DIPLOMARBEIT

Titel der Diplomarbeit

New candidate gene for epilepsy - Mutation screening in temporal lobe epilepsy patients

angestrebter akademischer Grad

Magistra der Naturwissenschaften (Mag. rer.nat.)

Verfasserin: Eva Maria Reinthaler
Studienrichtung/Studienzweig Biologie/Anthropologie
(lt. Studienblatt):
Betreuer: Priv. Doz. Dr. Alexander Zimprich

Wien, im Jänner 2011
Danksagung

Ein großes Dankeschön möchte ich an Univ. Prof. Dr. Eduard Auff aussprechen, der mir die Durchführung dieser Diplomarbeit an der Univ.-Klinik für Neurologie ermöglicht hat.

Außerdem möchte ich mich bei Priv. Doz. Dr. Elisabeth Stögmann für ihren allgemeinen Beistand und geleisteter Hilfestellung bei der Auswertung der Daten und Korrektur meiner Arbeit bedanken.

Weiters bedanke ich mich bei der gesamten Arbeitsgruppe, die mir bei der Arbeit im Labor mit Rat und Tat zur Seite gestanden hat und für ein angenehmes Arbeitsklima gesorgt hat.

Einen großen Dank an all meine Freunde insbesondere an Jörg für seine Geduld, seinen Beistand und tatkräftige Unterstützung sowie auch an Caroline für ihre „graphische“ Hilfe.

Thanks to Theolyn for reading all this!

Der größte Dank gilt meinen Eltern die mir das Studium ermöglicht haben, immer hinter mir standen und mich mit aller Freiheit studieren ließen.
Table of Contents

1 Introduction ... 1
 1.1 Definition and Epidemiology ... 1
 1.2 Etiology ... 2
 1.3 Genetics of epilepsy ... 3
 1.4 Neurobiology of seizures and epilepsy .. 4
 1.5 Classification of seizures and epilepsy syndromes 6
 1.5.1 Seizure types .. 6
 1.5.1.1 Generalized seizures .. 6
 1.5.1.2 Focal seizures ... 7
 1.5.2 Genetic epilepsy syndromes .. 7
 1.5.2.1 Age-dependent syndromes .. 7
 1.5.2.1.1 Newborn to early infancy .. 7
 1.5.2.1.2 Late infancy to adolescence 8
 1.5.2.2 Age-independent epilepsy syndromes 9
 1.5.2.2.1 Focal epilepsy syndromes ... 9
 1.5.2.2.2 Temporal lobe epilepsy (TLE) 10
 1.5.2.2.3 Other rare epilepsy syndromes 11
 1.6 Molecular approaches for identifying genes 15
 1.6.1 Linkage analysis and positional cloning of Mendelian disease genes .. 15
 1.6.2 Association Studies ... 17
 1.6.3 Exome Sequencing ... 18

2 The Aim of the Study ... 19

3 Material and Methods .. 20
 3.1 Study population ... 20
 3.1.1 Egyptian family ... 20
 3.1.2 Temporal lobe epilepsy patients and controls 21
 3.2 Reagents and Instruments .. 23
 3.3 Techniques .. 24
 3.3.1 Genomic DNA Isolation ... 24
 3.3.2 DNA Quantification ... 24
 3.3.3 Linkage Analysis ... 24
 3.3.4 Whole Genome Amplification ... 25
 3.3.4.1 Principle and Procedure ... 25
 3.3.5 TaqMan® Genotyping .. 27
 3.3.5.1 Principle and Procedure ... 27
 3.3.6 Next-Generation Sequencing ... 31
 3.3.6.1 Principle and Procedure ... 31
 3.3.6.1.1 Illumina Sequencing Technology 31
 3.3.6.2 Whole Exome Sequencing ... 32
 3.3.6.2.1 Exome Sequencing ... 32
 3.3.6.2.2 Read Mapping ... 32
 3.3.6.2.3 Variant Calling .. 33
 3.3.6.2.4 Variant Annotation .. 33
3.3.7 DNA Capillary Sequencing ... 33
 3.3.7.1 DNA Template Preparation .. 35
 3.3.7.2 PCR Reaction Optimization .. 35
 3.3.7.3 PCR Reaction .. 36
 3.3.7.4 Template Purification .. 38
 3.3.7.5 Cycle Sequencing .. 38
 3.3.7.5.1 Principle and Procedure .. 38
 3.3.7.6 Extension Product Purification .. 40
 3.3.7.7 Capillary Electrophoresis ... 40
 3.3.8 Data Analysis .. 40
 3.3.9 In Silico Analysis ... 41

4 Results ... 42
 4.1 Clinical data .. 42
 4.2 Genetic Data .. 42
 4.2.1 Linkage Analysis of the Egyptian family .. 42
 4.2.2 Whole Exome Sequencing .. 42
 4.2.3 Genotyping of DDX59, TNN1 and CNTN2 variants 44
 4.2.4 Capillary Sequencing of the CNTN2 gene 44

5 Discussion ... 52

6 Appendix .. 58

7 Reference list ... 64

8 Curriculum vitae ... 74
List of Figures and Tables

Figure 1: Voltage gated and ligand gated ion channels embedded in the cell membrane (reprinted from Ashcroft, 2006) ... 4
Figure 2: Pedigree of consanguineous Egyptian family with autosomal recessive mode of inheritance. ... 21
Figure 3: Principle of the whole genome amplification method by multiple displacement amplification (reprinted from Quiagen, 2010) .. 26
Figure 4: Different steps of the Taqman allelic discrimination assay (reprinted from Applied Biosystems, 2010) .. 28
Figure 5: Scatter plot of Taqman allelic discrimination assay for validation of the whole genome amplification. ... 30
Figure 6: Principle of dye terminator cycle sequencing (reprinted from Applied Biosystems, 2010) 39
Figure 7: Scatter plot of Taqman allelic discrimination assay of the genotyped c.503-503delG mutation in the Egyptian family. ... 47
Figure 8: Schematic representation of evolutionary conserved areas in different vertebrates of the seven rare nonsynonymous coding variants dedected by capillary sequencing. 49
Figure 9: Linkage mapping and subsequent sequencing identifies CNTN2 mutation in an Egyptian family and heterozygous missense variations in patients with TLE. 50
Figure 10: Schematic representation of CNTN2 protein. .. 57
Figure 11: Localization of CNTN2 under the myelin sheath (reprinted from Poliak and Peles, 2003) 57
Figure 12: Nucleotide and amino acid sequence of the CNTN2 gene uc001hbr.1 58

Table 1: Epilepsy genes and their associated syndromes (based on Reid et al., 2009) 13
Table 2: Classification of electroclinical syndromes and other epilepsies (based on ILAE, A. T. Berg et al., 2010) .. 14
Table 3: Summary of the clinical features of the Egyptian family .. 22
Table 4: Primer sequences for capillary sequencing of 22 coding exons.. 34
Table 5: PCR condition for each exon with corresponding mastermix and primer annealing temperature ... 37
Table 6: Exome sequencing: Variants shared by the two individuals after prioritization. 44
Table 7: Rare CNTN2 variants in cases and controls .. 48
Table 8: All CNTN2 variations found in 189 TLE patients and 3 Egyptian family members and 72 exome controls .. 51
Abstract

In the present diploma thesis we investigated a consanguineous Egyptian family with an autosomal recessive trait of temporal lobe epilepsy (TLE), myoclonus and tremor. Five of seven siblings in this family are affected. We employed multipoint linkage analysis to map the causative mutation within chromosome 1q31.3-q32.3 achieving a maximal LOD score of 3.6. This region encompasses 12.5 megabases (Mb) including 136 genes. For further investigation of the linked interval we selected two patients for EXOME sequencing. Within the linked region we identified a homozygous single base pair deletion (c.503_503delG) in the 6th exon of the CNTN2 gene leading to a frameshift within the coding region. As expected for a recessive disease, the mutation occurred in a homozygous state in the affected children and in a heterozygous state in the clinically healthy parents. CNTN2 is a glycosylphosphatidylinositol (GPI)-anchored neuronal membrane protein located in the juxtaparanode region of the axon and is responsible for the clustering of K+ channels in the underlying axonal membrane.

