GRABHERR et al. 1998).

Wie auch in Kapitel 4.2.2.2 soll hier der Einfluss von Aegopodium podagraria, Geum urbanum, Clematis vitalba und Sambucus nigra auf die Ergebnisse dargestellt werden. Abbildung 38 zeigt die Resultate in dem Kriterium »Artendiversität der Bodenvegetation« ohne die Bewertung der stickstoffzeigenden Arten als Störungszeiger.
Abbildung 38: Verteilung der Relativwerte „Artendiversität der Bodenvegetation“ auf die Probeflächenanzahl der Oberen Lobau und Unteren Lobau Lobau (exklusive der stickstoffzeigenden Arten *Aegopodium podagraria, Geum urbanum, Clematis vitalba und Sambucus nigra*)

Wie bereits in dem Kriterium »Naturnähe der Bodenvegetation« führt dies zu einer positiveren Beurteilung der Waldflächen, vor allem in der Unteren Lobau. Der Anteil der Aufnahmeflächen, welche in diesem Kriterium als »ahememerob« einzustufen sind, würde hier ohne die Beurteilung der stickstoffzeigenden Arten als Störungszeiger um 20% steigen.
4.2.3 INTERPOLATION DER ERGEBNISSE UND KARTENERSTELLUNG IM PROGRAMM ARCGIS

Karoline Zsak

Für die Klassifizierung charakteristischer Hemerobiestufen und die Zuweisung der Stichprobeklassen wurde der Median der Probeflächenergebnisse herangezogen (siehe Tabelle 25). Die Bildung eines Mittelwertes wurde bewusst ausgeschlossen, um den Verlust an Information in den Extrembereichen (künstlich, natürlich) zu verhindern. (siehe REITER & KIRCHMEIR 1997)

<table>
<thead>
<tr>
<th>Waldbiotoptyp</th>
<th>Hemerobiewert der Einzelflächen</th>
<th>Median</th>
<th>Hemerobiestufe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahornforst</td>
<td>4</td>
<td>4</td>
<td>alpha-mesohemerob</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junge Laubbaumaufforst</td>
<td>4</td>
<td>5,5</td>
<td>beta-mesohemerob / alpha-oligohemerob</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robinienforst</td>
<td>4</td>
<td>5</td>
<td>beta-mesohemerob</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schwarzpappelauwald</td>
<td>4</td>
<td>6</td>
<td>alpha-oligohemerob</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silberpappel- und Weidenforst</td>
<td>5</td>
<td>5</td>
<td>beta-mesohemerob</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siberpappelauwald</td>
<td>4</td>
<td>6</td>
<td>alpha-oligohemerob</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weidenauwald</td>
<td>4</td>
<td>4</td>
<td>alpha-mesohemerob</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>alpha-oligohemerob</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eichen-Ulmen-Eschen-Auwald</td>
<td>6</td>
<td>6</td>
<td>alpha-oligohemerob</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eschenforst</td>
<td>6</td>
<td>6</td>
<td>alpha-oligohemerob</td>
</tr>
<tr>
<td>Hybridpappelforst</td>
<td>6</td>
<td>6</td>
<td>alpha-oligohemerob</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laubbaummischforst aus einheimischen Baumarten</td>
<td>5</td>
<td>5,5</td>
<td>beta-mesohemerob / alpha-oligohemerob</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nadelbaummischforst aus einheimischen Baumarten</td>
<td>5</td>
<td>5</td>
<td>beta-mesohemerob</td>
</tr>
<tr>
<td>Rotföhrenforst</td>
<td>5</td>
<td>5</td>
<td>beta-mesohemerob</td>
</tr>
<tr>
<td>Schwarzföhrenforst</td>
<td>5</td>
<td>5</td>
<td>beta-mesohemerob</td>
</tr>
</tbody>
</table>
Tabelle 26: Flächenanteil der Hemerobiestufen im Untersuchungsgebiet

<table>
<thead>
<tr>
<th>Hemerobiestufe</th>
<th>Gesamtfäche im Untersuchungsgebiet (m²)</th>
<th>Prozentanteil an der Gesamtfläche (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ohne Angabe</td>
<td>762643,955</td>
<td>5,96</td>
</tr>
<tr>
<td>alpha-mesohemerob</td>
<td>503005,8</td>
<td>3,93</td>
</tr>
<tr>
<td>beta-mesohemerob</td>
<td>858890,025</td>
<td>6,71</td>
</tr>
<tr>
<td>beta-mesohemerob / alpha-oligohemerob</td>
<td>462816,592</td>
<td>3,61</td>
</tr>
<tr>
<td>alpha-oligohemerob</td>
<td>10218057,4</td>
<td>79,79</td>
</tr>
</tbody>
</table>

Abbildung 39: Hemerobiekarte – Lobau 2011
4.3 EINZELFLÄCHENBESCHREIBUNG

4.3.1 OBERE LOBAU

Karoline Zsak

Abbildung 40: Übersichtskarte der Stichprobenpunkte – Obere Lobau

4.3.1.1 RELEVÈ NR. 1 / FID_INVENT NR. 13

Tabelle 27: Hemerobiebewertung – Aufnahme 1 / 13

<table>
<thead>
<tr>
<th>EINZELKRITERIEN</th>
<th>AGGREGATION DER KRITERIEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturnähe der Baumartenkombination:</td>
<td>Naturnähe der Vegetation:</td>
</tr>
<tr>
<td>RW_1 5</td>
<td>RW1_2 6</td>
</tr>
<tr>
<td>Naturnähe der Bodenvegetation:</td>
<td>Naturnähe der Verjüngung:</td>
</tr>
<tr>
<td>RW_2 7</td>
<td>RW3_4 7</td>
</tr>
<tr>
<td>Verjüngungsart:</td>
<td>Naturnähe des Bestandes:</td>
</tr>
<tr>
<td>RW_3 5,4</td>
<td>RW12_34 6,25</td>
</tr>
<tr>
<td>Fläche der Freiverjüngung:</td>
<td>Naturnähe der Artenzusammensetzung:</td>
</tr>
<tr>
<td>RW_4 9</td>
<td>RW1234_5 7</td>
</tr>
<tr>
<td>Nutzung - Beeinflussung:</td>
<td>Entwicklungsstufe:</td>
</tr>
<tr>
<td>RW_5 7</td>
<td>Entwicklungsstadium:</td>
</tr>
<tr>
<td>RW_6 9</td>
<td>RW6_zs 10,25</td>
</tr>
<tr>
<td>Totholz:</td>
<td>Bestandesreife:</td>
</tr>
<tr>
<td>RW_7 8</td>
<td>RW6zs_7 9</td>
</tr>
<tr>
<td>Bestandesaufbau:</td>
<td>Artenreichthum:</td>
</tr>
<tr>
<td>RW_8 8</td>
<td>RW10_11 1</td>
</tr>
<tr>
<td>Strukturzuschlag:</td>
<td>Diversität:</td>
</tr>
<tr>
<td>ZS 1,25</td>
<td>RW1011_8 6</td>
</tr>
<tr>
<td>Artendiversität der Bäume:</td>
<td>Naturnähe der Bestandesstruktur:</td>
</tr>
<tr>
<td>RW_10 1</td>
<td>RW6zs7_10118 7,8</td>
</tr>
<tr>
<td>Artendiversität der Bodenvegetation:</td>
<td></td>
</tr>
<tr>
<td>RW_11 1</td>
<td></td>
</tr>
</tbody>
</table>

Die Aufnahmefläche 1/13 befindet sich im westlichsten Teil des Nationalparks und gehört, aufgrund ihrer Lage, wahrscheinlich zu den häufiger frequentierten Flächen der Nationalparkbesucher (siehe Abbildung 40). Die Probefläche zeichnet sich in
Hinblick auf die Nutzung des Nationalparks als Erholungsgebiet durch ihre unmittelbare Nähe zum Wegenetz des Nationalparks und zur Naturbademöglichkeit „Dechantlacke“ aus. Aber auch die geringe Distanz zum, an die Siedlungen der Stadt angrenzenden, Nationalparkzugang mit Parkanlagen, Nationalparkhaus und öffentlicher Verkehrsverbindung der Wiener Linien lässt auf eine höhere Besucherfrequenz schließen.

Im Kriterium „Nutzung – Beeinflussung“ schlägt sich dies nicht auffällig nieder, da die auf der Fläche festgestellten Einwirkungen, wie „Trampling“, „Lagern“ und „Müll“, in geringem Ausmaß und in Relation zu forstlichen Nutzungen in ihrer Beeinflussung niedrig zu gewichten sind. „Lagern“ beschreibt hier ein verlassenes Zelt (ca. 3 m²) auf der Aufnahmefläche. Im Vergleich mit den anderen nicht forstlich genutzten Flächen ist die Beurteilung in dieser Kategorie jedoch eher negativ.

Die Hemerobiebewertung der Fläche ist mit der Stufe »beta-oligohemerob« sehr positiv.

Der aus den Daten erfasste und auf der Fläche vorgefundene Waldbiotoptyp „Eichen-Ulmen-Eschenauwald“ stimmte hier gut mit der ermittelten Potentiellen Natürlichen Vegetation und der syntaxonomischen Auswertung (Querco-Ulmetum)

Mit der Bestimmung der Hemerobiestufe »alpha-oligohemerob« (6) zählt die Aufnahme 2 / 44 im Vergleich mit den übrigen Nicht-Forstflächen zu den schlechter bewerteten Flächen.

Die forstliche Endnutzung wirkt sich außerdem unmittelbar auf die Bewertung der Beeinflussung und der Entwicklungsstufe aus, wobei der niedrige Relativwert des
Kriterium „Nutzung – Beeinflussung“ wesentlich durch Aufnahme teils flächiger Wildschäden zustande kommt. Indirekt wirkt sich die Bewirtschaftung auf das Kriterium „Totholz“ durch eine geringere Totholzmenge auf der Forstfläche aus.

Ein weiteres positiv beurteiltes Flächenmerkmal ist die Verjüngung auf der Aufnahmefläche (siehe Tabelle 29), die mit den Arten *Acer campestre* und *Tilia cordata* der natürlichen Verjüngung der Potentiellen Natürlichen Vegetation entspricht.
4.3.1.4 RELEVÉ NR. 4 / FID_INVENT NR. 94

Tabelle 30: Hemerobiebewertung – Aufnahme 4 / 94

<table>
<thead>
<tr>
<th>EINZELKRITERIEN</th>
<th>AGGREGATION DER KRITERIEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturnähe der Baumartenkombination:</td>
<td>Naturnähe der Vegetation:</td>
</tr>
<tr>
<td>RW_1 3,5</td>
<td>RW1_2 3</td>
</tr>
<tr>
<td>Naturnähe der Bodenvegetation:</td>
<td>Naturnähe der Verjüngung:</td>
</tr>
<tr>
<td>RW_2 1</td>
<td>RW3_4 9</td>
</tr>
<tr>
<td>Verjüngungsart:</td>
<td>Naturnähe des Bestandes:</td>
</tr>
<tr>
<td>RW_3 9</td>
<td>RW12_34 4,5</td>
</tr>
<tr>
<td>Fläche der Freiverjüngung:</td>
<td>Naturnähe der Artenzusammensetzung:</td>
</tr>
<tr>
<td>RW_4 9</td>
<td>RW1234_5 6</td>
</tr>
<tr>
<td>Nutzung - Beeinflussung:</td>
<td>Entwicklungsstadium:</td>
</tr>
<tr>
<td>RW_5 9</td>
<td>RW6_zs 10,25</td>
</tr>
<tr>
<td>Entwicklungsstufe:</td>
<td>Bestandesreife:</td>
</tr>
<tr>
<td>RW_6 9</td>
<td>RW6zs_7 9</td>
</tr>
<tr>
<td>Totholz:</td>
<td>Artenreichtum:</td>
</tr>
<tr>
<td>RW_7 5</td>
<td>RW10_11 1</td>
</tr>
<tr>
<td>Bestandesaufbau:</td>
<td>Diversität:</td>
</tr>
<tr>
<td>RW_8 7</td>
<td>RW1011_8 5</td>
</tr>
<tr>
<td>Strukturzuschlag:</td>
<td>Naturnähe der Bestandesstruktur:</td>
</tr>
<tr>
<td>ZS 1,25</td>
<td>RW6zs7_10118 7,4</td>
</tr>
<tr>
<td>Artendiversität der Bäume:</td>
<td></td>
</tr>
<tr>
<td>RW_10 1</td>
<td></td>
</tr>
<tr>
<td>Artendiversität der Bodenvegetation:</td>
<td></td>
</tr>
<tr>
<td>RW_11 1</td>
<td></td>
</tr>
</tbody>
</table>

welche der stabilen Au entspricht (siehe Tabelle 30, »Hem«) und der Lage der Aufnahmefläche im Bereich der abgedämmten Au, wurde die Fläche jedoch als »alpha-oligohemerob« eingestuft.

Die vergleichsweise positive Beurteilung der Aufnahme ergibt sich aus der Erhebung der Verjüngung, welche ausschließlich aus Baumarten der Potentiellen Natürlichen Waldgesellschaft besteht und der geringen bzw. fehlenden Nutzung oder Beeinflussung der Fläche.

4.3.1.5 RELEVÉ NR. 5 / FID_INVENT NR. 32

Tabelle 31: Hemerobiebewertung – Aufnahme 5 / 32

<table>
<thead>
<tr>
<th>EINZELKRITERIEN</th>
<th>AGGREGATION DER KRIERIEN</th>
<th>REL_Nr 5/ FID_Inv 32</th>
<th>HEMEROBIESTUFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RW_1 2</td>
<td>RW1_2 2</td>
<td>Biotop: Lavendelweiden - Sanddorngebüsch</td>
<td>5,9</td>
</tr>
<tr>
<td>RW_2 1</td>
<td>RW3_4 9</td>
<td>HEMEROBIESTUFE</td>
<td>6</td>
</tr>
<tr>
<td>Verjüngungsart:</td>
<td>3. Naturnähe des Bestandes:</td>
<td></td>
<td>alpha-oligohemerob</td>
</tr>
<tr>
<td>RW_3 9</td>
<td>RW12_34 3,75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fläche der Freiverjüngung:</td>
<td>4. Naturnähe der Artenzusammensetzung:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW_4 9</td>
<td>RW1234_5 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nutzung - Beeinflussung:</td>
<td>5. Entwicklungsstadium:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW_5 6</td>
<td>RW6_zs 10,25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entwicklungsstufe:</td>
<td>6. Bestandesreife:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW_6 9</td>
<td>RW6zs_7 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totholz:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW_7 5</td>
<td>RW10_11 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bestandesaufbau:</td>
<td>7. Artenreichtum:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW_8 8</td>
<td>RW1011_8 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strukturzuschlag:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZS 1,25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artendiversität der Bäume:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW_10 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artendiversität der Bodenvegetation:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW_11 7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erhebungsmerkmalen wie „Trampling“, „Müll“, „Lagern“, welche die häufigere Nutzung dieser Fläche als Erholungsraum bestätigen.

Mit 5 Baumarten im Bestand, exklusive dem hier erhobenen Neophyten Robinia pseudacacia und Populus x canadensis, wurde in der Kategorie „Artendiversität der Bäume“ eine mittelmäßige Punkteanzahl vergeben (siehe Tabelle 31).

Eine sehr negative Beurteilung erfolgte in dem Kriterium „Naturnähe der Bodenvegetation“ (siehe Tabelle 31). Auf der Probefläche wurden zahlreiche störungszeigende Arten aufgenommen, was sich durch die unmittelbare Nähe zur Offenfläche und den Einbezug der Arten auf der Störfläche erklären lässt. Besonders großflächiges Auftreten zeigt auch hier der Neophyt Impatiens parviflora.

Besonders positiv war die Verjüngung auf der Fläche, welche ausschließlich aus Baumarten der Potentiellen Natürlichen Vegetation bestand. Ebenso ergab sich für die Artendiversität der Bodenvegetation (siehe Tabelle 31), trotz des zahlreichen Auftretens von Störungszeigern, ein vergleichbar hoher Relativwert, der jedoch auf die standörtliche Vielfalt der Erhebungsfläche zurückzuführen ist und somit das Ergebnis verfälscht.
Die Gesamtbewertung der Fläche wurde mit der Hemerobiestufe »alpha-oligohemerob« festgelegt und ist im Vergleich mit den übrigen nicht forstlich genutzten Flächen der Oberen Lobau eher als negativ einzustufen.

4.3.1.6 RELEVÉ NR. 6 / FID_INVENT 62

Tabelle 32: Hemerobiebewertung – Aufnahme 6 / 62

<table>
<thead>
<tr>
<th>EINZELKRITERIEN</th>
<th>AGGREGATION DER KRITERIEN</th>
<th>REL_Nr 6/ FID_Inv 62</th>
</tr>
</thead>
<tbody>
<tr>
<td>RW_1 Naturnähe der Baumartenkombination:</td>
<td>RW_12 Naturnähe der Vegetation:</td>
<td>PNWG: Querco-Ulmetum</td>
</tr>
<tr>
<td>RW_2 Verjüngungsart:</td>
<td>RW_3 Naturnähe der Verjüngung:</td>
<td>Biotop: Ahornforst</td>
</tr>
<tr>
<td>RW_3 Fläche der Freiverjüngung:</td>
<td>RW_4 Naturnähe der Bodenvegetation:</td>
<td>Hem 3,9</td>
</tr>
<tr>
<td>RW_5 Nutzung - Beeinflussung:</td>
<td>RW_6 Naturnähe der Bestandesstruktur:</td>
<td>Hem gerundet 4</td>
</tr>
<tr>
<td>RW_6 Entwicklungstufe:</td>
<td>RW_7 Artenreichtum:</td>
<td>alpha-mesohemerob</td>
</tr>
<tr>
<td>RW_7 Totholz:</td>
<td>RW_8 Bestandesaufbau:</td>
<td></td>
</tr>
<tr>
<td>RW_8 Strukturzuschlag:</td>
<td>RW_10 Artendiversität der Bäume:</td>
<td></td>
</tr>
<tr>
<td>ZS</td>
<td>RW_11 Artendiversität der Bodenvegetation:</td>
<td></td>
</tr>
<tr>
<td>RW_10 Artendiversität der Bodenvegetation:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Die Bewertung der Naturnähe der Vegetation ergab für die Fläche den geringsten möglichen Relativwert, wobei in dem Kriterium „Naturnähe der Baumartenkombination“ eine Minimalwertkorrektur angewendet wurde, da der hier errechnete Relativwert unter 1 lag. (vgl. GRABHERR et al. 1998)

Zusätzlich wirkte sich die Aufnahme zahlreicher störungszeigender Arten der Bodenvegetation, im Besonderen des Neophyten Impatiens parviflora und den störungszeigenden Arten Sambucus nigra und Clematis vitalba, auf den aggregierten Wert aus.

Aus der Aggregation der Einzelkriterien ergab sich nach Rundung ein Hemerobiewert von »4«, was der Hemerobiestufe »alpha-mesohemob« entspricht und innerhalb der Beurteilung des Nationalpark Donau-Auen in Wien als negativ einzustufen ist.
Die Aufnahmefläche gehört dem Biotoptyp „Nadelbaummischforst aus einheimischen Baumarten“ an und wurde nach syntaxonomischer Analyse dem „Querco-Ulmetum“ zugestellt, was auch der Potentiellen Natürlichen Vegetation nach Reiter entspricht. Die vermessenen Brusthöhendurchmesser entsprechen den Wuchsklassen „Baumholz I“ und „Baumholz II“. (vgl. GRABHERR et al. 1998)

Die Aufnahmefläche wurde aufgrund ihrer Baumartenzusammensetzung, welche in dem Kriterium „Naturnähe der Baumartenkombination“ und „Artendiversität der Bäume“ mit einem eher positiven Relativwert beurteilt wurde, in ihrer forstlichen

Dem Zwischenwert des Kriteriums »Totholz«, welcher aufgrund des erhobenen Volumens eher positiv war, wurden durch Anwendung der Korrekturfaktoren K2 (> 50% Stockholz, natürliches Totholz vorhanden) und K5 (> 50% anthropogenes Totholz) wieder Punkte abgezogen (vgl. GRABHERR et al. 1998), wodurch sich ein geringer Relativwert in dieser Kategorie ergab (siehe Tabelle 33).

Wie auch auf den oben beschriebenen Aufnahmeflächen bestand die hier erhobene Verjüngung Großteils aus Baumarten der Potentiellen Natürlichen Vegetation.

Der Aufnahme 7 / 78 wurde nach Aggregation der Einzelkriterien die Hemerobiestufe »beta-mesohermob« zugeteilt.
Tabelle 34: Hemerobiebewertung – Aufnahme 8 / 215

<table>
<thead>
<tr>
<th>EINZELKRITERIEN</th>
<th>AGGREGATION DER KRITERIEN</th>
<th>REL_Nr 8 / FID_Inv 215</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturnähe der Baumartenkombination:</td>
<td>Naturnähe der Vegetation:</td>
<td>PNWG: Querco-Ulmetum</td>
</tr>
<tr>
<td>RW_1 4</td>
<td>RW1_2 5</td>
<td>Biotop: Junge Laubbaumaufforstung</td>
</tr>
<tr>
<td>RW_2 7</td>
<td>RW3_4 9</td>
<td></td>
</tr>
<tr>
<td>Verjüngungsart:</td>
<td>Naturnähe des Bestandes:</td>
<td></td>
</tr>
<tr>
<td>RW_3 9</td>
<td>RW12_34 6</td>
<td></td>
</tr>
<tr>
<td>Fläche der Freiverjüngung:</td>
<td>Naturnähe der Artenzusammensetzung:</td>
<td></td>
</tr>
<tr>
<td>RW_4 9</td>
<td>RW1234_5 7</td>
<td></td>
</tr>
<tr>
<td>Nutzung - Beeinflussung:</td>
<td>Entwicklungsstufe:</td>
<td></td>
</tr>
<tr>
<td>RW_5 8</td>
<td>RW6_zs 10,25</td>
<td>beta-oligohemerob</td>
</tr>
<tr>
<td>Entwicklungsstufe:</td>
<td>Bestandesreife:</td>
<td></td>
</tr>
<tr>
<td>RW_6 9</td>
<td>RW6zs_7 9</td>
<td></td>
</tr>
<tr>
<td>Totholz:</td>
<td>Artenreichtum:</td>
<td></td>
</tr>
<tr>
<td>RW_7 9</td>
<td>RW10_11 5</td>
<td></td>
</tr>
<tr>
<td>Bestandesaufbau:</td>
<td>Diversität:</td>
<td></td>
</tr>
<tr>
<td>RW_8 5</td>
<td>RW1011_8 5</td>
<td></td>
</tr>
<tr>
<td>Strukturzuschlag:</td>
<td>Naturnähe der Bestandesstruktur:</td>
<td></td>
</tr>
<tr>
<td>ZS 1,25</td>
<td>RW6zs7_10118 7,4</td>
<td></td>
</tr>
<tr>
<td>Artendiversität der Bäume:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW_10 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artendiversität der Bodenvegetation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW_11 7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Durch das Ausbleiben forstwirtschaftlicher Nutzung seit Bestehen der Laubbaumaufforstung wurde bei der Aufnahme der Berechnungskriterien die Fläche nicht als Forst behandelt. Die niedrigen Relativwerte, welche sich durch
Berücksichtigung der forstlichen Wuchsklassen in dem Kriterium „Entwicklungsstufe“ ergeben würden, wurden hier somit bewusst verhindert.

