DIPLOMARBEIT

Titel der Diplomarbeit
„Neuere Ergebnisse zur Risikobewertung von Bisphenol A“

Verfasserin
Johanna Rittinger

angestrebter akademischer Grad
Magistra der Naturwissenschaften (Mag.rer.nat.)

Wien, April 2011

Studienkennzahl lt. Studienblatt: A 190 477 456<
Studienrichtung lt. Studienblatt:
UF Haushaltsökonomie und Ernährung
UF Geographie und Wirtschaftskunde
Betreuerin:
Ao. Univ.-Prof. Mag. Dr. Rosa Lemmens
Danksagung

Ich bedanke mich bei Prof. Rosa Lemmens für die Betreuung meiner Arbeit. Besonderer Dank gilt auch meinen Eltern, die mir dieses Studium ermöglicht haben und mir eine große Stütze waren.
1. EINLEITUNG UND FRAGESTELLUNG ... 1

2. CHEMISCHE CHARAKTERISTIK UND EINSATZGEBIETE VON BISPHENOL A ... 2

2.1. Chemische Eigenschaften von BPA .. 2
 2.1.1. Einsatzgebiete von BPA .. 3

2.2. Faktoren, die die Freisetzung von BPA aus der Verpackung in das Lebensmittel beeinflussen .. 5

2.3. Metabolismus von BPA im menschlichen Körper .. 7
 2.3.1. Dekonjugation ... 8
 2.3.2. Aufnahmewege die den First Pass Mechanismus umgehen 9
 2.3.3. Verunreinigungen im Labormaterial führen zu falsch positiven Ergebnissen. 10

3. ANALYSE VON BPA IN LEBENSMITTELN UND BIOLOGISCHEN PROBEN 11

3.1. Probenaufbereitung .. 11

3.2. Trennmethoden und Detektoren: ... 12

4. EXPOSITION DER BEVÖLKERUNG GEGENÜBER BPA 15

4.1. Studien zur BPA Exposition der Bevölkerung ... 16

4.2. BPA Exposition in verschiedenen Lebensphasen ... 21
 4.2.1. In Utero Exposition von BPA .. 21
 4.2.2. BPA Exposition während des Wachstums .. 21
 4.2.3. Unterschiede in der BPA Exposition zwischen den Altersgruppen 23

4.3. Gesammelte Daten zur BPA Konzentration in Körperflüssigkeiten und -Geweben ... 24

5. TOXIKOLOGISCHE BEWERTUNG VON BISPHENOL A 30

5.1. Diskrepanz zwischen den Sicherheitsagenturen und der “restlichen Wissenschaft” .. 30
 5.1.1. Sicherheitsbeurteilung von BPA in den USA .. 31
 5.1.2. Sicherheitsbeurteilung von BPA in der EU .. 33
5.1.3. Sicherheitsbeurteilung von BPA in Kanada .. 34

5.2. Referenzwerte der Sicherheitsagenturen ... 35
 5.2.1. Entwicklung des Richtwertes der FDA .. 35
 5.2.2. Entwicklung des Richtwertes der EFSA ... 36
 5.2.3. Entwicklung des Richtwertes von Health Canada ... 37

5.3. Dosis-Wirkung Beziehung ... 37

5.4. Übertragung der Ergebnisse aus den Tierversuchen auf den menschlichen Organismus: .. 42

5.5. BPA - ein endokrin aktiver Stoff - Einflüsse auf den Stoffwechsel (Wirkungsmechanismen von BPA) ... 43
 5.5.1. Die mögliche östrogene Wirkung von BPA ... 44
 5.5.2. Androgene Wirkung ... 47
 5.5.3. Wechselwirkungen mit den Schilddrüsenhormonen .. 47

5.6. Einflüsse auf den Stoffwechsel .. 48
 5.6.1. Einfluss auf die Glukosehomöostase ... 48
 5.6.2. Einfluss auf den Stoffwechsel im Fettgewebe ... 52

5.7. BPA und oxidativer Stress ... 57

5.8. Wirkungen auf das Herz-Kreislauf System .. 59

5.9. Wirkungen die im Zusammenhang mit Krebserkrankungen stehen 61
 5.9.1. BPA und seine Rolle bei der Entstehung von Brustkrebs 62
 5.9.2. Prostatakrebs ... 66
 5.9.3. Wechselwirkungen mit chemotherapeutischen Stoffen 67

5.10. Weitere Ergebnisse zur Reproduktionstoxizität .. 73
 5.10.1. Verfrühte Geschlechtsreife bei Mädchen: .. 73
 5.10.2. Einfluss auf die Reproduktionsorgane .. 74

6. SCHLUSSBETRACHTUNG ... 78

7. ZUSAMMENFASSUNG .. 79

8. SUMMARY .. 81

9. LITERATURVERZEICHNIS ... 83
I. Abbildungsverzeichnis

Abbildung 2.1.1: Strukturformel BPA, [BPA-Europe, 2011] ... 2
Abbildung 5.3.1: Modelle der Dosis- Wirkungsbeziehung,
[Vandenberge et al., 2009] ... 39

II. Tabellenverzeichnis

Tabelle 2.1.1.1: Freisetzung von BPA durch DAB und CHBMA ,[Maia et al. 2010]. 6
Tabelle 2.3.3.1: Übersicht über die LODs verschiedener Analysemethoden......... 14
Tabelle 2.3.3.1: BPA Aufnahme, [Lakind und Naiman, 2010]................................. 17
Tabelle 4.2.3.1: Urinkonzentrationen an Gesamt BPA I ... 24
Tabelle 4.2.3.2: Urinkonzentrationen an Gesamt BPA II ... 25
Tabelle 4.2.3.3: BPA Konzentrationen im menschlichen Blut............................... 26
Tabelle 4.2.3.4: BPA Konzentrationen in der Schwangerschaft 27
Tabelle 4.2.3.5: BPA in der Muttermilch... 28
Tabelle 4.2.3.6: Urinkonzentrationen an freiem BPA .. 29
Tabelle 5.6.1.1: Blutparameter, [Alonso- Magdalena et al., 2010]....................... 52
Tabelle 5.6.2.1: metabolische Parameter, [Miyawaki et al., 2007].................... 56
Tabelle 5.6.2.1: BPA und kardiovaskuläre Erkrankungen/Diabetes, [Melzer et al.,
2010].. 60
III. Abkürzungen

ADT: Androgen-Deprivations-Therapie

AR: Androgenrezptor

BA: Bindungsaffinität

BPA: Bisphenol A

BPF: Bisphenol F

CHBMA: 1,3-Cyclohexan-bis-Methylamin

DAB: 1,4-Diaminobutan

Da: Dalton

DMBA: Dimethylbenzanthracen

E2: Estradiol

ECD: endocrine disruptor

ELISA: enzyme-linked immunosorbent assay

ER: estrogen receptor

Erk: Extracellular-signal regulated kinase

ERR: estrogen related receptor

GPR-30: G-Protein coupled estrogen receptor

GC: Gaschromatographie

IC 50: inhibitorische Konzentration

HPLC: high pressure (oder auch performance) liquid chromatography
HWZ: Halbwertszeit

MS: Massenspektroskopie

FD: Fluoreszenz Detektor

Kg: Kilogramm

KG: Körpergewicht

LC: Liquid Chromotography

LOAEL: lowest observed adverse effect level

LOD: limit of detection

NGO: non governmental organization

NHANES: National Health and Nutrition Examination Survey

NOAEL: no observed adverse effect level

PC: Polycarbonat

PET: Polyethylenenterephthalat

pTDI: provisional tolerable daily intake

qRT-PCR: quantitative real time polymerase chain reaction

SPE: solid-phase-extraction

TDI: tolerable daily intake

UGT2B1: UDP glucuronyltransferase 2 family, polypeptide B1
1. Einleitung und Fragestellung

Die Literaturquellen dieser Arbeit sind zum überwiegenden Teil englischsprachig, zu vielen Fachbegriffen, die teilweise noch relativ neu sind, existiert kein deutsches Gegenstück, daher wurde teilweise der englische Begriff verwendet.
2. Chemische Charakteristik und Einsatzgebiete von Bisphenol A

2,2-bis(4-hydroxyphenyl)-propan (Trivialname Bisphenol A, Abkürzung BPA) ist ein Kohlenwasserstoff, der in großen Mengen in der chemischen Industrie eingesetzt wird. BPA enthält zwei funktionelle Phenolgruppen (siehe Abbildung 2.1.1), es wird durch die Kombination von zwei Äquivalenten Phenol mit einem Äquivalent Aceton hergestellt. 1891 wurde BPA erstmals von A.P. Dianin synthetisiert, näher erforscht wurde es erstmals in den 1930er bei der Suche nach einem Stoff mit östrogener Wirkung. Durch seine zwei Benzenringe und die zwei OH Substituenten, passt BPA in die Bindungtasche von Östrogenrezeptoren. Es wurde aber nie als Medikament verwendet, da man kurz darauf Diethylstilbestrol „entdeckte“ und letzteres für diese Zwecke in großem Ausmaß eingesetzt wurde (bis zu dem Verdacht auf schädliche Nebenwirkungen) [Vandenberg et al., 2009].

In den 1950er wurde BPA erstmals kommerziell als Bestandteil von Epoxidharzen eingesetzt, 1957 wurde die Eignung von BPA für die Herstellung von Polycarbonat
erforscht. Durch seine Eigenschaften wie Härte und Transparenz konnte es Stahl auf der einen Seite und Glas auf der anderen Seite ersetzen [Vogel, 2009].

2.1.1. Einsatzgebiete von BPA

2.1.1.1. Einsatz von Polycarbonat in Lebensmittelbezogenen Gebrauchsgegenständen

2.1.1.2. Einsatz von BPA-haltigen Epoxidharzen in Lebensmittelbezogenen Gebrauchsgegenständen

Durch Kondensation mit Epichlorhydrin entsteht ein BPA Diglycidylether, der wiederum für die Synthese von Epoxidharzen verwendet werden kann. Beispielsweise werden Metalldosen für die Verpackung von Lebensmitteln innen mit Epoxidharzen beschichtet um sie vor Rosten und Korrosion zu schützen [Vandenberg et al., 2009].
2.2. Faktoren, die die Freisetzung von BPA aus der Verpackung in das Lebensmittel beeinflussen

Fällen signifikant erhöht (im Vergleich zur Kontrollgruppe), nach dem dritten Waschgang nur mehr durch ein Mittel.

<table>
<thead>
<tr>
<th>Substanz</th>
<th>BPA Konzentration (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle* für Charge A</td>
<td>0.097</td>
</tr>
<tr>
<td>DAB**</td>
<td>520.296</td>
</tr>
<tr>
<td>Kontrolle* für Charge B</td>
<td>0.047</td>
</tr>
<tr>
<td>CHBMA***</td>
<td>181.091</td>
</tr>
</tbody>
</table>

DAB: 1,4-Diaminobutan, CHBMA: 1,3-Cyclohexan-bis-Methylamin, S: Arbeitsschritt, WG: Waschgang; *destilliertes Wasser, **in Charge 1 geführt, *** in Charge 2 geführt

Tabelle 2.1.1.1: Freisetzung von BPA durch DAB und CHBMA , [Maia et al. 2010]
Da die Freisetzung von BPA hauptsächlich auf die Degradierung des Polycarbonatpolymers zurück zu führen ist, suchte man nach geeigneten Schutzmaßnahmen. Als besonders wirkungsvoll haben sich UV-absorbierende Substanzen erwiesen, aber auch „hindered amine light stabilizers“ (HALS) sind wirksam gegen die, für das PC schädigende, Einwirkung von UV-Licht [Diepens und Gjisman, 2010].

2.3. Metabolismus von BPA im menschlichen Körper

• **Dekonjugation** im Körper: es existiert die Hypothese, dass konjugiertes BPA im Körper dekonjugiert werden kann, eindeutig belegt ist diese Annahme aber nicht.

• **Aufnahmewege** die den First Pass Mechanismus umgehen

• **Verunreinigungen/Kontamination** im/durch das Labormaterial führen zu falsch positiven Ergebnissen

[Vandenberg et al., 2007]

2.3.1. Dekonjugation

Bei der Übertragung von Studienergebnissen, die über die Metabolisierung von BPA im Tierversuch durchgeführt wurden, sind unterschiedliche Ausscheidungswege bei Menschen und Nagetieren zu beachten. Nagetiere scheiden BPA vor allem durch die Fäzes aus, da die Molekülmasse von BPA (404 Da) über dem Grenzwert für die Ausscheidung mit dem Harn liegt, dieser Grenzwert beträgt bei Ratten 350 Da. Beim Menschen liegt dieser Grenzwert aber bei 550 Da, die Ausscheidung über den Harn macht den größten Teil der Ausscheidung von BPA aus. BPA gelangt bei Ratten daher in den enterohepatischen Kreislauf, wo eine Dekonjugierung durch die intestinale β-Glucuronidase erfolgen kann [Ginsberg et al., 2009].