Previous studies report on CNTN2 knock out mice suffering from spontaneous seizures. Given the severity of the mutation and the proposed function of the gene, we consider this mutation as the most likely cause for the disease in this family. To find out whether mutations in this gene are contributors to clinical similar phenotypes we employed capillary sequencing of all 22 coding exons in 189 Caucasian patients with TLE or TLE associated with myoclonus. We detected seven rare missense variations in eight individuals. However, as all missense variations occurred throughout in a heterozygous state, their pathogenic significance remains questionable. In summary, we have identified a loss of function mutation in the CNTN2 gene in a family with recessive temporal lobe epilepsy syndrome. Future studies will reveal the significance of this gene in epilepsy in general.
Zusammenfassung

In der vorliegenden Diplomarbeit untersuchten wir eine konsanguine ägyptische Familie, in der fünf von sieben Kindern an einer autosomal rezessiv vererbten Temporallappenepilepsie verbunden mit Myoklonien und Tremor erkrankt sind. In einer Mehrpunkt-Kopplungsanalyse (LOD 3.6) konnte die Kandidatenregion auf einen Bereich zwischen Chromosom 1q31.3-q32.3 eingegrenzt werden. Dieser Bereich umfasst 12.5 Millionen Basenpaare (Mb) und enthält 136 proteinkodierende Gene. Um die ursächliche Mutation zu finden führten wir bei zwei betroffenen Personen eine EXOM Sequenzierung durch.

Innerhalb der Kandidationregion konnten wir eine homozygote Deletion einer Einzelbase (c.503_503delG) im Exon 6 des CNTN2 Gens identifizieren, welche zu einer Verschiebung des Leserasters führt. Wie erwartet, zeigte sich die Mutation in den betroffenen Familienmitgliedern in homozygoter Form und in den Eltern in heterozygoter Form. CNTN2 kodiert für ein neuronales Adhäsionsmolekül, das mittels eines Glycosylphosphatidylinositol (GPI)-Ankers mit der Neuronenmembran verbunden ist. Es ist in der juxtaparanodalen Region des Axons lokalisiert und verantwortlich für die Clusterbildung der K⁺ Kanäle in der darunterliegenden Axonmembran.

Zusammengefasst lässt sich festhalten, dass wir eine homozygote Mutation im CNTN2 Gen, welche zu einem Funktionsverlust des Proteins führt, in einer ägyptischen Familie mit einem rezessiven Temporalloppenepilepsiesyndrom gefunden haben. Welche Bedeutung dieses neue vielversprechende Kandidatengen für Epilepsie im Allgemeinen hat, müssen zukünftige Studien zeigen.
1 Introduction

1.1 Definition and Epidemiology

Epilepsy is one of the most common chronic neurological disorders in humans defined by the state of recurrent, spontaneous epileptic seizures (Blume et al., ILAE 2001). Epileptic seizures, the main symptoms that subjects experience, arise from periodic neuronal cortical hyperexcitability and can be caused by multiple mechanisms. Epilepsy is a persistent epileptogenic abnormality of the cortical brain that is able to spontaneously generate paroxysmal activity (Engel, 2006). An epilepsy syndrome is a complex of signs and symptoms of epileptic conditions and additional clinical features which comprises a cluster of different seizure types (Engel et al., 2001).

In developed countries the incidence is about 50 cases per 100 000 persons per year (Sander and Shorvon, 1996). Incidence rates vary considerably with age. During the first years of life the incidence is very high, decreases in adolescence and increases again in the elderly (Sander et al., 1990). A more recent study of the epidemiology of epilepsy in Europe shows a prevalence between 4.5 -7.0 per 1000 among all age groups estimating that approximately 6 of 1000 Europeans have active epilepsy, considering incomplete case identification (Forsgren et al., 2005). However, generation of precise epidemiological statistics for a disease like epilepsy which is characterized by heterogeneity is difficult.
1.2 Etiology

Generally, epilepsies are classified into three major categories: (i) idiopathic epilepsy also termed as genetic epilepsy has no known cause. For this form hereditary factors are thought to play a dominant role in disease etiology. In case the genetic mutation is known, family members can be diagnosed by genetic testing. (ii) symptomatic (structural/metabolic) epilepsy is caused by a known or suspected associated deficit (e.g. trauma or tumours). The cause is a primary disease which is associated with the development of epilepsy. The third category, cryptogenic (iii) comprises all forms of epilepsy with a yet unknown underlying cause, which may be a genetic component or a yet undetected disease.

Genetic defects may be some of the most important factors contributing to epilepsy. About 30% of all epilepsies account for idiopathic epilepsies. Most forms of epilepsy follow a complex mode of inheritance involving multiple genes and environmental influences. Hence, because the vast majority of idiopathic epilepsies are complex genetic disorders rather than inherited in a simple mendelian manner, causative gene identification is challenging. The contribution of genes and environment is difficult to measure and boundaries are mostly not very clear leading to an evidence for an interaction of genes and environmental factors (Berkovic, 2006). However, epidemiological studies show that about 5% of patients have a first-degree relative with epilepsy (Bianchi et al., 2003, Vestergaard et al., 2007) and family aggregation studies display recurrence risk ratios of around 2.5 in first degree relatives (Annegers et al., 1982, Hemminki et al., 2006).

In addition, twin studies have supported the genetic background of the disease by showing significantly higher concordance rates for monozygotic compared to dizygotic twins for epileptic seizures and epilepsy (Kjeldsen et al. 2003, Berkovic et al., 1998).

The classification of epilepsy and concepts of their genetics is changing fast. So far, many disease causing genes for rare monogenic forms of idiopathic epilepsy are identified.
1.3 Genetics of epilepsy

The vast majority of genes linked to epilepsy encode proteins which are molecular components of the neuronal signalling complex, encoding subunits of voltage-gated and ligand-gated ion channels. Collectively, they are classified as channelopathies. Ion channels embedded in the cell membrane are gated pores that permit the passive flow of ions through the cell membrane against their electrochemical gradient (Figure 1). They play a major role in nerve and muscle excitation, hormone secretion, cell proliferation, sensory transduction, learning and memory, regulation of blood pressure, salt and water balance, lymphocyte proliferation, fertilization and cell death (Ashcroft, 2000). The hallmark of ion channels is the selective differentiation between ion species, allowing some to pass and others not, and the transition between open and closed (gating).

Mutations have been found in voltage-dependent Na\(^+\), K\(^+\), Ca\(^+\), Cl\(^-\) channels, hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and ligand-gated channels such as nicotinic acetylcholine receptors and Gamma-aminobutyric acid (GABA) receptors (Table 1).