Für die abgelegene Fläche ergab sich erwartungsgemäß ein hoher Relativwert in dem Kriterium „Nutzung – Beeinflussung“ und eine, in der Gesamtheit der Flächen betrachtete, sehr positive Beurteilung der Bodenvegetation und der Verjüngung. Aufgrund des hohen natürlichen Totholzanteils auf der Erhebungsfläche (~ 6 m³) konnte der maximale Relativwert in dem Kriterium „Totholz“ vergeben werden (siehe Tabelle 34).

4.3.1.9 RELEVÉ NR. 9 / FID_INVENT NR. 138

Tabelle 35: Hemerobiebewertung – Aufnahme 9 / 138

<table>
<thead>
<tr>
<th>EINZELKRITERIEN</th>
<th>AGGREGATION DER KRITERIEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturnähe der Baumartenkombination:</td>
<td></td>
</tr>
<tr>
<td>RW_1</td>
<td>1</td>
</tr>
<tr>
<td>Naturnähe der Bodenvegetation:</td>
<td></td>
</tr>
<tr>
<td>RW_2</td>
<td>5</td>
</tr>
<tr>
<td>Verjüngungsart:</td>
<td></td>
</tr>
<tr>
<td>RW_3</td>
<td>9</td>
</tr>
<tr>
<td>Fläche der Freiverjüngung:</td>
<td></td>
</tr>
<tr>
<td>RW_4</td>
<td>9</td>
</tr>
<tr>
<td>Nutzung - Beeinflussung:</td>
<td></td>
</tr>
<tr>
<td>RW_5</td>
<td>6</td>
</tr>
<tr>
<td>Entwicklungsstufe:</td>
<td></td>
</tr>
<tr>
<td>RW_6</td>
<td>7,4</td>
</tr>
<tr>
<td>Totholz:</td>
<td></td>
</tr>
<tr>
<td>RW_7</td>
<td>9</td>
</tr>
<tr>
<td>Bestandesaufbau:</td>
<td></td>
</tr>
<tr>
<td>RW_8</td>
<td>7</td>
</tr>
<tr>
<td>Strukturzuschlag:</td>
<td></td>
</tr>
<tr>
<td>ZS</td>
<td>1,75</td>
</tr>
<tr>
<td>Artendiversität der Bäume:</td>
<td></td>
</tr>
<tr>
<td>RW_10</td>
<td>5</td>
</tr>
<tr>
<td>Artendiversität der Bodenvegetation:</td>
<td></td>
</tr>
<tr>
<td>RW_11</td>
<td>7</td>
</tr>
<tr>
<td>Naturnähe der Vegetation:</td>
<td></td>
</tr>
<tr>
<td>RW1_2</td>
<td>1</td>
</tr>
<tr>
<td>Naturnähe der Verjüngung:</td>
<td></td>
</tr>
<tr>
<td>RW3_4</td>
<td>9</td>
</tr>
<tr>
<td>Naturnähe des Bestandes:</td>
<td></td>
</tr>
<tr>
<td>RW12_34</td>
<td>3</td>
</tr>
<tr>
<td>Naturnähe der Artenzusammensetzung:</td>
<td></td>
</tr>
<tr>
<td>RW1234_5</td>
<td>4</td>
</tr>
<tr>
<td>Entwicklungsstadium:</td>
<td></td>
</tr>
<tr>
<td>RW6_zs</td>
<td>9,15</td>
</tr>
<tr>
<td>Bestandesreife:</td>
<td></td>
</tr>
<tr>
<td>RW6zs_7</td>
<td>9</td>
</tr>
<tr>
<td>Artenreichtum:</td>
<td></td>
</tr>
<tr>
<td>RW10_11</td>
<td>5</td>
</tr>
<tr>
<td>Diversität:</td>
<td></td>
</tr>
<tr>
<td>RW1011_8</td>
<td>6</td>
</tr>
<tr>
<td>Naturnähe der Bestandesstruktur:</td>
<td></td>
</tr>
<tr>
<td>RW6zs7_10118</td>
<td>7,8</td>
</tr>
</tbody>
</table>

Der Schwarzföhrenforst, dem die Aufnahme 9 / 138 angehört, befindet sich innerhalb des Untersuchungsgebiets Nord-westlich in abgelegener Lage. Der Bestand weist laut Operational ein hohes Alter von 92 Jahren auf, wodurch im Zuge der Hemerobieberechnung für die Stichprobe die Vergabe eines gesamten Strukturzuschlags von 1,75 (inklusive Strauchschichtzuschlag) bewirkt wurde. (vgl. GRABHERR et al. 1998)

Auf der Probefläche sind mit Ausnahme der Baumartenkombination und einem geringen Anteil an Stockholz keine Spuren der forstlichen Bewirtschaftung sichtbar. Der Bestand weist eine hohe prozentuelle Deckung der Strauchschicht (95%) und...
einen hohen Anteil natürlichen Totholzes auf, ist schwer zugänglich und eine Nutzbarmachung nicht erkennbar. Für die Fläche wurden daher in den Kriterien „Entwicklungstufe“ und „Totholz“ innerhalb der forstlich genutzten Aufnahmen positive Bewertungen vergeben.

Durch die geringe Artmächtigkeit der Baumarten der Potentiellen Natürlichen Waldgesellschaft und das Auftreten der standortsfremden Arten *Pinus nigra* und *Robinia pseudacacia* ergibt sich in der Beurteilung der Naturnähe der Baumartenkombination ein Wert unter null, wodurch hier eine Minimalwertkorrektur auf den Relativwert »1« erfolgte. (vgl. GRABHERR et al. 1998)

Für die Aufnahme wurde ein Hemerobiewert von »5,1« berechnet, wodurch eine Klassifizierung zu der Hemerobiestufe »beta-meso-hemerob« erfolgte.
4.3.1.10 RELEVÉ NR. 10 / FID_INVENT NR. 115

Tabelle 36: Hemerobiebewertung – Aufnahme 10 / 115

<table>
<thead>
<tr>
<th>EINZELKRITERIEN</th>
<th>AGGREGATION DER KRITERIEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturnähe der Baumartenkombination:</td>
<td>Naturnähe der Vegetation:</td>
</tr>
<tr>
<td>RW_1 6,5</td>
<td>RW1_2 5</td>
</tr>
<tr>
<td>Naturnähe der Bodenvegetation:</td>
<td>Naturnähe der Verjüngung:</td>
</tr>
<tr>
<td>RW_2 3</td>
<td>RW3_4 7</td>
</tr>
<tr>
<td>Verjüngungsart:</td>
<td>Naturnähe des Bestandes:</td>
</tr>
<tr>
<td>RW_3 4,5</td>
<td>RW12_34 5,5</td>
</tr>
<tr>
<td>Fläche der Freiverjüngung:</td>
<td>Naturnähe der Artenzusammensetzung:</td>
</tr>
<tr>
<td>RW_4 9</td>
<td>RW1234_5 8</td>
</tr>
<tr>
<td>Nutzung - Beeinflussung:</td>
<td>Entwicklungsstadium:</td>
</tr>
<tr>
<td>RW_5 9</td>
<td>RW6_zs 11</td>
</tr>
<tr>
<td>Entwicklungsstufe:</td>
<td>Bestandesreife:</td>
</tr>
<tr>
<td>RW_6 9</td>
<td>RW6zs_7 9</td>
</tr>
<tr>
<td>Totholz:</td>
<td>Artenreichum:</td>
</tr>
<tr>
<td>RW_7 9</td>
<td>RW10_11 9</td>
</tr>
<tr>
<td>Bestandesaufbau:</td>
<td>Diversität:</td>
</tr>
<tr>
<td>RW_8 9</td>
<td>RW1011_8 9</td>
</tr>
<tr>
<td>Strukturzuschlag:</td>
<td>Naturnähe der Bestandesstruktur:</td>
</tr>
<tr>
<td>ZS 2</td>
<td>RW6zs7_10118 9</td>
</tr>
<tr>
<td>Artendiversität der Bäume:</td>
<td></td>
</tr>
<tr>
<td>RW_10 9</td>
<td></td>
</tr>
<tr>
<td>Artendiversität der Bodenvegetation:</td>
<td></td>
</tr>
<tr>
<td>RW_11 0</td>
<td></td>
</tr>
</tbody>
</table>

Als Potentielle Natürliche Waldgesellschaft wurde für die Erhebungsfläche nach Herleitung der PNV die Assoziation „Salicetum albae“ herangezogen, welche der
Weichholzau zuzuordnen ist und sich auf die unmittelbare Gewässernähe der Erhebungsfläche zurückführen lässt.

In den übrigen Flächenmerkmalen erreichte, mit Ausnahme der Naturnähe der Baumartenkombination, die Aufnahme durchgehend die Höchstwerte und erhielt einen Strauchschichtzuschlag sowie einen Punktezuschlag für das hohe Bestandesalter von 77 Jahren. (vgl. GRABHERR et al. 1998)

Der Relativwert für die Artendiversität der Bodenvegetation wurde dem Anhang 5 („Bewertungsmatrix für die Transformation der Artenzahl in der Bodenvegetation je Waldgesellschaft in einen Relativwert von 1, 5, 7 oder 9“ zitiert aus GRABHERR et al. 1998) der MaB-Hemerobiestudie entnommen. Der Wert »0« beruht darauf, dass die für die Klassifikation der Bodenvegetation herangezogenen Vegetationsaufnahmen dieser Waldgesellschaft nicht auswertbar waren. (vgl. GRABHERR et al 1998)

Der Wert »0« führt in dem folgenden Aggregationsschritt jedoch zu keiner Abwertung der Fläche, sondern wirkt sich auf die Bewertung der Artendiversität positiv aus, wodurch sich hier der maximale Wert ergibt (siehe Tabelle 36).

Die Fläche wurde nach Aggregation der Einzelkriterien der Hemerobiestufe »gamma-oligoheremob« zugeordnet und erreichte innerhalb der Hemeobieerhebung das positivste Ergebnis.
4.3.1.11 RELEVÉ NR. 11 / FID_INVENT NR. 219

Tabelle 37: Hemerobiebewertung – Aufnahme 11 / 219

<table>
<thead>
<tr>
<th>EINZELKRITERIEN</th>
<th>AGGREGATION DER KRITERIEN</th>
<th>REL_Nr 11 / FID_Inv 219</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturnähe der Baumartenkombination:</td>
<td>Naturnähe der Vegetation:</td>
<td>PWNG: Querco-Ulmetum</td>
</tr>
<tr>
<td>RW_1 2,5</td>
<td>RW1_2 2</td>
<td>Biotop: Eichen-Ulmen-Eschenauwald</td>
</tr>
<tr>
<td>Naturnähe der Bodenvegetation:</td>
<td>Naturnähe der Verjüngung:</td>
<td></td>
</tr>
<tr>
<td>RW_2 1</td>
<td>RW3_4 9</td>
<td></td>
</tr>
<tr>
<td>Verjüngungsart:</td>
<td>Naturnähe des Bestandes:</td>
<td></td>
</tr>
<tr>
<td>RW_3 9</td>
<td>RW12_34 3,75</td>
<td></td>
</tr>
<tr>
<td>Fläche der Freiverjüngung:</td>
<td>Naturnähe der Artenzusammensetzung:</td>
<td></td>
</tr>
<tr>
<td>RW_4 9</td>
<td>RW1234_5 5</td>
<td></td>
</tr>
<tr>
<td>Nutzung - Beeinflussung:</td>
<td>Entwicklungsstadium:</td>
<td></td>
</tr>
<tr>
<td>RW_5 8</td>
<td>RW6_zs 10,75</td>
<td></td>
</tr>
<tr>
<td>Entwicklungsstufe:</td>
<td>Bestandesrelief:</td>
<td></td>
</tr>
<tr>
<td>RW_6 9</td>
<td>RW6zs_7 9</td>
<td>alpha-oligohemero</td>
</tr>
<tr>
<td>Totholz:</td>
<td>Artenreichtum:</td>
<td></td>
</tr>
<tr>
<td>RW_7 9</td>
<td>RW10_11 2</td>
<td></td>
</tr>
<tr>
<td>Bestandesaufbau:</td>
<td>Diversität:</td>
<td></td>
</tr>
<tr>
<td>RW_8 8</td>
<td>RW1011_8 6</td>
<td></td>
</tr>
<tr>
<td>Strukturzuschlag:</td>
<td>Naturnähe der Bestandesstruktur:</td>
<td></td>
</tr>
<tr>
<td>ZS 1,75</td>
<td>RW6zs7_10118 7,8</td>
<td></td>
</tr>
<tr>
<td>Artendiversität der Bäume:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW_10 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artendiversität der Bodenvegetation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW_11 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Durch die hohe Artmächtigkeit der Störungszeiger *Clematis vitalba* und *Impatiens parviflora* sowie dem geringmächtigen Auftreten der subdominanten Baumarten der Potentiellen Natürlichen Waldgesellschaft ergaben sich niedrige Relativwerte der
Einzelkriterien. Daraus resultiert eine eher negative Bewertung durch die Aggregation zum Wert der „Naturnähe der Vegetation“ (siehe Tabelle 37).

Wie auch bei Aufnahme 10 / 115 wurde hier aufgrund der Ausbildung der Strauchschicht und des Alters laut Operat (87 Jahre) ein relativ hoher Strukturzuschlag vergeben. (vgl. GRABHERR et al. 1998)

Die Aggregation der Kriterien ergab nach Rundung einen Hemerobiewert von »6«, was der Hemerobiestufe »alpha-oligohemerob« entspricht.
4.3.1.12 RELEVÉ NR. 12 / FID_INVENT NR. 75

Tabelle 38: Hemerobiebewertung – Aufnahme 12 / 75

<table>
<thead>
<tr>
<th>EINZELKRITERIEN</th>
<th>AGGREGATION DER KRITERIEN</th>
<th>REL_Nr 12 / FID_Inv 75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturnähe der Baumartenkombination:</td>
<td>Naturnähe der Vegetation:</td>
<td>PNWG: Querco-Ulmetum</td>
</tr>
<tr>
<td>RW_1 1</td>
<td>RW1_2 2</td>
<td>Biotop: Rotföhrenforst</td>
</tr>
<tr>
<td>RW_2 7</td>
<td>RW1_2 2</td>
<td></td>
</tr>
<tr>
<td>Naturnähe der Bodenvegetation:</td>
<td>Naturnähe der Verjüngung:</td>
<td></td>
</tr>
<tr>
<td>RW_3 9</td>
<td>RW3_4 9</td>
<td></td>
</tr>
<tr>
<td>Verjüngungsart:</td>
<td>Naturnähe des Bestandes:</td>
<td></td>
</tr>
<tr>
<td>RW_4 9</td>
<td>RW12_34 3,75</td>
<td></td>
</tr>
<tr>
<td>Fläche der Freiverjüngung:</td>
<td>Naturnähe der Artenzusammensetzung:</td>
<td></td>
</tr>
<tr>
<td>RW_5 6</td>
<td>RW1234_5 5</td>
<td></td>
</tr>
<tr>
<td>Nutzung - Beeinflussung:</td>
<td>Entwicklungsstadium:</td>
<td></td>
</tr>
<tr>
<td>RW_6 2,6</td>
<td>RW6_zs 4,35</td>
<td></td>
</tr>
<tr>
<td>Entwicklungsstufe:</td>
<td>Bestandesreife:</td>
<td></td>
</tr>
<tr>
<td>RW_7 7</td>
<td>RW6zs_7 5</td>
<td></td>
</tr>
<tr>
<td>Totholz:</td>
<td>Artenreichtum:</td>
<td></td>
</tr>
<tr>
<td>RW_8 7</td>
<td>RW10_11 3</td>
<td></td>
</tr>
<tr>
<td>Bestandesaufbau:</td>
<td>Diversität:</td>
<td></td>
</tr>
<tr>
<td>RW_10 9</td>
<td>RW1011_8 6</td>
<td></td>
</tr>
<tr>
<td>Strukturzuschlag:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZS 1,75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artendiversität der Bäume:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW_11 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artendiversität der Bodenvegetation:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Aufnahme 12 / 75 gehört laut Waldinventur dem Biotopyp „Rotföhrenforst“ an und wurde nach pflanzensoziologischer Auswertung der Vegetationsaufnahme dem Syntaxon „Querco-Ulmetum“ zugeteilt, was auch der Potentiellen Natürlichen Waldgesellschaft entspricht.

Positiv anzumerken ist der, in Relation zur Gesamtheit der Erhebungen, sehr niedrige Deckungsanteil der Störungszeiger und die vergleichsweise gute Beurteilung der Totholzsituation auf der Forstfläche. Auf der Fläche wurde der Zierstrauch und Neophyt *Rhodotypos scandens* (vgl. FISCHER et al. 2008), aus eigenem Ermessen der Störungszeigerliste hinzugefügt und auch als solcher bewertet.

Auch hier wurden dem Kriterium „Entwicklungsstadium“ für das hohe Alter des Bestandes (92 Jahre) sowie auch für eine unter natürlichen bzw. naturnahen Bedingungen gut ausgebildete Strauchschicht Punkte zugeschlagen (siehe Tabelle 38, vgl. GRABHERR et al. 1998).

Die Gesamtbewertung für die Aufnahme 12 / 75 ergab die Zuordnung zur Hemerobiestufe »beta-mesoheremob«.
4.3.1.13 RELEVÉ NR. 13 / FID_INVENT NR. 208

Tabelle 39: Hemerobiobewertung – Aufnahme 13 / 208

<table>
<thead>
<tr>
<th>EINZELKRITERIEN</th>
<th>AGGREGATION DER KRITERIEN</th>
<th>REL_Nr 13 / FID_Inv 208</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturnähe der Baumartenkombination:</td>
<td>Naturnähe der Vegetation:</td>
<td>PNWG: Querco-Ulmetum</td>
</tr>
<tr>
<td>RW_1 3</td>
<td>RW1_2 2</td>
<td>Biotop: Eichen-Ulmen-Eschenauwald</td>
</tr>
<tr>
<td>Naturnähe der Bodenvegetation:</td>
<td>Naturnähe der Verjüngung:</td>
<td></td>
</tr>
<tr>
<td>RW_2 1</td>
<td>RW3_4 9</td>
<td></td>
</tr>
<tr>
<td>Verjüngungsart:</td>
<td>Naturnähe des Bestandes:</td>
<td></td>
</tr>
<tr>
<td>RW_3 9</td>
<td>RW12_34 3,75</td>
<td></td>
</tr>
<tr>
<td>Fläche der Freiverjüngung:</td>
<td>Naturnähe der Artenzusammensetzung:</td>
<td></td>
</tr>
<tr>
<td>RW_4 9</td>
<td>RW1234_5 5</td>
<td></td>
</tr>
<tr>
<td>Nutzung - Beeinflussung:</td>
<td>Entwicklungsstadium:</td>
<td></td>
</tr>
<tr>
<td>RW_5 7</td>
<td>RW6_zs 10,25</td>
<td></td>
</tr>
<tr>
<td>Entwicklungsstufe:</td>
<td>Bestandesreife:</td>
<td></td>
</tr>
<tr>
<td>RW_6 9</td>
<td>RW6zs_7 9</td>
<td></td>
</tr>
<tr>
<td>Totholz:</td>
<td>Artenreichtum:</td>
<td></td>
</tr>
<tr>
<td>RW_7 5</td>
<td>RW10_11 1</td>
<td></td>
</tr>
<tr>
<td>Bestandesaufbau:</td>
<td>Diversität:</td>
<td></td>
</tr>
<tr>
<td>RW_8 7</td>
<td>RW1011_8 5</td>
<td></td>
</tr>
<tr>
<td>Strukturzuschlag:</td>
<td>Naturnähe der Bestandesstruktur:</td>
<td></td>
</tr>
<tr>
<td>ZS 1,25</td>
<td>RW6zs7_10118 7,4</td>
<td></td>
</tr>
<tr>
<td>Artendiversität der Bäume:</td>
<td>Naturnähe der Bodenvegetation:</td>
<td></td>
</tr>
<tr>
<td>RW_10 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artendiversität der Bodenvegetation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW_11 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Die erhobenen Baumarten entsprachen der Baumartenkombination der Potentiellen Natürlichen Vegetation, traten jedoch in differenten Häufigkeitsklassen auf bzw. fehlten einige charakteristische Arten. Die Bodenvegetation der Probefläche wies einen sehr hohen Anteil an Störungszeigern auf und wurde mit dem minimalen Relativwert beurteilt (siehe Tabelle 39). Besonders hohe Deckungswerte erreichten
hier die stickstoffzeigenden Arten *Sambucus nigra* und *Aegopodium podagraria*. (vgl. FISCHER et al. 2008)

Nach Aggregation mit den Einzelkriterien „Verjüngung“ und „Entwicklungsstufe“, welche hohe Relativwerte erreichten, ergibt sich für die Aufnahme 13 / 208 ein gerundeter Hemerobiewert von »6«. Dies entspricht der Hemerobiestufe »alpha-oligohemerob«.
4.3.1.14 RELEVÉ NR. 14 / FID_INVENT NR. 168

Tabelle 40: Hemerobiebewertung – Aufnahme 14 / 168

<table>
<thead>
<tr>
<th>EINZELKRITERIEN</th>
<th>AGGREGATION DER KRITERIEN</th>
<th>REL Nr 14 / FID Inv 168</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturnähe der Baumartenkombination:</td>
<td></td>
<td>PNWG: Querco-Ulmetum</td>
</tr>
<tr>
<td>RW_1</td>
<td>3</td>
<td>Biotop: Laubbaummischforst aus einheimischen Baumarten</td>
</tr>
<tr>
<td>Naturnähe der Bodenvegetation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW_2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Verjüngungsart:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW_3</td>
<td>6,9</td>
<td></td>
</tr>
<tr>
<td>Fläche der Freiverjüngung:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW_4</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Nutzung - Beeinflussung:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW_5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Entwicklungsstufe:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW_6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Totholz:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW_7</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Bestandesaufbau:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW_8</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Strukturzuschlag:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZS</td>
<td>1,25</td>
<td></td>
</tr>
<tr>
<td>Artendiversität der Bäume:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW_10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Artendiversität der Bodenvegetation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW_11</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Die Aufnahmefläche 14 / 168 liegt eher zentral im Nationalpark, inmitten eines Waldbestandes (siehe Abbildung 40) und in Reichweite eines Nebenweges.

