Universitätsbibliothek Wien

Quantum Markov processes and applications in many-body systems

Temme, Paul Kristan (2010) Quantum Markov processes and applications in many-body systems.
Dissertation, Universität Wien. Fakultät für Physik
BetreuerIn: Verstraete, Frank

[img]
Vorschau
PDF
Alle Rechte vorbehalten / All rights reserved

Download (3715Kb)
URN: urn:nbn:at:at-ubw:1-30029.57724.992866-3
URN: urn:nbn:at:at-ubw:1-30029.57724.992866-3

Link zu u:search

Abstract in Englisch

This thesis is concerned with the investigation of quantum as well as classical Markov processes and their application in the field of strongly correlated many-body systems. A Markov process is a special kind of stochastic process, which is determined by an evolution that is independent of its history and only depends on the current state of the system. The application of Markov processes has a long history in the field of statistical mechanics and classical many-body theory. Not only are Markov processes used to describe the dynamics of stochastic systems, but they predominantly also serve as a practical method that allows for the computation of fundamental properties of complex many-body systems by means of probabilistic algorithms. The aim of this thesis is to investigate the properties of quantum Markov processes, i.e. Markov processes taking place in a quantum mechanical state space, and to gain a better insight into complex many-body systems by means thereof. Moreover, we formulate a novel quantum algorithm which allows for the computation of the thermal and ground states of quantum many-body systems. After a brief introduction to quantum Markov processes we turn to an investigation of their convergence properties. We find bounds on the convergence rate of the quantum process by generalizing geometric bounds found for classical processes. We generalize a distance measure that serves as the basis for our investigations, the chi-square divergence, to non-commuting probability spaces. This divergence allows for a convenient generalization of the detailed balance condition to quantum processes. We then devise the quantum algorithm that can be seen as the natural generalization of the ubiquitous Metropolis algorithm to simulate quantum many-body Hamiltonians. By this we intend to provide further evidence, that a quantum computer can serve as a fully-fledged quantum simulator, which is not only capable of describing the dynamical evolution of quantum systems, but also gives access to the computation of their static properties. After this, we turn to an investigation of classical non-equilibrium steady states with methods derived from quantum information theory. We construct a special class of matrix product states that exhibit correlations which can best be understood in terms of classical Markov processes. Finally, we investigate the transport properties of non-equilibrium steady states. The dynamical equations are constructed in such a manner that they allow for both stochastic as well as coherent transport in the same formal framework. It is therefore possible to compare different forms of transport within the same model.

Schlagwörter in Englisch

Quantum Markov processes / Quantum information theory / Quantum algorithms / Many-body systems

Abstract in Deutsch

Gegenstand der vorliegenden Arbeit ist die Untersuchung von quantenmechanischen und klassischen Markov-Prozessen und deren Anwendung im Bereich der stark korrelierten Vielteilchensysteme. Unter einem Markov-Prozess versteht man eine spezielle Art eines stochastischen Prozesses, dessen weitere dynamische Entwicklung unabhängig ist von der Vorgeschichte seiner Entwicklung und nur von der derzeitigen Konfiguration abhängt. Die Anwendung von Markov-Prozessen im Bereich der statistischen Mechanik von klassischen Vielteilchensystemen hat eine lange Geschichte. Markov-Prozesse dienen nicht nur der Beschreibung der Dynamik von stochastischen Systemen, sondern liefern vielmehr auch eine sehr praktische Methode, mit dereren Hilfe grundlegende Eigenschaften komplexer Vielteilchenprobleme in Form eines probabilistischen Algorithmus berechnet werden können. Ziel dieser Arbeit ist es das Verhalten von quantenmechanischen Markov Prozessen, dies sind Markov-Prozesse, welchen ein quantenmechanischer Konfigurationsraum zu Grunde liegt, zu untersuchen und mit deren Hilfe komplexe Vielteilchensysteme besser zu verstehen. Darüber hinaus formulieren wir einen Quantenalgorithmus, mit dessen Hilfe es möglich ist, die thermischen- und Grundzustandseigenschaften von quantenmechanischen Vielteilchensystemen zu berechnen. Nachdem wir eine kurze Einführung in das Feld der quantenmechanischen Markov-Prozesse gegeben haben, untersuchen wir deren Konvergenzeigenschaften. Wir finden Schranken für die Konvergenzraten der quantenmechanischen Prozesse, basierend auf einer Verallgemeinerung von geometrischen Schranken, welche für klassische Prozesse gefunden wurden. Wir verallgemeinern ein Abstandsmaß, die Chi-Quadrat Divergenz für nicht kommutative Wahrscheinlichkeitsräume, welches unseren Untersuchungen zu Grunde liegt. Diese Divergenz ermöglicht auch eine Verallgemeinerung der detaillierten Balance für quantenmechanische Prozesse. Danach konstruieren wir den Quantenalgorithmus, der als natürliche Verallgemeinerung des Metropolisalgorithmus für quantenmechanische Hamiltonoperatoren verstanden werden kann. Wir beabsichtigen damit zu zeigen, dass ein Quantencomputer in der Lage ist, als universeller Quantensimulator zu fungieren, welcher nicht nur die Dynamik eines Quantensystems beschreiben kann, sondern auch den Zugang zu statischen Berechnungen ermöglicht. Danach untersuchen wir die Korrelationseigenschaften von klassischen Nichtgleichgewichtszuständen mit Methoden der Quanteninformationstheorie. Wir konstruieren eine Klasse von Matrix-Produkt-Zuständen, deren Korrelationen anhand von klassischen Markov-Prozessen verstanden werden können. Schließlich untersuchen wir die Transporteigenschaften eines stationären Nichtgleichgewichtszustandes. Die dynamische Gleichung ist so konstruiert, dass der Transport je nach Parameterwahl entweder hauptsächlich stochastisch oder hauptsächlich kohärent stattfindet. Wir können somit die unterschiedlichen Formen des Transports innerhalb eines Modells miteinander vergleichen.

Schlagwörter in Deutsch

Quantenmechanische Markov-Prozesse / Quanteninformationstheorie / Quantenalgorithmen / Vielteilchensysteme

Dokumentenart: Hochschulschrift (Dissertation)
AutorIn: Temme, Paul Kristan
Titel: Quantum Markov processes and applications in many-body systems
Umfangsangabe: 157 S. : graph. Darst.
Institution: Universität Wien
Fakultät: Fakultät für Physik
Publikationsjahr: 2010
Sprache: eng ... Englisch
BetreuerIn: Verstraete, Frank
BeurteilerIn: Bruckner, Caslav
2. BeurteilerIn: Perez - Garcia, David
Klassifikation: 33 Physik > 33.23 Quantenphysik
AC-Nummer: AC08723693
Dokumenten-ID: 13641
(Das PDF-Layout ist ident mit der Druckausgabe der Hochschulschrift.)

Urheberrechtshinweis: Für Dokumente, die in elektronischer Form über Datennetze angeboten werden, gilt uneingeschränkt das österreichische Urheberrechtsgesetz; insbesondere sind gemäß § 42 UrhG Kopien und Vervielfältigungen nur zum eigenen und privaten Gebrauch gestattet. Details siehe Gesetzestext.

Dokument bearbeiten (nur für AdministratorInnen) Dokument bearbeiten (nur für AdministratorInnen)