However, a number of non ion channel genes have also been identified in which mutations were found to cause the disease (Reid et al., 2009).

Besides high risk genes in monogenic forms, candidate gene approaches in recent years have identified a number of low risk susceptibility alleles in complex idiopathic epilepsy. These alleles confer only small increments of the individual risk (Odd 1-2) and are thought to interact with environmental factors.

Although, in the last few years genetic discoveries have led to better understanding of the molecular and cellular deficits major causative genes for common epilepsies remains to be explored.
1.4 Neurobiology of seizures and epilepsy

The neuronal signalling system is complex and disruption of one component of the signal pathway can have disastrous consequences. Thus, diverse fundamental components of the central nervous system structure and function serve as possible contributors to seizures.

The nerve cell function and neuronal communication is based on chemical and electrical gradients that provide its ionic microenvironment and electrical activity. In a normal neuronal cell there is a high intracellular concentration of potassium (K^+) and a high extracellular concentration of sodium (Na^+), as well as additional ions which provide a net transmembrane potential of -60mV (Hodgkin and Huxley, 1939; Barnett and Larkman, 2007). This unequal distribution of ions is maintained by ATPase pumps via exchanging internal Na^+ for external K^+.

By opening the voltage gated ion channels an exchange of intra- and extracellular ions occur, which leads to a transient reversal (1 millisecond) of the polarity of this transmembrane potential termed action potential (Barnett and Larkman, 2007).
The rapid reversal of the action potential is initiated by the transient opening of voltage-gated potassium channels and inactivation of the voltage-gated Na⁺ channels. The outward current of K⁺ ions restores the resting potential of the cell. The depolarisation of the membrane by the action potential generates local currents in the voltage-gated channels along the neuron and therefore allows the conduction of the impulse from the dendrite to the axon terminal (Barnett and Larkman, 2007). The myelin sheath, formed by the oligodendrocytes, is a multilamellar, wrapped around the axons in segments and separated by the nodes of Ranvier. Therefore the fast saltatory movement of nerve impulses along the neuron can be provided (Hille, 2001). At the synapse, voltage-gated calcium channels allow an inward flow of calcium ions, and synaptic vesicles containing neurotransmitters are released, thus, converting the electrical signal to a chemical signal. The release of neurotransmitters activates ligand-gated receptors in the post-synaptic membrane and a new action potential in the post-synaptic neuron is generated. Considering this, it appears obvious that mutations in components of this signalling way can cause pathological neuronal hyperexcitability, the biological background of epilepsy. So far, various studies investigated how mutations enhance network excitability. Mutations in the subunits of the voltage-dependent sodium and potassium channels alterate ion concentrations. Such an increase or decrease of the ion current into or out of the neuron modifies the exhibition/inhibition balance and can lead to depolarization and resulting action potential discharge (Meisler et al., 2001, Reid et al., 2009). In addition, the hyperexcitability of neurons may be due to either reduction of inhibitory control mechanisms such as GABAergic interneurons, GABA levels and GABAₐ receptor sensitivity or due to increase of excitatory mechanisms like astrocytes gap junctions, glutamate level and NMDA receptor sensitivity (Armijo et al., 2002). Blockade of the sodium potassium ATPase in rat hippocampal slice preparations induces seizure activity (Vaillend et al., 2002). Furthermore, seizures themselves provoke an increase in extracellular potassium and therefore an excessive discharge and further depolarization of neurons (Scharfman, 2007).
1.5 Classification of seizures and epilepsy syndromes

In 1981, The International League Against Epilepsy (ILAE) developed an international classification system for epileptic seizures dividing them into two major groups: (i) generalized seizures and (ii) focal seizures. In 1989, ILAE generated a classification for epilepsy syndromes. To date, more than 50 syndromes are described subdivided into clinical syndromes. (ILAE, 1989; Engel, 2001; Engel, 2006) Clinical features of a syndrome include seizure types, their localization, frequency, age of onset, mode of inheritance, physical or mental symptoms and signs, and other clinical, electroencephalographic and imaging features (EEG/MRI). (ILAE, 1989; Engel, 2001; Engel, 2006)

1.5.1 Seizure types

1.5.1.1 Generalized seizures

Generalized seizures are considered as bilaterally synchronous discharges, originating from cortical or subcortical structures or from the whole cortex at once. Although generalized seizures are characterized by the involvement of both hemispheres seizures can emerge localised. EEG shows generalized spike wave activity. However, this location can vary from one seizure to another (Berg et al., 2010). Generalized seizures are sub-categorized into several seizure types (Engel 2006; Blume et al., 2001):

(i) Tonic-clonic seizures formerly known as “grand mal” start with rigid contraction of muscles (stiffening) followed by rhythmic shaking (jerking) and loss of consciousness. Some individuals can experience the typical tonic-clonic pattern whereas others only undergo the tonic or clonic phase.

(ii) Myoclonic seizures are brief, rapid contractions of the muscles which result in sudden jerks.

(iii) Absence seizures are brief periods of staring that last no longer than a few seconds. During the absence awareness and responsiveness are impaired.
(iv) **Epileptic spasm** is characterized by a sudden flexion extension of predominantly proximal and truncal muscles (epileptic spasm can also be classified as focal seizure).

(v) **Atonic seizures** are characterized by a sudden loss or diminution of muscle tone lasting 1-2 seconds.

1.5.1.2 Focal seizures

In contrary, focal (partial) seizures are associated with a focal discharge beginning in circumcised regions of mainly cortical structures limited to one hemisphere. Resulting symptoms are, accordingly to the involved specific cortical structure, sensory sensations or motor signs. Seizures can affect awareness and/or memory. EEG shows localized epileptiform activity. Focal seizures can sometimes turn into generalized seizures, called secondary generalization.

1.5.2 Genetic epilepsy syndromes

1.5.2.1 Age-dependent syndromes

1.5.2.1.1 Newborn to early infancy

The epilepsy syndromes of infancy comprise benign familial neonatal seizures (BFNS), benign familial neonatal-infantile seizures (BFNIS) and benign familial infantile seizures (BFIS). These syndromes differ in the age of onset ranging from the second day of life to a few months (Berkovic et al., 2004). The syndromes, which typically occur in otherwise neurological healthy babies, are characterized by unprovoked seizures which end spontaneously after a period of a few months. Mutations for these syndromes are found in genes coding for subunits of voltage-dependent K⁺ channels (KCNQ2, KCNQ3), voltage-dependent Na⁺ channels (SCN2A) and in the ATP1A2 gene which encodes the alpha subunit of the Na⁺/K⁺-ATPase pump.
Febrile seizures (FS) affect 3% of children between 6 months and 6 years of age (Sadleir and Scheffer, 2007). Seizures typically appear in combination with fever. CNS infection or an acute metabolic disturbance is thought as triggering mechanism (Sadleir and Scheffer, 2007). Most FS remit after few years and the child’s psychomotor development is unharmed. However, there is an increased risk for later development of an adult form of temporal lobe epilepsy (TLE). FS can occur isolated or in combination with other epilepsy syndromes. Linkage analyses have identified many loci for febrile seizures (Baulac et al., 2004) indicating genetic heterogeneity (Berkovic and Scheffer, 2001). To date, not one high penetrant gene has been found for this form of epilepsy.