Auf der Probefläche stellt sich ebenso vorwiegend eine Naturverjüngung mit den Arten der Potentiellen Natürlichen Waldgesellschaft ein. Die Ausnahme bildet hier

Die Erhebung der Bodenvegetation ergibt jedoch einen hohen Relativwert in der Bewertungsstufe „Artendiversität der Bodenvegetation“, was sich auch in dem hohen Deckungswert der Krautschicht (95%) abzeichnet.

Die Gesamtbewertung der Aufnahme 14 / 168 führt zu dem Ergebnis »6« und steht für den Hemerobiegrad »alpha-oligoherob«.
4.3.1.15 RELEVÉ NR. 15 / FID_INVENT NR. 259

Tabelle 41: Hemerobiebewertung – Aufnahme 15 / 259

<table>
<thead>
<tr>
<th>EINZELKRITERIEN</th>
<th>AGGREGATION DER KRITERIEN</th>
<th>REL. Nr 15 / FID_Inv 259</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturnähe der Baumartenkombination:</td>
<td>Naturnähe der Vegetation:</td>
<td>PNWG: Querco-Ulmetum</td>
</tr>
<tr>
<td>RW_1 3,5</td>
<td>RW1_2 3</td>
<td>Biotop: Eichen-Ulmen-Eschenauwald</td>
</tr>
<tr>
<td>Naturnähe der Bodenvegetation:</td>
<td>Naturnähe der Verjüngung:</td>
<td></td>
</tr>
<tr>
<td>RW_2 1</td>
<td>RW3_4 9</td>
<td></td>
</tr>
<tr>
<td>Verjüngungsart:</td>
<td>Naturnähe des Bestandes:</td>
<td></td>
</tr>
<tr>
<td>RW_3 9</td>
<td>RW12_34 4,5</td>
<td></td>
</tr>
<tr>
<td>Fläche der Freiverjüngung:</td>
<td>Naturnähe der Artenzusammensetzung:</td>
<td></td>
</tr>
<tr>
<td>RW_4 9</td>
<td>RW1234_5 6</td>
<td></td>
</tr>
<tr>
<td>Nutzung - Beeinflussung:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW_5 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entwicklungsstufe:</td>
<td>Entwicklungsstadium:</td>
<td></td>
</tr>
<tr>
<td>RW_6 9</td>
<td>RW6_zs 10,75</td>
<td></td>
</tr>
<tr>
<td>Totholz:</td>
<td>Bestandesreife:</td>
<td></td>
</tr>
<tr>
<td>RW_7 6</td>
<td>RW6zs_7 9</td>
<td></td>
</tr>
<tr>
<td>Bestandesaufbau:</td>
<td>Artenreichtum:</td>
<td></td>
</tr>
<tr>
<td>RW_8 7</td>
<td>RW10_11 6</td>
<td></td>
</tr>
<tr>
<td>Strukturzuschlag:</td>
<td>Diversität:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RW1011_8 7</td>
<td></td>
</tr>
<tr>
<td>Artendiversität der Bäume:</td>
<td>Naturnähe der Bestandesstruktur:</td>
<td></td>
</tr>
<tr>
<td>RW_10 1</td>
<td>RW6zs7_10118 8,2</td>
<td></td>
</tr>
<tr>
<td>Artendiversität der Bodenvegetation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW_11 9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Die Aufnahme 15 / 259 unterscheidet sich in vielerlei Hinsicht von den übrigen Erhebungsflächen. Sie liegt unmittelbar am Gewässer „Großenzersdorfer Arm“, an der Nationalparkgrenze zur Gemeinde Großenzersdorf (siehe Abbildung 40).

Die Fläche umfasst eine Böschung, welche dem Biototyp „Eichen-Ulmen-Eschenauwald“ zugeordnet werden kann und durch die syntaxonomische Analyse bestätigt wurde sowie den am Unterhang der Böschung liegenden Ufersaum (~ 15 m²) und einen Teil der Wasserfläche (35 m²). Der hohe Relativwert der Artendiversität der Bodenvegetation (siehe Tabelle 41) wurde hier wesentlich durch die hohen standörtlichen Differenzen der Erhebungsfläche bewirkt.
Jedoch ergab sich hier, ebenso unter Einbeziehung der Arten des Ufersaumes, ein minimaler Relativwert für die Naturnähe der Bodenvegetation durch sehr zahlreiches Auftreten von Störungszeigern (siehe Tabelle 41).

Trotz der Nähe zum Gewässer, welches gerne von den Nationalparkbesuchern als Bademöglichkeit genutzt wird, ergibt sich für die Fläche in dem Kriterium „Nutzung-Beeinflussung“ nur ein geringer Abzug des Relativwertes (siehe Tabelle 41), aufgrund der Faktoren „Müll“ und „Trampling. Die augenmerklich geringe Besucherfrequentierung der Fläche ist durch die hohe Neigung und die schlechte Zugänglichkeit durch eine stark ausgebildete Strauchschicht (Deckung 75%) zu erklären.

Aus Aggregation der Einzelkriterien resultierte ein Hemerobiewert von »7«. Die Aufnahme 15 / 259 konnte somit der Hemerobiestufe »beta-oligohemero« zugeordnet werden.

Von den beiden anderen Erhebungen des Waldbiotops unterscheidet sie sich durch eine positivere Beurteilung in den Kriterien „Naturnähe der Baumartenkombination“ und „Totholz“.
Ebenso ergaben sich für die Fläche in Relation hohe Bewertungen für die Bodenvegetation in Hinblick auf die Naturnähe und die Verjüngungsart (Naturverjüngung mit ausschließlich Baumarten der Potentiellen Natürlichen Vegetation) sowie für den Aufbau des Bestandes (siehe Tabelle 42).

Die Aggregation der Relativwerte führte zu der Zuteilung der Fläche zu dem Hemerobiegrad »beta-meso-hemerob«, wodurch sie sich von den übrigen Ahornforsten positiv abhebt.

Aufgrund der syntaxonomischen Zuordnung der Vegetationserhebung auf der Probefläche zum „Querco-Ulmetum“, wurde die Berechnung jedoch alternativ mit

Tabelle 43: Hemerobiebewertung – Aufnahme 17 / 86

<table>
<thead>
<tr>
<th>EINZELKRITERIEN</th>
<th>AGGREGATION DER KRITERIEN</th>
<th>REL Nr 17 / FID.Inv 86</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturnähe der Baumartenkombination: RW_1 1</td>
<td>Naturnähe der Vegetation:</td>
<td>PNWG: Salicetum albae</td>
</tr>
<tr>
<td>Naturnähe der Bodenvegetation: RW_2 7</td>
<td>Naturnähe der Verjüngung:</td>
<td>Biotop: Silberpappelauwald</td>
</tr>
<tr>
<td>Verjüngungsart: RW_3 3</td>
<td>Naturnähe des Bestandes:</td>
<td></td>
</tr>
<tr>
<td>Fläche der Freiverjüngung: RW_4 9</td>
<td>Naturnähe der Artenzusammensetzung: RW1234_5 5</td>
<td></td>
</tr>
<tr>
<td>Nutzung - Beeinflussung: RW_5 8</td>
<td>Entwicklungsstufe:</td>
<td></td>
</tr>
<tr>
<td>Entwicklungsstufe: RW_6 9</td>
<td>Bestandesreife:</td>
<td></td>
</tr>
<tr>
<td>Totholz: RW_7 5</td>
<td>Artenreichtum:</td>
<td></td>
</tr>
<tr>
<td>Bestandesaufbau: RW_8 9</td>
<td>Diversität:</td>
<td></td>
</tr>
<tr>
<td>Strukturzuschlag: ZS 0</td>
<td>Naturnähe der Bestandesstruktur: RW6zs7_10118 9</td>
<td></td>
</tr>
<tr>
<td>Artendiversität der Bäume: RW_10 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artendiversität der Bodenvegetation: RW_11 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
der entsprechenden Potentiellen Natürlichen Waldgesellschaft durchgeführt. Die hier resultierenden Relativwerte wurden nicht abgebildet, da sie keine Änderung der Bewertung bewirkten.

Große Unterschiede in Zusammensetzung und Häufigkeit der aktuellen Baumartenkombination mit der der Potentiellen Natürlichen Waldgesellschaft führten in beiden Berechnungswegen zu einer Minimalwertkorrektur auf den Wert »1«. (vgl. GRABHERR et al. 1998)

In beiden Fällen konnte kein Strauchschichtzuschlag vergeben werden, da die Strauchschicht zum Zeitpunkt der Erhebung nur gering ausgebildet (10%) war.

Unterschiede im Vergleich mit den verschiedenen Potentiellen Waldgesellschaften ergaben sich in der Bewertung des Bestandesaufbaus, der Verjüngungsart und der Artendiversität der Bodenvegetation, jedoch resultierte nach Aggregation der Einzelkriterien der gleiche Hemerobiewert.

Die Aufnahmefläche 17 / 86 entspricht mit dem Wert »6« der Hemerobiestufe »alpha-oligohemerob«.

Darüber hinaus wies die Artenliste der Bodenvegetation eine relativ hohe Anzahl (14) an Störungszeigern auf, welche jedoch aufgrund ihrer geringen Artmächtigkeiten den Relativwert des Kriteriums „Naturnähe der Bodenvegetation“ nicht auf den minimalen Wert reduzierten (siehe Tabelle 44). Ausschließlich der
Störungszeiger *Solidago gigantea* erreichte hier einen höheren Deckungswert, was sich durch eine Süd-östlich angrenzende Offenfläche eines ausgetrockneten Gewässerganges erklärt, welche zum Zeitpunkt der Erhebung mehr oder weniger flächendeckend mit *Solidago gigantea* und *Phragmites australis* bewachsen war. Die hohe Zahl an Störungszeigern, welche nicht in die Bewertung der Artendiversität mit einbezogen werden, führte ebenso zu einem schlechten Ergebnis in der Kategorie „Artendiversität der Bodenvegetation“ (siehe Tabelle 44).

Da bei der Aufnahme des Totholzes auf der Fläche ausschließlich Stockholz erhoben wurde, erfolgte die Anwendung des Korrekturfaktors „K1“, wodurch der Zwischenwert von 5, welcher rein auf dem erhobenen Totholzvolumen beruht, auf den minimalen Relativwert »1« herabgesetzt wurde. (vgl. GRABHERR et al. 1998)

Die Aggregation der Einzelkriterien ergab für die Fläche einen Hemerobiewert von »6«. Sie entspricht somit der Hemerobiestufe »alpha-oligohemob«.

Der Baumbestand auf der Aufnahmefläche wurde in den beiden Kriterien „Naturnähe der Baumartenkombination“ und „Artendiversität der Bäume“, aufgrund

Tabelle 45: Hemerobiebewertung – Aufnahme 22 / 205

<table>
<thead>
<tr>
<th>EINZELKRITERIEN</th>
<th>AGGREGATION DER KRITERIEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturnähe der Baumartenkombination:</td>
<td>Naturnähe der Vegetation:</td>
</tr>
<tr>
<td>RW_1 2,5</td>
<td>RW1_2 4</td>
</tr>
<tr>
<td>Naturnähe der Bodenvegetation:</td>
<td>Naturnähe der Verjüngung:</td>
</tr>
<tr>
<td>RW_2 5</td>
<td>RW3_4 9</td>
</tr>
<tr>
<td>Verjüngung:</td>
<td>Naturnähe des Bestandes:</td>
</tr>
<tr>
<td>RW_3 9</td>
<td>RW12_34 5,25</td>
</tr>
<tr>
<td>Fläche der Freiverjüngung:</td>
<td>Naturnähe der Artenzusammensetzung:</td>
</tr>
<tr>
<td>RW_4 9</td>
<td>RW1234_5 6</td>
</tr>
<tr>
<td>Nutzung - Beeinflussung:</td>
<td>Entwicklungsstadium:</td>
</tr>
<tr>
<td>RW_5 8</td>
<td>RW6_zs 10,25</td>
</tr>
<tr>
<td>Entwicklungsstufe:</td>
<td>Bestandesreife:</td>
</tr>
<tr>
<td>RW_6 9</td>
<td>RW6zs_7 9</td>
</tr>
<tr>
<td>Totholz:</td>
<td>Artenreichtum:</td>
</tr>
<tr>
<td>RW_7 9</td>
<td>RW10_11 4</td>
</tr>
<tr>
<td>Bestandesaufbau:</td>
<td>Diversität:</td>
</tr>
<tr>
<td>RW_8 8</td>
<td>RW1011_8 7</td>
</tr>
<tr>
<td>Strukturzuschlag:</td>
<td>Naturnähe der Bestandesstruktur:</td>
</tr>
<tr>
<td>ZS 1,25</td>
<td>RW6zs7_10118 8,2</td>
</tr>
<tr>
<td>Artendiversität der Bäume:</td>
<td></td>
</tr>
<tr>
<td>RW_10 1</td>
<td></td>
</tr>
<tr>
<td>Artendiversität der Bodenvegetation:</td>
<td></td>
</tr>
<tr>
<td>RW_11 7</td>
<td></td>
</tr>
</tbody>
</table>
des zu geringmächtigen bzw. fehlenden Auftretens der subdominanten Baumarten der Potentiellen Natürlichen Waldgesellschaft, eher negativ beurteilt (siehe Tabelle 45). Ebenso trat der Neophyt Robinia pseudacacia in der Baumschicht auf, was zu einer weiteren Erniedrigung des Relativwertes führte.

Die hohe Anzahl an störungszeigenden Arten (12) führte auch hier zu einer Abwertung der Naturnähe, wirkte sich jedoch nicht wesentlich auf die Artendiversität der Bodenvegetation aus (siehe Tabelle 45).

Die übrigen Einzelkriterien wurden durchgehend sehr hoch bewertet. In Relation zu den übrigen Erhebungsflächen der Oberen Lobau, fallen hier besonders die Relativwerte der Kriterien „Nutzung – Beeinflussung“ und „Totholz“ auf (siehe Tabelle 45). Das Totholz auf der Fläche zeichnet sich in seinen quantitativen Merkmalen, der Totholzmenge (~ 4 m³) und dem Anteil des starken natürlichen Totholzes (> 50%) aus.

4.3.2 UTERE LOBAU

Anna Illedits

Abbildung 41: Übersichtskarte der Stichprobenpunkte – Untere Lobau
186

4.3.2.2 RELEVÉ NR. 20 / FID_INVENT NR. 156

Tabelle 47: Hemerobiebewertung- Aufnahme 20 / 156

<table>
<thead>
<tr>
<th>EINZEK Kriterien</th>
<th>AGGREGATION DER KRIERIEN</th>
<th>REL_Nr 20 / FID_INV 156</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturnähe der Baumartenkombination: RW_1 2,5</td>
<td>Naturnähe der Vegetation: RW1_2 4</td>
<td>PNWG: Fraxino-Ulmetum</td>
</tr>
<tr>
<td></td>
<td>Naturnähe der Bodenvegetation: RW2 7</td>
<td>Biotop: Laubbaumhainischforst aus einheimischen Baumarten</td>
</tr>
<tr>
<td></td>
<td>Verjüngungsart: RW3 9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fläche der Freiverjüngung: RW4 9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nutzung - Beeinflussung: RW5 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Entwicklungsstufe: RW6 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Totholt: RW7 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bestandesaufbau: RW8 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strukturzuschlag: ZS 1,25</td>
<td></td>
</tr>
<tr>
<td>Artendiversität der Bäume: RW10 1</td>
<td>Entwicklungsstadium: RW6_zs 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bestandesreife: RW6zs_7 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Artenreichtum: RW10_11 4</td>
<td></td>
</tr>
<tr>
<td>Artendiversität der Bodenvegetation: RW11 7</td>
<td>Diversität: RW1011_8 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Naturnähe der Bestandesstruktur: RW6zs7_10118 3,8</td>
<td></td>
</tr>
</tbody>
</table>

Bei der Probefläche 20 / 156 handelt es sich um einen eingezäunten Eschenforst in welchem *Fraxinus excelsior* mit einer Deckung von (5) nach Braun-Blanquet die Baumschicht beherrscht. Der junge Forst, er weist ein Alter nach Operat von 27
Jahren auf, befindet sich etwa 200 m nordwestlich des Donau-Oder-Kanals und führt trotz des Zaunes Wühlungen von Wildschweinen und Trampelpfade von Tieren.

Die gesamte Strauchschicht ist bis auf 2 Individuen unter einem Meter hoch. Das in der Krautschicht dominante und für Hartholz-Auen typische *Parietaria officinalis* bedeckt so gut wie die ganze Fläche. Außer Strauchverjüngung konnte keine Verjüngung vermerkt werden.

Die Aufnahmefläche 20 / 156 wurde mit >>beta-mesohemerob<< (5) bewertet und entspricht somit einem mäßig veränderten Naturnähe-Zustand (siehe Tabelle 47).

4.3.2.3 RELEVÉ NR. 21 / FID_INVENT NR. 249

Tabelle 48: Hemerobiebewertung- Aufnahme 21 / 249

<table>
<thead>
<tr>
<th>EINZELKRITERIEN</th>
<th>AGGREGATION DER KRITERIEN</th>
<th>REL_Nr 21 / FID_Inv 249</th>
</tr>
</thead>
<tbody>
<tr>
<td>RW_1</td>
<td>1,5</td>
<td>RW_12</td>
</tr>
<tr>
<td>RW_2</td>
<td>1</td>
<td>RW_34</td>
</tr>
<tr>
<td>RW_3</td>
<td>1</td>
<td>RW1234_5</td>
</tr>
<tr>
<td>RW_4</td>
<td>9</td>
<td>RW6_zs</td>
</tr>
<tr>
<td>RW_5</td>
<td>6</td>
<td>RW6zs_7</td>
</tr>
<tr>
<td>RW_6</td>
<td>1</td>
<td>RW6zs7</td>
</tr>
<tr>
<td>RW_7</td>
<td>6</td>
<td>RW10_11</td>
</tr>
<tr>
<td>RW_8</td>
<td>7</td>
<td>RW1011_8</td>
</tr>
<tr>
<td>ZS</td>
<td>1,25</td>
<td>RW6zs7_10118</td>
</tr>
<tr>
<td>RW_10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>RW_11</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

PNWG: Fraxino-Ulmetum
Biotop: Robinienforst

<table>
<thead>
<tr>
<th>HEMEROBIESTUFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hem</td>
</tr>
<tr>
<td>Hem_gerundet</td>
</tr>
<tr>
<td>alpha-mesohemerob</td>
</tr>
</tbody>
</table>

188
Bei der Aufnahmefläche 21 / 249 handelt es sich erneut um eine Forstfläche, die, ähnlich der Fläche 19 / 252, in etwa 100 m westlicher Entfernung zum Eberschüttwasser gelegen ist. (vgl. ROTTER & SCHRATT-EHRENDORFER 1999)

Die Probefläche 21 / 249 wird nach der Berechnung als >>alpha-mesohemerob<< (4) eingestuft und führt somit eine der schlechtesten Bewertungen (siehe Tabelle 48).
4.3.2.4 RELEVÉ NR. 23 / FID_INVENT NR. 151

Tabelle 49: Hemerobiebewertung- Aufnahme 23 / 151

<table>
<thead>
<tr>
<th>EINZELKRITERIEN</th>
<th>AGGREGATION DER KRITERIEN</th>
<th>HEMEROBIESTUFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturnähe der Baumartenkombination:</td>
<td></td>
<td>REL_Nr 23 / FID_Inv 151</td>
</tr>
<tr>
<td>RW_1 1</td>
<td>RW1_2 1</td>
<td>PNWG: Fraxi-Ulmetum</td>
</tr>
<tr>
<td>Naturnähe der Bodenvegetation:</td>
<td></td>
<td>Biotop: Schwarzpappelauwald</td>
</tr>
<tr>
<td>RW_2 3</td>
<td>RW3_4 9</td>
<td></td>
</tr>
<tr>
<td>Verjüngungsart:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW3 9</td>
<td>RW12_34 3</td>
<td></td>
</tr>
<tr>
<td>Fläche der Freiverjüngung:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW_4 9</td>
<td>RW1234_5 5</td>
<td></td>
</tr>
<tr>
<td>Nutzung - Beeinflussung:</td>
<td></td>
<td>HEMEROBIESTUFE</td>
</tr>
<tr>
<td>RW_5 8</td>
<td>RW6_zs 11,75</td>
<td>Hem 5,8</td>
</tr>
<tr>
<td>Entwicklungsstufe:</td>
<td></td>
<td>Hem_gerundet 6</td>
</tr>
<tr>
<td>RW_6 9</td>
<td>RW6zs_7 8</td>
<td>alpha-oligohemerob</td>
</tr>
<tr>
<td>Totholz:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW7 3</td>
<td>RW10_11 7</td>
<td></td>
</tr>
<tr>
<td>Bestandesaufbau:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW_8 8</td>
<td>RW1011_8 7</td>
<td></td>
</tr>
<tr>
<td>Strukturzuschlag:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZS 1,75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artendiversität der Bäume:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW_10 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artendiversität der Bodenvegetation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW_11 7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Die vorgefundene Totholzmenge war gering, die Qualität des Totholzes weich und modrig. Nutzungen waren, außer schwachem Wildverbiss, nicht festzustellen.

Die Fläche 23 / 151 ist in der Hemerobieskala als >>alpha-oligohemerob<< (6) einzustufen (siehe Tabelle 49).