Nagetieren unterscheidet. Der Mensch würde daher BPA vollständig konjugieren (im Gegensatz zu Nagetieren, bei denen freies BPA detektiert werden kann) und auch wesentlich schneller eliminieren (bei Ratten wurde eine biologische HWZ von BPA von 20-80h beobachtet, außerdem bestehe beim Menschen kein Dekonjugationsmechanismus für BPA [Völkel et al., 2008]. Allerdings ist die β-Glucuronidase nicht nur im Intestinum aktiv, sondern wurde auch in anderen menschlichen Geweben gefunden, einschließlich Plazenta und fetaler Leber. Die primäre Funktion dieses Enzmys ist eigentlich die Degradation von Proteoglykanen, es besitzt aber auch das Potential xenobiotische Substanzen, wie BPA, die bereits die Phase II Glucuronidation durchlaufen haben, zu dekonjugieren. Hiermit ist auch im menschlichen Organismus eine Dekonjugation von konjugiertem BPA möglich [Richard et al., 2001].

2.3.2. Aufnahmewege die den First Pass Mechanismus umgehen

BPA ist durch seinen breiten Einsatzbereich in der Industrie in der Umwelt ubiquitär verbreitet, die menschliche Exposition gegenüber BPA beschränkt sich daher nicht auf die orale Aufnahme durch Lebensmittel. Genaue Daten wie viel BPA auf welchen Wegen in den menschlichen Körper gelangt, gibt es nicht, die Erhebung dieser Daten würde sich auch als äußerst schwierig darstellen, da es zum direkten Vergleich Versuchspersonen bedürfte, die durch ihre Umwelt keinem BPA ausgesetzt sind, ein Umstand der nur auf ganz wenigen Teilen der Erde noch anzutreffen ist. Die Teilnahme autark lebender Volksgruppen würde aber jeglichen ethischen Grundsätzen widersprechen. Es bleibt daher nur die Abschätzung der BPA Konzentration in der Umwelt. Das in der Luft vorhandene BPA wird durch die Lunge und die Haut aufgenommen, ebenso stellt Wasser, das bei der Körperhygiene etc. verwendet wird, eine dermale Exposition da. Wenn auch die Mengen, die durch diese Quelle aufgenommen werden, nicht bekannt sind, dürften die Ausmaße im Vergleich zu der Menge, die lebensmittelbezogen aufgenommen werden, sehr ge-
ring sein. Daher wird in dieser Arbeit nur kurz auf die Belastung durch das im Staub enthaltene BPA eingegangen.

Eine Zusammenschau bisheriger Ergebnisse und einen Vergleich zu ihrer eigenen Studie stellen Geens et al. (2010) in ihrer Arbeit dar. Geens et al. sammelten Staubproben aus Privathaushalten und Bürogebäuden, analysierten u.a. die BPA Konzentration und errechneten unter Berücksichtigung altersspezifischer Parameter die geschätzte BPA Aufnahme durch den Staub. So wird die mittlere tägliche Staubaufnahme eines Erwachsenen auf 20mg/Tag und die eines Kleinkindes, das durch sein Verhalten, Dinge in den Mund zu stecken, stärker exponiert ist, auf 50 mg/Tag geschätzt. Zieht man die Studie mit der größten Stichprobenanzahl von Rudel et al. (2003) und dem darin ermittelten mittleren BPA Gehalt im Staub von 820ng/g heran, so ergibt sich eine mittlere tägliche BPA Aufnahme durch den Staub von 16,4ng bei einem Erwachsenen und 41ng bei einem Kleinkind. Bei einer 70kg schweren Person wären das 0,23ng/kg KG. Im Rahmen der NHANES 2005/06 (Beschreibung dieser Studie in 4.1, S.16) wurde die tägliche Aufnahme von BPA geschätzt, der Mittelwert für die gesamte Bevölkerung beträgt 35ng/kg KG, die Aufnahme durch den Staub, dürfte daher nur etwa 1% ausmachen [LaKind und Naiman, 2010].

2.3.3. Verunreinigungen im Labormaterial führen zu falsch positiven Ergebnissen.

Studien, die BPA in Körperflüssigkeiten und –Geweben nachweisen konnten, werden oft dahingehend kritisiert, dass das detektierte freie BPA ursprünglich nicht in der Probe vorhanden war. Das freie BPA würde aus Verunreinigung durch Laborbehältnisse etc. resultieren, bzw. durch Dekonjugation während der Lagerung und der Analyse entstanden sein. Die Autoren der entsprechenden Studien argumentieren aber, diesen Fehlerquellen Rechnung getragen zu haben und die entsprechenden Maßnahmen dagegen, wie Mitführen von Blindproben, getroffen zu ha-

3. Analyse von BPA in Lebensmitteln und biologischen Proben

3.1. Probenaufbereitung

Die Probenaufbereitung erfolgt meistens durch lösungsmittelbasierte Extraktion (solvent-based) oder Festphasen-Extraktion (solid-phase-extraction SPE).

3.2. Trennmethoden und Detektoren:

Das wesentlichste Qualitätskriterium einer Detektionsmethode ist die Nachweisgrenze, jene geringste Menge (Konzentration) einer gesuchten Substanz, die eine Methode nachweisen kann. Im Englischen wird dafür der Begriff limit of detection verwendet, die international gängige Abkürzung LOD wird auch in dieser Arbeit verwendet. Die Detektionsmethoden für BPA müssen sehr selektiv, empfindlich und präzise sein, um niedrige Konzentrationen detektieren zu können. Erstens, da dies jene Konzentrationen sind, in denen BPA auch in menschlichen Proben gefunden wird (siehe S.15ff.). Zweitens, gerade Konzentrationen in diesem Bereich stehen im Verdacht eine gesundheitsschädliche Wirkung auszulösen (siehe S.37). Empfehlenswert bei BPA Studien ist ein LOD ≤ 0,1ng/ml. Gerade bei Studien, die angeben, kein (freies) BPA detektieren zu können, ist also genau auf den LOD zu achten, da vor allem bei älteren Studien weniger empfindliche Methoden verwendet wurden [Vandenberg et al., 2007].

Untenstehend sind die am häufigsten eingesetzten Analysemethoden angeführt, in Tabelle 2.3.3.1 werden diese hinsichtlich ihres potentiellen LODs verglichen.
Flüssigchromatographie (Liquid Chromotography, LC): Vorteil der LC ist die einfache Handhabung, eine Derivatisierung ist meist nicht notwendig, der Arbeits- und Zeitaufwand hält sich daher in Grenzen. Folgende Varianten der LC werden häufig eingesetzt:

- LC mit Fluoreszenzdetection (LC-FD): Nachteil bei dieser Methode ist die Möglichkeit eines falsch positiven Ergebnisses durch andere Stoffe, die aus der Verpackung in das Lebensmittel migrieren und ebenfalls fluoreszierende Eigenschaften haben, wie BPA-Diglycidyl-Ether (BADGE) oder BPF-Diglycidyl-Ether (BFDGE). Mit LC-FD kann ein LOD zwischen 0.1- 2ng/ml (1,5 ng/g) erreicht werden.

- LC-MS: die Koppelung einer LC mit einer Massenspektroskopie (MS) erhöht die Präzision der Analyse und somit kann ein niedrigerer LOD (0.1 -50 ng/g) erreicht werden.

[Ballesteros-Gómez et al., 2010]

Gaschromatographie (gas chromatography, GC): bei der Gaschromatographie besteht zwar in den meisten Fällen die Notwendigkeit einer Derivatisierung, was neben einem erhöhten Arbeits- und Zeitaufwand auch eine mögliche Fehlerquelle mit sich bringt, allerdings weisen GCs eine höhere Resolution und niedrigere LODs auf. Die Derivatisierung erfolgt meist durch Silylierung oder Acetylierung. Die Kopplung mit einer MS ist die Methode mit der höchsten Selektivität bei der Detektion von BPA im Lebensmittel. Es können LODs von 0.4 -6.3ng/L (= 0.4pg/ml oder 0.4-2ng/g) erreicht werden.

[Ballesteros-Gómez et al., 2010]

Hochleistungsflüssigkeitschromatographie (auch Hochdruckflüssigkeitschromatographie, high pressure liquid chromatography, HPLC): das US Center for Disease Control and Prevention (US CDC) sieht eine Kopplung von Isotopenverdünnungs-HPLC und MS, mit vorhergehender Festphasen-extraktion als
geeignete Methode zur Bestimmung von BPA in Urinproben an, aufgrund der hohen Genauigkeit und der Fähigkeit chemische Strukturen zu erkennen. Mit dieser Methode sind üblicherweise LODs im Bereich von 0.02- 1ng/ml möglich [Vandenberg et al., 2010].

Immunochimische Methoden: eingesetzt werden polyklonale Antikörper von Säugetieren oder Hühnern mit einem „Enzyme Linked Immunosorbent Assay“ (ELISA, zu deutsch Enzymgekoppelter Immunadsorptionstest EIA). ELISA ist relativ kostengünstig und relativ leicht durchzuführen. Es besteht allerdings die Gefahr, dass es hier zu unspezifischen Wechselwirkungen mit BPA Antikörpern kommt und andere Stoffe mit detektiert werden. Wenn aber eine Validierung durchgeführt wird und eine Kreuzreaktivität ausgeschlossen wird, können durch ELISA ähnliche Ergebnisse erzielt werden, wie durch andere, als präziser angesehene, Methoden. Der LOD reicht von 0.05 – 500ng/ml [Vandenberg et al., 2010].

<table>
<thead>
<tr>
<th>Methode</th>
<th>LOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC-FD</td>
<td>0.1- 2ng /ml (1,5 ng/g)</td>
</tr>
<tr>
<td>LC-MS</td>
<td>0.1 -50ng/g</td>
</tr>
<tr>
<td>GC-MS</td>
<td>0.0004 -0.006 ng/ml</td>
</tr>
<tr>
<td>HPLC- MS</td>
<td>0.02- 1ng/ml</td>
</tr>
<tr>
<td>Immunochemische Methoden</td>
<td>von 0.05 – 500 ng/ml</td>
</tr>
</tbody>
</table>

Tabelle 2.3.3.1: Übersicht über die LODs verschiedener Analysemethoden
4. *Exposition der Bevölkerung gegenüber BPA*

Untenstehend sind die Ergebnisse einiger Studien beschrieben, die sich mit der Exposition des menschlichen Körpers an BPA beschäftigten. Zwei grundsätzliche Varianten der Durchführung sind möglich:

b. Indirekt: Messung der BPA Konzentration in Geweben/ Körperflüssigkeiten.

Die Berechnung der gesamten, vom Menschen aufgenommenen Menge an BPA stellt sich als ausgesprochen schwierig dar. Wird die BPA Aufnahme nur aus der aufgenommenen Nahrung errechnet, lässt man andere Quellen unberücksichtigt. So könnte BPA auch durch Inhalation (2.3.2, S.9ff) oder durch die Haut aufgenommen werden, hierbei unterläuft das freie BPA nicht dem First Pass Metabolismus der Leber und kann somit eine Quelle für unkonjugiertes und daher aktives BPA sein [Vandenberg et al., 2010].

In diesem Kapitel werden zunächst einzelne Studien besprochen, Werte der BPA Konzentration in Tabellen vorgestellt, im Anschluss wird auf das besondere Risiko von Heranwachsenden eingegangen. Zur Übersicht bieten die Tabellen 4.2.3.1 bis 4.2.3.6 eine Zusammenschau bisheriger Ergebnisse.

4.1. Studien zur BPA Exposition der Bevölkerung

Besonders Studien mit hoher Stichprobenanzahl findet man kaum, daher wird oft auf die Ergebnisse der NHANES Studie (2003/4 und 2005/6) zurückgegriffen, unter anderem auch auf die BPA Konzentration im Urin. Die mittlere BPA Konzentration
im Urin betrug 2003/04 2,49mg/ml (95% Konfidenzintervall 2,2-2,83mg/ml), 2005/06 war sie 1,79ng/ml (95% Konfidenzintervall 1,64-1,96ng/ml). Das freie BPA wurde nicht getrennt ermittelt. In Rahmen der Auswertung der Studie wurde auch ein möglicher Zusammenhang von BPA und Herz-Kreislaufkrankungen untersucht (siehe dazu S.59f) [Melzer et al., 2010].

Von der BPA Konzentration im Urin aus, wurde die täglich aufgenommene Menge an BPA geschätzt, für die Gesamtbevölkerung errechnete man eine durchschnittliche tägliche Aufnahme von 35,1ng BPA/kg KG. Zwischen der aufgenommenen Menge an BPA pro kg KG und dem Lebensalter zeigte sich ein inverser linearer Zusammenhang (siehe Tabelle 2.3.3.1).