Dravet syndrome (DS) is a severe form of myoclonic epilepsy in infancy. DS starts at about the age of 6 months in infants whose development has been normal up to that time. Affected children experience febrile or afebrile generalized tonic-clonic seizures and unilateral seizures that usually occur on alternating sides (Neubauer et al., 2008). DS is associated with developmental regression and prognosis of seizure free life is pure (Dravet et al., 2005). Most of the patients exhibit mutations in the SCN1A gene coding for the alpha1 subunit of voltage-dependent Na$^+$ channels (Reid et al., 2009). Loss or gain of function mutations result in delayed or impaired inactivation of Na$^+$ channels, which lead to an ongoing Na$^+$ current and membrane hyperexcitability. However, in some patients mutations in the GABRG2 gene coding for the gamma 2 subunit of the GABA$_A$ receptor were identified (Reid et al., 2009).

1.5.2.1.2 Late infancy to adolescence

Generalized epilepsy with febrile seizure plus (GEFS+) links febrile seizures with various other epileptic seizures/syndromes. GEFS+ demonstrates genetic relations between (i) benign and severe and (ii) focal and generalised epileptic disorders (Panayiotopoulos, 2005). It is characterized by phenotypic heterogeneity in affected family members and between different families including classical febrile seizures, febrile seizures plus, mild to severe generalised epilepsy and focal epilepsies (Helbig et al., 2008). GEFS+ is marked by childhood onset of febrile seizures which start
earlier than classical febrile seizures and continue on beyond the age of five years to later childhood or adolescence (Panayiotopoulos, 2005). Remission mostly occurs in adolescence. Mutations for GEFS+ are detected in SCN1A, SCN1B and GABRG2 (Reid et al., 2009).

Idiopathic generalized epilepsies (IGE) account for about 30% of all epilepsies (Jallon et al., 2001). IGE’s comprise several subsyndromes such as childhood (CAE) and juvenile (JAE) absence epilepsy, juvenile myoclonic epilepsy (JME) and the less frequent but more severe forms myoclonic astatic epilepsy and Lennox-Gastaut syndrome (Reid, 2009). Idiopathic generalized epilepsy emerges generally in childhood or adolescence with typical absences, myoclonic jerks and generalised tonic clonic seizures. These symptoms can occur alone or in combination with each other and are usually lifelong. Genes involved in IGE are: GABRG2, GABRA1 and GABRD genes coding for subunits of GABA_{A} receptors, CLCN2 coding for voltage-dependent Cl- channels gene, CACNA1H coding for the Cav3.2 subunit of voltage-activated Ca^{2+} channels and other genes such as EFHC1, ME2, and NEDD4L (Helbig et al., 2008).

1.5.2.2 Age-independent epilepsy syndromes

1.5.2.2.1 Focal epilepsy syndromes

Focal epilepsies account for approximately 50% of all epilepsy patients (Jallon et al., 2001). Traditionally, focal epilepsies have been largely ascribed to acquired/environmental factors such as hippocampal sclerosis, tumours, trauma, and vascular malformations. However, in the past decade, the importance of genetic factors in partial epilepsies was emphasized. Recurrence risk ratios in first-degree relatives of 2-3 (Annegers et al., 1982 Hemminki et al., 2006), the frequent observation of familial clustering and a higher concordance rate in monozygotic (MZ) versus dizygotic (DZ) twins (Berkovic et al., 1998, Kjeldsen et al., 2003) provide clear evidence of a genetic contribution to focal epilepsies.
The first familial focal epilepsy for which the genetic background has been elucidated was the autosomal-dominant nocturnal frontal lobe epilepsy (ADNLFE) (Scheffer et al., 1994).

ADNFLE is characterized by seizures during nonrapid eye movement (NREM) sleep with hypermotor or tonic manifestations and rare tonic clonic seizures. Seizures start in the middle to late childhood and become less frequent during adult life. Three genomic loci have been found to be linked to ADNFLE, chr20q13.2 (Phillips et al., 1995), chr15q24 (Phillips et al., 1998) and chr1q (Gambardella et al., 2000) now referred to as ADNFLE type 1, 2 and 3 (Hirose et al., 2002). For two of the three loci the corresponding gene has been identified. For ADNFLE type 1 mutations have been found in the \(\text{CHRNA4} \) gene coding for the alpha4 subunit of the ligand-gated nicotinic acetylcholine receptors. Mutations in the \(\text{CHRNB2} \) gene coding for the beta 2 subunit of nicotinic acetylcholine receptors respectively were ascribed to ADNFLE type 3.

1.5.2.2.2 Temporal lobe epilepsy (TLE)

TLE is the most common form of epilepsy in adults. Several temporal lobe epilepsy syndromes are acknowledged. They can be either sporadic or familial and categorization in familial or non-familial is not always clear without a profound genetic study and family history investigation.

Familial temporal lobe epilepsies are divided into two major subgroups based on seizure semiology, genetic background and MRI characteristics: (i) Familial mesial temporal lobe epilepsies (FMTLE) and (ii) Familial lateral temporal lobe epilepsies (FLTLE) also termed as autosomal-dominant partial epilepsy with auditory features (ADPEAF). Most of the familial forms of TLE show an autosomal dominant mode of inheritance with incomplete penetrance (Cendes et al., 1998).

FMTLE was first described by Berkovic et al. in 1994. It is characterized by focal seizures which have an onset range between the second and the fifth decade of life. Seizures are typically preceded by an aura with prominent psychic and autonomic
features. Auras are perceptual disturbances manifesting in visual and auditory changes or other sensations such as strange smell, gustatory hallucinations, déjà vu or fear (Shorvon, 2005). Auras are experienced before a seizure occurs. Patients with FMTLE typically show no hippocampal abnormalities (Berkovic et al., 1994). Linkage has been described to 4q13.2-q21.3. However, the corresponding gene has not been found yet (Hedera et al., 2007).

FLTLE or ADPEAF is a benign syndrome with focal seizures and secondary generalization. The focal seizures comprise auditory auras mainly, but complex visual, psychic, autonomic, vertiginous and other sensory symptoms can appear as well (Michelucci et al., 2003). Patients usually have a normal MRI. The age of onset ranges between teenage or early adult life. FLTLE is the first familial epilepsy syndrome where mutations were discovered in an non-ion channel gene. In 1995, linkage to chromosome 10q was established (Ottman et al., 1995) and in 2002 the leucine-rich glioma-inactivated 1 gene (LGI1), was identified as causative in 5 families with ADPEAF (Kalachikov et al., 2002). LGI1 is thought to be a secreted neuronal protein (Fukata et al., 2006) which may play a role for a potassium channel via protein-protein interactions (Schulte et al., 2006). However, not all families with ADPEAF demonstrate LGI1 mutations indicating genetic heterogeneity.

Familial Partial Epilepsy with variable foci (FPEVF) is an autosomal dominant syndrome characterized by different types of focal seizures ranging from frontal, temporal, occipital to centroparietal origin (Scheffer et al., 1998). The age of onset is variable but mostly occurs in the first three decades. Linkage for this form has been described to 2q36 (Scheffer et al., 1998) and 22q12 (Xiong et al., 1999). However, the corresponding genes have not been found yet.