4.3.2.5 RELEVÉ NR. 24 / FID_INVENT NR. 182

Tabelle 50: Hemerobiebewertung- Aufnahme 24 / 182

<table>
<thead>
<tr>
<th>EINZELKRITERIEN</th>
<th>AGGREGATION DER KRITERIEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturnähe der Baumartenkombination:</td>
<td>Naturnähe der Vegetation:</td>
</tr>
<tr>
<td>RW_1</td>
<td>RW1_2</td>
</tr>
<tr>
<td>RW_2</td>
<td>RW3_4</td>
</tr>
<tr>
<td>Verjüngungsart:</td>
<td>Naturnähe der Verjüngung:</td>
</tr>
<tr>
<td>RW_3</td>
<td>RW12_34</td>
</tr>
<tr>
<td>Fläche der Freiverjüngung:</td>
<td>Naturnähe der Artenzusammensetzung:</td>
</tr>
<tr>
<td>RW_4</td>
<td>RW1234_5</td>
</tr>
<tr>
<td>Nutzung – Beeinflussung:</td>
<td></td>
</tr>
<tr>
<td>RW_5</td>
<td>Entwicklungsstufe:</td>
</tr>
<tr>
<td>RW_6</td>
<td>RW6_zs</td>
</tr>
<tr>
<td>RW_7</td>
<td>RW6zs_7</td>
</tr>
<tr>
<td>Bestandesaufbau:</td>
<td>Bestandesreife:</td>
</tr>
<tr>
<td>RW_8</td>
<td>RW6zs_7</td>
</tr>
<tr>
<td>Strukturzuschlag:</td>
<td></td>
</tr>
<tr>
<td>ZS</td>
<td>RW10_11</td>
</tr>
<tr>
<td>Artendiversität der Bäume:</td>
<td>Diversität:</td>
</tr>
<tr>
<td>RW_10</td>
<td>RW1011_8</td>
</tr>
<tr>
<td>Artendiversität der Bodenvegetation:</td>
<td>Naturnähe der Bestandesstruktur:</td>
</tr>
<tr>
<td>RW_11</td>
<td>RW6zs7_10118</td>
</tr>
</tbody>
</table>

REL_Nr 24 / FID_Inv 182
PNWG: Fraxino-Populetum
Biotop: Schwarzbirkenauwald

HEMEROBIESTUFE
Hem | 4,4
HemGerundet | 4
alpha-meso-hemerob

Der menschliche Einfluss macht sich hier besonders in Form einer sich auf der Fläche befindlichen Hütte mit Brunnen und verstreutem Müll bemerkbar. Außerdem wurden offensichtlich kleinräumige Pflanzungen von Obst (Ribisel, Walnuss)- und Ziergehölzen (Weigelia sp., Pinus sylvestris) durchgeführt. Es konnte wenig Totholz mit einem Durchmesser >10 cm, dafür aber viel frisches Totholz in der Durchmesserklasse <10 cm registriert werden.

Durch die Bewertung der Fläche mit der Stufe >>alpha-mesohemerob<< (4) (siehe Tabelle 50) zählt diese Fläche in der Gesamtbetrachtung aller Ergebnisse zu den schlechtesten Resultaten.
4.3.2.6 RELEVÉ NR. 25 / FID_INVENT NR. 306

Tabelle 51: Hemerobiebewertung- Aufnahme 25 / 306

<table>
<thead>
<tr>
<th>EINZELKRIERIEN</th>
<th>AGGREGATION DER KRIERIEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturnähe der Baumartenkombination:</td>
<td>Naturnähe der Vegetation:</td>
</tr>
<tr>
<td>RW_1</td>
<td>1</td>
</tr>
<tr>
<td>Naturnähe der Bodenvegetation:</td>
<td>RW1_2</td>
</tr>
<tr>
<td>RW_2</td>
<td>0</td>
</tr>
<tr>
<td>Verjüngungsart:</td>
<td>RW3_4</td>
</tr>
<tr>
<td>RW_3</td>
<td>0</td>
</tr>
<tr>
<td>Fläche der Freiverjüngung:</td>
<td>RW12_34</td>
</tr>
<tr>
<td>RW_4</td>
<td>1</td>
</tr>
<tr>
<td>Nutzung - Beeinflussung:</td>
<td>RW12_34</td>
</tr>
<tr>
<td>RW_5</td>
<td>9</td>
</tr>
<tr>
<td>Entwicklungsstufe:</td>
<td>Entwicklungsstadium:</td>
</tr>
<tr>
<td>RW_6</td>
<td>0</td>
</tr>
<tr>
<td>RW_7</td>
<td>9</td>
</tr>
<tr>
<td>Totholt:</td>
<td>RW6_zs</td>
</tr>
<tr>
<td>RW_8</td>
<td>1</td>
</tr>
<tr>
<td>Bestandesaufbau:</td>
<td>RW6zs_7</td>
</tr>
<tr>
<td>RW_9</td>
<td>9</td>
</tr>
<tr>
<td>Strukturzuschlag:</td>
<td>Artenreichtum:</td>
</tr>
<tr>
<td>ZS</td>
<td>1,5</td>
</tr>
<tr>
<td>Artendiversität der Bäume:</td>
<td>RW10_11</td>
</tr>
<tr>
<td>RW_10</td>
<td>0</td>
</tr>
<tr>
<td>Artendiversität der Bodenvegetation:</td>
<td>RW1011_8</td>
</tr>
<tr>
<td>RW_11</td>
<td>7</td>
</tr>
<tr>
<td>Artendiversität der Bodenvegetation:</td>
<td>Naturnähe der Bestandesstruktur:</td>
</tr>
<tr>
<td>RW_12</td>
<td>7</td>
</tr>
</tbody>
</table>

Auf der Probefläche 25 / 306 konnte ein Totholzanteil mit einer Deckung von 75 % festgestellt werden, davon sehr viel Reisig, demnach ist der Relativwert „Totholz“ auch dementsprechend hoch. In der Baumschicht kommt Salix alba mit der größten

Deckung vor, was die Biotoptypebezeichnung „Weidenauwald“ auf jeden Fall gerecht fertigt. Jedoch treten sowohl in der Baumschicht, als auch in der Strauch- und Krautschicht zusätzlich Arten der Hartholz-Auen sowie einige Störungszeiger und Neophyten auf. Diese Tatsache beeinflusst in hohem Maße die Naturnähe der Vegetation und des Bestandes, was sich in den niedrigen Relativwerten dieser Kriterien äußert.

Im Gesamten erlangt die Fläche 25 / 306 mit der Hemerobiestufe >>alpha-mesohemerob<< (4) eine sehr schlechte Bewertung (siehe Tabelle 51).

4.3.2.7 RELEVÉ NR. 26 / FID_INVENT NR. 383

Tabelle 52: Hemerobiebewertung- Aufnahme 26 / 383

<table>
<thead>
<tr>
<th>EINZELKRIERIEN</th>
<th>AGGREGATION DER KRIERIEN</th>
<th>HEMEROBIESTUFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturnähe der Baumartenkombination:</td>
<td>Naturnähe der Vegetation:</td>
<td>REL Nr 26 / FID_Inv 383</td>
</tr>
<tr>
<td>RW_1 2,5</td>
<td>RW1_2 2,5</td>
<td>PNWG: Fraxino-Ulmetum</td>
</tr>
<tr>
<td>RW_2 3</td>
<td>RW3_4 9</td>
<td>Biotop: Silberpappelauwald</td>
</tr>
<tr>
<td>Verjüngungsm:</td>
<td>Naturnähe der Verjüngung:</td>
<td></td>
</tr>
<tr>
<td>RW_3 9</td>
<td>RW12_34 5</td>
<td></td>
</tr>
<tr>
<td>Fläche der Freiverjüngung:</td>
<td>Naturnähe der Artenzusammensetzung:</td>
<td></td>
</tr>
<tr>
<td>RW_4 9</td>
<td>RW1234_5 6</td>
<td></td>
</tr>
<tr>
<td>Nutzung – Beeinflussung:</td>
<td>Entwicklungsstufe:</td>
<td></td>
</tr>
<tr>
<td>RW_5 8</td>
<td>RW6_zs 10</td>
<td></td>
</tr>
<tr>
<td>Entwicklungsstufe:</td>
<td>Bestandesreife:</td>
<td></td>
</tr>
<tr>
<td>RW_6 9</td>
<td>RW6zs_7 9</td>
<td></td>
</tr>
<tr>
<td>Totholz:</td>
<td>Artenreichtum:</td>
<td></td>
</tr>
<tr>
<td>RW_7 0</td>
<td>RW10_11 4</td>
<td></td>
</tr>
<tr>
<td>Bestandesaufbau:</td>
<td>Diversität:</td>
<td></td>
</tr>
<tr>
<td>RW_8 7</td>
<td>RW1011_8 6</td>
<td></td>
</tr>
<tr>
<td>Strukturzuschlag:</td>
<td>Naturnähe der Bestandesstruktur:</td>
<td></td>
</tr>
<tr>
<td>ZS 1,25</td>
<td>RW6zs7_10118 7,8</td>
<td></td>
</tr>
<tr>
<td>Artendiversität der Bäume:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW_10 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artendiversität der Bodenvegetation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW_11 7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Die am weitesten von der Stadt Wien entfernte Aufnahmefläche war 26 / 383. Die Probefläche liegt 100 m nördlich des Hubertusdammes und etwa 40 m entfernt von einem kiesigen Radweg. Am südlichen Rand der Fläche verläuft ein dicht verwachsender und scheinbar äußerst wenig genutzter zweispuriger Waldweg, der zu einer angrenzenden Forstfläche führt.

Die Fläche ist in ihrer Ausprägung eher trocken, was sich in der Artenzusammensetzung, nicht nur in der Baumschicht, sondern auch in der Strauch- und Krautschicht bemerkbar macht. In die Verjüngung konnte ausschließlich *Fraxinus excelsior* aufgenommen werden. Aus diesen Informationen lässt sich für diese Fläche die allgemeine tendenzielle Entwicklung von Weichholz-Auen in Richtung Hartholz-Auen in den abgedämmten Flussauenbereichen nachvollziehen. Die Fläche 26 / 383 wurde in der Vegetationsklassifizierung dem Querco-Ulmetum unterstellt, was auch der potentiellen natürlichen Vegetation entspricht.

Die hohe Artendiversität der Bodenvegetation ist durch den sich teilweise in der Fläche befindlichen Weg betimmt, der eine hohe Diversität an Randbiotop-Arten trägt.

Die Hemerobie der Fläche 26 / 383 ist mit >>beta-oligohemerob<< (7) als naturnah eingestuft (siehe Tabelle 52) worden und teilt sich diesen hohen Rang mit nur zwei anderen Flächen der Unteren Lobau.
Tabelle 53: Hemerobiebewertung - Aufnahme 27 / 328

<table>
<thead>
<tr>
<th>EINZELKRITERIEN</th>
<th>AGGREGATION DER KRITERIEN</th>
<th>REL Nr 27 / FID Inv 328</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturnähe der Baumartenkombination:</td>
<td>Naturnähe der Vegetation:</td>
<td>PNWG: Fraxino-Ulmetum</td>
</tr>
<tr>
<td>RW_1</td>
<td>RW1_2</td>
<td>Biotop: Eichen-Ulmen-</td>
</tr>
<tr>
<td>RW_2</td>
<td>RW3_4</td>
<td>Eschen Auwald</td>
</tr>
<tr>
<td>RW_3</td>
<td>RW12_34</td>
<td></td>
</tr>
<tr>
<td>RW_4</td>
<td>RW1234_5</td>
<td></td>
</tr>
<tr>
<td>RW_5</td>
<td>Entwicklungsstufe:</td>
<td></td>
</tr>
<tr>
<td>RW_6</td>
<td>Entwicklungsstufe:</td>
<td>Hem 5,8</td>
</tr>
<tr>
<td>RW_7</td>
<td>Totholz:</td>
<td>Hem_gerundet 6</td>
</tr>
<tr>
<td>RW_8</td>
<td>Bestandesaufbau:</td>
<td>alpha-oligohemorob</td>
</tr>
<tr>
<td>ZS</td>
<td>Strukturzuschlag:</td>
<td></td>
</tr>
<tr>
<td>RW_10</td>
<td>Artendiversität der Bäume:</td>
<td></td>
</tr>
<tr>
<td>RW_11</td>
<td>Artendiversität der Bodenvegetation:</td>
<td></td>
</tr>
</tbody>
</table>

Die Aufnahmefläche 27 / 328 befindet sich oberhalb des Mittelwassers (vgl. ROTTER & SCHRATT-EHRENDORFER 1999) in der Nähe von Mühlleiten und ungefähr 30 m nördlich eines kiesigen Radweges.

Obwohl sich auf der Fläche sehr viel *Ailanthus altissima* verjüngt, hat dieser auf den Relativwert Verjüngung und die damit in Zusammenhang aggregierten Werte keine sonderlich große Einflussnahme, da in der Verjüngung auch reichlich *Acer campestre* und in etwas geringerem Maße *Fraxinus excelsior* vorhanden ist.

Aktuelle Nutzungen waren auf der Fläche keine ersichtlich. Es gab eine schwache Beeinflussung von Tieren in Form von wenigen, schmalen, bewachsenen Wildpfaden und Wetzspuren.
Die Aufnahmefläche 28 / 327 liegt nur 100 m südlich der vorher beschriebenen Probefläche 27 / 328. Zwischen Ihnen führt ein kiesiger stark genutzter Radweg. Von diesem Hauptweg führt ein bewachser, schmaler Waldweg am östlichen Rande der Fläche entlang zu einer südlich an die Aufnahmefläche 28 / 327 angrenzende Heißlände.

Auf der Fläche selbst konnten Wildtierspuren in Form von Fäzes und Wildverbiss festgestellt werden. Anthropogene Nutzung war nur in Form von Müllresten auszumachen. Somit ist diese Fläche keiner großen Nutzung ausgesetzt.

Die trockenliebende Vegetation spiegelt den Charakter des Standortes wieder. Neben typischen Arten wie *Crataegus monogyna, Berberis vulgaris, Ligustrum*

Die Probefläche 28 / 327 ist eine der drei Flächen in der Unteren Lobau mit der höchsten Hemerobie Einstufung, >>beta-oligohemerob<< (7) (siehe Tabelle 54).
Tabelle 55: Hemerobiebewertung- Aufnahme 29 / 279

<table>
<thead>
<tr>
<th>EINZELKRITERIEN</th>
<th>AGGREGATION DER KRITERIEN</th>
<th>REL_Nr 29 / FID_Inv 279</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturnähe der Baumartenkombination:</td>
<td>Naturnähe der Vegetation:</td>
<td>PNWG: Querco-Ulmetum</td>
</tr>
<tr>
<td>RW_1</td>
<td>RW1_2</td>
<td>Biotop: Hybridpappelforst</td>
</tr>
<tr>
<td>RW_2</td>
<td>RW3_4</td>
<td></td>
</tr>
<tr>
<td>Verjüngungsort:</td>
<td>Naturnähe der Verjüngung:</td>
<td></td>
</tr>
<tr>
<td>RW_3</td>
<td>RW12_34</td>
<td></td>
</tr>
<tr>
<td>Fläche der Freiverjüngung:</td>
<td>Naturnähe des Bestandes:</td>
<td></td>
</tr>
<tr>
<td>RW_4</td>
<td>RW1234_5</td>
<td></td>
</tr>
<tr>
<td>Nutzung - Beeinflussung:</td>
<td>Entwicklungsstadium:</td>
<td></td>
</tr>
<tr>
<td>RW_5</td>
<td>RW6_zs</td>
<td>Hem 5,68</td>
</tr>
<tr>
<td>Entwicklungsstufe:</td>
<td>RW6_zs_7</td>
<td>Hem_gerundet 6</td>
</tr>
<tr>
<td>RW_6</td>
<td>Bestandesreife:</td>
<td></td>
</tr>
<tr>
<td>Totholz:</td>
<td>RW6zs_7</td>
<td></td>
</tr>
<tr>
<td>RW_7</td>
<td>Artenreichtum:</td>
<td></td>
</tr>
<tr>
<td>Bestandesauflauf:</td>
<td>RW10_11</td>
<td></td>
</tr>
<tr>
<td>RW_8</td>
<td>Diversität:</td>
<td></td>
</tr>
<tr>
<td>Strukturzuschlag:</td>
<td>RW1011_8</td>
<td></td>
</tr>
<tr>
<td>ZS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artendiversität der Bäume:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW_10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artendiversität der Bodenvegetation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW_11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Die Probefläche durchschneidet eine alte, tiefer gelegene und spärlich bewachsene Gewässerrinne, mit einer Deckung von 10% der gesamten Aufnahmefläche. Im Westen grenzt ein 1 m breiter, genutzter und erdiger Gehweg an. Unter anderem auf Grund der Vielgestaltigkeit des Kleinreliefs und dem Vorkommen offener und bewachsener Areale in der Probefläche konnte eine höhere Artendiversität vermerkt werden, was sich auch in den Relativwerten niederschlägt. In der Verjüngung ist alleine Acer pseudoplatanus von Relevanz. Positiv zu beurteilen ist die hohe Menge an Totholz mit einem Durchmesser unter 10 cm. Die Bewertung der Fläche wird mit \texttt{alpha-oligohemerob} (6) abgeschlossen (siehe \textbf{Tabelle 55}).
4.3.2.11 RELEVÉ NR. 30 / FID_INVENT NR. 239

Tabelle 56: Hemerobiebewertung - Aufnahme 30 / 239

<table>
<thead>
<tr>
<th>EINSTELLKRIEREN</th>
<th>AGGREGATION DER KRIEREN</th>
<th>REL_Nr 30 / FID_Inv 239</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturnähe der Baumartenkombination:</td>
<td>Naturnähe der Vegetation:</td>
<td>PNWG: Fraxino-Ulmetum</td>
</tr>
<tr>
<td>RW_1 1</td>
<td>RW1_2 2</td>
<td>Biotop: junge Laubbaumaufforstung</td>
</tr>
<tr>
<td>RW_2 7</td>
<td>RW3_4 0</td>
<td></td>
</tr>
<tr>
<td>RW_3 0</td>
<td>RW12_34 2</td>
<td></td>
</tr>
<tr>
<td>RW_4 9</td>
<td>RW1234_5 3</td>
<td></td>
</tr>
<tr>
<td>RW_5 6</td>
<td>Entwicklungsstufe:</td>
<td>10</td>
</tr>
<tr>
<td>RW_6 9</td>
<td>Entwicklungsstufe:</td>
<td>9</td>
</tr>
<tr>
<td>RW_7 4,5</td>
<td>Bestandesreife:</td>
<td>8</td>
</tr>
<tr>
<td>RW_8 5</td>
<td>Artenreichtum:</td>
<td>5</td>
</tr>
<tr>
<td>ZS 1,25</td>
<td>Diversität:</td>
<td>7,4</td>
</tr>
<tr>
<td>RW_10 5</td>
<td>Naturnähe der Bestandesstruktur:</td>
<td></td>
</tr>
<tr>
<td>RW_11 9</td>
<td>RW6zs7_10118 7,4</td>
<td></td>
</tr>
</tbody>
</table>

Der Biotoptyp „junge Laubbaumaufforstung“ ist auf der Aufnahmefläche 30 / 239 nicht anzutreffen. Die besagte Forstfläche befindet sich südlich angrenzend und ist von einem Zaun umgeben. In etwa 15 m östlicher Entfernung der Probefläche führt ein Radweg vorbei, auf der Fläche selbst befindet sich zu 30 % (ca. 187m²) ein zeitweise wasserführender Gewässerarm. Im südöstlichen Flächenareal konnte ein sehr starker Wildverbiss, als einziger Nutzungstyp auf der Probefläche, vermerkt werden. Dies geht einher mit dem besonders starken Wildwechsel, vor allem im Herbst, der zur Wasserfläche, welche von den Tieren offensichtlich als Tränke genutzt wird, hin und hindurch führt. Das Mikrorelief der Fläche ist nicht eben, sondern fällt von Osten nach Westen zur Wasserfläche hin relativ steil ab.
Auf der hiesigen Fläche ist die Anzahl der Arten so hoch wie auf keiner weiteren Hemerobieaufnahmefläche in der gesamten Lobau. Die Artendiversität wird nur auf der Fläche 15/259 in der Oberen Lobau getoppt, welche einerseits ebenfalls an einem Gewässer Anteil hat und dementsprechende Feucht- und Nassvegetation aufweist und andererseits im erhöhten Böschungsbereich von trockenliebenderen Pflanzenarten bewachsen ist.

Verjüngung gibt es auf der Fläche keine, was auch auf den starken Wildverbiss zurückzuführen ist. Die Totholzmenge ist vernachlässigbar gering und besteht aus frischem, hartem Material. Auf der Fläche ist ein abgesägter Baumstumpf mit einem Durchmesser von 60 cm zu vermerken.

Das Kriterium der Naturnähe der Baumartenkombination ist sehr schlecht bewertet, da sich in der Baumschicht so gut wie keine Baumarten der potentiell natürlichen Vegetation befinden sondern etliche nicht standortgerechte Arten wie *Alnus incana*, *Juglans regia*, *Ailanthus altissima* und *Crataegus monogyna*. Die Baumschicht hat eine maximale Höhe von 8 m, ist somit nicht sonderlich hoch und bildet einen offenen Bestand. Betrachtet man hingegen die Strauchschicht, bei der die meisten Individuen zwischen 3 bis 5 m hoch sind, kann man hier von einem geschlossenen Bestandesaufbau sprechen, der die darunterliegenden Bereiche beschattet.

Die Aufnahmefläche 30/239 ist mit >>alpha-mesoherob<< (4) äußerst schlecht beurteilt (siehe Tabelle 56).
Die Probefläche 31 / 265 liegt direkt neben einem bewachsenen und stark genutzten, breiten Waldweg und hat zu 10 % Anteil an einem Gewässergraben, der zur Zeit der Aufnahme kein Wasser führte und dicht mit Phragmites australis bewachsen war.

Es handelt sich der Biotopkartierung (2006 / 2007) nach um einen Hybridpappelforst. Da aber auf der Fläche keine Hybridpappel angesprochen werden konnte, jedoch einige moosbewachsene Baumstümpfe vorhanden waren, liegt auch hier die Vermutung nahe, dass die Hybridpappel auf Grund ihrer Unerwünschtheit im Nationalpark, wie auch schon in der Flächenbeschreibung 29 / 279 erläutert, aus dem Bestand entfernt wurde. (vgl. DRESCHER & MAGNES
In der Baumschicht kommen nur *Populus alba* und direkt neben dem sumpfigen Gewässerareal auch *Alnus incana* vor.

Auf Grund dieser geringen Artenzahl im Baumbestand, welche sich noch dazu überhaupt nicht mit der potentiellen natürlichen Vegetation deckt, sind die Kriterien für die Naturnähe der Vegetation und der Artenzusammensetzung sowie für den Artenreichtum eher schlecht bewertet. Auch beim Relativwert Nutzung ist das Ergebnis der Berechnung nicht sehr hoch. Auf der Fläche wurde starkes anthropogenes „trampling“ und schwache Müllablagerung, sowie schwacher Wildverbiss vermerkt.

Insgesamt ist die Fläche 31 / 265 mit einer Einstufung in >>alpha-oligohemerob<< (6) gut bewertet und nur mäßig verändert (siehe Tabelle 57).

Für die Relativwerte der Naturnähe der Vegetation und der Artenzusammensetzung sowie für den Artenreichtum gilt hier im Prinzip das Gleiche wie auf der vorher
beschriebenen Fläche 31 / 265. Die Artengarnitur der Baumschicht deckt sich nur mäßig mit der potentiellen natürlichen Vegetation eines Querco-Ulmetums.