[Lakind und Naiman, 2010]

<table>
<thead>
<tr>
<th>Bevölkerungsgruppe</th>
<th>BPA Aufnahme (ng/kg KG/ Tag)</th>
<th>MW (95% KI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamt</td>
<td>35.1 (33.3–37.0)</td>
<td></td>
</tr>
<tr>
<td>weiblich</td>
<td>31.2 (28.9–34.0)</td>
<td></td>
</tr>
<tr>
<td>Männlich</td>
<td>39.6 (36.9–42.9)</td>
<td></td>
</tr>
<tr>
<td>6-11 jährige</td>
<td>54.0 (46.4–63.2)</td>
<td></td>
</tr>
<tr>
<td>12-19 jährige</td>
<td>48.0 (44.0–52.9)</td>
<td></td>
</tr>
<tr>
<td>20-39 jährige</td>
<td>38.5 (34.9–43.0)</td>
<td></td>
</tr>
<tr>
<td>40-59 jährige</td>
<td>28.9 (25.8–32.4)</td>
<td></td>
</tr>
<tr>
<td>>60 jährige</td>
<td>27.3 (24.4–30.7)</td>
<td></td>
</tr>
</tbody>
</table>

MW: Mittelwert, KI: Konfidenzintervall

Tabelle 2.3.3.1: BPA Aufnahme, [Lakind und Naiman, 2010]

Die Ergebnisse der Studie von Calafat et al. (2005) werden in diversen wissenschaftlichen Arbeiten herangezogen, besonders jenes Ergebnis, dass BPA in 95% der Proben gefunden werden konnte. Für die Qualität der Studien spricht der erreichte niedrige LOD von 0,1ng/ml, die qualitätssichernden Maßnahmen und die relativ hohe Stichprobenanzahl von 394 Personen. Letzteres führen die AutorInnen aber selbst als Kritikpunkt an, ihnen ist die Stichprobenanzahl zu gering, die Ergebnisse seien daher mit Vorsicht zu beurteilen. Die wirklich große Schwachstelle
liegt allerdings in der Analyse. Leider wurden hier konjugiertes und freies BPA nicht getrennt gemessen, alle Urinproben wurden vor der Analyse mit β-Glucuronidase behandelt, um die konjugierten Verbindungen zu hydrolysieren. Dieser Umstand stellt die Relevanz der Ergebnisse in Frage. Gewiss, die Studie zeigt eindeutig, dass ein Großteil der Bevölkerung BPA aufnimmt, über dessen mögliche gesundheitsschädigende Wirkung kann durch die Ergebnisse dieser Studie allerdings keine Aussage gemacht werden [Calafat et al., 2005].

Eine Studie an 77 College-StudentInnen untersuchte den direkten Zusammenhang zwischen dem Verzehr von Getränken aus Polycarbonatflaschen und der BPA Konzentration im Urin. Das Studiendesign sah am Beginn eine 7-Tage Auswasch-Phase vor. In dieser Zeit waren die ProbandInnen angehalten ihren Getränkekonsument ausschließlich über eigens dafür ausgehändigte Metallflaschen durchzuführen. Nach dieser Phase gaben die ProbandInnen zweimal, an hintereinander folgenden Tagen, eine Urinprobe ab und erhielten zwei Polycarbonatflaschen, aus denen sie eine Woche lang ihre Getränke konsumieren sollten. Anschließend folgten wieder zwei Urinprobeabgaben, ergänzend füllten die Probanden einen Fragebogen über ihr Trinkverhalten in diesen zwei Wochen aus, damit bei der Auswertung der Proben die Compliance abgeschätzt werden konnte. Die Compliance betrug 50-100%, mit einem Median bei 90%. Bei Proben mit einer Compliance A von > 90% war der Unterschied zwischen der Auswasch-Phase und der Interventionsphase größer als bei Proben mit einer Compliance B < 90%, der Unterschied von A und B war aber statistisch nicht signifikant. Konjugiertes und freies BPA wurde gemeinsam als Gesamt-BPA in den Proben mit HPLC/ MS gemessen. Der Mittelwert von BPA nach der Auswasch-Phase betrug 1,3µg/L (1,2µg/g Kreatinin), nach der Interventionsphase 2,1µg/L (2,0µg/g Kreatinin). Die Umrechnung in Gramm pro Kreatinin hat den Zweck, Unterschiede in der Urinverdünnung zu bereinigen [Carwile et al., 2009].

Die Studie hat einige Schwachpunkte, so kann die Abnahme von nur 2x2 Urinproben kritisiert werden, noch dazu waren die ProbandInnen angehalten nur kalte Ge-
ränke aus den jeweiligen Flaschen zu trinken. Man geht aber davon aus, dass höhere Temperaturen die Freisetzung von BPA in das Lebensmittel erhöhen (siehe auch 2.2, S.5). Allerdings zeigt die Studie eindeutig, wie stark der Gebrauch von PC Flaschen die BPA-Konzentration im Urin ansteigen lässt. Vergleicht man die Ergebnisse mit anderen Studien (Tabelle 4.2.3.1 und Tabelle 4.2.3.2) so korrelieren die BPA-Werte der Interventionsphase relativ gut mit anderen Ergebnissen, wenn sie auch eher darunter liegen. Die Ergebnisse aus der Auswasch-Phase liegen deutlich darunter. Außerdem wurde das freie BPA leider nicht getrennt erfasst, besonderes Augenmerk sollte aber auf epidemiologische Studien gelegt werden, die auch freies BPA in den Proben messen:

Cunha und Fernandez entwickelten eine Methode um freies BPA und das gesamte BPA (nach Hydrolyse durch β-Glucuronidase) gemeinsam mit BPB (Bisphenol B) zu bestimmen. Dazu wird eine dispersive flüssig-flüssig Mikroextraktion (DLLME) mit anschließender multidimensionaler „heart- cutting“ GC-MS Analyse durchgeführt. Laut den Autoren zeichnet sich diese Methode durch ihre schnelle (15 Minuten Gesamtzeit) und einfache Handhabe, sowie durch ihre Empfindlichkeit und Zuverlässigkeit aus. Mit dieser Methode untersuchten sie Urinproben von 20 portugiesischen ProbandInnen (16 Frauen, 4 Männern). Freies BPA konnte in 9 von 20 Proben (45%) gefunden werden, BPA gesamt in 17 von 20 Proben (85%). Der LOD wird mit 0,03ng/ml angegeben, allerdings wurde nicht zwischen einem LOD für freies BPA und Gesamt-BPA differenziert. Bei jenen 9 ProbandInnen, bei denen freies BPA detektiert werden konnte, bewegte sich dessen Konzentration zwischen 0,41µg/L und 1,64µg/L bzw. 0,8µg/g und 2,39µg/g Kreatinin. Die Konzentration des gesamten BPAs reichte von 0,39µg/L bis 4,99µg/L bzw. von 0,33µg/g bis 8,87µg/g Kreatinin. Zur Qualitätssicherung wurden Blindwerte mitgeführt und eine Kalibrationskurve erstellt [Cunha et Fernandez, 2010].

Aufgrund der geringen Stichprobenanzahl können die Ergebnisse zwar nicht für die Gesamtbevölkerung als repräsentativ angesehen werden, sie sind aber ein An-

1Heart cutting: spezielle, besonders empfindliche Form der MS
haltspunkt, dass freies BPA im menschlichen Urin gefunden werden kann, wenn auch nur bei einem Teil der Bevölkerung.

Bei ihrer Studie aus 2005 kamen Völkel et al. zu dem Ergebnis, BPA sei in keiner Probe enthalten (siehe Tabelle 4.2.3.1). Ob diese Studie es als einzige geschafft hat, Kontaminationen vollständig zu verhindern, ist anzuzweifeln. Der LOD war zwar relativ hoch (1.14ng/ml), jedoch andere Studien mit hohen LODs konnten BPA nachweisen. Für höhere Konzentrationen wurden in dieser Studien mit BPA gespikte Kontrollproben analysiert und die Methode war fähig diese zu detektieren. Die Ursache für die Ergebnisse bleibt ungeklärt, da Reproduzierbarkeit aber ein wichtiger wissenschaftlicher Grundsatz ist und diese Ergebnisse eben nicht wiederholt werden konnten, sind die Ergebnisse dieser Studie eher als Ausreißer zu betrachten.

Im Rahmen des Vergleiches von HPLC/FD und LC/MS/MS durch Yi et al. (2010), zeigte sich ein entscheidender Unterschied zwischen den zwei Methoden bei der Analyse des freien BPAs. Mit HPLC/FD konnte kein freies BPA in den Proben (Muttermilch) detektiert werden, mit LC/MS/MS aber bei 100% Proben, im Konzentrationsbereich von 0,65-29,9µg/L. Die Autoren vermuten aufgrund der ähnlichen LODs der beiden Methoden falsch-positive Ergebnisse bei der LC/MS/MS Methode, gehen aber in ihrer Publikation nicht näher auf dieses Problem ein [Yi et al., 2010]. Die LODs der beiden verglichenen Methoden sind mit 0,6ng/ml für die HPLC/FD Methode und 0,39ng/ml für die LC/MS/MS als relativ niedrig einzustufen, wenn sie auch höher sind, als bei der oben angeführten Methode von Cunha und Fernandez (2010), die einen LOD von 0.03µg/L erreichten. Es ist daher nicht auszuschließen, dass die Proben tatsächlich kein freies BPA enthielten.
4.2. BPA Exposition in verschiedenen Lebensphasen

4.2.1. In Utero Exposition von BPA

4.2.2. BPA Exposition während des Wachstums

Die BPA Konzentration in der Muttermilch wurde nur in wenigen Biomonitoring Studien ermittelt, mit geringer Stichprobenanzahl. Dabei ist gerade die BPA Exposition im Säuglingsalter besonders kritisch zu betrachten, da angenommen wird, dass zu diesem Zeitpunkt der Organismus freies BPA noch nicht (vollständig) zu konjugiertem BPA umwandeln kann.

Kinder sind aufgrund mehrerer Faktoren besonders dem Risiko ausgesetzt schädliche Wirkung durch BPA zu erleiden:
• Durch das geringe Körpergewicht höhere Aufnahme/ kg KG

• Durch ihr Bedürfnis Dinge in den Mund zu stecken.

• Der Metabolismus des Neugeborenen bzw. des Kleinkindes gleicht nicht dem des erwachsenen Menschen.

[Quitmeyer et al., 2007]

Es wird angenommen, dass die Ontogenese der β-Glucuronidase rasch erfolgt, da sie bei einer Reihe von Versuchstieren (Spezien) in diversen Geweben und Organen gefunden wurde. Aufgrund der Aktivität der β-Glucuronidase und der unreifen Kapazität der Glucuronidierung besteht Grund zur Annahme, dass sich das Gleichgewicht Konjugation - Dekonjugation, beim Ungeborenen und beim Säugling, zugunsten der Dekonjugation verschiebt. Denn auch wenn die HWZ von BPA tatsächlich nur 5,3h beträgt, bleibt ausreichend Zeit um das konjugierte BPA zur Placenta zu transportieren und dort zu dekonjugieren.
noch der Untermauerung durch pharmakokinetische Studien bedarf. Es kann jedenfalls nicht sicher gesagt werden, dass beim Mensch in seinen frühen Entwicklungsstadien eine vollständige Detoxifikation von BPA erfolgt [Richard et al., 2001], [Ginsberg et al., 2009].

4.2.3. Unterschiede in der BPA Exposition zwischen den Altersgruppen

4.3. Gesammelte Daten zur BPA Konzentration in Körperflüssigkeiten und -Geweben

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Studienpopulation</th>
<th>LOD (ng/ml)</th>
<th>DR (%)</th>
<th>Total BPA (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kawaguichi et al., 2005</td>
<td>5 Erwachsene</td>
<td>0.02</td>
<td>80</td>
<td><LOD-5.41</td>
</tr>
<tr>
<td>Lui et al., 2005</td>
<td>9 jährige US-amerikanische Mädchen</td>
<td>0.5</td>
<td>89</td>
<td>MW: 2.4</td>
</tr>
<tr>
<td></td>
<td>24 U.S. amerikanische Erwachsene</td>
<td>0.5</td>
<td>50</td>
<td>MW: 0.47</td>
</tr>
<tr>
<td>Völkel et al., 2005</td>
<td>6 deutsche Erwachsene</td>
<td>1.14</td>
<td>0</td>
<td><LOD</td>
</tr>
<tr>
<td>Ye et al. 2005b</td>
<td>30 US amerikanische Erwachsene</td>
<td>0.3</td>
<td>97</td>
<td>MW 3.2</td>
</tr>
<tr>
<td>Yang et al. 2006</td>
<td>172 Koreaner</td>
<td>0.026</td>
<td>97.5</td>
<td>ME 7.86</td>
</tr>
<tr>
<td>Schöringhumer et al. 2007</td>
<td>12 österreichische Erwachsene</td>
<td>0.2</td>
<td>100</td>
<td>MW 1.1</td>
</tr>
<tr>
<td></td>
<td>12 österreichische Dialyse Patienten</td>
<td></td>
<td>100</td>
<td>MW 1.2</td>
</tr>
<tr>
<td>Calafat et al., 2008</td>
<td>314 Kinder</td>
<td>0.4</td>
<td>92.6</td>
<td>MW 4.3</td>
</tr>
<tr>
<td></td>
<td>713 Jugendliche</td>
<td></td>
<td></td>
<td>MW 2.8</td>
</tr>
<tr>
<td></td>
<td>950 Erwachsene</td>
<td></td>
<td></td>
<td>MW 2.4</td>
</tr>
<tr>
<td></td>
<td>537 Senioren</td>
<td></td>
<td></td>
<td>MW 2.3</td>
</tr>
</tbody>
</table>