1.5.2.2.3 Other rare epilepsy syndromes

Familial cortical myoclonic tremor with epilepsy (FCMTE) comprises a disease spectrum presenting with autosomal dominant inheritance, adult-onset cortical
myoclonus and focal or generalized seizures (van Rootselaar et al., 2005). The wide phenotypic heterogeneity includes syndromes such as: autosomal dominant cortical myoclonus and epilepsy (ADCME), benign adult familial myoclonic epilepsy (BAFME), familial adult myoclonic epilepsy (FAME), familial cortical myoclonic tremor (FCMT), familial cortical tremor with epilepsy (FCTE), familial essential myoclonus and epilepsy (FEME) and familial benign myoclonus epilepsy of adult onset (FMEA). In all syndromes myoclonus is usually the first symptom and characterized by tremulous finger movements and myoclonus of the extremities increased by action and posture (van Rootselaar et al., 2005). Epilepsy is presented by mainly generalized tonic-clonic seizures.

To date, three loci have been mapped but no genes have been identified yet. Linkage was shown to 8q23.3-q24.11 in a Japanese family with BAFME referred to as FCMTE1/FAME1 (Mikami et al., 1999). The second loci mapped on 2p11.1-q12.2 (FCTME2/FAME2) and were established in European pedigrees with ADCME (Guerrini et al., 2001, Laubage et al., 2002, De Falco et al., 2003, Striano et al., 2004). Recently a third locus, FCMTE3, mapped to 5q in a large French family (Depienne et al., 2010).

For summary of epilepsy syndromes see Table 2.
Table 1: Epilepsy genes and their associated syndromes (based on Reid et al., 2009)

<table>
<thead>
<tr>
<th>Channel Receptor</th>
<th>Gene</th>
<th>Epileptic Syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage-gated ion channels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na(^+) channels</td>
<td>SCN1A</td>
<td>GEFS+ , SMEI</td>
</tr>
<tr>
<td></td>
<td>SCN2A</td>
<td>BFNIS, GEFS+</td>
</tr>
<tr>
<td></td>
<td>SCN1B</td>
<td>GEFS+</td>
</tr>
<tr>
<td>K(^+) channels</td>
<td>KCNQ2</td>
<td>BFNIS</td>
</tr>
<tr>
<td></td>
<td>KCNQ3</td>
<td>BFNIS</td>
</tr>
<tr>
<td></td>
<td>KCNA1</td>
<td>partial seizures</td>
</tr>
<tr>
<td></td>
<td>KCNMA1</td>
<td>epilepsy and paroxysmal dyskinesia</td>
</tr>
<tr>
<td></td>
<td>KCNJ1</td>
<td>epilepsy, neonatal diabetes</td>
</tr>
<tr>
<td>Ca(^+) channels</td>
<td>CACNA1H</td>
<td>IGE</td>
</tr>
<tr>
<td></td>
<td>CACNA1A</td>
<td>epilepsy, episodic ataxia</td>
</tr>
<tr>
<td>Cl(^-) channels</td>
<td>CLCN2</td>
<td>IGE</td>
</tr>
<tr>
<td>HCN1, HCN2</td>
<td></td>
<td>IGE</td>
</tr>
<tr>
<td>Ligand-gated ion channels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GABA receptors</td>
<td>GABRA1</td>
<td>IGE</td>
</tr>
<tr>
<td></td>
<td>GABRG2</td>
<td>FS/GEFS+</td>
</tr>
<tr>
<td></td>
<td>GABRD</td>
<td>IGE/GEFS+</td>
</tr>
<tr>
<td>Neuronal nicotinic acetylcholine receptors</td>
<td>CHRNA4</td>
<td>ADNFLE</td>
</tr>
<tr>
<td></td>
<td>CHRN8B</td>
<td>ADNFLE</td>
</tr>
<tr>
<td></td>
<td>CHRNA2</td>
<td>ADNFLE</td>
</tr>
<tr>
<td>Non-ion-channel genes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LG11</td>
<td>ADPEAF</td>
</tr>
<tr>
<td></td>
<td>ATP1A2</td>
<td>infantile convulsions, migraine epilepsy syndromes</td>
</tr>
<tr>
<td></td>
<td>ME2</td>
<td>IGE</td>
</tr>
<tr>
<td></td>
<td>EFHC1</td>
<td>IGE</td>
</tr>
<tr>
<td></td>
<td>SLC1A3</td>
<td>epilepsy, migraine, episodic ataxia</td>
</tr>
<tr>
<td></td>
<td>MASS1</td>
<td>FS</td>
</tr>
<tr>
<td></td>
<td>GLUT1</td>
<td>IGE and dyskinesia</td>
</tr>
</tbody>
</table>
Table 2: Classification of electroclinical syndromes and other epilepsies (based on ILAE, A. T. Berg et al., 2010)

Electroclinical syndromes and other epilepsies

Electroclinical syndromes arranged by age at onset

Neonatal period
- Benign familial neonatal epilepsy (BFNE)
- Early myoclonic encephalopathy (EME)

Infancy
- Epilepsy of infancy with migrating focal seizures
- West syndrome
- Myoclonic epilepsy in infancy (MEI)
- Benign infantile epilepsy
- Benign familial infantile epilepsy
- Dravet syndrome
- Myoclonic encephalopathy in nonprogressive disorders

Childhood
- Febrile seizures plus (FS+) (can start in infancy)
- Panayiotopoulos syndrome
- Epilepsy with myoclonic atonic (previously astatic) seizures
- Benign epilepsy with centrotemporal spikes (BECTS)
- Autosomal-dominant nocturnal frontal lobe epilepsy (ADNFLE)
- Late onset childhood occipital epilepsy (Gastaut type)
- Epilepsy with myoclonic absences
- Lennox-Gastaut syndrome
- Epileptic encephalopathy with continuous spike-and-wave during sleep (CSWS)
- Landau-Kleffner syndrome (LKS)
- Childhood absence epilepsy (CAE)

Adolescence – Adult
- Juvenile absence epilepsy (JAE)
- Juvenile myoclonic epilepsy (JME)
- Epilepsy with generalized tonic–clonic seizures alone
- Progressive myoclonus epilepsies (PME)
- Autosomal dominant epilepsy with auditory features (ADEAF)
- Other familial temporal lobe epilepsies

Less specific age relationship
- Familial focal epilepsy with variable foci (childhood to adult)
- Reflex epilepsies

Distinctive constellations
- Mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE with HS)

Conditions with epileptic seizures that are traditionally not diagnosed as a form of epilepsy per se
- Benign neonatal seizures (BNS)
- Febrile seizures (FS)
1.6 Molecular approaches for identifying genes

The human haploid genome consists of approximately 3 billion DNA bases divided among 20,000-25,000 protein coding genes (International Human Genome Sequencing Consortium, 2004). Genetic changes (variation) contribute to human diseases but many genetic variations have no pathologic effect. At the molecular level, variations mostly occur through (i) structural variants [copy number variants (CNV), insertions/deletions, and block substitutions] and (ii) single nucleotide polymorphisms (SNP’s) (Frazer et al., 2009). SNP’s are common variants presented by the change in a single base with a minor allele frequency of at least 1% in the population (Kruglyak and Nickerson, 2001). The majority of SNP’s are silent and do not alter the function and expression of the gene. Only a small number confer small to moderate effects to the gene. Large biological effects on the phenotype are caused by rare mutations which then provoke monogenetic disorders. Mendelian genetic diseases can either be dominant (only a single copy of a mutated gene cause the disease) or recessive (two mutated alleles of the gene cause the disease) (Mullen et al., 2010). However, the majority of diseases are considered to be complex implying an interaction of genetic and environmental factors. Two models describe the contribution of genetic factors to common diseases. The ‘Common Disease, Common Variant’ model (CDCV) postulates that the genetic contribution is mainly composed of multiple common variants with small individual risk (relative risk 1.1-1.5) (Mullen et al., 2009). In contrast, the second model ‘Common Disease-Multiple Rare Variant’ (CDMRV) says that multiple rare variants confer a high disease risk (relative risk 5-10) in a given population (Mullen et al., 2009).