Die Bewertung der Nutzung fällt hier positiver aus, da es keine anthropogene Nutzung und nur einen schwachen Einfluss in Form von Wildpfaden gibt.

Somit ist die Fläche 32 / 312 als >>alpha-oligohemer<< (6) einzustufen (siehe Tabelle 58).

Der Biotoptyp „Eichen-Eschen-Ulmen-Auwald“ stimmt mit der potentiell natürlichen Vegetation des Fraxino-Ulmetums überein. Insgesamt betrachtet sind die Einzelkriterien recht gut bewertet, jedoch sind es auch hier vorwiegend die Kriterien der Vegetation, die vorliegende zwei Flächen, welche den Hemerobiewert nicht höher als (6) steigen lassen. In der Baumschicht kommt Quercus robur mit einer Br.-Bl.-Deckung von (3) vor, andere standortgerechte Baumarten, in diesem Fall Fraxinus
excelsior und *Acer campestre* sind zwar vorhanden, jedoch unterrepräsentiert. In die Verjüngung konnten jene letztgenannten zwei Spezies und leider auch das Problemgehölz *Ailanthus altissima*, von dem auf lichten Stellen bereits größere Exemplare vorhanden waren, aufgenommen werden.

Die Fläche wird mit einer Hemerobie von >>alpha-oligohemerob<< (6) eingestuft (siehe Tabelle 59).

4.3.2.15 RELEVÉ NR. 34 / FID_INVENT NR. 393

Tabelle 60: Hemerobiebewertung- Aufnahme 34 / 393

<table>
<thead>
<tr>
<th>EINZELKRITERIEN</th>
<th>AGGREGATION DER KRITERIEN</th>
<th>REL_Nr 34 / FID_inv 393</th>
<th>HEMEROBIESTUFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturnähe der Baumartenkombination: RW_1 4</td>
<td>Naturnähe der Vegetation: RW1_2 4</td>
<td>PNWG: Fraxino-Ulmetum</td>
<td>Hem 6,86</td>
</tr>
<tr>
<td>Naturnähe der Bodenvegetation: RW_2 5</td>
<td>Naturnähe der Verjüngung: RW3_4 9</td>
<td>Biotop: Eichen-Ulmen-Eschen-Auwald</td>
<td>Hem_gerundet 7</td>
</tr>
<tr>
<td>Verjüngungsart: RW_3 9</td>
<td>Naturnähe des Bestandes: RW12_34 5,25</td>
<td>beta-oligohemerob</td>
<td></td>
</tr>
<tr>
<td>Fläche der Freiverjüngung: RW_4 9</td>
<td>Naturnähe der Artenzusammensetzung: RW1234_5 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nutzung - Beeinflussung: RW_5 8</td>
<td>Entwicklungsstufe: RW6_zs 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entwicklungsstufe: RW_6 9</td>
<td>Bestandesreife: RW6zs_7 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totholz: RW_7 8</td>
<td>Artenreichtum: RW10_11 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bestandesaufbau: RW_8 8</td>
<td>Diversität: RW1011_8 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strukturzuschlag: ZS 1,25</td>
<td>Naturnähe der Bestandesstruktur: RW6zs7_10118 8,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artendiversität der Bäume: RW_10 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artendiversität der Bodenvegetation: RW_11 9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nicht weit vom vorigen Stichprobenpunkt entfernt liegt die Aufnahmefläche 34 / 393. Sie ist in etwa 100 m vom Kühwörter Wasser (vgl. ROTTER & SCHRATT-EHRENDORFER 1999) entfernt und grenzt direkt im Norden an einen stark
frequentierten Radweg. Auch hier sind Biototyp und potentielle natürliche Vegetation ident. Die Hemerobiestufe ist mit (7) >>beta-oligoherob<< um einen Grad höher als bei der Fläche 33 / 395, was sich mit der Artenzusammensetzung erklären lässt. Die Einzelkriterien der Artendiversität und der Naturnähe der Vegetation sind deutlich höher bewertet. Auf dieser Fläche wurden 50, auf der vorigen Fläche hingegen nur 30 Spezies aufgenommen und in der Verjüngung wurden ausschließlich Acer campestre und Ulmus minor vermerkt.

Die Hemerobiestufe >>beta-oligoherob<< (7) (siehe Tabelle 60) ist die in der Unteren Lobau höchste Hemerobieauszeichnung, welche nur für drei Flächen berechnet werden konnte.

4.3.2.16 RELEVÉ NR. 35 / FID_INVENT NR. 376

Tabelle 61: Hemerobiebewertung- Aufnahme 35 / 376

<table>
<thead>
<tr>
<th>EINZELKRITERIEN</th>
<th>AGGREGATION DER KRIEITEN</th>
<th>REL_Nr 35 / FID_Inv 376</th>
<th>HEMEROBIESTUFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RW_1 RW_2</td>
<td>RW1_2 RW3_4</td>
<td>PNWG: Fraxino-Ulmetum</td>
<td></td>
</tr>
<tr>
<td>RW_3 RW_4</td>
<td>RW12_34 RW1234_5</td>
<td>Biotop: Schwarzpappelauwald</td>
<td></td>
</tr>
<tr>
<td>RW_5 RW_6</td>
<td>RW6_zs RW6zs_7</td>
<td>Hem 5,57</td>
<td></td>
</tr>
<tr>
<td>RW_7 RW_8</td>
<td>RW6zs_7 RW10_11</td>
<td>Hem_gerundet 6</td>
<td></td>
</tr>
<tr>
<td>ZS</td>
<td>RW1011_8</td>
<td>alpha-oligoherob</td>
<td></td>
</tr>
<tr>
<td>Artendiversität</td>
<td>Naturnähe der Vegetation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5,57</td>
<td>Naturnähe der Verjüngung:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5,57</td>
<td>Naturnähe des Bestandes:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,5</td>
<td>Naturnähe der Artenzusammensetzung:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Entwicklungsstadium:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Entwicklungsstufe:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Totholz:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bestandesaufbau:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strukturzuschlag:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Naturnähe der Bestandesstruktur:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,25</td>
<td>Artenreichtum:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diversität:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Artendiversität der Bäume:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Artendiversität der Bodenvegetation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

210
Die Probefläche 35 / 376 liegt direkt neben einer Heißlände und 175 m südöstlich des Kühwörter Wassers. (vgl. ROTTER & SCHRATT-EHRENDORFER 1999)

Die Baumschicht ist mit einer Deckung von 30 % als ziemlich offen anzusehen, wohingegen die Strauchschicht einen fast dichten Baldachin aus Cornus mas, Cornus sanguinea, Ligustrum vulgare, Clematis vitalba und anderen Sträuchern bildet. In die Verjüngung wurden Acer campestre und Prunus domestica aufgenommen.

Die Fläche 35 / 376 hat mit der Hemerobiestufe >> alpha.oligohemero<< (6) (siehe Tabelle 61) eine relativ gute Bewertung erlangt.
Tabelle 62: Hemerobiobewertung- Aufnahme 36 / 317

<table>
<thead>
<tr>
<th>EINZELKRITERIEN</th>
<th>AGGREGATION DER KRITERIEN</th>
<th>REL Nr 36 / FID Inv 317</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturnähe der Baumartenkombination:</td>
<td>Naturnähe der Vegetation:</td>
<td>PNWG: Fraxino-Ulmetum</td>
</tr>
<tr>
<td>RW 1</td>
<td>RW1_2</td>
<td>Biotop: Silberpappelauwald</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naturnähe der Bodenvegetation:</td>
<td>Naturnähe der Verjüngung:</td>
<td></td>
</tr>
<tr>
<td>RW 2</td>
<td>RW3_4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Verjüngungsart:</td>
<td>Naturnähe des Bestandes:</td>
<td></td>
</tr>
<tr>
<td>RW 3</td>
<td>RW12_34</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fläche der Freiverjüngung:</td>
<td>Naturnähe der Artenzusammensetzung:</td>
<td></td>
</tr>
<tr>
<td>RW 4</td>
<td>RW1234_5</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Nutzung - Beeinflussung:</td>
<td>Entwicklungsstadium:</td>
<td></td>
</tr>
<tr>
<td>RW 5</td>
<td>RW6_zs</td>
<td>Hem</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>5,86</td>
</tr>
<tr>
<td>Entwicklungsstufe:</td>
<td>Bestandesreife:</td>
<td>Hem_gerundet:</td>
</tr>
<tr>
<td>RW 6</td>
<td>RW6zs_7</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>alpha-oligohemerob</td>
</tr>
<tr>
<td>Totholz:</td>
<td>Artenreichtum:</td>
<td></td>
</tr>
<tr>
<td>RW 7</td>
<td>RW10_11</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>Diversität:</td>
</tr>
<tr>
<td>Bestandesaufbau:</td>
<td>RW1011_8</td>
<td></td>
</tr>
<tr>
<td>RW 8</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strukturzuschlag:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artendiversität der Bäume:</td>
<td>Naturnähe der Bestandesstruktur:</td>
<td></td>
</tr>
<tr>
<td>RW 10</td>
<td>RW6zs7_10118</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8,2</td>
<td></td>
</tr>
<tr>
<td>Artendiversität der Bodenvegetation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Die Probefläche **36 / 317** befindet sich 100 m östlich eines stark frequentierten Radweges, liegt aber recht unerreichbar und abgegrenzt, sodass keine anthropogenen Nutzungen fest zu stellen waren. Die einzigen Nutzungen betrafen den Wildschaden, der mittelstark ausgeprägt war.

Auf der Fläche wurden vergleichsweise nicht sonderlich viele Arten aufgenommen, somit machen sich die Störer in der Krautschicht, besonders jene mit einer hohen Br.-Bl.-Deckung wie Aegopodium podagraria und Impatiens parviflora besonders stark in der Berechnung bemerkbar und setzen den Relativwert der Bodenvegetation dementsprechend herunter.

Insgesamt sind die anderen Kriterien auf der Fläche 36 / 317 sehr positiv berechnet und somit die Hemerobie als >>alpha-oligohemerob<< (6) eingestuft (siehe Tabelle 62).
Tabelle 63: Hemerobiebewertung- Aufnahme 37 / 319

<table>
<thead>
<tr>
<th>EINZELKRITERIEN</th>
<th>AGGREGATION DER KRITERIEN</th>
<th>REL_Nr / FID_Inv 319</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturnähe der Baumartenkombination:</td>
<td>Naturnähe der Vegetation:</td>
<td>PNWG: Fraxino-Ulmetum</td>
</tr>
<tr>
<td>RW_1</td>
<td>1</td>
<td>RW1_2</td>
</tr>
<tr>
<td>Naturnähe der Bodenvegetation:</td>
<td>Naturnähe der Verjüngung:</td>
<td>Biotop: Silberpappelauwald</td>
</tr>
<tr>
<td>RW_2</td>
<td>5</td>
<td>RW3_4</td>
</tr>
<tr>
<td>Verjüngungsart:</td>
<td>Naturnähe des Bestandes:</td>
<td></td>
</tr>
<tr>
<td>RW_3</td>
<td>0</td>
<td>RW12_34</td>
</tr>
<tr>
<td>Fläche der Freiverjüngung:</td>
<td>Naturnähe der Artenzusammensetzung:</td>
<td></td>
</tr>
<tr>
<td>RW_4</td>
<td>9</td>
<td>RW1234_5</td>
</tr>
<tr>
<td>Nutzung – Beeinflussung:</td>
<td>Entwicklungsstadium:</td>
<td>HEMEROBIESTUFE</td>
</tr>
<tr>
<td>RW_5</td>
<td>7</td>
<td>RW6_zs</td>
</tr>
<tr>
<td>Entwicklungsstufe:</td>
<td>Bestandesreife:</td>
<td>Hem</td>
</tr>
<tr>
<td>RW_6</td>
<td>9</td>
<td>RW6zs_7</td>
</tr>
<tr>
<td>Totholz:</td>
<td>Artenreichtum:</td>
<td>Hem_gerundet</td>
</tr>
<tr>
<td>RW_7</td>
<td>5</td>
<td>RW10_11</td>
</tr>
<tr>
<td>Bestandesaufbau:</td>
<td>Diversität:</td>
<td>alpha-mesohemerob</td>
</tr>
<tr>
<td>RW_8</td>
<td>8</td>
<td>RW1011_8</td>
</tr>
<tr>
<td>Strukturzuschlag:</td>
<td>Naturnähe der Bestandesstruktur:</td>
<td></td>
</tr>
<tr>
<td>ZS</td>
<td>1,25</td>
<td>RW6zs7_10118</td>
</tr>
<tr>
<td>Artendiversität der Bäume:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW_10</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Artendiversität der Bodenvegetation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW_11</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Obwohl so nahe und offen an einem Radweg gelegen lassen sich auf der Fläche, bis auf die Ableite, keine anthropogenen Nutzungen außer schwaches „trampling“ nachweisen.

Die schließlich errechnete Hemerobiestufe für diese Fläche ist mit >>alpha-mesohemerob<< (4) (siehe Tabelle 63) deutlich schlecht ausgefallen. Einen großen
Einfluß auf die Berechnung hatte in diesem Fall die Verjüngung, welche nicht vorhanden war. Sie drückt gleich mehrere Kriterien, Naturnähe des Bestandes und Naturnähe der Artenzusammensetzung, in den Werten hinunter. Zusätzlich ist die Baumartenkombination der potentiell natürlichen Waldgesellschaft recht unähnlich und macht die niedrigen Werte in diesem Einzelkriterium und den daraus aggregierten Werten aus.

4.3.2.19 RELEVÉ NR. 38 / FID_INVENT NR. 344

Tabelle 64: Hemerobiebewertung- Aufnahme 38 / 344

<table>
<thead>
<tr>
<th>EINZELKRITERIEN</th>
<th>AGGREGATION DER KRITERIEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Naturnähe der Vegetation:</td>
</tr>
<tr>
<td>RW_1</td>
<td>2,5</td>
</tr>
<tr>
<td>Naturnähe der Baumartenkombination:</td>
<td></td>
</tr>
<tr>
<td>RW_2</td>
<td>1</td>
</tr>
<tr>
<td>Verjüngungsart:</td>
<td></td>
</tr>
<tr>
<td>RW_3</td>
<td>9</td>
</tr>
<tr>
<td>Fläche der Freiverjüngung:</td>
<td></td>
</tr>
<tr>
<td>RW_4</td>
<td>9</td>
</tr>
<tr>
<td>Nutzung – Beeinflussung:</td>
<td></td>
</tr>
<tr>
<td>RW_5</td>
<td>6</td>
</tr>
<tr>
<td>Entwicklungsstufe:</td>
<td></td>
</tr>
<tr>
<td>RW_6</td>
<td>5,8</td>
</tr>
<tr>
<td>Totholz:</td>
<td></td>
</tr>
<tr>
<td>RW_7</td>
<td>1</td>
</tr>
<tr>
<td>Bestandesaufbau:</td>
<td></td>
</tr>
<tr>
<td>RW_8</td>
<td>8</td>
</tr>
<tr>
<td>Strukturzuschlag:</td>
<td></td>
</tr>
<tr>
<td>ZS</td>
<td>1,25</td>
</tr>
<tr>
<td>Artendiversität der Bäume:</td>
<td></td>
</tr>
<tr>
<td>RW_10</td>
<td>1</td>
</tr>
<tr>
<td>Artendiversität der Bodenvegetation:</td>
<td></td>
</tr>
<tr>
<td>RW_11</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Naturnähe der Vegetation:</td>
</tr>
<tr>
<td>RW1_2</td>
<td>2</td>
</tr>
<tr>
<td>Naturnähe der Verjüngung:</td>
<td></td>
</tr>
<tr>
<td>RW3_4</td>
<td>9</td>
</tr>
<tr>
<td>Naturnähe des Bestandes:</td>
<td></td>
</tr>
<tr>
<td>RW12_34</td>
<td>3,75</td>
</tr>
<tr>
<td>Naturnähe der Artenzusammensetzung:</td>
<td></td>
</tr>
<tr>
<td>RW1234_5</td>
<td>5</td>
</tr>
<tr>
<td>Entwicklungsstadium:</td>
<td></td>
</tr>
<tr>
<td>RW6_zs</td>
<td>7,05</td>
</tr>
<tr>
<td>Bestandesreife:</td>
<td></td>
</tr>
<tr>
<td>RW6zs_7</td>
<td>5</td>
</tr>
<tr>
<td>Artenreichtum:</td>
<td></td>
</tr>
<tr>
<td>RW10_11</td>
<td>1</td>
</tr>
<tr>
<td>Diversität:</td>
<td></td>
</tr>
<tr>
<td>RW1011_8</td>
<td>6</td>
</tr>
<tr>
<td>Naturnähe der Bestandesstruktur:</td>
<td></td>
</tr>
<tr>
<td>RW6zs7_10118</td>
<td>5,4</td>
</tr>
</tbody>
</table>

Die Aufnahmefläche 38 / 344 liegt 50 m südlich eines Radweges. Es handelt sich um einen sehr jungen, in etwa 17 Jahre alten Silberpappel- und Weidenforst, wobei in der Baumschicht ausschließlich *Populus alba, Fraxinus excelsior, Ailanthus*...
altissima und als zweite dominante Spezies neben der Silberpappel, ebenfalls mit einer Br.-Bl.-Deckung von (3), **Acer pseudoplatanus** angesprochen werden konnten. Weiden wurden im Bestand nicht nachgewiesen. Die Strauchschicht ist vorwiegend unter 1,8 m ausgeprägt.

Somit ist klar, dass die Tendenz dieser Fläche, wie in den meisten abgedämmten Auabschnitten in Richtung Verhärtung einer Weichholzau führt bzw. schon weit fortgeschritten ist oder aber eine Aufforstung mit Silberpappel auf einem hartholztauglichen Boden nicht sehr erfolgreich war.

Erwähnenswert ist noch die äußerst geringe Menge an Totholz auf der Fläche, was sich auch im niedrigen Relativwert für dieses Kriterium wiederspiegelt.

Die Hemerobiebewertung der Fläche wurde mit >>beta-mesohemerob<< (5) abgeschlossen (siehe **Tabelle 64**).
4.3.2.20 RELEVÉ NR. 39 / FID_INVENT NR. 340

Tabelle 65: Hemerobiebewertung - Aufnahme 39 / 340

<table>
<thead>
<tr>
<th>EINZELKRITERIEN</th>
<th>AGGREGATION DER KRITERIEN</th>
<th>REL Nr 39 / FID Inv 340</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturnähe der Baumartenkombination:</td>
<td>Naturnähe der Vegetation:</td>
<td>PNWG: Fraxino-Ulmetum</td>
</tr>
<tr>
<td>RW_1 4,5</td>
<td>RW1_2 4</td>
<td>Biotop: Eichen-Ulmen-Eschen-Auwald</td>
</tr>
<tr>
<td>Naturnähe der Bodenvegetation:</td>
<td>Naturnähe der Verjüngung:</td>
<td></td>
</tr>
<tr>
<td>RW_2 3</td>
<td>RW3_4 9</td>
<td></td>
</tr>
<tr>
<td>Verjüngungsart:</td>
<td>Naturnähe des Bestandes:</td>
<td></td>
</tr>
<tr>
<td>RW_3 9</td>
<td>RW12_34 5,25</td>
<td></td>
</tr>
<tr>
<td>Fläche der Freiverjüngung:</td>
<td>Naturnähe der Artenzusammensetzung:</td>
<td></td>
</tr>
<tr>
<td>RW_4 9</td>
<td>RW1234_5 6</td>
<td></td>
</tr>
<tr>
<td>Nutzung - Beeinflussung:</td>
<td>Entwicklungsstadium:</td>
<td>Hem 6,28</td>
</tr>
<tr>
<td>RW_5 8</td>
<td>RW6_zs 10</td>
<td>Hem gerundet 6</td>
</tr>
<tr>
<td>Entwicklungsstufe:</td>
<td>Bestandesreife:</td>
<td>alpha-oligohemerob</td>
</tr>
<tr>
<td>RW_6 9</td>
<td>RW6zs_7 9</td>
<td></td>
</tr>
<tr>
<td>Totholz:</td>
<td>Artenreichtum:</td>
<td></td>
</tr>
<tr>
<td>RW_7 6</td>
<td>RW10_11 1</td>
<td></td>
</tr>
<tr>
<td>Bestandesaufbau:</td>
<td>Diversität:</td>
<td></td>
</tr>
<tr>
<td>RW_8 5</td>
<td>RW1011_8 3</td>
<td></td>
</tr>
<tr>
<td>Strukturzuschlag:</td>
<td>Naturnähe der Bestandesstruktur:</td>
<td></td>
</tr>
<tr>
<td>ZS 1,25</td>
<td>RW6zs7_10118 6,6</td>
<td></td>
</tr>
<tr>
<td>Artendiversität der Bäume:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW_10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artendiversität der Bodenvegetation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RW_11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

konnten auf der Fläche nicht sonderlich viele Arten angesprochen werden, was sich in den niederen Relativwerten 10 und 11 äußert. Der Biototyp „Eichen-Eschen-Ulmen-Auwald“ deckt sich mit der potentiellen natürlichen Vegetation des Fraxino-Ulmetums. Trotzdem konnte das Kriterium Naturnähe der Vegetation nicht sehr hoch berechnet werden, weil die erforderlichen standortgerechten Baumarten fehlten und die Bodenvegetation doch einige Störungszeiger aufwies.

5 DISKUSSION

5.1 ERGEBNISSE IM VERGLEICH MIT DEN RESULTATEN FÜR DIE GESAMTHEIT DER ÖSTERREICHISCHEN WALDFLÄCHEN

Karoline Zsak

Österreichweit werden laut MaB-Hemerobiestudie 20% bzw. 21% der Wälder als »beta-mesohemerob« bzw. »alpha-oligohemerob« eingestuft (vgl. GRABHERR et al. 1998). Die Ergebnisse für die Lobau heben sich hier mit 15,4% bzw. 46,2% der
Einzelflächen positiv ab, da sich die Ergebnisse stark in Richtung der höheren Relativwerte verschiebt, was einem geringeren menschlichen Einfluss bzw. einer höheren Natürlichkeitsstufe entspricht. (vgl. GRABHERR et al 1998)

Weiter konnten 20,5\% der Stichprobeflächen in der Wiener Lobau als »naturnah« klassifiziert werden, wobei 2,6\% der Hemerobiestufe »gamma-oligohemerob« entsprechen und 17,9\% dem Hemerobiegrad »beta-oligohemerob« zugeordnet wurden. Österreichweit stellen naturnahe Waldflächen einen Anteil von 18,5\%, folglich können 2,9\% der Wälder als »natürlich« bzw. »ahemerobe« angesprochen werden. (vgl. GRABHERR et al. 1998)

5.2 BESCHREIBUNG DER HEMEROBIESTUFEN

Karoline Zsak

Diese Beschreibung trifft auf die im Zuge der Hemerobieerhebung als »beta-oligohemerob« bzw. »gamma-oligohemerob« beurteilten Waldflächen nicht zu,
was durch die überwiegend hohen Relativwerte des Kriteriums „Totholz“ auf diesen Flächen bestätigt werden kann. Weiter vermittelt die Darstellung der »alpha-oligohemeroben« und »beta-mesohemeroben« Wälder in GRABHERR et al. (1998) als „durchwegs forstwirtschaftlich intensiv genutzt“ (zitiert aus GRABHERR et al. 1998) ein negativeres Bild, als dies auf die Erhebungsflächen derselben Hemerobiestufen in der Wiener Lobau tatsächlich zutrifft, welche keiner bzw. lediglich historisch einer forstlichen Endnutzung unterstanden.