Tabelle 4.2.3.1: Urinkonzentrationen an Gesamt BPA I
<table>
<thead>
<tr>
<th>Quelle</th>
<th>Studienpopulation</th>
<th>LOD (ng/ml)</th>
<th>DR (%)</th>
<th>Total BPA (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garcia Preto et al., 2008</td>
<td>8 spanische Studenten</td>
<td>0.197</td>
<td>100</td>
<td>4.03 - 49</td>
</tr>
<tr>
<td>Völkel et al., 2008</td>
<td>31 deutsche Frauen</td>
<td>0.3</td>
<td>k.A.</td>
<td>ND - 6.5</td>
</tr>
<tr>
<td></td>
<td>30 deutsche Kinder</td>
<td></td>
<td></td>
<td>ND - 7.5</td>
</tr>
<tr>
<td>Becker et al., 2009</td>
<td>137 deutsche Kinder (3-5J.)</td>
<td>0.25</td>
<td>k.A.</td>
<td>MW 3.6</td>
</tr>
<tr>
<td></td>
<td>145 deutsche Kinder (6-8J.)</td>
<td></td>
<td></td>
<td>MW 2.7</td>
</tr>
<tr>
<td></td>
<td>149 deutsche Kinder (9-11J.)</td>
<td></td>
<td></td>
<td>MW 2.2</td>
</tr>
<tr>
<td></td>
<td>186 deutsche Jugendliche (12-14)</td>
<td></td>
<td></td>
<td>MW 2.4</td>
</tr>
<tr>
<td>Calafat et al., 2009</td>
<td>Frühgeburten</td>
<td>0.4</td>
<td>100</td>
<td>1.6-946, MW 30.3, Median 3.7</td>
</tr>
<tr>
<td>Carwile et al., 2009</td>
<td>amerikanische Studenten (vermeiden von PC-Flaschen)</td>
<td>0.4</td>
<td>88%</td>
<td>MW 1.3</td>
</tr>
<tr>
<td></td>
<td>amerikanische Studenten (Verwendung von PC-Flaschen)</td>
<td></td>
<td>96%</td>
<td>MW 2.1</td>
</tr>
<tr>
<td>Melzer et al., 2010</td>
<td>NHANES 2003/4*</td>
<td>0.36</td>
<td>k.A.</td>
<td>MW 2.49</td>
</tr>
<tr>
<td></td>
<td>NHANES 2005/6*</td>
<td>0.4</td>
<td>k.A.</td>
<td>MW</td>
</tr>
</tbody>
</table>

Tabelle 4.2.3.2: Urinkonzentrationen an Gesamt BPA II
Tabelle 4.2.3.3: BPA Konzentrationen im menschlichen Blut

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Studienpopulation</th>
<th>Probentyp</th>
<th>LOD (ng/ml)</th>
<th>BPA Konzentration (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugiura-Ogasawara et al., 2005</td>
<td>32 Japanerinnen</td>
<td>Serum</td>
<td>0.5</td>
<td>0.77 ± 0.067</td>
</tr>
<tr>
<td>Vökel et al., 2005</td>
<td>k.A.</td>
<td>Plasma</td>
<td>0.57 – 1.14</td>
<td><LOD</td>
</tr>
<tr>
<td>Liu et al., 2007</td>
<td>10 chinesische Erwachsene</td>
<td>Serum</td>
<td>0.05</td>
<td><LOD – 0.28</td>
</tr>
<tr>
<td>Dirtu et al., 2008</td>
<td>7 belgische Erwachsene</td>
<td>Serum</td>
<td>0.003</td>
<td>0.98 ± 1.09</td>
</tr>
<tr>
<td></td>
<td>14 belgische Frauen</td>
<td>Serum</td>
<td></td>
<td>1.17 ± 1.09</td>
</tr>
<tr>
<td>He et al., 2009</td>
<td>404 chinesische Männer</td>
<td>Serum</td>
<td>0.39</td>
<td>MW 0.2</td>
</tr>
<tr>
<td></td>
<td>482 chinesische Frauen</td>
<td>Serum</td>
<td></td>
<td>MW 0.16</td>
</tr>
<tr>
<td>Kaddar et al., 2009</td>
<td>207 Franzosen und Französinnen</td>
<td></td>
<td>0.08</td>
<td><LOD - >2,</td>
</tr>
<tr>
<td>Yang et al., 2009</td>
<td>82 Koreanerinnen</td>
<td></td>
<td>0.012</td>
<td>ME: 0.03</td>
</tr>
</tbody>
</table>

k.A.: keine Angaben, ME: Median, MW: Mittelwert
<table>
<thead>
<tr>
<th>Quelle</th>
<th>Studienpopulation</th>
<th>Probentyp</th>
<th>LOD (ng/ml)</th>
<th>BPA Konzentration (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yamada et al. 2002</td>
<td>200 Schwangere*</td>
<td>Serum</td>
<td>0.5</td>
<td>ME: 2.24</td>
</tr>
<tr>
<td></td>
<td>48 Schwangere**</td>
<td>Serum</td>
<td></td>
<td>ME: 2.97</td>
</tr>
<tr>
<td>Kuroda et al. 2003</td>
<td>9 Gebärende</td>
<td>Serum</td>
<td>0.04</td>
<td>0.46 ± 0.067*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Serum (Nabelschnur)</td>
<td></td>
<td>0.62 ± 0.043*</td>
</tr>
<tr>
<td>Tan & Mohd 2003</td>
<td>180 Proben aus Malaysien</td>
<td>Plasma (Nabelschnur)</td>
<td>0.05</td>
<td>SB: <LOD - 4.05</td>
</tr>
<tr>
<td>Lee et al. 2008</td>
<td>300 Gebärende (Korea)</td>
<td>maternales Blut</td>
<td>0.625</td>
<td>9.04 ± 0.81*; SB: <LOD – 66.48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blut (Nabelschnur)</td>
<td></td>
<td>1.13 ± 0.08*; SB: <LOD – 8.86</td>
</tr>
<tr>
<td>Padmanabhan et al. 2008</td>
<td>40 Gebärende (USA)</td>
<td>Blut</td>
<td>0.5</td>
<td>5.9 ± 0.94*; SB: <LOD – 22.3</td>
</tr>
</tbody>
</table>

k.A.: keine Angaben, LOD: Limit of Detection, ME: Median, MW: Mittelwert; SB: Spannbreite,*Fötus mit normalem Karyotyp,**Fötus mit anormalen Karyotyp,*** MW ± Standardabweichung,

Tabelle 4.2.3.4: BPA Konzentrationen in der Schwangerschaft
<table>
<thead>
<tr>
<th>Quelle</th>
<th>Studienpopulation</th>
<th>LOD (ng/ml)</th>
<th>DR</th>
<th>BPA Konzentration (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Otaka et al., 2003</td>
<td>3 Japanerinnen</td>
<td>0.09</td>
<td>k.A.</td>
<td>LOD - 0.70*</td>
</tr>
<tr>
<td>Sun et al., 2004</td>
<td>23 Japanerinnen</td>
<td>0.11</td>
<td>k.A.</td>
<td>0.61 ± 0.042</td>
</tr>
<tr>
<td>Ye et al., 2006</td>
<td>20 US Amerikanerinnen</td>
<td>0.28</td>
<td>Freies BPA 60%, Gesamt BPA 90%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Freies BPA: MW 1.3, 60% Detektion, Gesamt BPA: MW 1.9; 90% Detektion</td>
</tr>
<tr>
<td>Ye et al., 2008</td>
<td>4 US Amerikanerinnen</td>
<td>0.3</td>
<td>k.A.</td>
<td>Freies BPA: MW 0.80; Gesamt BPA: MW 1.02</td>
</tr>
<tr>
<td>Kuruto-Niwa et al., 2007</td>
<td>101 Japanerinnen</td>
<td>0.3</td>
<td>k.A.</td>
<td>3.41 ± 0.013</td>
</tr>
</tbody>
</table>

DR: Detektionsrate; k.A.: keine Angaben, LOD: Limit of Detektion, MW: Mittelwert, * Angabe in ng/g

Tabelle 4.2.3.5: BPA in der Muttermilch
Konzentration an unkonjugiertem (freiem) BPA im menschlichen Urin

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Studienpopulation</th>
<th>LOD (ng/ml)</th>
<th>DR unkonjugiertes BPA (%)</th>
<th>BPA Konzentration (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kim et al., 2003</td>
<td>koreanische Erwachsene</td>
<td>0.28</td>
<td>k.A.</td>
<td>MW: 0.57ng/ml</td>
</tr>
<tr>
<td>Ye et al., 2005</td>
<td>Median und MW < LOD</td>
<td>30%</td>
<td>k.A.</td>
<td>MW: <LOD</td>
</tr>
<tr>
<td>Schöringhumer et al., 2007</td>
<td>12 österreichische Erwachsene</td>
<td>0.2</td>
<td>75</td>
<td>MW 0.3</td>
</tr>
<tr>
<td></td>
<td>12 österreichische Dialyse Patienten</td>
<td></td>
<td>90</td>
<td>MW 0.2</td>
</tr>
<tr>
<td>Vökel et al., 2008</td>
<td>31 deutsche Frauen</td>
<td>0.3</td>
<td>k.A.</td>
<td><LOD -2.5</td>
</tr>
<tr>
<td></td>
<td>30 deutsche Kinder</td>
<td></td>
<td></td>
<td><LOD - 0.9</td>
</tr>
<tr>
<td>Calafat et al., 2009</td>
<td>Frühgeburten</td>
<td>0.4</td>
<td>92</td>
<td>SB: <LOD-17.3; Median 1.7, MW 1.8</td>
</tr>
</tbody>
</table>

ME: Median, MW: Mittelwert, LOD: Limit of Detection, SB: Spannbreite

Tabelle 4.2.3.6: Urinkonzentrationen an freiem BPA
5. Toxikologische Bewertung von Bisphenol A

5.1. Diskrepanz zwischen den Sicherheitsagenturen und der “restlichen Wissenschaft”

rung einer Studie, ist Voraussetzung, um von den Sicherheitsagenturen (allen) für gültig befunden zu werden [Vogel et al.].

5.1.1. Sicherheitsbeurteilung von BPA in den USA

Bedingt durch die jüngsten wissenschaftlichen Ergebnisse, räumt die FDA jetzt allerdings Bedenken ein und führt daher zurzeit in Kooperation mit dem National Toxicology Program Studien zur Wirkung von BPA auf Gehirn, Verhalten und Prostata durch. In der Zwischenzeit ist FDA bemüht Alternativen für BPA zu finden und die Produktion von BPA hältigen Babyflaschen etc. zu verringern [FDA, 2010a].

Auf ihrer Website gibt die FDA auch Ratschläge wie man die BPA Exposition von Säuglingen/Kleinkindern verringern kann:

- Befolgen der Richtlinien zur Ernährung eines Säuglings, wenn möglich soll mindestens 12 Monate gestillt werden.
- Zerkratzte Babyflasche, Schnabeltasse etc. entsorgen
- Temperatur
 - Bei der Reinigung der Gebrauchsgegenstände für die Säuglings- und Kindernahrung genau den Instruktionen des Herstellers folgen, nur spülmaschinengeeignete Waren in den Geschirrspüler geben.
 - Kein kochendes Wasser in diese Gegenstände füllen

[FDA, 2011b]
5.1.2. Sicherheitsbeurteilung von BPA in der EU

Es wurde darauf hingewiesen, dass es bei der Verwendung von ELISA zu Kontaminationen kommen kann und BPA aus dem Material für die Probenentnahme, Lagerung und Probenaufbereitung ausgewaschen werden kann und somit in die Probe gelangen kann. Durch diese Kontaminationen sei die angegebene Konzentration von BPA im Blut in diesen Studien höchstwahrscheinlich überschätzt [Vanden-berg et al., 2010].

Im September 2010 gab die EFSA die bisher (Stand 15.März 2011) letzte Pressemeldung zur Risikobewertung von BPA heraus. Vorangegangen war eine erneute Überprüfung der Thematik durch das CEF (food contact materials, enzymes, flavourings and processing aids) Gremium. Dabei wurden über 800 wissenschaftliche Studien analysiert. Das Gremium sieht keinen Anlass für die Abänderung des bisherigen tolerierten täglichen Aufnahme (tolerable daily intake, TDI) von 50µg/kg KG (zur Entstehung dieses TDI siehe 5.2.2). Einige Studien hätten zwar eine gesundheitsgefährdende Wirkung von BPA nachgewiesen, allerdings wiesen gerade diese Studie laut dem Gremium etliche Mängel auf und könnten daher nicht als valide und zuverlässig betrachtet werden. Ein Mitglied des Gremiums, sprach sich
allerdings dafür aus, einige dieser Studien doch zur Bewertung des TDI heranzuziehen und den bisherigen TDI nur als provisorischen TDI anzusetzen, dieser Aufforderung wurde aber nicht nachgegangen [EFSA, 2010].

5.1.3. Sicherheitsbeurteilung von BPA in Kanada

Health Canada ist in Kanada für die Sicherheitsbeurteilung von BPA verantwortlich. 2008 wurde BPA in Kanada als „gefährliche Substanz“ eingestuft, in Folge sollen BPA-haltige Babyflaschen nicht mehr erhältlich sein. Die Umsetzung dieses Vorstoßes ist aber noch nicht komplett erfolgt, sondern befindet sich immer noch im Werden: „we are moving to ban the importation, sale and advertising of polycarbonate baby bottles.“ [Health Canada, 2011a]

Auffallend ist aber, dass auch für die kanadische Sicherheitsbehörde BPA eigentlich kein Sicherheitsrisiko darstellt:

“Health Canada's Food Directorate has concluded that the current dietary exposure to BPA through food packaging uses is not expected to pose a health risk to the general population, including newborns and infants.” [Health Canada, 2011b]

Tatsache ist aber, dass Kanada aber trotzdem „auf Nummer sicher geht“ und diverse Maßnahmen getroffen hat um die kanadische Bevölkerung, insbesondere Säuglinge und Kleinkinder, zu schützen. Sie empfiehlt daher das ALARA1 (as low as reasonably achievable) Prinzip; im Oktober 2008 wurden dazu u.a. folgende Maßnahmen bekannt gegeben:

- Förderung der Industrie bei Entwicklung eines „Code of Practice“ zur Reduzierung des BPA Gehaltes in Dosennahrung für Säuglinge und Kleinkinder
• Unterstützung bei der Entwicklung von BPA Alternativen für die Beschichtung von Dosennahrung für Säuglinge und Kleinkinder
• Erfassen von zusätzlichem Datenmaterial zur Risikobewertung von BPA

Kürzlich hat Health Canada die Industrie aufgefordert, das Voranschreiten dieser Vorhaben zu evaluieren, damit überprüft werden kann ob die Maßnahmen zur BPA Reduktion erfolgreich sind. Auf die Ergebnisse dieser Evaluierung darf man gespannt sein [Health Canada, 2011b].