1.6.1 Linkage Analysis and Positional Cloning of Mendelian disease genes

Linkage analysis is used to map genetic loci that predispose to disease. In linkage analysis cosegregation of two or more genes is examined in a pedigree to determine
if they segregate independently or if they do not segregate independently because of their physical proximity (Wiley et al., 1996). In this way the chromosomal region shared by affected members of a large pedigree can be established. Classical linkage is performed in large families with many affected members or multiple families with few affected individuals in which the same mutant gene is responsible for the disease. Naturally occurring crossovers during meiosis limit the candidate region shared by affected individuals. Alleles which are close together on the same chromosome will tend to be inherited together, rather than separated during meiosis (Teare and Barrett, 2005). The pattern of crossovers in the region of the gene among the family members leaves a few hundred predicted genes that might be the disease causing gene (Botstein & Risch, 2003). Subsequently, systematically sequencing of the candidate genes within the linkage region and characterization of their protein products and their associated pathways may identify the putative gene. To prove the causative role of the mutation, it has to be found in the same gene in unrelated families and should show a major impact to the gene function. To infer pathogenicity a lower frequency in controls and a clearly altered function of the gene product is needed.

A requirement for successful linkage is a precise and critical assessment of the phenotypes of the study cohort to ensure exclusion of phenocopies. Phenocopies are defined as family members who have the disease but do not carry the familial mutation. They are thought to suffer from the disease either because of another genetic reason or because of a non-genetic, probably environmental reason. There exists no specific test for any particular disease to distinguish who has the disease gene and who is a phenocopy. Accurate clinical diagnosis does not prevent the occurrence of phenocopies unless some members show certain unusual characteristics of the disease. Correct clinical diagnosis is challenging as clinical heterogeneity with the same mutation is a frequent phenomenon. Misdiagnosis, heterogeneity, complex inheritance and phenocopies can cause failure of linkage analysis (Botstein & Risch, 2003). However, the vast majority of genetic diseases are not transmitted in a Mendelian manner and conventional linkage fails.
1.6.2 Association Studies

Association studies are used to detect differences in allele frequencies of genetic variations between patients and healthy people. Genotypes of large groups of unrelated patients are compared to a control population. An allele is associated with the disease if its frequency differs between cases and controls more than would be predicted by chance (Lander et al., 1994). Two approaches have been widely used in the past few years: (i) Candidate gene-association studies, where a candidate gene already exists due to biological or functional considerations. In these cases only few SNP’s within the gene region are tested for association. Within the past 10 years multiple association studies on epilepsy have been performed and more than 85 genes have been claimed to be associated with the disease (http://geneticassociationdb.nih.gov). However, most of them could not be confirmed in replication studies. Especially in epilepsies, where heterogeneity is a major variable, findings from association analysis explain little of the disease susceptibility (Helbig et al., 2008). The second approach, (ii) Genome-wide association studies, screen for association of common variants with a disease phenotype across the entire genome (Mullen et al., 2009). In these cases several hundred thousand SNP’s across the entire genome are tested for association. The advantage of this approach is that no prior assumption of a functional relationship between a gene and the disease is needed. However, the huge number of tested SNP’s makes a correction for multiple testing necessary. Most nominal significant SNP’s (p≤0.05) are likely false positive. To separate the true positive SNP’s from false positives, either a very strong p value (p<010-8) is needed or a second round of genotyping with the best significant SNP’s in an independent study population has to be performed.

Recently, recurrent microdeletion on chromosome 15q13.3, 16p13.11 and 15q11.2 were identified to constitute a genetic risk factor for common IGE syndromes (Helbig et al., 2009; de Kovel et al., 2009; Dibbens et al., 2009). Each deletion was found in ~ 1% of affected individuals (Mefford et al., 2010) Notable, the 15q13.3 microdeletion was not identified in the control population, therefore it
can be seen as the major risk factor for IGE, whereas the other two deletions confer a lower genetic risk to IGE (de Kovel et al., 2010).

However, the size of samples needed for a genome-wide association to attain sufficient statistical power is enormous and in epilepsy, the study design is still challenging.

1.6.3 Exome Sequencing

In the past few years sequencing technologies have made great advances. The development of “Next generation sequencing” techniques allows the simultaneous sequencing of genomic regions in the megabase range within a few days. One important application of this technique is the complete analysis of all protein coding exons of the human genome (\(\sim 300,000 \)) (EXOME sequencing). This powerful technique will enhance the identification of familial high risk genes in the near future. For a more detailed description see material and methods.
2 The Aim of the Study

We present a consanguineous Egyptian family with an autosomal recessive inheritance pattern suffering from temporal lobe seizures, myoclonus and tremor. We established linkage to chromosome 1q31.3-q32.2. The aim of the present study was: (i) to identify the causative gene within this family via EXOME next generation sequencing (ii) sequencing of the putative gene in 189 temporal lobe epilepsy patients from Austria and Italy to test whether this gene contributes to TLE phenotypes in general.
3 Material and Methods

3.1 Study population

3.1.1 Egyptian family

We investigated a consanguineous Egyptian family where five of the seven siblings of healthy parents show an autosomal recessive inherited epilepsy syndrome (Figure 2). The family exhibits a phenotype with temporal lobe epilepsy, myoclonus and tremor (Table 3). Patients were examined by a local neurologist at the University of Ain Shams in Cairo/Egypt.

The initial symptoms in all patients were seizures starting between the ages of 11 to 14 years. The occurring seizures range from complex partial, to secondary generalized tonic clonic and to myoclonic seizures of variable frequency. Three affected members additionally exhibit auras at the onset with hearing childish or illformed voices, olfactory sensations and hallucinations with vivid scenes. All patients responded well to Carbamazepine respectively Lamotrigine. For three patients MRI screening was performed showing a bilateral mesial hippocampus sclerosis in patient IV-7, and was normal in patient IV-3 and IV-4. For the other two patients CCT screening demonstrated no abnormalities. EEG showed interictally temporal epileptiform discharges in three of five affected siblings. Altogether, these features suggest a phenotype of temporal lobe epilepsy. Moreover, all five affected patients showed a coarse tremor of the head and upper extremities, which did not respond to
3.1.2 Temporal lobe epilepsy patients and controls

For the screening for possible mutations of the CNTN2 gene in a larger sample of epilepsy patients we selected 170 Austrian patients and 19 Italian patients with temporal lobe epilepsy (n=189, females=81, males=108). However, none of our patients exhibit exactly the described phenotype. In addition, the pattern of inheritance of our study population varies between sporadic, dominant and likely recessive.