Eine Begründung für die unterschiedlichen Merkmalsausprägungen der Hemerobiestufen findet sich in der Kombination unterschiedlicher Faktoren, welche nach Aggregation ein und dieselbe Beurteilung der Hemerobie ergeben können. Daher ist die Beschreibung eines charakteristischen, „typischen“ Erscheinungsbildes für eine bestimmte Hemerobiestufe unrealistisch. (vgl. GRABHERR et al. 1998)

Die in GRABHERR et al. (1998) dargestellten Kriterienausprägungen der Hemerobiegrade basieren auf einer Clusteranalyse der Relativwerte der Einzelkriterien für die Untersuchungsflächen der österreichischen Waldfläche. (vgl. GRABHERR et al. 1998)

Durch die auf die Erhebungsflächen im Wiener Anteil des Nationalparks Donauauen wirksamen Faktoren der Beeinflussung durch den Menschen, welche von jenen für die gesamten Waldflächen Österreichs viel umfangreicheren Einflussgrößen stark
abweichen, können folglich auch die unterschiedlichen Merkmalsauszüge der Hemerobiestufen erklärt werden.

Eine weitere Erklärung wäre in einer unterschiedlichen Durchführung der Bewertungsschritte im Zuge der Hemerobieberechnung zu finden, welche möglicherweise durch eine strengere Beurteilung der Untersuchungsflächen in der Wiener Lobau die Hemerobiestufe der Erhebungsf lächen herabsetzten würde und somit zu unterschiedlichen Beschreibungen der Merkmalsauszüge ein und derselben Hemerobiestufe führen würde (siehe Kapitel 5.3).

5.3 METHODENREFLEXION UND VERBESSERUNGSVORSCHLÄGE

5.3.1 AUFNAHME DER VEGETATION

Anna Illedits

Im Rahmen der vorliegenden Studie war es für die Berechnung der Hemerobie der Waldökosysteme in der Lobau von ausschlaggebender Bedeutung die Vegetation der ausgewählten Probeflächen zu bestimmen. An erster Stelle stand somit, neben der expliziten Aufnahme der Hemerobiekriterien, eine Vegetationsaufnahme nach Braun-Blanquet auf der sich die weitere Arbeit stützen konnte.

Zur Vegetationsaufnahme selbst lässt sich noch erwähnen, dass es des Öfteren angebracht gewesen erschien, in der Baumschicht zwischen erster und zweiter Schichte zu unterscheiden, um eine bessere Schätzung der Deckung zu gewährleisten bzw. um den Bestand besser in seiner Ausprägung beschreiben zu können. Ein Auwaldbestand ist sehr vielgestaltig, er zählt, innerhalb des eurosibirischen Laubwaldgürtels, zu den artenreichsten Waldgesellschaften. Besonders in den Gehölzzonen kommen verschiedene Altersstrukturen nebeneinander vor, was somit eine verschieden strukturierte und geschichtete Baumschicht auf dem Areal der Probefläche mit sich brachte. (vgl. LAZOWSKI 1997) Da es jedoch für die Hemerobieberechnung und Klassifizierung der Vegetation keinen Unterschied machte, wurde im Zuge unserer Analyse bloß eine einzige Baumschicht verzeichnet. Auch war es nicht nötig die Deckungsklasse 2 in 2a, 2b und 2m zu unterteilen. (vgl. DIERSCHKE 1994)

5.3.2 KLASSEIFIKATION DER VEGETATION

Anna Illedits

Bei JELEM 1972 ist zu lesen, dass die abgedämmte Pappelau noch typologisch als Pappelau aufgenommen wurde, auch wenn die Entwicklung bereits darüber hinaus geeilt ist. Populus alba beherrschte auf Grund ihrer Fähigkeit sich vegetativ stark zu vermehren noch immer den Standort. (vgl. JELEM 1972)

5.3.3 ZEIGERWERTANALYSE

Anna Illedits

So lassen sich folgende Hypothesen für unsere Aufnahmeflächen aufstellen: Feuchtere Standorte haben eine höhere Nährstoffverfügbarkeit. Dort, wo mehr Licht auf den Boden fällt, ist es trockener und sind dementsprechend weniger Nährstoffe verfügbar.

Vegetationsklassen noch zwischen Oberer und Unterer Lobau, zu sehen. Diese Tatsache ist einerseits auf die bereits zuvor erwähnte geringe Probengröße von 39 und andererseits auf die ungleiche Verteilung der Aufnahmeflächen zu den drei Vegetationsgesellschaften zurückzuführen.

Schlussendlich muss noch einmal ausdrücklich erwähnt werden, dass die mittleren Zeigerwerte nach Ellenberg nur einen Trend wiedergeben. Sie müssen, wie bereits in Kapitel 3.5.2 ausführlich beschrieben, kritisch betrachtet werden.

5.3.4 HERLEITUNG DER POTENTIELLEN NATÜRLICHEN WALDGESELLSCHAFT

Karoline Zsak

Eine Unterscheidung der nachhaltigen bzw. irreversiblen und der umkehrbaren bzw. reversiblen Standortsveränderungen sowie die Entscheidung darüber, welche Veränderungen in der Konstruktion der Potentiellen Natürlichen Vegetation zu berücksichtigen und welche auszuschließen sind, führt immer wieder zu Problemen,
ebenso wie voneinander abweichende Interpretationen des Begriffes. (vgl. HÄRDTLE 1990)

Für die Herleitung der PNV sind ein großer Erfahrungsschatz an vegetations- und landschaftsökologischen Wissen sowie eine gute Kenntnis der Potentiellen Natürlichen Waldgesellschaften und ihrer Standortsansprüche von grundlegender Notwendigkeit. (vgl. GRABHERR et al. 1998)

Die Bestimmung der PNV bzw. der PNWG für die Erhebungsflächen in der Lobau erfolgte anhand der „Karte der Potentiellen Natürlichen Vegetation“ nach Reiter, welche auf einem umfassenden Datenvolumen aus Freilanderhebungen im Untersuchungsgebiet und Informationen aus einem hochauflösenden Höhenmodell basiert. Darüber hinaus wurden im Zuge der die Bestimmung des »ecological envelop« die Standortsansprüche der erfassten Baumarten und der entsprechenden Waldgesellschaften analysiert und flossen in die Konstruktion der Potentiellen Natürlichen Vegetation mit ein (siehe Kapitel 3.3.2), wodurch die oben genannten Anforderungen für die Kartierung der Potentiellen Natürlichen Vegetation ausreichend erfüllt scheinen.

5.3.5 HEMEROBIEBERECHNUNG

Karoline Zsak

Um eine einheitliche Bewertung der Hemerobie verschiedener Untersuchungen zu gewährleisten und so eine gute Vergleichbarkeit der Ergebnisse sicherzustellen, wäre vermutlich eine allgemein anwendbare programmtechnische Lösung wie HEMPROG anzustreben. Eine damit einhergehende ausführliche Beschreibung der notwendigen Datenstrukturen sowie des allgemeinen Gebrauchs und eine Wartung und Aktualisierung des Programms wäre sinnvoll, würde aber einen nicht unbeachtlichen Aufwand darstellen.

5.3.5.1 NATURNÄHE DER BAUMARTENKOMBINATION

Karoline Zsak

In GRABHERR et al. (1998) wird auf die Festlegung der Baumartenkombination und deren Häufigkeitsklassen nicht detailliert eingegangen, jedoch wird auf eine Datenbank österreichischer Waldgesellschaften hingewiesen, welche als Nebenprodukt der Untersuchung der potentiellen natürlichen Waldgesellschaften entstanden ist und bestehende Informationen über Verbreitungsangaben, Standortsbedingungen und vor allem auch über diagnostische Pflanzenarten und ihre zu erwartende Dominanz enthält. Diese Datenbank stand ebenso wie das Programm HEMPROG 0.1 für die Auswertung der Untersuchungsflächen in der Lobau (2011) nicht zur Verfügung. Dadurch können auf die konkrete Festlegung der Vergleichsparameter, die in der Bewertung der „Naturnähe der Baumartenkombination“ im Zuge der MaB-Hemerobiestudie angewendet wurden, nur Vermutungen angestellt werden.
5.3.5.2 NATURNÄHE DER BODENVEGETATION

Karoline Zsak

Die Erstellung einer Störungszeigerliste für die Waldgruppe „Weidengesellschaften“ wäre für zukünftige Hemerobieerhebungen in Auengebieten wünschenswert, fordert jedoch voraussichtlich die expertengestützte Auswertung eines repräsentativen Datenvolumens aus der Vegetationserhebung der entsprechenden Waldgruppe.

Eine genauere Betrachtung der Ergebnisse für das Kriterium „Naturnähe der Bodenvegetation“ (siehe Kapitel 4.2.2.2) zeigt, dass ein großer Anteil der störungszeigenden Arten, welche in der Hemerobieerhebung der Wiener Lobau (2011) beachtlichen Einfluss auf die Ergebnisse nahmen, stickstoffliebenden Arten zukommt, welche durchaus für Auwälder charakteristisch sind (vgl. dazu Abbildung 230).

5.3.5.3 ARTEN­DIVERSITÄT DER BODENVEGETATION

Karoline Zsak

Fläche. Auch in diesem Kriterium übt die Bewertung der oben genannten Stickstoffzeiger als „störungszeigend“ einen wesentlichen Einfluss auf die Beurteilung der Flächen aus (vgl. dazu Abbildung 38).

5.3.6 ABWEICHUNGEN IN DER DARSTELLUNG DER HEMEROBIEBERECHNUNG

Karoline Zsak

Für den Korrekturfaktor wurde der Prozentanteil aus dem Text entnommen und die so modifizierte Tabelle nach GRABHERR et al. 1998 in der Beschreibung der Hemerobieberechnung dargestellt (siehe Tabelle 18).

5.3.7 INTERPOLATION DER ERGEBNISSE UND KARTENERSTELLUNG

Karoline Zsak

Es erscheint jedoch aus diesem Grunde sehr fragwürdig, die Ergebnisse der Einzelflächen für die gesamte Fläche dieses Biotoptyps anzuwenden, wie es im Zuge der Kartenerstellung durchgeführt wurde, da sich Aufnahmeflächen mit anthropogen bedingten Wuchsklassen der Hybridpappel in der Beurteilung der Hemerobie unterscheiden würden.

Ähnliche Probleme zeigten sich bei der Zuteilung anderer Biotoptypen auf inhomogenen Flächen, wodurch die Hemerobiekarte der Lobau bzw. die Resultate der Interpolation der Hemerobiewerte in die Fläche, welche im Zuge dieser
Hemerobieerhebung erarbeitet wurden, weit weniger Aussagekraft besitzen als die Bewertung der Einzelflächen und nur als grobe Einschätzung der Hemerobie im Untersuchungsgebiet angesehen werden kann.

Für die Erstellung einer flächendeckenden Hemerobiekarte der Waldökosysteme der Lobau mit zufriedenstellender Repräsentativität des Datenmaterials wären weitere Hemerobieerhebungen eine notwendige Voraussetzung.

5.4 ZUSAMMENFASSUNG

Karoline Zsak, Anna Illeditz

Die Interpolation der Ergebnisse in die Fläche und die letztliche Zuweisung von charakteristischen Hemerobiestufen zu den Waldbiotopen erfolgte in ARCGIS-Desktop 10 und ergab für einen überwiegenden Anteil der Waldflächen im Untersuchungsgebiet (~ 80%) eine Einstufung der Hemerobie als »alpha-oligohemerob«. Für rund 4% der Flächen resultierte eine Zuordnung zu der Klasse »beta-mesohemerob – alpha-oligohemerob«. Rund 7% werden demnach der Hemerobiestufe »beta-mesohemerob« und ~4% der Hemerobiestufe »alpha-

Nach Aggregation der Einzelkriterien ergibt sich jedoch mit der Zuteilung von rund 26% der Aufnahmen zu der Naturnähestufe »naturnah« für die Stichprobeflächen der Obere Lobau eine positivere Beurteilung in Hinblick auf die Hemerobie. Aus der Bewertung der Stichproben in der Untere Lobau resultiert für diese Naturnähekasse lediglich ein Anteil von 15% der Stichprobeflächen.
6 LITERATURVERZEICHNIS

HILL, MO (1979): **TWINSPAN – A FORTRAN program for arranging multivariate data in an ordered two-way-table by classification of the individuals and attributes.** Cornell University, Ithaca, USA.

Veröffentlichungen des Österreichischen MaB-Programms; Band 17. Universitätsverlag Wagner, Innsbruck. S. 137 – 138.

STADT WIEN (2009): Tanklager Lobau Abgesichert, Altlastenabsicherung Contamination Safeguards. DVD.

ANHANG 1 - ERHEBUNGSBOGEN

Erhebungsbogen Hemerobiestudie Lobau

<table>
<thead>
<tr>
<th>Länge:</th>
<th>Breite:</th>
</tr>
</thead>
</table>

- **Böschung**
- **Biotop:**
- **Flächengr.:**
- **Datum:**
- **laufende Nr.:**
- **BS [%]:**
- **SS [%]:**
- **FID Invent Nr.:**
- **offener Boden [%]:**
- **litter [%]:**
- **KS [%]:**
- **Teilflächen Nr.:**
- **sonstiges [%]:**
- **Foto Nr.:**

Wegtyp:

- **Hauptfahrweg**
- **versiegelt**
- **stark genutzt**
- **Fahrweg**
- **offen**
- **genutzt**
- **Br.**
- **Gehweg**
- **bewachsen**
- **wenig-selten gen.**
- **Trampelpfad**
- **stark bewachsen**

Sonstige Bemerkungen:

1. **Vegetationsaufnahme**

 Baumartenanteile (BAA) aktuell und potentiell natürlich

<table>
<thead>
<tr>
<th>aktuell:</th>
<th>pot. nat.:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = dom.</td>
<td>3 = beigem.</td>
</tr>
<tr>
<td>2 = subdom.</td>
<td>4 = eingesp.</td>
</tr>
<tr>
<td>5 = NP <5%</td>
<td>3 = obl. beig.</td>
</tr>
<tr>
<td>6 = NP > 5%</td>
<td>4 = BA mögl.</td>
</tr>
<tr>
<td>a = aktuell</td>
<td>pn = potentiell natürlich</td>
</tr>
<tr>
<td>NP= standorts Fremde Art od. Neophyten</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Baumschicht:</th>
<th>BAA</th>
<th>BAA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF Artname:</td>
<td>Deckung a pn</td>
<td>Artname:</td>
</tr>
</tbody>
</table>

Strauchschicht

<table>
<thead>
<tr>
<th>CF Artname:</th>
<th>Deckung</th>
<th>Artname:</th>
<th>Deckung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

247
Vegetationsaufnahme Krautschicht

<table>
<thead>
<tr>
<th>Höhenbereich</th>
<th>Gesamtdeckung</th>
<th>Schichtung</th>
<th>Bestandsstruktur</th>
<th>Störungstyp</th>
<th>Artname: Deckung</th>
<th>Artname: Deckung</th>
</tr>
</thead>
<tbody>
<tr>
<td>von bis %</td>
<td>1 = einschichtig</td>
<td>2 = schwach 2-schichtig</td>
<td>3 = 2-schichtig</td>
<td>4 = 3-/mehr-schichtig</td>
<td>5 = stufig</td>
<td>1 = dicht</td>
</tr>
<tr>
<td>1 = V/WZ</td>
<td>2 = geschlossen</td>
<td>3 = lückig</td>
<td>4 = licht</td>
<td>5 = räumig</td>
<td>6 = 1 = dicht</td>
<td>7 = 2 = geschlossen</td>
</tr>
<tr>
<td>8 = 3 = lückig</td>
<td>9 = 4 = licht</td>
<td>10 = 5 = räumig</td>
<td>11 = 6 = 1 = dicht</td>
<td>12 = 7 = 2 = geschlossen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 = 3 = lückig</td>
<td>14 = 4 = licht</td>
<td>15 = 5 = räumig</td>
<td>16 = 6 = 1 = dicht</td>
<td>17 = 7 = 2 = geschlossen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Altersstruktur | 1 = +/- gleichaltrig | 2 = mittlere Altersspanne | 3 = gr. Altersspanne |
|----------------|----------------------|---------------------------|

<table>
<thead>
<tr>
<th>Baumalomen</th>
<th>1 = Säbelw.</th>
<th>2 = Krüppelw.</th>
<th>3 = Wipfelbruch</th>
<th>4 = Kronenverlichtung</th>
<th>5 = Mistelbefall</th>
</tr>
</thead>
</table>

Stärkster Durchmesser (cm):

<table>
<thead>
<tr>
<th>BA</th>
<th>BHD</th>
<th>BA</th>
<th>BHD</th>
</tr>
</thead>
</table>

4. Entwicklungsphasen (1/10 Flächenanteil) & Wuchsklassen (1/10 Flächenanteil)

<table>
<thead>
<tr>
<th>Entwicklungsphase</th>
<th>Wuchsklasse</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = J/I</td>
<td>3 = Z/V</td>
</tr>
<tr>
<td>2 = O/T</td>
<td>4 = NWP</td>
</tr>
<tr>
<td>5 = B</td>
<td>7 = Jl</td>
</tr>
<tr>
<td>6 = Bl</td>
<td>8 = JII</td>
</tr>
<tr>
<td>9 = S</td>
<td>10 = Bl</td>
</tr>
<tr>
<td>11 = Bl II</td>
<td>12 = SH</td>
</tr>
</tbody>
</table>

5. Beeinträchtigung:

<table>
<thead>
<tr>
<th>Grad der Nutzung (Intensität):</th>
<th>1 = schwach</th>
<th>2 = mittel</th>
<th>3 = stark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutzungsgeschichte (NG):</td>
<td>1 = akt.</td>
<td>2 = hist.</td>
<td>3 = akt. & hist.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Müll</th>
<th>Baden</th>
<th>Lager</th>
<th>Zaub</th>
<th>Tramp</th>
<th>Radl.</th>
<th>Schotterakk.</th>
<th>Sonstiges</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEN</td>
<td>WW</td>
<td>TOU</td>
<td>SO</td>
<td>FVN</td>
<td>BO/M</td>
<td>WI (R=10m)</td>
<td>Fläzes</td>
</tr>
<tr>
<td>FVN</td>
<td>BO/M</td>
<td>S/S</td>
<td>S/S</td>
<td>WW</td>
<td>FEN</td>
<td>deul. WI außerhalb 300m²</td>
<td>ja</td>
</tr>
</tbody>
</table>

Radius 10 Meter

<table>
<thead>
<tr>
<th>Verjüngungsart (bis 1,3 m Höhe)</th>
<th>Fläche der Freiverjüngung (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = J/I</td>
<td>3 = KU stained</td>
</tr>
<tr>
<td>2 = O/T</td>
<td>4 = KU stained</td>
</tr>
<tr>
<td>5a = BAV</td>
<td>5b = STV</td>
</tr>
<tr>
<td>5c = Beide</td>
<td>6 = >5000 m²</td>
</tr>
</tbody>
</table>

6. Fläche der Freiverjüngung (m²)

<table>
<thead>
<tr>
<th>1/10 Anteil</th>
<th>1/10 Anteil</th>
<th>Plot 25x25m:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = bis 500 m²</td>
<td>2 = 500-1000 m²</td>
<td>3 = 1000-1500 m²</td>
</tr>
</tbody>
</table>
Baumartenanteil der Verjüngung (nur aktuell)
1 = domin. 2 = subdom. 3 = beigem. 4 = eingesprengt

<table>
<thead>
<tr>
<th>Artname</th>
<th>a</th>
<th>Artname</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Totholzanteil
besonders wenig Totholz vorhanden

Deckung (%) stehend legender

Durchmesser:
schwach < 10 cm: 1 = wenig 2 = mittel 3 = viel 4 = sehr viel
stark >= 10 cm: Volumen (m³ am Ort)

<table>
<thead>
<tr>
<th>Durchmesser</th>
<th>10 - 20 cm</th>
<th>> 20 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 - 20 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 20 cm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Qualität des Totholzes: > 50 % stehend > 50 % anthr. Z6: 1 2 3 4

Standort

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Großrelief:
1 = Kuppe 8 = Talboden, Ebene 1 = homogen Deck.
2 = Oberhang 9 = Hangfuß 2 = wellig Bombenkrater
3 = Mittelhang 10 = Schuttkegel 3 = rinnig Gewässergang / Altarm
4 = Unterhang 11 = Schwemmfläche 4 = buckelig Geländekante / früher. Ufersaum
5 = Rücken 12 = Grabenanhang 5 = konvex
6 = Mulde 13 = Graben 6 = konkav

Kleinrelief (25x25m):
1 = Kuppe 8 = Talboden, Ebene 1 = homogen Deck.
2 = Oberhang 9 = Hangfuß 2 = wellig Bombenkrater
3 = Mittelhang 10 = Schuttkegel 3 = rinnig Gewässergang / Altarm
4 = Unterhang 11 = Schwemmfläche 4 = buckelig Geländekante / früher. Ufersaum
5 = Rücken 12 = Grabenanhang 5 = konvex
6 = Mulde 13 = Graben 6 = konkav

Standort

<table>
<thead>
<tr>
<th>13. Geologie: aus Karte:</th>
<th>Ja</th>
<th>nein</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = Granit, Gneis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 = Quarzsandstein, Quarzit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Boden:
1 = sil. Rohbo. 2 = Braunerde 3 = Parabraunerde 4 = Spodiozem 5 = Podsol 6 = Pseudogley, Gley 7 = Mischboden
8 = bas. Rohbo. 9 = Rendzina 10 = Brauner, Nait. 11 = Tschernosol 12 = Terra Jü. 13 = Moor. Anm. 14 = Aupt. 15 = Runk.