5.2. Referenzwerte der Sicherheitsagenturen

Um das Risiko eines Stoffes einordnen zu können, werden von den Sicherheitsagenturen einzelner Länder bzw. Staatsengemeinschaften wie der EU, Referenzwerte herausgegeben, so auch für BPA. Auch wenn die Bezeichnung unterschiedlich ist, (in den USA wird der Wert als reference dose RfD herausgegeben, in Europa wird er aber als tolerable daily intake TDI bezeichnet), halten sowohl die U.S. amerikanische Sicherheitsbehörde, die U.S. Food and Drug Administration (FDA), als auch die europäische, die European Food Safety Authority (EFSA), an derselben täglich tolerierbaren Dosis für BPA von 50µg/kg KG fest. Health Canada setzt einen provisorischen TDI (pTDI) mit 25µg/kg KG fest, der damit deutlich niedriger liegt. Die 50µg/kg KG Marke hat ihren Ursprung in der eingangs eben erwähnten Studie aus dem Jahre 1977; mehrere Studien zur Überprüfung in den einzelnen Ländern folgten [Krishnan et al., 2010].

5.2.1. Entwicklung des Richtwertes der FDA

So bezieht sich die FDA auf eine Studie des National Toxicology Programm NTP aus 1982. Hier wurde eine Gewichtsreduktion an Ratten bei Dosen ab 50mg/kg KG
beobachtet. Dieser Wert ergibt daher die niedrigste Dosis, bei der eine schädliche Wirkung gezeigt werden konnte (LOAEL). Da kein NOAEL ermittelt wurde (jene niedrigste Dosis, bei der keine Wirkung festgestellt wird), erfolgte eine Extrapolation von LOAEL auf NOAEL mit dem Faktor 10, zusätzlich wurde der Sicherheitsfaktor 10 für die Unterschiede zwischen den Spezies und nochmals ein Sicherheitsfaktor 10 für individuelle Unterschiede berechnet um die tolerierbare tägliche Aufnahme zu errechnen.

Die Berechnung der FDA:

\[\frac{50 \text{mg/kg KG pro Tag}}{10/10/10} = 0,05 \text{mg} = 50 \mu \text{g/kg KG pro Tag} \]

[US EPA, 1993]

5.2.2. Entwicklung des Richtwertes der EFSA

Die Berechnung der EFSA:

\[\frac{5 \text{mg/kg KG pro Tag}}{10/10}= 0,05 \text{mg}= 50 \mu \text{g/kg KG pro Tag} \]

[EFSA, 2006]
5.2.3. Entwicklung des Richtwertes von Health Canada

Health Canada setzt einen provisorischen TDI (provisional tolerable daily intake) mit 25µg/kg KG fest, basierend auf einer 90 Tage Studie an Ratten, durchgeführt durch das NTP (1982), in der ein NOAEL von 25mg/kg KG pro Tag hinsichtlich Gewichtsreduktion von Ratten ermittelt wurde. Unter Einbeziehung dreier Sicherheitsfaktoren (jeweils Faktor 10) ergibt sich ein pTDI von 25µg/kg KG. Neben den bereits erwähnten Sicherheitsfaktoren für die Unterschiede zwischen den Spezies und für die individuellen Unterschiede, musste hier auch noch der Sicherheitsfaktor für die Umlegung von Effekten, die bei subchronischer Exposition ermittelt wurden, auf jene, die sich bei chronischer Exposition ergeben könnten, mit einberechnet werden.

Die Berechnung von Health Canada:

25mg/ kg KG pro Tag /10/10/10 = 0.025mg = 25µg/kg KG pro Tag

[Health Canada, 2008]

5.3. Dosis-Wirkung-Beziehung

„Die Dosis macht das Gift“, ein bekannter Satz, der auch auf die Wirkung von BPA zutrifft, allerdings anders als langläufig angenommen. In der Wissenschaft galt lange das Prinzip, „je größer die Dosis, desto größer die Wirkung“. Dass diese These nicht auf alle Wirkungsweisen von BPA angewendet werden kann, ist ein wichtiger Punkt in der Debatte um seine Risikobewertung.

Es wird dabei immer wieder von „Low Doses“, also niedrigen Dosen gesprochen, das National Institut for Environmental Health Sciences (NIEHS) definiert „Low Doses“ als Dosen, die sich unterhalb des NOAEL für eine chemische Substanz befin-
Im Falle von BPA sind das daher Dosen unter 50mg/kg KG pro Tag. Teilweise werden „low doses“ auch als jene Dosen definiert, die unter dem Referenzwert von 50µg/kg KG liegen [Vandenberg et al., 2007].

Abbildung 5.3.1: Modelle der Dosis-Wirkungsbeziehung, [Vandenberg et al., 2009]

Diese Überlegungen sind deswegen so wichtig, da dadurch nicht davon ausgegangen werden kann, dass, wenn BPA bei einer Dosis x die Wirkung y nicht zeigt, die Wirkung y auch nicht in einer Dosis, die geringer als x ist, ausgelöst wird. Es ist daher sehr fraglich, ob die linearen Dosis-Wirkungsbeziehungsmodelle für das Herausgeben von Risikobewertungen von BPA durch die Sicherheitsagenturen überhaupt geeignet sind.
Haltung der Sicherheitsagenturen zur Frage der „Low Doses“

Darauf reagierte wiederum die Forschungsgruppe um vom Saal [vom Saal und Hughes, 2005]. Sie kritisierte, dass das Harvard Center die große vorhandene

5.4. Übertragung der Ergebnisse aus den Tierversuchen auf den menschlichen Organismus:

Zur Toxikologie von BPA wurde eine Reihe von in vivo Studien durchgeführt, ein großer Teil davon an Nagern, die zwar mit dem menschlichen Organismus viele Gemeinsamkeiten teilen, genauso aber auch Unterschiede aufweisen. So scheiden Nagetiere BPA hauptsächlich über die Fäzes aus, Affe und Mensch hingegen über den Urin (siehe dazu auch 2.3., S.7ff.). Allerdings zeigte eine Studie anhand des direkten Vergleiches an Mäusen und Affen, dass bei beiden Tieren nach der Verabreichung BPA in einer Dosis von 1mg/kg KG dieses nach 30min (Mäusen) bzw. 1h (Affen) in etlichen fotalen Geweben nachweisbar war, der Fötus daher unabhängig von der Art der Ausscheidung BPA ausgesetzt war [Vandenberg et al., 2009].

5.5. BPA - ein endokrin aktiver Stoff - Einflüsse auf den Stoffwechsel (Wirkungsmechanismen von BPA)

Der Begriff “endocrine disruptor EDC” bzw. „endokriner Disruptor“ ist an sich relativ neu. Der Begriff wurde Anfang der 90er „erfunden“ und definiert. Die These war, dass einige Chemikalien in den Hormonhaushalt eingreifen können. Wenn der Begriff auch neu war, über derartige Wirkung war bereits geforscht worden, wie beispielsweise mit Substanzen, die sogenannten Xenoöstrogene, die eine östrogene Wirkung aufweisen [Vogel et al., 2009].

Die EPA (US Environmental Protection Agency) definiert EDC folgendermaßen: “An environmental endocrine disruptor is defined as an exogenous agent that interferes with the synthesis, secretion, transport, binding, action, or elimination of natu-
Endokrin wirksame Stoffe greifen in das endokrine System ein, rufen veränderte Funktionen in diesem hervor und können daher schädliche Effekte auf den Organismus haben. Auch Bisphenol A steht im Verdacht als EDC wirken zu können, besonders seine Rolle als Östrogen-Agonist wurde in vielen Studien untersucht, Wechselwirkungen mit Androgen und Schilddrüsenhormonen sind ebenfalls in Diskussion [Beronius et al., 2009].

Die EPA ist um Einigkeit zwischen den Stakeholder (Industrie, Politik, NGOs) bemüht und versucht diverse Fragen zu klären. Das beinhaltet die Definition eines EDC und damit die Klärung verschiedenster Fragen, so zum Beispiel ob die Fähigkeit an einen Hormonrezeptor zu binden, eine Substanz auch gleichzeitig immer zu einem EDC macht. Aber auch Fragen wie die erforschten Effekte zu bewerten sind, etwa ob die Veränderung der Prostatagröße auch negative Effekte mit sich bringt. Schlussendlich ist auch die Diskussion um ein adäquates Studiendesign von großer Bedeutung, vor allem ob „low doses“ auch getestet werden sollen (siehe auch 5.3, S.37ff.) und ob der Exposition während des Fetal- und Neonatalstadiums besondere Aufmerksamkeit geschenkt werden sollte [Vogel et al., 2009].

5.5.1. Die mögliche östrogene Wirkung von BPA

Die östrogenen Effekte von BPA betreffend, nahm die EPA die Ergebnisse einer kleineren Studie aus dem Jahr 1981 zwar zur Kenntnis, argumentierte aber, dass durch die geringe HWZ von BPA im Körper und damit durch die geringe Bioakkumulation kein Risiko von BPA ausgehe. Als Ende der 1980er ein interdisziplinäres Forschungsfeld um die hormonähnlichen Wirkungen von synthetischen Chemikalien entstand, wurde der möglicherweise östrogenen Wirkung von BPA mehr Auf-
merksamkeit geschenkt. An der Stanford Universität suchte man 1993 in einem Versuch mit auf Östrogen ansprechenden Brustkrebszellen nach einem endogenen Östrogen in Hefe. Das was die ForscherInnen für ein endogenes Östrogen gehalten hatten, stellte sich als BPA heraus, das sich von Laborbehältnissen aus Polycarbonat gelöst hatte. In weiterer Folge brach die Diskussion über endokrine Disruptoren aus [Vogel et al., 2009].

Ende der 1990er Jahre testeten Nagel et al. BPA auf seine Wirkung auf natürliche Hormone. Das besondere an den Tests war, dass nicht die bisher bei toxikologischen Tests üblichen Dosen eingesetzt wurden, sondern physiologisch für den Menschen relevante Dosen, sprich Mengen an BPA, die auch durch den Menschen laut Studien tatsächlich aufgenommen werden und die teilweise unter der Referenzdosis von 50µg/kg KG lagen. In der Studie wurden erhöhtes Prostatagewicht bei BPA Exposition und generell eine größere östrogene Wirkung als bisher angenommen festgestellt [Nagel et al., 1997].
Wirkungspfade der östrogenen Wirkung von BPA

wurden auf ihren IC50 Wert² und auch ihre Bindungsaffinität (BA) hinsichtlich des GPR30 Rezeptors getestet; als Vergleichswert diente die BA und der IC50 von Estradiol. Den niedrigsten IC50 Wert und die höchste BA zeigte Genistein, gefolgt von BPA. So hatte BPA ca. 3% der BA von Estradiol und den 35fachen IC50 Wert. Interessant ist die Tatsache, dass die BA von BPA zu GPR30 um ein Vielfaches höher ist als die zu den klassischen Östrogenrezeptoren [Thomas et al., 2006].

Den verschiedensten Wirkungsweisen von BPA wurde auch in etlichen Studien Rechnung getragen; auf diesen Aspekt wird bei der genaueren Beschreibung der möglichen Effekte von BPA in den unten stehenden Abschnitten ebenfalls einge-gangen.

5.5.2. Androgene Wirkung

Es gibt auch Anzeichen, dass BPA als Antagonist von Androgenen wirkt. Die mögliche Wirkung als Androgenantagonist ist noch nicht geklärt, die Unterscheidung zwischen östrogenen und antiandrogenen Effekten ist im Tierversuch teilweise schwierig [Vandenberg et al., 2009].