The control individuals for testing, detected putative pathogenic variants consisted of 366 healthy Austrian blood donors and 36 healthy Egyptian volunteers. The Austrian control subjects (n=366, females=145, males=221) were recruited through the Department of Neurology, Medical University of Vienna, as subjects without known history of a neurological disorder, such as non blood-related companions. All patients and controls were Middle European ancestry. The average age of the control group was 40 years. All study participants gave written informed consent and the study was approved by the local ethics committee.
Table 3: Summary of the clinical features of the Egyptian family

<table>
<thead>
<tr>
<th>Patient</th>
<th>Sex</th>
<th>Age</th>
<th>Onset</th>
<th>Seizure type(s)</th>
<th>Seizure description</th>
<th>Antiepileptic Drugs</th>
<th>EEG</th>
<th>Brain imaging</th>
<th>Associated features</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV-1</td>
<td>M</td>
<td>39</td>
<td>11</td>
<td>GTC</td>
<td>No specific aura</td>
<td>Controlled on CBZ</td>
<td>Abnormal, Not specified</td>
<td>CCT normal</td>
<td>Tremor, head and UE</td>
</tr>
<tr>
<td>IV-3</td>
<td>F</td>
<td>37</td>
<td>14</td>
<td>GTC, CPS, Myoclonus</td>
<td>LOC with aurobuccal automatism</td>
<td>Occasional seizures on CBZ</td>
<td>Interictal: Left posterior temporal epileptiform discharge</td>
<td>MRI normal</td>
<td>Tremor, head and UE</td>
</tr>
<tr>
<td>IV-4</td>
<td>F</td>
<td>29</td>
<td>11</td>
<td>Aura, GTC, CPS, Myoclonus</td>
<td>Hearing childish voices, LOC, GTC</td>
<td>Controlled on CBZ</td>
<td>Interictal: No abnormality</td>
<td>MRI normal</td>
<td>Tremor, head and UE</td>
</tr>
<tr>
<td>IV-6</td>
<td>F</td>
<td>24</td>
<td>12</td>
<td>Aura, GTC, CPS, Myoclonus</td>
<td>Hallucination with vivid scenes (films), Hearing illformed voices, Bad smell LOC with chewing movements</td>
<td>Difficult to control on CBZ and LTG</td>
<td>Interictal: Left temporo-parietal epileptiform discharge</td>
<td>CCT normal</td>
<td>Tremor, head and UE</td>
</tr>
<tr>
<td>IV-7</td>
<td>F</td>
<td>21</td>
<td>11</td>
<td>Aura, GTC, CPS</td>
<td>Bad smell, Aurobuccal automatism with LOC</td>
<td>Controlled on CBZ</td>
<td>Interictal: Right temporal discharge</td>
<td>MRI: Bilateral mesial temporal sclerosis</td>
<td>Tremor</td>
</tr>
</tbody>
</table>

Generalized tonic clonic (GTC), Complex partial seizures (CPS), Upper Extremities (UE), Carbamazepine (CBZ), Lamotrigine (LTG), Cranial computed tomography (CCT), Magnetic Resonance Imaging (MRI), Loss of Consciousness (LOC);
3.2 Reagents and Instruments

1x TBE (Sigma-Aldrich, St. Louis, US)
10x EDTA Buffer (Applied Biosystems, California US)
40x TaqMan® SNP Genotyping Assay (Applied Biosystems, California US)
7900 HT Fast Real Time PCR System (Applied Biosystems, California US)
Affymetrix GeneChip® Human Mapping10K Xba142 2.0 arrays (Affymetrix, Santa Clara, US)
Agarose (Biozym, Oldendorf Germany)
Sequencing Analysis Software v.5.2 (Applied Biosystems, California US)
Aqua bidestillata (AccuGene®, Lonza, Verviers, Belgium)
BigDye® Terminator v3.1 Sequencing Kit (Applied Biosystems, California US)
BigDye XTerminator® Purification Kit (Applied Biosystems, California US)
DNA Quant-iT™ dsDNA BR Assay Kit (Invitrogen, Eugene, Oregon US)
Ethanol (99.9%) (Sigma-Aldrich, St. Louis, US)
Ethidium bromide (Merck, Darmstadt Germany)
FastRuler™ DNA Ladder, Low Range (Fermentas International, Canada)
Genetic Analyzer 3130 (Applied Biosystems, California US)
IKA® MS 3 Digital vortexer (IKA, Germany)
LiChrosolv water (Merck, Darmstadt Germany)
MultiScreen®PCRµ96 plate (Millipore, Billerica, US)
Pop-7™ (Applied Biosystems, California US)
QIAamp® Blood Midi Kit Spin Protocol (QIAGEN, Hilden Germany)
Qubit™ Fluorometer Reader (Invitrogen, Eugene, Oregon US)
REPLI-g® Mini Kit of Purified Genomic DNA (Qiagen, Hilden Germany)
Sample Loading Buffer (in house made)
Staden Package v. 1.5.
DNA Engine Tetrad® 2 Thermal Cycler (Biorad, California, US)
Taq DNA Polymerase Kit (Qiagen, Hilden, Germany)
Type-it™ Fast SNP Probe PCR Kit (Qiagen, Hilden Germany)
3.3 Techniques

3.3.1 Genomic DNA Isolation

The genomic DNA purification from whole blood was performed according to the QIAamp® Blood Midi Kit Spin Protocol. A 2ml aliquot of human whole blood used for extracting genomic DNA was added to 200µl protease and briefly mixed. After addition of 2.4ml lysis buffer AL and vigorous shaking the homogenous solution was incubated in a water bath at 70°C for 10 minutes. 2ml of 99,9% ethanol was added, thoroughly mixed, half of the solution transferred to the QIAamp Midi column and centrifuged at 1850 x g for 3 minutes. Resulting filtrate was discarded the remainder of the solution transferred in the Midi column and again centrifuged. The bound DNA was washed with 2 different buffers AW1 with following centrifugation at 4500 x g for 1 minute and with AW2 centrifuged at 4500 x g for 15 minutes, respectively. The purified DNA was eluted in two steps with 300µl buffer AE each time incubated for 5 minutes and centrifuged at 4500 x g for 2 minutes.

3.3.2 DNA Quantification

The double-stranded DNA concentration was measured using DNA Quant-iT™ dsDNA BR Assay Kit in conjunction with Qubit™ fluorometer reader. 3µl of each DNA was diluted with buffer and fluorescent reagent up to 200µl and measured with the fluorometer. Samples were diluted to a working solution of 10ng/µl and stored at -20°C.

3.3.3 Linkage Analysis

Genome-wide linkage analysis using Affymetrix Human Mapping10K Xba142 2.0 arrays was performed. Data for linkage analysis were prepared with a modified version of Alohomora (Ruschendorf, 2005). Multipoint linkage analysis was achieved using Allegro (version1.1d) (Gudbjartsson, 2000). We assumed an autosomal
recessive model. The frequency of the deleterious allele was set to 0.001, and the penetrance to 99% (q=0.001; f_1=0.0; f_2=0.0; f_3=0.99).

3.3.4 Whole Genome Amplification

The Whole Genome Amplification based on Multiple Displacement Amplification technology (Dean et al., 2002 and 2001) is an isothermal reaction that provides uniform amplification of whole genomic DNA of limited samples. A 50µl MDA-based WGA reaction generates 30-50µg of product with consistently >10kb in length regardless of the starting template (Lasken, 2009). Due to its simplicity and reliability MDA is an adequate method for high-throughput applications like DNA sequencing and SNP analysis.