Wasserhaushalt:
1 = trocken 2 = mäßig trocken 3 = w. echselfro. 4 = mäßig frisch 5 = frisch 6 = w. echselfro. 7 = feucht 8 = naß

Lokalklima:
1 = Kaltluft 2 = w. ärmebedeckt 3 = luftfeucht 4 = lufttrocken 5 = Frostlage 6 = w. indexpo. 7 = Schneeakkum.

Anmerkungen zum Standort:

Aktuelle Waldgesellschaft:

Pot. Waldges. (Plagi.ges.):

Soziol. Anmerkung:

Sonst. Anmerkung, Umgebung:

Natursch.würdig:
0 = nein 1 = ja

Hemerobie gesch.:
ANHANG 2: STÖRINGSZEIGERLISTE HEMEROBIEERHEBUNG DER WALDÖKOSYSTEME IM WIENER ANTEIL DER DONAUauen (2011)

(stark modifiziert und erweitert, nach GRABHERR et al. 1998)

<table>
<thead>
<tr>
<th>Art</th>
<th>SW</th>
<th>Kategorie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achillea millefolium agg.</td>
<td>1</td>
<td>HH</td>
</tr>
<tr>
<td>Aegopodium podagraria</td>
<td>1</td>
<td>HH</td>
</tr>
<tr>
<td>Agrostis stolonifera</td>
<td>1</td>
<td>HH</td>
</tr>
<tr>
<td>Allium scorodoprasum</td>
<td>1</td>
<td>HH</td>
</tr>
<tr>
<td>Arctium nemorosum</td>
<td>1</td>
<td>HH</td>
</tr>
<tr>
<td>Briza media</td>
<td>1</td>
<td>HH</td>
</tr>
<tr>
<td>Carex flacca</td>
<td>1</td>
<td>HH</td>
</tr>
<tr>
<td>Centaurea nigra</td>
<td>1</td>
<td>HH</td>
</tr>
<tr>
<td>Cerastium holosteoides</td>
<td>1</td>
<td>HH</td>
</tr>
<tr>
<td>Cirsiuim vulgar</td>
<td>1</td>
<td>HH</td>
</tr>
<tr>
<td>Clematis vitalba</td>
<td>1</td>
<td>HH</td>
</tr>
<tr>
<td>Conyza canadensis</td>
<td>1</td>
<td>HH</td>
</tr>
<tr>
<td>Crucia laevipes</td>
<td>1</td>
<td>HH</td>
</tr>
<tr>
<td>Dactylis glomerata agg.</td>
<td>1</td>
<td>HH</td>
</tr>
<tr>
<td>Deschampsia cespitosa</td>
<td>1</td>
<td>HH</td>
</tr>
<tr>
<td>Eupatorium cannabinum</td>
<td>1</td>
<td>HH</td>
</tr>
<tr>
<td>Euphorbia peplus</td>
<td>1</td>
<td>HH</td>
</tr>
<tr>
<td>Fragaria vesca</td>
<td>1</td>
<td>HH</td>
</tr>
<tr>
<td>Galium aparine</td>
<td>1</td>
<td>HH</td>
</tr>
<tr>
<td>Galium mollugo agg.</td>
<td>1</td>
<td>HH</td>
</tr>
<tr>
<td>Geum urbanum</td>
<td>1</td>
<td>HH</td>
</tr>
<tr>
<td>Heracleum spondylium</td>
<td>1</td>
<td>HH</td>
</tr>
<tr>
<td>Lamium maculatum</td>
<td>1</td>
<td>HH</td>
</tr>
<tr>
<td>Matricaria matricarioides</td>
<td>1</td>
<td>HH</td>
</tr>
<tr>
<td>Mentha verticillata agg.</td>
<td>1</td>
<td>HH</td>
</tr>
<tr>
<td>Persicaria mitis</td>
<td>1</td>
<td>HH</td>
</tr>
<tr>
<td>Pimpinella major</td>
<td>1</td>
<td>HH</td>
</tr>
<tr>
<td>Polygonum aviculare agg.</td>
<td>1</td>
<td>HH</td>
</tr>
<tr>
<td>Potentilla reptans</td>
<td>1</td>
<td>HH</td>
</tr>
<tr>
<td>Prunella vulgaris</td>
<td>1</td>
<td>HH</td>
</tr>
<tr>
<td>Ranunculus repens</td>
<td>1</td>
<td>HH</td>
</tr>
<tr>
<td>Rumex obtusifolius</td>
<td>1</td>
<td>HH</td>
</tr>
<tr>
<td>Rumex thyrsiflorus</td>
<td>1</td>
<td>HH</td>
</tr>
<tr>
<td>Salvia pratensis</td>
<td>1</td>
<td>HH</td>
</tr>
<tr>
<td>Sambucus nigra</td>
<td>1</td>
<td>HH</td>
</tr>
<tr>
<td>Scrophularia nodosa</td>
<td>1</td>
<td>HH</td>
</tr>
<tr>
<td>Sedum telephium agg.</td>
<td>1</td>
<td>HH</td>
</tr>
<tr>
<td>Solanum dulcamara</td>
<td>1</td>
<td>HH</td>
</tr>
<tr>
<td>Solidago gigantea</td>
<td>1</td>
<td>HH</td>
</tr>
<tr>
<td>Stellaria media</td>
<td>1</td>
<td>HH</td>
</tr>
<tr>
<td>Stellaria media agg.</td>
<td>1</td>
<td>HH</td>
</tr>
<tr>
<td>Trifolium montanum</td>
<td>1</td>
<td>HH</td>
</tr>
<tr>
<td>Tussilago farfara</td>
<td>1</td>
<td>HH</td>
</tr>
<tr>
<td>Urtica dioica</td>
<td>1</td>
<td>HH</td>
</tr>
<tr>
<td>Vicia sepium</td>
<td>1</td>
<td>HH</td>
</tr>
<tr>
<td>Acer negundo</td>
<td>1</td>
<td>ALL</td>
</tr>
<tr>
<td>Aesculus hippocastanum</td>
<td>1</td>
<td>ALL</td>
</tr>
<tr>
<td>Ailanthus altissima</td>
<td>1</td>
<td>ALL</td>
</tr>
<tr>
<td>Arrhenaterum elatius</td>
<td>1</td>
<td>ALL</td>
</tr>
<tr>
<td>Centaurea jacea</td>
<td>1</td>
<td>ALL</td>
</tr>
<tr>
<td>Pflanze</td>
<td>Störungswahrscheinlichkeit</td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>----------------------------</td>
<td></td>
</tr>
<tr>
<td>Elymus repens</td>
<td>1 ALL</td>
<td></td>
</tr>
<tr>
<td>Erigeron annus</td>
<td>1 ALL</td>
<td></td>
</tr>
<tr>
<td>Impatiens glandulifera</td>
<td>1 ALL</td>
<td></td>
</tr>
<tr>
<td>Impatiens parviflora</td>
<td>1 ALL</td>
<td></td>
</tr>
<tr>
<td>Juglans nigra</td>
<td>1 ALL</td>
<td></td>
</tr>
<tr>
<td>Plantago major</td>
<td>1 ALL</td>
<td></td>
</tr>
<tr>
<td>Poa annua</td>
<td>1 ALL</td>
<td></td>
</tr>
<tr>
<td>Poa annua x canadensis</td>
<td>1 ALL</td>
<td></td>
</tr>
<tr>
<td>Populus nigra</td>
<td>1 ALL</td>
<td></td>
</tr>
<tr>
<td>Ranunculus acris</td>
<td>1 ALL</td>
<td></td>
</tr>
<tr>
<td>Robinia pseudacacia</td>
<td>1 ALL</td>
<td></td>
</tr>
<tr>
<td>Taraxacum officinale</td>
<td>1 ALL</td>
<td></td>
</tr>
<tr>
<td>Taraxacum officinale agg.</td>
<td>1 ALL</td>
<td></td>
</tr>
<tr>
<td>Trifolium repens</td>
<td>1 ALL</td>
<td></td>
</tr>
<tr>
<td>Trisetum flavescens</td>
<td>1 ALL</td>
<td></td>
</tr>
<tr>
<td>Rhodotypos scandens</td>
<td>1 hinzugefügt</td>
<td></td>
</tr>
<tr>
<td>Weigelia species</td>
<td>1 hinzugefügt</td>
<td></td>
</tr>
<tr>
<td>Mahonia aqufolium</td>
<td>1 hinzugefügt</td>
<td></td>
</tr>
</tbody>
</table>

SW Störwahrscheinlichkeit

HH übernommen aus der "Störungszeigerliste für Gefäßpflanzen der Bodenvegetation getrennt nach ökologischen Waldgruppen" für die Waldgruppe "17"

ALL übernommen aus der Störungszeigerliste "Generelle Störungszeiger, welche nicht an eine bestimmte Waldgruppe gebunden sind" (nach GRABHERR et al. 1998), Anhang 2

hinzugefügt nach eigenem Ermessen durch die Verfasserinnen zur Störungszeigerliste hinzugefügt
ANHANG 3 - ZEIGERWERTE ALLER AUFNAHMEFLÄCHEN

<table>
<thead>
<tr>
<th>Aufnahmenr.</th>
<th>Licht</th>
<th>Temperatur</th>
<th>Kontinentalität</th>
<th>Feuchtigkeit</th>
<th>Bodenreaktion</th>
<th>Nährstoffe</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>5.8</td>
<td>5.6</td>
<td>4.0</td>
<td>6.4</td>
<td>7.1</td>
<td>6.4</td>
</tr>
<tr>
<td>32</td>
<td>5.5</td>
<td>5.9</td>
<td>3.9</td>
<td>5.6</td>
<td>7.3</td>
<td>6.6</td>
</tr>
<tr>
<td>4</td>
<td>5.8</td>
<td>5.9</td>
<td>3.7</td>
<td>5.6</td>
<td>7.1</td>
<td>7.2</td>
</tr>
<tr>
<td>19</td>
<td>5.6</td>
<td>5.9</td>
<td>3.6</td>
<td>5.4</td>
<td>7.1</td>
<td>7.1</td>
</tr>
<tr>
<td>24</td>
<td>6.5</td>
<td>6.0</td>
<td>3.9</td>
<td>5.8</td>
<td>7.2</td>
<td>6.9</td>
</tr>
<tr>
<td>25</td>
<td>6.0</td>
<td>5.8</td>
<td>4.4</td>
<td>6.3</td>
<td>7.1</td>
<td>7.0</td>
</tr>
<tr>
<td>13</td>
<td>5.3</td>
<td>5.5</td>
<td>3.9</td>
<td>5.7</td>
<td>7.0</td>
<td>6.8</td>
</tr>
<tr>
<td>17</td>
<td>5.4</td>
<td>5.8</td>
<td>4.1</td>
<td>5.6</td>
<td>7.3</td>
<td>6.6</td>
</tr>
<tr>
<td>38</td>
<td>5.5</td>
<td>5.9</td>
<td>3.7</td>
<td>5.8</td>
<td>7.1</td>
<td>7.2</td>
</tr>
<tr>
<td>39</td>
<td>5.2</td>
<td>5.7</td>
<td>4.1</td>
<td>5.7</td>
<td>7.3</td>
<td>7.1</td>
</tr>
<tr>
<td>36</td>
<td>5.6</td>
<td>5.9</td>
<td>3.9</td>
<td>5.9</td>
<td>7.1</td>
<td>7.1</td>
</tr>
<tr>
<td>21</td>
<td>6.0</td>
<td>6.0</td>
<td>3.4</td>
<td>5.6</td>
<td>7.1</td>
<td>7.4</td>
</tr>
<tr>
<td>2</td>
<td>5.3</td>
<td>5.9</td>
<td>3.8</td>
<td>5.6</td>
<td>7.2</td>
<td>7.1</td>
</tr>
<tr>
<td>18</td>
<td>5.4</td>
<td>5.9</td>
<td>4.2</td>
<td>5.8</td>
<td>7.1</td>
<td>6.3</td>
</tr>
<tr>
<td>15</td>
<td>5.9</td>
<td>5.8</td>
<td>3.7</td>
<td>5.7</td>
<td>7.2</td>
<td>6.8</td>
</tr>
<tr>
<td>16</td>
<td>5.1</td>
<td>5.5</td>
<td>3.5</td>
<td>5.3</td>
<td>7.1</td>
<td>6.7</td>
</tr>
<tr>
<td>7</td>
<td>5.7</td>
<td>6.2</td>
<td>3.6</td>
<td>5.2</td>
<td>7.2</td>
<td>6.7</td>
</tr>
<tr>
<td>14</td>
<td>5.5</td>
<td>6.0</td>
<td>3.6</td>
<td>5.3</td>
<td>7.1</td>
<td>6.7</td>
</tr>
<tr>
<td>6</td>
<td>5.8</td>
<td>5.9</td>
<td>3.8</td>
<td>5.5</td>
<td>7.2</td>
<td>6.7</td>
</tr>
<tr>
<td>37</td>
<td>5.3</td>
<td>5.8</td>
<td>3.9</td>
<td>5.6</td>
<td>7.2</td>
<td>6.7</td>
</tr>
<tr>
<td>23</td>
<td>5.6</td>
<td>5.8</td>
<td>3.9</td>
<td>5.3</td>
<td>7.1</td>
<td>6.8</td>
</tr>
<tr>
<td>22</td>
<td>5.3</td>
<td>5.9</td>
<td>3.7</td>
<td>5.5</td>
<td>7.3</td>
<td>6.8</td>
</tr>
<tr>
<td>20</td>
<td>5.3</td>
<td>5.8</td>
<td>3.8</td>
<td>5.3</td>
<td>7.2</td>
<td>6.8</td>
</tr>
<tr>
<td>8</td>
<td>5.3</td>
<td>5.8</td>
<td>3.8</td>
<td>5.4</td>
<td>7.2</td>
<td>6.5</td>
</tr>
<tr>
<td>5</td>
<td>5.7</td>
<td>5.6</td>
<td>3.9</td>
<td>5.2</td>
<td>7.3</td>
<td>6.4</td>
</tr>
<tr>
<td>29</td>
<td>5.6</td>
<td>5.8</td>
<td>3.8</td>
<td>5.6</td>
<td>7.2</td>
<td>7.0</td>
</tr>
<tr>
<td>11</td>
<td>5.4</td>
<td>5.8</td>
<td>3.7</td>
<td>5.7</td>
<td>7.1</td>
<td>6.9</td>
</tr>
<tr>
<td>12</td>
<td>5.5</td>
<td>5.8</td>
<td>3.8</td>
<td>5.3</td>
<td>7.2</td>
<td>6.7</td>
</tr>
<tr>
<td>9</td>
<td>6.1</td>
<td>5.9</td>
<td>3.8</td>
<td>4.8</td>
<td>7.3</td>
<td>5.9</td>
</tr>
<tr>
<td>10</td>
<td>5.5</td>
<td>5.9</td>
<td>3.6</td>
<td>5.5</td>
<td>7.3</td>
<td>6.5</td>
</tr>
<tr>
<td>34</td>
<td>5.4</td>
<td>5.8</td>
<td>3.9</td>
<td>5.4</td>
<td>7.3</td>
<td>6.3</td>
</tr>
<tr>
<td>33</td>
<td>5.7</td>
<td>5.9</td>
<td>3.5</td>
<td>5.0</td>
<td>7.2</td>
<td>6.3</td>
</tr>
<tr>
<td>1</td>
<td>5.6</td>
<td>5.8</td>
<td>3.9</td>
<td>5.3</td>
<td>7.3</td>
<td>6.1</td>
</tr>
<tr>
<td>27</td>
<td>5.4</td>
<td>6.0</td>
<td>3.7</td>
<td>5.5</td>
<td>7.4</td>
<td>6.3</td>
</tr>
<tr>
<td>30</td>
<td>6.0</td>
<td>5.8</td>
<td>3.8</td>
<td>6.2</td>
<td>7.3</td>
<td>6.3</td>
</tr>
<tr>
<td>3</td>
<td>5.7</td>
<td>5.8</td>
<td>3.7</td>
<td>4.6</td>
<td>7.4</td>
<td>5.2</td>
</tr>
<tr>
<td>26</td>
<td>6.0</td>
<td>5.7</td>
<td>4.2</td>
<td>5.1</td>
<td>7.3</td>
<td>5.7</td>
</tr>
<tr>
<td>35</td>
<td>5.8</td>
<td>5.7</td>
<td>3.6</td>
<td>5.2</td>
<td>7.3</td>
<td>5.8</td>
</tr>
<tr>
<td>28</td>
<td>5.7</td>
<td>5.9</td>
<td>3.8</td>
<td>5.0</td>
<td>7.6</td>
<td>5.3</td>
</tr>
<tr>
<td>Anhang 4/1 - Vegetationstabelle „Fraxino-Ulmetum“</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vegetationstabelle</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quercus-Fagetea</td>
<td>Cephalotus hirsutus</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Carpinus betulus</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Fagus sylvatica</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Acer pseudoplatanus</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Ulmus minor</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Ulmus laevis</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Vitis vinifera</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Fraxinus excelsior</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Alnus incana</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Fraxinus excelsior</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Alnus incana</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Alnus incana</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Alnus incana</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Fraxinus excelsior</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Alnus incana</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Fraxinus excelsior</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Alnus incana</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Fraxinus excelsior</td>
<td>40</td>
</tr>
</tbody>
</table>

253
<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ajuga reptans</td>
<td>Ajuga reptans</td>
<td>6</td>
</tr>
<tr>
<td>Acer negundo</td>
<td>Acer negundo</td>
<td>2</td>
</tr>
<tr>
<td>Deschampsia cespitosa</td>
<td>Deschampsia cespitosa</td>
<td>1</td>
</tr>
<tr>
<td>Aesculus hippocastanum</td>
<td>Aesculus hippocastanum</td>
<td>1</td>
</tr>
<tr>
<td>Rosa species</td>
<td>Rosa species</td>
<td>1</td>
</tr>
<tr>
<td>Pimpinella major</td>
<td>Pimpinella major</td>
<td>1</td>
</tr>
<tr>
<td>Plantago major</td>
<td>Plantago major</td>
<td>1</td>
</tr>
<tr>
<td>Crucia laevigata</td>
<td>Crucia laevigata</td>
<td>1</td>
</tr>
<tr>
<td>Taraxacum sect. Rudera</td>
<td>Taraxacum sect. Rudera</td>
<td>1</td>
</tr>
<tr>
<td>Valeriana officinalis</td>
<td>Valeriana officinalis</td>
<td>1</td>
</tr>
<tr>
<td>Fragaria vesca</td>
<td>Fragaria vesca</td>
<td>1</td>
</tr>
<tr>
<td>Ailanthus altissima</td>
<td>Ailanthus altissima</td>
<td>1</td>
</tr>
<tr>
<td>Alliaria petiolaris</td>
<td>Alliaria petiolaris</td>
<td>1</td>
</tr>
<tr>
<td>Lysimachia nummularia</td>
<td>Lysimachia nummularia</td>
<td>1</td>
</tr>
<tr>
<td>Hypericum perforatum</td>
<td>Hypericum perforatum</td>
<td>1</td>
</tr>
<tr>
<td>Ribes rubrum</td>
<td>Ribes rubrum</td>
<td>1</td>
</tr>
<tr>
<td>Rhododendron scandens</td>
<td>Rhododendron scandens</td>
<td>1</td>
</tr>
<tr>
<td>Rubus idaeus</td>
<td>Rubus idaeus</td>
<td>1</td>
</tr>
<tr>
<td>Rosa rubiginosa</td>
<td>Rosa rubiginosa</td>
<td>1</td>
</tr>
<tr>
<td>Colchicum autumnale</td>
<td>Colchicum autumnale</td>
<td>1</td>
</tr>
<tr>
<td>Veronica chamaedrys</td>
<td>Veronica chamaedrys</td>
<td>1</td>
</tr>
<tr>
<td>Ajuga reptans</td>
<td>Ajuga reptans</td>
<td>1</td>
</tr>
<tr>
<td>Pheasantus vulgaris</td>
<td>Pheasantus vulgaris</td>
<td>1</td>
</tr>
<tr>
<td>Arctium minus</td>
<td>Arctium minus</td>
<td>1</td>
</tr>
<tr>
<td>Bryonia dioica</td>
<td>Bryonia dioica</td>
<td>1</td>
</tr>
</tbody>
</table>