Eine Wirkung, die BPA auf das Androgensystem haben könnte, ist das Herabsetzen der Wirkung der Androgen-Deprivations-Therapie (ADT) in der Behandlung von Prostatakrebs (siehe dazu auch 5.9.3.2)

5.5.3. Wechselwirkungen mit den Schilddrüsenhormonen

Weniger intensiv erforscht als seine östrogene Wirkung, ist der Einfluss, den BPA auf das Schilddrüsenhormonsystem nimmt. Generell ist die Wirkung von Chemikalien auf dieses System weniger untersucht worden. Epidemiologische Studien zei-

²IC 50: halbmaximale Hemmkonzentration, jene Konzentration eines Stoffes, bei der er 50% seiner hemmenden Wirkung auf ein bestimmtes Ereignis/ einen bestimmten Stoff, ausübt
gen zwar, dass eine Einwirkung von Umweltchemikalien auf die Schilddrüsenhormone möglich ist, die Mechanismen sind aber weitgehend unbekannt. Moriyama et al. (2002) zeigten in ihrer in vitro Studie an nuklearen Thyroidhormon-Rezeptoren (TRs) aus der Leber von Ratten, dass BPA als Antagonist in die TR vermittelte Gentranskription eingreift. BPA führt hier zu einer verminderten Transkription, die durch T3 stimuliert wird, und führt bei Transkriptionen, die durch T3 unterdrückt werden, zu erhöhter Transkription [Moriyama et al., 2002]. Ein in vivo Test an Ratten (Verabreichung mit einem Wafer in den Konzentrationen 0, 1, 10, 50 mg/kg KG) kam zu dem Ergebnis, dass eine BPA Exposition der Muttertiere bei den Jungtieren zu erhöhten T4 Spiegel im Serum führen kann. Eine signifikante Änderung im Vergleich zur Kontrollgruppe wurde allerdings nur am postnatalen Tag 15 gefunden. Die Autoren detektierten weiter eine erhöhte Expression des RC3/Neurogranin Gens und führen das auf eine verringerte negative Rückkopplung aufgrund des höheren T4 Spiegels im Plasma zurück. An den anderen Messtagen konnte keine Veränderung festgestellt werden [Zoeller et al., 2005].

Beide Studien liefern Hinweise auf ein Eingreifen von BPA in das System der Schilddrüsenhormone, klare Aussagen können aber noch keine gemacht werden, dazu bedarf es weiterer Studien.

5.6. Einflüsse auf den Stoffwechsel

5.6.1. Einfluss auf die Glukosehomöostase

Die Annahme, BPA könnte einen Einfluss auf den Blutzuckerspiegel haben, rührt von der Wirkung von Estradiol auf diesen her. Unter (normalen) physiologischen Bedingungen trägt Estradiol zu einer normalen Insulinsensitivität bei und hat einen positiven Einfluss auf die β-Zellen der Langerhansschen Inseln. Übermäßig erhöhte Konzentrationen können allerdings zu Insulinresistenz führen. Daher stellt sich die Frage inwiefern exogene Substanzen, die eine Estradiol ähnliche Wirkung ha-

Eine weitere Studie von Alonso-Magdalena et al. (2010) testete umweltrelevante Dosen von BPA auf den Glukosemetabolismus während der Schwangerschaft und die langfristigen Auswirkungen der BPA-Gaben nach Beendigung der Studie. Au-

Trächtigen Mäusen wurde zwischen dem 9.-16. Gestationstag subkutan 10µg, 100µg oder 0 (stattdessen ein Vehikel) BPA/kg KG/d verabreicht. Die Studie brachte folgende Ergebnisse:

Müttergeneration: sowohl die Dosis von 10µg/kg als auch 100µg/kg KG führten zu einem signifikant erhöhten Plasmainsulinspiegel am 16. Gestationstag. Nach der Entbindung war dieser nur in der Gruppe jener Tiere signifikant erhöht, die 100µg/kg KG erhalten hatten. Zu diesem Zeitpunkt waren bei dieser Gruppe auch die Plasmawerte von Triglyceriden, Glycerin und Leptin im Vergleich zur Kontrollgruppe signifikant erhöht. Um die Insulinsensitivität zu testen, wurde der BPA Einfluss auf die insulinvermittelte Stimulation der Proteinkinase B Phosphorylierung getestet. Bei der Kontrollgruppe führte eine intraperitoneale Injektion von Insulin zu einer erhöhten Phosphorylierung der Proteinkinase B in der Leber. In jener Gruppe, die 10µg/kg KG BPA erhalten hatten, war die Phosphorylierung jedoch vermindert, was darauf schließen lässt, dass BPA die Insulinwirksamkeit in der Leber behindert. Vier Monate nach der Entbindung wurden an den Muttertieren Insulintoleranztests durchgeführt. Bei der 100µg Gruppe zeigte sich eine verringerte Glukose-senkende Wirkung durch Insulin, im Vergleich zur Kontrollgruppe. Bei der 10µg Gruppe wurde dieser Effekt nicht festgestellt. Auch waren nicht, wie bei der höher
dosierten Gruppe Glycerin und Leptin im Plasma signifikant erhöht (wenn auch eine Erhöhung vorhanden war), sondern es war nur eine signifikante Erhöhung der Triglyceride nachweisbar. Daraus kann geschlossen werden, dass langfristige Effekte wenn überhaupt, dann durch die höhere Dosierung an BPA erzielt werden. Niedrige Dosen BPA können einen erheblichen Effekt auf die Glucosehomöostase haben und die Insulinresistenz in Skelettmuskel und der Leber von trächtigen Mäusen erhöhen. BPA führten in Dosen von 10 und 100mg/kg KG pro Tag zu Hyperinsulinämie (Messung am 18. Gestationstag).

Problematisch zu bewerten ist, wie bei vielen Studien, dass die Verabreichung von BPA nicht oral, sondern in diesem Fall subkutan erfolgte.

<table>
<thead>
<tr>
<th>Versuchstiere</th>
<th>Plasmawerte (Vergleich zur Kontrollgruppe)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Insulin signifikant erhöht (p<0.05)</td>
</tr>
<tr>
<td>16. Gestationstag, 10µg/kg KG</td>
<td>Ja</td>
</tr>
<tr>
<td>16. Gestationstag, 100µg/kg KG</td>
<td>Ja</td>
</tr>
<tr>
<td>bei der Entbindung, 10µg/kg KG</td>
<td>Nein</td>
</tr>
<tr>
<td>bei der Entbindung, 100µg/kg KG</td>
<td>Ja</td>
</tr>
<tr>
<td>6 Monate alte männliche Nachkommen, Mutter 10µg/kg KG</td>
<td>Ja</td>
</tr>
<tr>
<td>6 Monate alte männliche Nachkommen, Mutter 100µg/kg KG</td>
<td>nein</td>
</tr>
<tr>
<td>6 Monate alte weibliche Nachkommen, Mutter 10µg/kg KG</td>
<td>nein</td>
</tr>
<tr>
<td>6 Monate alte weibliche Nachkommen, Mutter 100µg/kg KG</td>
<td>nein</td>
</tr>
</tbody>
</table>

n.e.: nicht erfasst

Tabelle 5.6.1.1: Blutparameter, [Alonso- Magdalena et al., 2010]

5.6.2. Einfluss auf den Stoffwechsel im Fettgewebe

Die rasch ansteigende Inzidenz von Adipositas lässt Forscher nach möglichen Zusammenhängen von Industriechemikalien/Umweltkontaminaten und der Entstehung von Adipositas suchen. Adipositas resultiert, physiologisch gesehen, aus einer erhöhten Anzahl und/oder eines vergrößerten Volumens von Adipozyten. Dar-
aus wiederum ergibt sich ein vergrößertes Volumen des Fettgewebes. Seiner Funktion nach ist dieses nicht nur ein Speicherorgan, sondern erfüllt auch die Aufgabe diverse Stoffe wie Adiponektin auszuschütten. Adiponektin erhöht die Insulinsensitivität und schützt die Gefäßwände vor Atherosklerose. Eine niedrige Konzentration von Adiponektin kann daher im Zusammenhang mit Insulinresistenz, Diabetes und Atherosklerose gebracht werden. Insulin selbst erhöht die Adiponektinsekretion, erniedrigt aber die intrazelluläre Adiponectin-Konzentration [Kidani et al., 2010].

sis-Wirkungskurve von E2 war teilweise linear, was auch ein Hinweis darauf ist, dass die beiden Stoffe ihre Wirkungsmechanismen nicht immer auf demselben Weg vollziehen. So könnte BPA an alternative Östrogenrezeptoren binden, deren Expression in diesen Fettgeweben in der Studie positiv detektiert wurde. Die Expression von ERRα, ERRβ, ERRγ und GPR30 war in allen Geweben zwar deutlich geringer als jene des klassischen Östrogenrezeptors ERα, alle alternativen Östrogenrezeptoren konnten aber in den jeweiligen Geweben gefunden werden. Bemerkenswert ist auch, dass BPA teilweise effektiver war als äquimolare Konzentrationen an E2. Erwähnt werden sollte noch, dass die Adiponektinsekretion in den einzelnen Gewebssproben sehr unterschiedlich war. Es liegen daher große individuelle Unterschiede vor. Die Stichprobenanzahl war allerdings zu gering um daraus Schlüsse zu ziehen wie sich Faktoren wie BMI, Alter, Geschlecht auf das Ergebnis ausgewirkt haben. Fakt ist, dass BPA in einigen Proben signifikante Wirkung gezeigt hat und dass diesem Ergebnis in weiteren Studien nachgegangen werden sollte [Hugo et al., 2008].

Auch Kidani et al. (2010) hatten sich mit ihrer Studie zum Ziel gesetzt, einen möglichen Zusammenhang zwischen der BPA Exposition (und der einiger BPA Derivate) und der Produktion und Sekretion von Adiponektin anhand einer Zellkulturstudie an 3T3-L1 Adipozyten (Präadipozyten, die zu Adipozyten differenziert werden können, sie werden aus der 3T3 Mäusezellenlinie gewonnen), zu ermitteln. Die Adiponektinkonzentration in den Zellen und im Medium wurde ebenfalls mittels ELISA gemessen, mit folgenden Resultaten: BPA senkt dosisabhängig (eingesetzt wurden 0, 20, 40, 80 µM BPA) die Konzentration von Adiponektin intrazellulär und im Medium, wobei eine enge Korrelation (r= 0,904) zwischen dem intrazellulären Gehalt und dem im Medium bestand. Die Hemmung der Adiponektinausschüttung erfolgt wahrscheinlich über die Hemmung der Expression von Proteinkinase B. Die Autoren belegen diese These durch Detektion der verminderten Expression von Proteinkinase B (Akt, p-Akt) mittels Western Blot. Hier zeigte sich, dass BPA in einer Konzentration von 80µM (niedrigere Konzentrationen wurden dafür nicht ge-
testet) die Expression von Akt um 46% vermindert. Auch in dieser Studie wurde untersucht auf welchem Weg BPA diese Wirkung ausübt, das heißt welche Rezeptoren beteiligt sind. Zu diesem Zweck wurde der Östrogenrezeptorantagonist 1-Cl182 eingesetzt. Die Anwesenheit dieses Antagonisten führte zu keiner Änderung der Wirkung von BPA auf die Adiponektinsekretion. Daraus ist zu schließen, das BPA auch hier auf alternativem Wege wirkt [Kidani et al., 2010].

Die Ergebnisse beider Studie deuten auf eine verringerte Adiponektinsekretion bei BPA Exposition hin. Daraus können sich wie oben genannt Konsequenzen ergeben, BPA könnte daher über diesen Weg zu metabolischen Dysfunktionen führen.

Werte zwischen den Geschlechtern festgestellt. So zeigte bei den Weibchen vor allem die niedrige BPA Dosierung Wirkung. Das Körpergewicht wurde bei den Weibchen durch die ND Dosierung um 13% und durch HD um 11%, im Vergleich zur Kontrollgruppe, erhöht. Die Fettmasse wurde nur durch ND signifikant verändert, es erfolgte eine Erhöhung um 132%. ND führte außerdem zu einem 123% höheren Serum-Leptinspiegel im Vergleich zur Kontrollgruppe. Bei den Männchen hingegen zeigte in der HD-Gruppe BPA größere Wirkung, das KG wurde in dieser Gruppe um 22% und das Gewicht des Fettgewebes um 59% erhöht.

[Miyawaki et al., 2007]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Erhöhung im Vergleich zur Kontrollgruppe [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weibliche Jungtiere</td>
</tr>
<tr>
<td></td>
<td>ND</td>
</tr>
<tr>
<td>Körpergewicht</td>
<td>13</td>
</tr>
<tr>
<td>Gewicht des Köpfettes</td>
<td>132</td>
</tr>
<tr>
<td>Leptin (Serum)</td>
<td>123</td>
</tr>
<tr>
<td>Gesamtcholesterin (Serum)</td>
<td>33</td>
</tr>
</tbody>
</table>

ND: niedrige Dosis (1µg/ml), HD: hohe Dosis (10µg/ml), k.s.Ä. keine signifikante Änderung

Tabelle 5.6.2.1: metabolische Parameter, [Miyawaki et al., 2007]

Proben wurden Konzentrationen von aktivem BPA gefunden; diese Ergebnisse müssen daher in die Risikobewertung von BPA miteinbezogen werden.

5.7. BPA und oxidativer Stress

Dem Zusammenhang zwischen BPA und oxidativem Stress wurde bisher relativ wenig Aufmerksamkeit geschenkt. Geht man von dem Ergebnis der Studie von
Yang et al. (2009) aus, dann ist von BPA ein Risiko für erwachsene Personen nur für postmenopausale Frauen zu erwarten.
5.8. Wirkungen auf das Herz-Kreislauf System

<table>
<thead>
<tr>
<th>Erkrankungsbild</th>
<th>1.NHANES 2003/04</th>
<th>2.NHANES 2005/06</th>
<th>Gesammelte Daten aus 1+2</th>
<th>OR</th>
<th>OR</th>
<th>OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myokardinfakt</td>
<td>1.34</td>
<td>1.31</td>
<td>1.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angina pectoris</td>
<td>1.26</td>
<td>1.29*</td>
<td>1.27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Koronare Herzerkrankung</td>
<td>1.45</td>
<td>1.29*</td>
<td>1.37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kardiovaskuläre Erkrankungen gesamt</td>
<td>1.31</td>
<td>1.21*</td>
<td>1.26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>1.41</td>
<td>1.07*</td>
<td>1.27</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* p-Wert > 0.05, daher kein statistisch signifikanter Zusammenhang

Tabelle 5.6.2.1: BPA und kardiovaskuläre Erkrankungen/Diabetes, [Melzer et al., 2010]

Diese Erkenntnisse werfen natürlich die Frage nach den Wirkungsmechanismen von BPA in diesen Zusammenhang auf. Es könnte sein, dass BPA hier seine Wirkung über bisher unbekannte Wege ausübt.