Rating: 255
<table>
<thead>
<tr>
<th>Species</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equisetum arvense</td>
<td>1</td>
</tr>
<tr>
<td>Rosa rubiginosa</td>
<td>1</td>
</tr>
<tr>
<td>Fagus sylvatica</td>
<td>1</td>
</tr>
<tr>
<td>Rhamnus catharticus</td>
<td>1</td>
</tr>
<tr>
<td>Acer negundo</td>
<td>1</td>
</tr>
<tr>
<td>Eupatorium cannabinum</td>
<td>1</td>
</tr>
<tr>
<td>Carex species</td>
<td>1</td>
</tr>
<tr>
<td>Sambucus nigra</td>
<td>1</td>
</tr>
<tr>
<td>Thalictrum flavum</td>
<td>1</td>
</tr>
<tr>
<td>Dactylis glomerata</td>
<td>1</td>
</tr>
<tr>
<td>Trisetum flavescens</td>
<td>1</td>
</tr>
<tr>
<td>Salvia media</td>
<td>1</td>
</tr>
<tr>
<td>Ballota nigra</td>
<td>1</td>
</tr>
<tr>
<td>Rosa canina s.str.</td>
<td>1</td>
</tr>
<tr>
<td>Anthriscus sylvestris</td>
<td>1</td>
</tr>
<tr>
<td>Dactylis glomerata agg.</td>
<td>1</td>
</tr>
<tr>
<td>Rosa canina s.str.</td>
<td>1</td>
</tr>
<tr>
<td>Poa annua</td>
<td>1</td>
</tr>
<tr>
<td>Poa pratensis</td>
<td>1</td>
</tr>
<tr>
<td>Neottia nidus-avis</td>
<td>1</td>
</tr>
<tr>
<td>Arrhenatherum elatius</td>
<td>1</td>
</tr>
<tr>
<td>Cephalanther damasonii</td>
<td>1</td>
</tr>
<tr>
<td>Orchis purpurea</td>
<td>1</td>
</tr>
<tr>
<td>Poa annua</td>
<td>1</td>
</tr>
<tr>
<td>Pyrus pyraster</td>
<td>1</td>
</tr>
<tr>
<td>Trifolium montanum</td>
<td>1</td>
</tr>
<tr>
<td>Equisetum hyemale</td>
<td>1</td>
</tr>
<tr>
<td>Centaurea s. jacea</td>
<td>1</td>
</tr>
<tr>
<td>Knautia arvensis</td>
<td>1</td>
</tr>
<tr>
<td>Daucus carota</td>
<td>1</td>
</tr>
<tr>
<td>Vicia tetrasperma</td>
<td>1</td>
</tr>
<tr>
<td>Carex pseudocyperus</td>
<td>1</td>
</tr>
<tr>
<td>Lysimachia vulgaris</td>
<td>1</td>
</tr>
<tr>
<td>Lemma minor</td>
<td>1</td>
</tr>
<tr>
<td>Euphorbia papulus</td>
<td>1</td>
</tr>
<tr>
<td>Myosotis palustris agg.</td>
<td>1</td>
</tr>
<tr>
<td>Erysimum virginatum</td>
<td>1</td>
</tr>
<tr>
<td>Persicaria dubia</td>
<td>1</td>
</tr>
<tr>
<td>Lemma trisula</td>
<td>1</td>
</tr>
<tr>
<td>Tilia platyphyllos</td>
<td>1</td>
</tr>
<tr>
<td>Rosa arvensis</td>
<td>1</td>
</tr>
<tr>
<td>Inula britannica</td>
<td>1</td>
</tr>
<tr>
<td>Matonia aquifolium</td>
<td>1</td>
</tr>
<tr>
<td>Atropa belladonna</td>
<td>1</td>
</tr>
<tr>
<td>Tilia platyphyllos</td>
<td>1</td>
</tr>
<tr>
<td>Ranunculus repens</td>
<td>1</td>
</tr>
<tr>
<td>Rhamnus catharticus</td>
<td>1</td>
</tr>
<tr>
<td>Rosa canina agg.</td>
<td>1</td>
</tr>
<tr>
<td>Mentha longifolia</td>
<td>1</td>
</tr>
<tr>
<td>Allium scorodoprasun</td>
<td>1</td>
</tr>
<tr>
<td>Myosotis aquaticum</td>
<td>1</td>
</tr>
<tr>
<td>Potentilla reptans</td>
<td>1</td>
</tr>
<tr>
<td>Calamagrostis canescens</td>
<td>1</td>
</tr>
<tr>
<td>Euphorbia stricta</td>
<td>1</td>
</tr>
<tr>
<td>Viola tricolor</td>
<td>1</td>
</tr>
<tr>
<td>Cardus crispus</td>
<td>1</td>
</tr>
<tr>
<td>Vegetationstabelle</td>
<td>Charakterarten</td>
</tr>
<tr>
<td>--------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Querco-Fagetea</td>
<td>Quercus robur</td>
</tr>
<tr>
<td>Charakterarten:</td>
<td>Lonicera xylosteum</td>
</tr>
<tr>
<td></td>
<td>Convallaria majalis</td>
</tr>
<tr>
<td>in den Quercetalia roboris</td>
<td>Brachypodium sylvaticum</td>
</tr>
<tr>
<td>fehlend:</td>
<td>Campanula trachelium</td>
</tr>
<tr>
<td>Fegetalia sylvaticae</td>
<td>Acer pseudoplatanus</td>
</tr>
<tr>
<td>Charakterarten:</td>
<td>Moehringia trinervia</td>
</tr>
<tr>
<td>im Luzulo-Fagenion fehlend:</td>
<td>Cardamine impatiens</td>
</tr>
<tr>
<td></td>
<td>Carex sylvatica</td>
</tr>
<tr>
<td></td>
<td>Paris quadrifolia</td>
</tr>
<tr>
<td></td>
<td>Pulmonaria officinalis</td>
</tr>
<tr>
<td></td>
<td>Salvia glutinosa</td>
</tr>
<tr>
<td>Ainleon incanae</td>
<td>Prunus padus</td>
</tr>
<tr>
<td>Charakterarten:</td>
<td>Prunus padus</td>
</tr>
<tr>
<td></td>
<td>Prunus padus</td>
</tr>
<tr>
<td></td>
<td>Circaea lutetiana</td>
</tr>
<tr>
<td></td>
<td>Stachys sylvatica</td>
</tr>
<tr>
<td>Ainleon glutinoso-incanae</td>
<td>keine Charakterarten vorhanden</td>
</tr>
<tr>
<td>Fraxino-Populetum</td>
<td>Ulmus laevis</td>
</tr>
<tr>
<td>DA</td>
<td>Viola sp. (V.odorata)</td>
</tr>
<tr>
<td></td>
<td>Arctium lappa</td>
</tr>
<tr>
<td>Charakterarten:</td>
<td>Populus alba</td>
</tr>
<tr>
<td></td>
<td>Populus alba</td>
</tr>
<tr>
<td></td>
<td>Populus alba</td>
</tr>
<tr>
<td></td>
<td>Alnus incana</td>
</tr>
<tr>
<td></td>
<td>Alnus incana</td>
</tr>
<tr>
<td></td>
<td>Cornus sanguinea</td>
</tr>
<tr>
<td></td>
<td>Cornus sanguinea</td>
</tr>
<tr>
<td></td>
<td>Rubus caesius</td>
</tr>
<tr>
<td></td>
<td>Glechoma hederacea</td>
</tr>
<tr>
<td></td>
<td>Urtica dioica</td>
</tr>
<tr>
<td></td>
<td>Galium aparine</td>
</tr>
<tr>
<td></td>
<td>Aegopodium podagraria</td>
</tr>
<tr>
<td>phalaridetosum</td>
<td>Phalaris arundinacea</td>
</tr>
<tr>
<td>"Feuchte Pappelau"</td>
<td>Carex acutiformis</td>
</tr>
<tr>
<td>DA</td>
<td>Symphytum officinale</td>
</tr>
<tr>
<td></td>
<td>Phragmites australis</td>
</tr>
<tr>
<td></td>
<td>Iris pseudacorus</td>
</tr>
<tr>
<td></td>
<td>Calystegia sepium</td>
</tr>
<tr>
<td>typicum</td>
<td>Acer campestre</td>
</tr>
<tr>
<td>"Frische Pappelau"</td>
<td>Acer campestre</td>
</tr>
<tr>
<td>DA</td>
<td>Acer campestre</td>
</tr>
<tr>
<td></td>
<td>Fraxinus excelsior</td>
</tr>
<tr>
<td></td>
<td>Fraxinus excelsior</td>
</tr>
<tr>
<td></td>
<td>Polygonatum latifolium</td>
</tr>
<tr>
<td>"trockene Pappelau"</td>
<td>Populus nigra</td>
</tr>
<tr>
<td>"Schwarzpappelau"</td>
<td>Crataegus monogyna</td>
</tr>
<tr>
<td>DA</td>
<td>Clematis vitalba</td>
</tr>
<tr>
<td></td>
<td>Clematis vitalba</td>
</tr>
<tr>
<td>weitere:</td>
<td>Crataegus monogyna</td>
</tr>
<tr>
<td></td>
<td>Urtica dioica</td>
</tr>
<tr>
<td></td>
<td>Urtica dioica</td>
</tr>
<tr>
<td></td>
<td>Urtica dioica</td>
</tr>
<tr>
<td></td>
<td>Solidago gigantea</td>
</tr>
<tr>
<td></td>
<td>Viscum album s. album</td>
</tr>
<tr>
<td></td>
<td>Juglans regia</td>
</tr>
<tr>
<td></td>
<td>Juglans regia</td>
</tr>
</tbody>
</table>

Index der Aufnahmeflächen: Querco-Fagetea Quercus robur 6 . . + . .
Charakterarten: Lonicera xylosteum 4 . + . + .
Convallaria majalis 6 . . . + .
in den Quercetalia roboris Brachypodium sylvaticum 6 1 2 1 1 1
fehlend: Campanula trachelium 6 . + 1 . .
Fegetalia sylvaticae Acer pseudoplatanus 4 r . + . .
Charakterarten: Moehringia trinervia 6 . . + . .
im Luzulo-Fagenion fehlend: Cardamine impatiens 6 . 1 . .
Carex sylvatica 6 2
Paris quadrifolia 6 . . . + .
Pulmonaria officinalis 6 . 1 . . 1
Salvia glutinosa 6 2
Ainleon incanae Prunus padus 1 . + . . .
Charakterarten: Prunus padus 4 . . r .
Prunus padus 6 . . . + .
Circaea lutetiana 6 . + . . .
Stachys sylvatica 6 . 1 . + .
Ainleon glutinoso-incanae keine Charakterarten vorhanden
Fraxino-Populetum Ulmus laevis 4 . + . . .
DA Viola sp. (V.odorata) 6 1 1 1 1 .
Arctium lappa 6 . . 1 . 1 .
Charakterarten: Populus alba 1 2 5 3 5 2
Populus alba 4 2 + . . . +
Populus alba 6 . + + . .
Alnus incana 1 1
Alnus incana 4 3 2 2 + 2
Cornus sanguinea 4 3 2 2 + 2
Cornus sanguinea 6 . . 1 . .
Rubus caesius 6 2 3 1 1 1
Glechoma hederacea 6 . 1 1 . +
Urtica dioica 6 . . r 1 2
Galium aparine 6 . + . . . +
Aegopodium podagraria 6 2 1 2 3 .
phalaridetosum Phalaris arundinacea 6 +
"Feuchte Pappelau" Carex acutiformis 6 1 . . .
Symphytum officinale 6 . + . . .
Phragmites australis 6 2
Iris pseudacorus 6
Calystegia sepium 6 1 . . . +
typicum Acer campestre 1 1 2 .
"Frische Pappelau" Acer campestre 4 1 1 + 2 .
Acer campestre 6 . 1 1 1 .
Fraxinus excelsior 6 1 1 1 +
Fraxinus excelsior 4 1 1 1 1 .
Polygonatum latifolium 6 . . + 1 .
"trockene Pappelau" Populus nigra 1 2
"Schwarzpappelau" Crataegus monogyna 4 2 1 1 1 1
Clematis vitalba 1 1 1 + 1
Clematis vitalba 4 . + 3 2 .
weitere: Crataegus monogyna 6 . 1 1 . .
Clematis vitalba 6 . + 1 + .
Urtica dioica 1 1 2 .
Urtica dioica 4 1 1 1 . .
Urtica dioica 6 . . . + .
Solidago gigantea 6 . 1 1 1 +
Viscum album s. album 1 +
Juglans regia 1 . . . 1 .
Juglans regia 4 + . + . r 1
<table>
<thead>
<tr>
<th>Species</th>
<th>Code</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robinia pseudacacia</td>
<td>1</td>
<td>+</td>
</tr>
<tr>
<td>Robinia pseudacacia</td>
<td>4</td>
<td>+</td>
</tr>
<tr>
<td>Pinus sylvestris</td>
<td>1</td>
<td>+</td>
</tr>
<tr>
<td>Impatiens parviflora</td>
<td>6</td>
<td>+</td>
</tr>
<tr>
<td>Ligustrum vulgare</td>
<td>4</td>
<td>1 1 1</td>
</tr>
<tr>
<td>Aesculus hippocastanum</td>
<td>4</td>
<td>.</td>
</tr>
<tr>
<td>Parthenocissus quinquefolia</td>
<td>6</td>
<td>.</td>
</tr>
<tr>
<td>Carex hirta</td>
<td>6</td>
<td>.</td>
</tr>
<tr>
<td>Festuca rubricola</td>
<td>6</td>
<td>.</td>
</tr>
<tr>
<td>Agrostis stolonifera</td>
<td>6</td>
<td>.</td>
</tr>
<tr>
<td>Dactylis glomerata</td>
<td>6</td>
<td>.</td>
</tr>
<tr>
<td>Viburnum lantana</td>
<td>4</td>
<td>.</td>
</tr>
<tr>
<td>Weigela species</td>
<td>4</td>
<td>.</td>
</tr>
<tr>
<td>Chaerophyllum temulent</td>
<td>6</td>
<td>.</td>
</tr>
<tr>
<td>Ribes rubrum</td>
<td>4</td>
<td>.</td>
</tr>
<tr>
<td>Buglossoides purpurea</td>
<td>6</td>
<td>1 1 1</td>
</tr>
<tr>
<td>Sambucus nigra</td>
<td>4</td>
<td>+ 1 2 2</td>
</tr>
<tr>
<td>Euonymus europaeus</td>
<td>4</td>
<td>1 1 + + +</td>
</tr>
<tr>
<td>Heracleum spongiphylum</td>
<td>6</td>
<td>. + +</td>
</tr>
<tr>
<td>Acer platanoides</td>
<td>6</td>
<td>. +</td>
</tr>
<tr>
<td>Acer platanoides</td>
<td>4</td>
<td>. +</td>
</tr>
<tr>
<td>Humulus lupulus</td>
<td>4</td>
<td>+ 1</td>
</tr>
<tr>
<td>Humulus lupulus</td>
<td>6</td>
<td>. 1</td>
</tr>
<tr>
<td>Acer negundo</td>
<td>4</td>
<td>. 1</td>
</tr>
<tr>
<td>Geum urbanum</td>
<td>6</td>
<td>. +</td>
</tr>
<tr>
<td>Physalis alkekengi</td>
<td>6</td>
<td>+ 2</td>
</tr>
<tr>
<td>Lamium maculatum</td>
<td>6</td>
<td>. 1</td>
</tr>
<tr>
<td>Carduus crispus</td>
<td>6</td>
<td>. r</td>
</tr>
<tr>
<td>Ailanthus altissima</td>
<td>4</td>
<td>. +</td>
</tr>
<tr>
<td>Cirsium oleraceum</td>
<td>6</td>
<td>. +</td>
</tr>
<tr>
<td>Galium mollugo agg.</td>
<td>6</td>
<td>+ 3</td>
</tr>
<tr>
<td>Berberis vulgaris</td>
<td>4</td>
<td>+ 1</td>
</tr>
<tr>
<td>Alliaria petiolata</td>
<td>6</td>
<td>. 1</td>
</tr>
<tr>
<td>Prunus domestica</td>
<td>4</td>
<td>. 1</td>
</tr>
<tr>
<td>Cornus mas</td>
<td>4</td>
<td>. 3</td>
</tr>
<tr>
<td>Lysimachia nummularia</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Fallopia dumetorum</td>
<td>6</td>
<td>. +</td>
</tr>
<tr>
<td>Bryonia dioica</td>
<td>6</td>
<td>. +</td>
</tr>
<tr>
<td>Viburnum opulus</td>
<td>4</td>
<td>. 2</td>
</tr>
<tr>
<td>Oxalis stricta</td>
<td>6</td>
<td>r</td>
</tr>
<tr>
<td>Scrophularia nodosa</td>
<td>6</td>
<td>. +</td>
</tr>
<tr>
<td>Clinopodium vulgare</td>
<td>6</td>
<td>. +</td>
</tr>
<tr>
<td>Pimpinella major</td>
<td>6</td>
<td>. +</td>
</tr>
<tr>
<td>Stellaria media agg.</td>
<td>6</td>
<td>. +</td>
</tr>
<tr>
<td>Chelidonium majus</td>
<td>6</td>
<td>. +</td>
</tr>
<tr>
<td>Plantago major</td>
<td>6</td>
<td>. +</td>
</tr>
<tr>
<td>Lysimachia vulgaris</td>
<td>6</td>
<td>. +</td>
</tr>
<tr>
<td>Carex pseudocyperus</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Achillea millefolium</td>
<td>6</td>
<td>. +</td>
</tr>
<tr>
<td>Trifolium repens</td>
<td>6</td>
<td>. +</td>
</tr>
<tr>
<td>Myosotis nemorosa</td>
<td>6</td>
<td>. +</td>
</tr>
<tr>
<td>Poa annua</td>
<td>6</td>
<td>. +</td>
</tr>
<tr>
<td>Persicaria minor</td>
<td>6</td>
<td>. +</td>
</tr>
<tr>
<td>Filipendula ulmaria</td>
<td>6</td>
<td>. +</td>
</tr>
<tr>
<td>Carex acuta</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Lythrum salicaria</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Mentha aquatica</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Viitis vinifera</td>
<td>4</td>
<td>+</td>
</tr>
<tr>
<td>Eupatorium cannabinum</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Charakterarten</td>
<td>Urtica dioica</td>
<td>6</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---------------------</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>Rubus caesius</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Phalaris arundinacea</td>
<td>6</td>
</tr>
<tr>
<td>Stellaria nemorum s.str</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Impatiens parviflora</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Lamium maculatum</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Fraxinus angustifolia</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Prunus padus</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Acer negundo</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Acer negundo</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Acer negundo</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Populus alba</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Populus x canadensis</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Alnus incana</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ulmus minor</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Humulus lupulus</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Stellaria nemorum s.str</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Impatiens parviflora</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Clematis vitalba</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Sambucus nigra</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Cornus sanguinea</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>DA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stellaria nemorum s.str</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Impatiens parviflora</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Clematis vitalba</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Lamium maculatum</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>weitere:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraxinus angustifolia</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Prunus padus</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Acer negundo</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Acer negundo</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Populus alba</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Populus x canadensis</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Alnus incana</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ulmus minor</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Humulus lupulus</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Stellaria nemorum s.str</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Impatiens parviflora</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Clematis vitalba</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Stellaria nemorum s.str</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Impatiens parviflora</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Acer negundo</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Acer negundo</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Acer negundo</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Acer negundo</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Acer negundo</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>
DANKSAGUNG

Anna Illedits, Karoline Zsak

Am Ende bleibt noch sich bei jenen zu bedanken, welche diese Arbeit durch ihre Unterstützung ermöglicht und bereichert haben.

Daher einen „Herzlichen Dank“.

…an Dr. („Charlie“) Karl Reiter, der uns die Bearbeitung dieses Themas angeboten hat und uns für offene Fragen jederzeit mit seinem Fachwissen und vor allem auch seinem Humor zur Seite stand.

…an Mag. Iris Wagner, die uns geduldig aus jeglichen Computer- und Programm-Verwirrungen herausgeholfen hat.

…an Dr. Hanns Kirchmeir, der für uns als hilfreicher Ansprechpartner jederzeit und gerne zur Verfügung stand.

…Dr. Luise Ehrendorfer-Schrott und Dr. Manfred A. Fischer, die sich Zeit nahmen, um uns mit ihrem Botanischen Fachwissen weiterzuhelfen.

…an Dr. Christa Hainz-Renetzeder, die einen wertvollen und essentiellen Beitrag zur Zeigerwertanalyse beisteuerte.

…an alle Studienkollegen und Professoren, die den lehrreichen Weg durch das Studium stets mit großer Freude gepflastert haben und die unser Interesse an der Ökologie immer wieder neu geweckt haben.

PERSÖNLICHER DANK

Anna Illedits

Einen „Herzlichen Dank“ verschicke ich an jene Personen, die mich ohne Zögern und in jeder Situation hilfreich unterstützt haben…

…vor allem an meine lieben Eltern Marianne und Klaus, die mir das Studium durch ihre großzügige finanzielle Unterstützung ermöglichten und mir immer einen guten Rat zu geben wissen.
…Felix Sebastian, der ein wichtiger Ankerpunkt in meinem Leben geworden ist und mir während der oftmals langwierigen Studierstunden mit seinem Humor und den wundervollen gemeinsamen Spaziergängen hilfreich beiseite stand.

… einen Herzlichen Dank spreche ich natürlich ebenso meiner fleißigen Kollegin Karoline Anna Zsak aus!

PERSÖNLICHER DANK

Zsak Karoline

Einen ebenso „Herzlichen Dank“ an all jene die mich auf freundschaftlichem Wege begleitet und unterstützt haben…

…allen voran meine Eltern Christine und Karl, die mir mein Studium durch ihre fortwährende Unterstützung überhaupt erst möglich gemacht haben, mir immer mit Rat und Tat zu Seite stehen und zu meinen besten Freunden zählen.

…meine Schwester Juli und meine Freunde Patrizia, Simi, Sonja, Stefan und Aleksandar und die mich gut genug kennen, um mich jeder auf seine ganz persönliche Weise immer wieder neu zu motivieren und meinen Weg durch alle Höhen und Tiefen unglaublich bereichern.

…an meine Kollegin Anna Illédits, die mit mir zusammen diese Arbeit verfasst hat, und sich trotz der Geburt ihrer Tochter nicht davon abhalten ließ die Arbeit mit mir gemeinsam fertigzustellen.
LEBENSLAUF

NAME: Zsak Karoline Anna
GEBURTSDATUM: 4.11.1979
GEBURTSORT: Wien
Familienstand: ledig
E-mail: karolineanna@gmx.net
Telefon: +4368120618512
Adresse: Clusiusgasse 14 / 14, 1090 Wien / Österreich

SCHULBILDUNG: September 1986 – Juni 1990 Volkschule Grünentorgasse
September 1990 – Juni 1994 Bundesrealgymnasium Glasergasse
Schulversuch „Soziales Lernen“
September 1994 - Juni 1998 Bundesrealgymnasium Glasergasse
Wirtschaftskundlicher Zweig
Abschluss: Reifeprüfung

STUDIUM: Oktober 1998 – Februar 1999 Universität Wien
Soziologie und Publizistik
Oktober 2003 – Juni 2004 Veterinärmedizinische Universität Wien
Veterinärmedizin
seit Oktober 2004 Universität Wien
Diplomstudium Biologie
Juni 2009 Abschluss: 1. Diplomprüfungszeugnis
anschließend Diplomstudium Ökologie

TÄTIGKEIT: März 1999 – Mai 1999 Mitarbeiterin bei den Kinderfreunden
Niederösterreich

SS 2010 und 2011 Tutorium an der Universität Wien
seit September 1999 Verkaufsmitarbeiterin bei H & M

WEITERBILDUNG: September 2001 – Mai 2002 WIFI Wien
WIFI Visual Merchandiser

KENNTNISSE: Englisch (in Wort und Schrift), Grundkenntnisse in Portugiesisch und
Französisch, EDV (Internet, Microsoft Office, ARCGIS-Desktop, Juice, Turboveg),
Exkursionserfahrung (Cres, Alpenexkursion, etc.), Führerschein B
LEBENSLAUF

Persönliche Daten

Name: Anna Illedits
Geburtsdatum: 01.10.1981
Geburtsort: Wien
Email: anna.illedits@gmx.at

Studium

WS 00 – 2012 Universität Wien, Biologie/ Studienzweig Ökologie
SS 2006 Auslandssemester in Lissabon, Portugal
10/2010 Naturschutz Praktikum bei der MA 22

Schulbildung

Beschäftigung

07/2000 - 08/2000 Akademischer Gästedienst, Ferialpraxis bei „Anker“
11/2005 - 01/2006 Hellrein Umwelt
04/2007 - 06/2007 Johannes Thonhauser, „walking animals“
Seit 02/2010 Exkursionsleiterin im Nationalpark Neusiedler See-Seewinkel

Ausbildung

03/2009 –11/2009 Ausbildung zur NP-Exkursionsleiterin und Naturpädagogin im Nationalpark Neusiedler See-Seewinkel

Kenntnisse:

Englisch (in Wort und Schrift), Portugiesisch und Französisch
(Grundkenntnisse), EDV (MS-Office, Arc Gis- Desktop), Führerschein B