Zu betonen ist hier, dass die Wirkung von BPA auf das Kreislaufsystem nicht direkt untersucht wurde, sondern nur von einer Variablen (erhöhte BPA Konzentration im Urin) auf eine andere (erhöhte Inzidenz einer bestimmten Krankheit) geschlossen wurde, mit der Annahme, dass eine Abhängigkeit der Variablen „Krankheit“ von der Variable BPA Konzentration im Urin besteht. Es kann durchaus sein, dass eine erhöhte BPA Aufnahme zu einem erhöhten Risiko für Herz-Kreislaufenerkrankungen führt. Nicht auszuschließen ist aber auch die Möglichkeit, dass die Inzidenz durch andere Faktoren erhöht wird, die ihrerseits mit der BPA Aufnahme zusammenhän-
gen. Auch könnte es sein, dass BPA zwar Wirkung auf das Herz-Kreislaufsystem ausübt, aber nur in Kombination mit diesen anderen Faktoren.

5.9. Wirkungen die im Zusammenhang mit Krebserkrankungen stehen

Es wird davon ausgegangen, dass erhöhte Dosen an Östrogenen im Körper zur Karzinogenese von verschiedenen Organen beitragen. So wird angenommen, dass eine frühe Menarche und späte Menopause das Risiko für Brustkrebs erhö-
hen [Liehr, 2000], erhöhte Östrogenwerte werden aber auch mit erhöhtem Risiko für Prostatakrebs in Verbindung gebraucht. Gegen die östrogenimitierende Eigenschaft des BPA spricht seine geringe Bindungsaffinität an ER. Dieses Argument wird allerdings durch die Annahme von alternativen Wegen, durch die ein östro-
genähliche Wirkung erzielt werden kann, (teilweise) entkräftet (siehe dazu auch 5.5) [Keri et al., 2007].

5.9.1. BPA und seine Rolle bei der Entstehung von Brustkrebs

Yang et al. (2009) stellten einen direkten Vergleich der Exposition von BPA zwischen Brustkrebspatientinnen und einer Kontrollgruppe an. Zwischen 1994 und 1997 wurde in Korea 152 Probandinnen Blut abgenommen und BPA mittels HPLC/FD zweifach gemessen. Die erste Messung detektierte nur das freie BPA, die zweite die gesamte Menge an BPA. Der LOD lag bei 0,012µg/L bzw. 0,04µg/L, die Empfindlichkeit der Messung war daher durchaus ausreichend (vgl. Kapitel 11). Konjugiertes BPA wurde zwischen < LOD und 13.9µg/L gemessen, mit einem Median bei 0.043. Vergleicht man diese Ergebnisse mit jenen in Tabelle 4.2.3.3, so bewegen sich diese im ungefähr selben Bereich. Die Konzentration von freiem BPA lag meist unter dem LOD. Es konnte kein statistisch signifikanter Zusammenhang zwischen der BPA Konzentration und der Inzidenz für Brustkrebs gefunden werden. Toxikologisch entscheidend ist aber die Menge an freiem BPA, da diese aber in den meisten Fällen nicht detektiert werden konnte, war es auch nicht mög-
lisch eine Korrelation zwischen freiem BPA und Brustkrebsinzidenz herzustellen. Der geographische Faktor könnte auch eine Rolle spielen, da in Korea eine wesentlich geringere Brustkrebsinzidenz (wenn auch stark steigende) besteht als in den westlichen Industrieländern und auch die BPA Exposition laut den Autoren wesentlich geringer ist. Die Autoren selbst wünschen sich Langzeitstudien mit ei-
er höheren Stichprobenanzahl um falsch-negative Resultate zu vermeiden [Yang et al., 2009].

Erk1/2 (Extracellular-signal regulated kinases) sind an einer Reihe intrazellulärer Prozesse wie Proliferation und Zelldifferenzierung beteiligt und dürften daher auch eine Rolle in der Karzinogenese spielen. Um den Einfluss von BPA auf die Erk 1/2 Kaskade zu testen, führten Dong et al. (2010) eine Zellstudie an Brustkrebszellen durch. Es wurden hier sowohl ERα/β positive Zellen wie auch ERα/β negative Zellen eingesetzt um einen möglichen ER unabhängigen Wirkungspfad zu überprüfen. BPA aktivierte sowohl in ERα/β positiven Zellen wie auch ERα/β negativen Zellen auf raschem Weg die Erk 1/2 Kaskade. Daher muss BPA diese Wirkung (auch) auf Wegen alternativ zu den klassischen ER erzielen. Die Autoren gehen davon aus, dass hier GPR-30 beteiligt ist. Die Studie zeigt einen der Wege über den BPA eine Rolle in der Karzinogenese spielen kann, und zwar den raschen, ER- unabhängigen Weg [Dong et al., 2010].

zentrationen BPA behandelt: 250µM, 25µM, 2,5µM, 0,25µM und 0,025µM. Die zwei niedrigsten Dosen führten zu keiner signifikanten Änderung der EZH2 Expression. Bei 2,5µM und 25µM wurde die Expression von EZH2 mehr als verdoppelt, 250µM war toxisch für die Zellen. Die EZH2 Protein-Expression wurde nur mit einer Dosis von 2,5µM BPA mit Western Blot untersucht, und resultierte in einer signifikant erhöhten EZH2 Proteinexpression im Vergleich zur Kontrollgruppe. Im Tierversuch wurden trächtigen CD-1 Mäusen zwischen dem 9. und 26. Gestationstag intraperitoneal 5mg /kg KG BPA pro Tag verabreicht, die weiblichen Nachkommen wurden im Alter von 6 Wochen getötet und untersucht. Diese Dosis führte zu keiner Änderung der EZH2 mRNA Expression im Vergleich zur Kontrollgruppe, rief aber eine signifikant erhöhte EZH2 Proteinexpression hervor; dieser Effekt hielt auch längerfristig an. Das deutet darauf hin, dass BPA diese Wirkung nicht durch erhöhte EZH2 mRNA Expression erzielt, sondern durch vermehrte Translation und/oder durch verminderte Proteindegeneration [Doherty et al., 2010].

Zusammenhänge einer in utero Exposition an BPA und dem Brustkrebsrisiko

sen zuliege, wurde eine zweite Phase der Studie durchgeführt. In dieser wurde getestet, welche Auswirkungen auf die Tumorgenese und die Protein-Expression pränatale Gaben von BPA in Kombination mit einer DMBA-Gabe am 100. postnatalen Tag hat. Das heißt, es wurde den Muttertieren wieder zwischen dem 10. und 21. Gestationstag BPA verabreicht, allerdings in dieser zweiten Phase nur in einer Dosierung, nämlich der höheren Dosierung von 250µg/kg KG pro Tag; die weiblichen Jungtiere erhielten einmalig 30mg/kg KG DMBA am 100. Lebenstag. Die Tumorinzidenz der Tiere, die in utero BPA erhalten hatten, war signifikant höher (83,3% im Vergleich zur Kontrollgruppe mit 53,6%), außerdem war die Latenzzeit signifikant verringert. Kein signifikanter Unterschied wurde bei der Tumormultiplicität gefunden [Betancourt et al., 2010].

Der zweite Teil der Studie wurde nur mit der höheren Dosierung durchgeführt, da hier schon in früheren Studien Unterschiede bei der Expression entscheidender Proteine gefunden wurden. Dennoch, auch die höhere Dosis von 250µg BPA/kg KG Tag liegt noch unter dem LOAEL von 50mg/kg KG, die Ergebnisse sind daher für eine neue Risikobewertung von BPA durchaus relevant.

5.9.2. Prostatakrebs

Prostatakrebs ist die am zweithäufigsten tödlich verlaufende Krebserkrankung in den USA [Hess-Wilson, 2009]. Keri et al. (2007) publizierten ein Experten-Panel zum karzinogenen Risiko von BPA, in dem auch das Risiko für Prostatakrebs evaluiert wurde. Die Autoren betonen in ihrem Panel zum Großteil Studien herangezo- gen zu haben, die Dosen verwendeten, die zu jenen zirkulierenden Konzentrationen an freiem BPA im Serum führen, die auch in Studien dazu gefunden wurden, das heißt, die sich im Bereich von 0.2 bis 20ng/ml [Welshons et al., 2006] bewegen. Die in vivo Studienergebnisse betreffend einen möglichen Zusammenhang der BPA Exposition und Prostatakrebs sind keineswegs einheitlich. Etliche zeigen

Ein klares „Ja“ oder „Nein“ ist also auch hier für das Risiko zufolge BPA nicht möglich, die Ergebnisse weiterer Studie sind abzuwarten.

5.9.3. Wechselwirkungen mit chemotherapeutischen Stoffen

5.9.3.1. Chemotherapeutika in der Behandlung von Brustkrebs

Für die Studie A wurden T47D Zellen (ERα-positiv) und MDA-MB-468 (ERα-negativ) herangezogen. Den Zellen wurden die drei verschiedenen Zytostatika in verschiedenen Dosen zugesetzt. 24h davor war die Vorbehandlung mit 1nM BPA erfolgt. Einem Teil der Zellen wurde vor BPA-Zugabe zusätzlich ICI als Antagonist für ERα und ERβ oder PHTPP als spezifischer ERβ Antagonist zugesetzt. Die Identifikation potentieller Rezeptoren für BPA erfolgte durch RT-PCR. Die Expression von antiapoptotischen Proteinen wurde mittels Western Blot analysiert. Gegenstand der Untersuchung waren vier zentrale Themen:

• Die Expression der alternativen Östrogenrezeptoren in den zwei Zelllinien (GPR30, ERRα, ERRβ und ERRγ): die höchste Anzahl wurde an ERRα Rezeptoren gefunden, gefolgt von ERRβ und GPR30. Das Verhältnis unter den genannten war in beiden Zelltypen ähnlich, T47D Zellen wiesen aber generell eine höhere Expression an alternativen ER auf. ERRγ wurden in keinem Fall gefunden.

• Die Expression der antiapoptotischen Proteine wurde durch Zugaben von BPA teilweise erhöht, in beiden Zelllinien erhöhte BPA die Expression von Bcl-2, eine Erhöhung der Expression von Bcl-xL durch BPA konnte nur in T47D Zellen nachgewiesen werden.

Diese Studie brachte erste Hinweise auf einen Beitrag, den BPA in nanomolaren Dosen zur Resistenz gegen Chemotherapeutika liefert und auf welche Weise BPA diese Wirkung ausübt [LaPensee et al., 2009].

Weitere Hinweise auf diesen Umstand lieferte die zweite Studie der Wissenschafterlnnengruppe um LaPensee. Studie B wurde zur Wechselwirkung von BPA und Cisplatin durchgeführt, mit Schwerpunkt auf Untersuchung der Wirkungsmecha-

und E2 nun die Cisplatin-Wirkung konkret hemmen. Mittels MS wurde überprüft, ob BPA/E2 Cisplatin daran hindern an DNA zu binden, was nicht der Fall war. Im nächsten Schritt untersuchten sie den Einfluss von BPA, E2 und Cisplatin auf die Expression pro-/antiapoptotischer Proteine. Bcl-2 Expression wurde durch E2 und BPA unabhängig von der Zugabe von Cisplatin gesteigert, unverändert blieb die Expression von Bcl-xL und Bax [LaPensee et al., 2010].

5.9.3.2. Chemotherapeutika in der Behandlung von Prostatakrebs

Das Problem der Resistenzbildung betrifft natürlich nicht nur Brustkrebspatienten, sondern tritt ebenfalls bei diversen anderen Karzinomen, wie Prostatakrebs, auf. Beschränkt sich der Krebs nur auf das Organ selbst, sind die Heilungschancen zwar gut, invasive Tumore erweisen sich aber als höchst resistent gegenüber jeglichen zytotoxischen Maßnahmen. In diesem Fall wird oft die Androgen-Deprivations-Therapie (ADT) eingesetzt. ADT wurde entwickelt um die Funktion des Androgen-Rezeptors außer Kraft zu setzen. Der Androgenrezeptor (AR) ist ein Kernrezeptor und agiert als Liganden-abhängiger Transkriptionsfaktor. Die Therapieform ADT ist anfänglich sehr wirksam, allerdings entwickelt die Mehrheit der Patienten nach zwei bis drei Jahren ADT-resistente Tumoren, für die es keine adäquate Behandlung gibt. Die Suche nach Faktoren, die zu dieser Resistenzbildung beitragen, ist daher entscheidend für die Effektivitätssteigerung der Behandlung. Auf molekularer Ebene werden mehrere Mechanismen mit der Resistenzbil-

pen positiv detektiert, zwischen den zwei Gruppen konnte kein Unterschied hinsichtlich der Expression festgestellt werden. Wahrscheinlicher ist, dass BPA seine Wirkung aufgrund einer erhöhten Proliferationsrate erzielt, so war diese in der Interventionsgruppe mit 20% deutlich höher als in der Kontrollgruppe mit 12%. Kein Unterschied konnte hingegen hinsichtlich der Apoptoserate gefunden werden [Wetherill et al., 2005].

Auch an dieser Studie ist die Art der BPA Verabreichung zu kritisieren, da sie nicht oral erfolgte. Allerdings weisen die AutorInnen darauf hin, dass es durch die Applikation zu einer Serumkonzentration an BPA gekommen ist, die jener Konzentration entspricht, die auch in Humanstudien gefunden worden ist, wodurch die Ergebnisse für die Risikobewertung von BPA mehr als relevant werden.

5.10. Weitere Ergebnisse zur Reproduktionstoxizität

5.10.1. Verfrühte Geschlechtsreife bei Mädchen:

Ähnliche Ergebnisse brachte eine weitere Studie an CD1 Mäusen von Nikaido et al. (2004). Trächtigen Mäusen wurde 0,5mg bzw. 10mg BPA /kg KG verabreicht. Beide Dosierungen verlängerten die Dauer eines Zyklus signifikant, die höhere Dosierungen führte außerdem zu einer früheren Vaginalöffnung.

Auch wenn diese Ergebnisse recht eindeutig scheinen, muss erwähnt werden, dass neuere Ergebnisse zu einem positiven Zusammenhang zwischen der BPA Exposition und einer früheren Geschlechtsreife fehlen. Dennoch werden sie auch in populärwissenschaftlichen Medien immer wieder erwähnt, ein früheres Eintreten der Geschlechtsreife ist bei Mädchen auch zu beobachten, allerdings sollte mit der These, dass BPA hier die (alleinige) Ursache ist, sehr vorsichtig umgegangen werden. Weitere Studien, in vivo wie auch epidemiologische sind unbedingt notwendig.

5.10.2. Einfluss auf die Reproduktionsorgane

Nakamura et al. (2010) untersuchten in ihrer Studie die Mechanismen von BPA induzierter Reproduktionstoxizität, insbesondere die Senkung des Testosteronspiegels. Männlichen Ratten (Wistar/ST) wurden 6 Wochen lang subkutan BPA und Estradiol 17β (E2) verabreicht. Viermal in der Woche wurden den Ratten 20mg, 100mg, oder 200 mg/kg KG BPA verabreicht, das entspricht umgerechnet einer täglichen Dosis von 11.4mg, 57.1mg oder 114.2mg/kg KG BPA pro Tag. E2 wurde viermal pro Woche zu 10µg und 100µg/kg KG verabreicht. Die Kontrollgrup-
Die Maus erhielt Maiskeimöl als Vehikel. 16h nach der letzten Dosis wurden die Tiere getötet, das Blut gesammelt und Organdissektion von Nebenhoden, Hoden, Samenblase und Prostata durchgeführt. Folgende Ergebnisse wurden erfasst:

- **Körpergewicht und Organgewicht**: alle E2 Dosen, aber nur die höchste Dosis BPA verringerten das Körpergewicht statistisch signifikant. BPA in höchster Dosis erniedrigte das Gewicht des Hodens, mittlere und hohe Dosen BPA reduzierten das Gewicht von Nebenhoden, Samenblase und Prostata. Besonders anfällig für BPA waren Samenblase und Prostata.

 - **Testosteronsynthese**: die Testosteronsynthese aus Cholesterol erfolgt über mehrere Stufen, hierbei spielen eine Reihe von Faktoren eine Rolle, u.a. das „Steroidogenic-acute-regulatory protein“ (StAR), 3ß-HSD, P450\textsubscript{scc}, P450\textsubscript{17α}. Nakamura et al. (2010) untersuchten die Expression der Enzyme und deren mRNA. Auf die Expression der PBR mRNA hatte BPA keinen Einfluss, hohe Dosen reduzierten aber die Expression der StAR mRNA. E2 wirkte ähnlich wie BPA, die toxische Wirkung war aber wesentlich stärker. In höchster Dosis reduzierte BPA die Expression der mRNA von P450\textsubscript{17α}. Noch stärker war die Wirkung auf 17ß-HSD mRNA; alle Dosen zeigten eine reduzierende Wirkung, in höchster Dosis halbierte BPA die Expression. Die höchste Dosis E2 reduzierte sie sogar auf ein Zehntel. Auf die mRNA Expression von Aromatase (dieses Enzym konvertiert Testosteron zu E2) hatten weder E2 noch BPA einen Einfluss. Die Untersuchung der Expression von StAR, P450scc, P45017α und 17ß-HSD kam zu einem ähnlichen Ergebnis und durch deren signifi-
kanter Verringerung unter BPA und E2 Einfluss wurde die hemmende Wirkung auf die Androgensynthese bestätigt.

- Östrogenrezeptoren: E2 und BPA reduzierten die Expression von ERα in den Testes. Mittels immunohistochemischer Analyse wurde deren ge- naue Lokalisation untersucht. ERα Expression wurde in den Leydig Zel- len, den Sertoli Zellen und den Spermatiden gefunden. BPA verringerte die Zahl der Leydig Zellen mit ERα, hatte aber keinen Einfluss auf ERα beinhaltende Sertoli Zellen und Spermatide [Nakamura et al., 2010].

Spermatogenese

Die Tatsache, dass Tierversuche einen negativen Einfluss von BPA auf die Spermatogenese zeigen, es aber an Humanstudien dazu mangelt, veranlasste Meeker et al. (2010) zu einer Studie an 190 Männern, die eine Infertilitätsklinik in den USA besuchten. Es wurde der Zusammenhang der BPA Konzentration im Urin und der Samenqualität und DNA-Schäden untersucht. BPA wurde in 89% der Proben ge- funden, der Median betrug 1,3ng/ml, der Mittelwert 1,4ng/ml. Die Probanden hatten daher im Vergleich zu in anderen Studien detektierten Konzentrationen, relativ geringe BPA Konzentrationen im Urin (siehe dazu auch Tabelle 4.2.3.1 und Tabe- le 4.2.3.2). Es konnten schwache, statistisch aber nicht signifikante, negative Kor-
relationen zwischen der BPA Konzentration im Urin und der Anzahl, der Beweglichkeit und Struktur der Spermien festgestellt werden [Meeker et al., 2010].

Auch wenn kein statistisch signifikanter Zusammenhang gefunden wurde, sollte dieses Kapitel in der Risikobewertung von BPA noch nicht als abgeschlossenen betrachtet werden. Weitere Studien sind hier auf jeden Fall nötig, da auch die detektierten BPA Konzentrationen im Urin dieser Studie relativ gering waren und daher eventuell auf die Gesamtbevölkerung übertragen werden können.
6. Schlussbetrachtung

7. Zusammenfassung

menhang der BPA Exposition und der Inzidenz für Herz-Kreislauferkrankungen. Es ist daher zum heutigen Zeitpunkt nicht auszuschließen, dass von BPA ein Risiko für die Gesundheit des Menschen ausgeht, die Untersuchungen zu dieser Thematik sind aber keineswegs abgeschlossen.
8. Summary

The chemical Bisphenol A (BPA) is extensively used to make polycarbonate plastic and epoxy resins for food packaging and beverage containers. Due to the decay of plastics, BPA is released into food items. Recent results suggest that BPA may have detrimental effects on human health, even if ingested at doses smaller than 50 µg/kg body weight, the reference dose set by the European Food Safety Agency (EFSA) and the US Food and Drug Administration (FDA). Based on these findings, this maximum permissible value has been subject to debate. Safety agencies consider the limited intake of BPA as safe, although the Canadian safety agency (Health Canada) and more recently, even the FDA itself tend to be more cautious concerning this topic, since a number of scientific studies have proved BPA to be harmful to human health. In humans, BPA is usually metabolized rapidly after oral intake by forming the BPA glucuronid, which is inactive in the human body. However, unconjugated and therefore active BPA has been detected in human body fluids and tissues as well although the amount of free BPA circulating in the human body is currently not known, as only a few surveys have analyzed free (unconjugated) BPA separately. Therefore more research into free BPA in human body fluids and tissue with very sensitive methods of detection is needed. Free BPA acts like an endocrine disruptor and mimics hormones, especially estrogen, by binding classical and non classical estrogen receptors. In some cases BPA follows a non-monotonic dose-response relationship and therefore elicits its effects already at very low doses in nanomolar range. Following the mechanism of an endocrine disrupter, BPA interferes with glucose and lipid metabolism and decreases the efficacy of several chemotherapeutics. Further ailments like coronary heart diseases and several types of cancer have also been associated with BPA exposure although the scientific evidence substantiating these effects is not convincing. Based on these findings BPA may be considered as a risk to human health, however, due to inconsistencies regarding several effects, additional research is needed.
9. **Literaturverzeichnis**

BERONIUS A, RUDEN C, HANBERG A, HAKANSON H. Health risk assessment procedures for endocrine disrupting compounds within different regulatory frame-

BETANCOURT AM, ELTOUM IA, DESMOND RA, RUSSO J, LARMARTINIERE CA. In Utero Exposure to Bisphenol A Shifts the Window of Susceptibility for Mammary Carcinogenesis in the Rat. Environmental Health Perspectives 2010; 118: 1614-1619.

CAGEN SZ, WAECHTER JM, DIMON SS. Normal reproductive organ development in Wistar rats exposed to bisphenol A in the drinking water. Regulatory Toxicology and Pharmacology 1999; 30:130–139.

CUNHA CS, FERNANDES JO. Quantification of free and total bisphenol A and bisphenol B in human urine by dispersive liquid–liquid microextraction (DLLME) and heart-cutting multidimensional gas chromatography–mass spectrometry (MD–GC/MS). Talanta 2010; 83: 117-125.

DOMORADZKI JY, POTTENGER LH, THORNTON CM, HANSEN SC, CARD TL, MARKHAM DA. Metabolism and pharmacokinetics of bisphenol A (BPA) and the embryo-fetal distribution of BPA and BPA-monoglucuronide in CD Sprague-Dawley rats at three gestational stages. Toxicological Sciences 2003; 76:21-34.

GUPTA C. Reproductive malformation of the male offspring following maternal exposure to estrogenic chemicals. Proceedings of the Society for Experimental Biology and Medicine 2000; 224:61–68

NAGEL SC, VOM SAAL FS, THAYER KA, DHAR MG, BOECHLER M, WELSHONS WV. Relative binding affinity- serum modified access (RBA-SMA) assay predicts the relative in vivo bioactivity of the xenoestrogens bisphenol A and octylphenol. Environmental Health Perspectives 1997; 105: 70–76.

Takahashi O, Oishi S. Disposition of orally administered 2,2-bis(4-hydroxyphenyl)propane (bisphenol A) in pregnant rats and the placental transfer to fetuses. Environmental Health Perspectives 2000; 108:931–935.

Timms BG, Howdeshell KL, Barton L, Bradley S, Richter CA, Vom Saal FS. Estrogenic chemicals in plastic and oral contraceptives disrupt develop-

VANDENBERG LN, HAUSER R, MARCUS M, OLEA N, WELSHONS W V. Human exposure to bisphenol A (BPA). Reproductive Toxicology 2007; 24:139-177.

VANDENBERG LN, CHAHOUD I, PADMANABHAN V, PAUMGARTTEN FJR, SCHOENFELDER G. Biomonitoring Studies Should be Used by Regulatory Agencies to Assess Human Exposure Levels and Safety of Bisphenol A. Environmental Health Perspectives 2010; 118: 151-154.

VANDENBERG LN, WADIA PR, SCHAEBERLE CM, RUBIN BS, SONNENSCHEIN C, SOTO AM. The mammary gland response to estradiol: monotonic at the cellular level, non-monotonic at the tissue-level of organization? Journal of Steroid Biochemistry and Molecular Biology 2006; 101: 263–274.

YANG M, KIM SY, CHAN SS, LEE IS, KAWAMOTO T. Urinary concentrations of bisphenol A in relation to biomarkers of sensitivity and effect and endocrine-related health effects. Environmental and Molecular Mutagenesis 2006; 47: 571-578.

WEBSITES:

FDA 2011a: http://www.fda.gov/NewsEvents/PublicHealthFocus/ucm197739.htm, [Stand 4.4.2011]

Lebenslauf

Persönliche Daten

- Name: Johanna Maria Elisabeth Rittinger
- Geburtsdatum: 22.2. 1984
- Geburtsort: Salzburg

Ausbildung

- seit SS 2006 Lehramtsstudium mit dem Erstfach Haushaltökonomie und Ernährung und dem Zweifach Geographie und Wirtschaftskunde
- seit WS 2002 Studium der Ernährungswissenschaften an der Universität Wien (Wahlschwerpunkt Ökonomie)
- 2002 Ablegung der Reifeprüfung mit gutem Erfolg
- 1994-2002 Akademisches Gymnasium Salzburg
- 1990-1994 Volksschule Mülln

Pflichtpraktika im Rahmen des Diplomstudiums Ernährungswissenschaften

- 2007: Agentur für Gesundheit und Ernährungssicherheit (AGES) Wien, Kompetenzzentrum Elemente (9 Wochen)
- 2006: Agentur für Gesundheit und Ernährungssicherheit (AGES) Salzburg im Bereich Kontrolle Lebensmittel und Wasser (4 Wochen)