Some of our samples, especially the Italian and Egyptian DNA’s, were limited by the amount of DNA template or quality. We performed a whole genome amplification using the REPLI-g® Mini Kit of Purified Genomic DNA according to the manufacturer’s specification.

3.3.4.1 Principle and Procedure

Multiple displacement amplification uses the binding of random hexamer primers and phi 29 DNA polymerase, derived from Bacillus subtilis, for strand displacement synthesis at a constant temperature (Dean et al., 2002). The phi29 DNA polymerase with its extremely high processivity and strand displacing activity generates high yields of DNA by copying the same template multiple times, extending new primers and displacing the previously extended product whereby the displaced strand functions as a template for replication. (Figure 3)
Phosphorothioate linkage of the 3’ end of the random primers prevents them to be degenerated from the 3´-5´exonuclease proofreading activity of the phi 29 DNA polymerase (Dean et al., 2001). Additionally the proofreading activity of the phi 29 DNA polymerase ensures amplification with an error rate of less than 3×10^{-6} (Nelson et al., 2002).

To obtain lysis and denaturation of the DNA 5µl buffer D1 was added to 5µl purified genomic template DNA vortexed and incubated for 3 minutes at room temperature. For neutralization 10µl buffer N1 was added and mixed with the master mix containing 29µl reaction buffer and 1µl DNA polymerase. To achieve a maximum of DNA yield the samples were incubated in a heating block at 30°C for 16 hours and terminated by heating up to 65°C for 3 minutes. Although typical DNA yields are approximately 10µg per 50µl reaction we performed accurate quantification with DNA Quant-iT™ dsDNA BR Assay Kit according to the manufacturer’s instructions. All samples were diluted to a working solution of 5ng/µl and stored at -20°C.

Various studies (Berthier-Schaad et al. 2007, Lovmar and Syvänen 2006) already used MDA amplified DNA for high throughput DNA arrays and showed excellent concordance of genotype between genomic DNA and amplified DNA as well as good genome coverage and lowest amplification bias. However, imbalanced amplification can lead to genotyping errors. Due to allelic dropout or low quality genotype data heterozygous genotypes can be mistaken for homozygous.
We gross tested the reliability of our wgaDNA in 20 samples by comparing wgaDNA and gDNA using Taqman Genotyping assay with a randomly chosen SNP from former studies.

3.3.5 TaqMan® Genotyping

3.3.5.1 Principle and Procedure

The Allelic Discrimination assay is a multiplexed assay which detects variants of a single nucleic acid sequence at the end of the PCR process. The TaqMan® SNP Genotyping Assay which consists of two primers and two probes, dual-labelled fluorogenic MGB probes, enables genotyping of the two possible variants at the single-nucleic polymorphism site in a target sequence. One probe matches to the wild type allele and the other probe to the mutated allele allowing biallelic genotyping. (Figure 4) The Allelic Discrimination measures the increase in fluorescence of the reporter dyes associated with the TaqMan® probes (Applied Biosystems, 2010).

The TaqMan® MGB probes contain a fluorescent reporter dye at the 5’ end of each probe (VIC®, FAM™), and a non-fluorescent quencher (NFQ) at the 3’ end with a minor groove binder (MGB). The MGB is a modification which enforces shorter probe design resulting in greater differences in T_m values between matched and mismatched probes to secure robust allelic discrimination (Applied Biosystems, 2006).

In the intact probe during the PCR the reporter dye emission is adequately absorbed by the quencher due to their proximity and overlapping absorption spectrum. After hybridization of the probe to the template DNA the DNA polymerase extends the primer bound to the DNA and cleaves the reporter dye from the probe. The separation of the reporter dye from the quencher leads to the characteristic fluorescence signal emitted by the reporter and indicates which alleles are present in the sample. An increase in either VIC® or FAM™ indicates homozygous genotypes
whereas an increase in the fluorescence signal of both reporter dyes signifies a heterozygous genotype.

The increase in the fluorescence signal is measured by the sequence detection software (SDS) which displays the results on a scatter plot of allele X versus allele Y grouped into four genotype clusters: homozygote for allele 1, homozygote for allele 2, heterozygote and non template controls (NTCs).

Figure 4: Different steps of the Taqman allelic discrimination assay.

Genotyping was achieved using Type-it™ Fast SNP Probe PCR Kit using standard protocols and reagents.

8µl Genotyping reaction mix, consisting 5µl Type-it Fast SNP PCR Master Mix, 0.25µl 40X TaqMan® SNP Genotyping Assay, 2.75µl Aqua bidestillata was added to 20ng DNA and conducted using optical 96-well reaction plates on a 7900 HT Fast Real
Time PCR System. The TaqMan® SNP Genotyping Assay was for a SNP located on chromosome 10q24.32 in the gene PITX3 which was randomly chosen and had no further significance for us.

Standard cycling conditions were the initial PCR activation step for 5 minutes at 95°C for activation of the HotStarTaqPlus DNA Polymerase followed by 40 cycles of denaturation at 95°C for 15 seconds and annealing at 60°C for 30 seconds. Before and after the PCR step Allelic Discrimination reads were performed.

In all 20 cases the amplified DNA gave the correct genotype. The results were indistinguishable from the unamplified genomic DNA. (Figure 5)
Figure 5: Scatter plot of Taqman allelic discrimination assay for validation of the whole genome amplification. Demonstrated are results of testing the whole genome amplified DNA versus the genomic DNA, to ensure correct amplification. The vertical axis is the mutated allele, labelled with VIC® and the horizontal axis is the wild-type allele, labelled with FAM™. Non-template controls are plotted as black squares. Dark blue dots on the upper left side are indicating homozygous mutated samples, green dots in the middle indicating heterozygous samples, red dots on the lower right side indicating homozygous mutated samples. Detail shows two bright blue dots referring once to the amplified DNA and once to the genomic DNA demonstrating no difference between amplified and genomic (non-amplified) DNA.

Taqman allelic discrimination assays were developed to screen the normal control panel for all three variants derived from the Exome sequencing and for all seven novel heterozygous variants resulting from subsequent capillary sequencing using 20ng of DNA as previously described above. All three variants resulting from the Exome sequencing were additionally screened in 189 TLE patients and in the Egyptian family.
3.3.6 Next-Generation Sequencing

3.3.6.1 Principle and Procedure

Next-Generation sequencing enables massively parallel sequencing of many thousands or millions of sequencing reactions rather than 96 as conventional sequencing machines achieve at a time. Traditional sequencing produces read length around 400-800bp whereas next-generation sequencing, depending on the platform, generates far shorter reads which can then be compared to a reference. Additionally, priory template amplification as in conventional sequencing is unnecessary. To date, various next-generation DNA sequencing platforms are available (for review, Shendure & Ji, 2008; Mardis, 2007; Tucker et al., 2009). Although, the different platforms vary in sequencing biochemistry and array generation, their work flows are conceptually similar (Shendure & Ji, 2008).

3.3.6.1.1 Illumina sequencing technology

Illumina sequencing platform is based on the concept of sequencing by synthesis and uses reversible terminator-based sequencing chemistry (Bentley et al., 2008). Libraries can be generated by any method creating adaptor ligated DNA fragments. Fragments are added to the surface of a glass flow cell which has covalently attached oligos complementary to the specific adaptors. Solid-phase bridge amplification (Adessi et al., 2000; Dedurco et al., 2006) occurs by adding unlabeled nucleotides and polymerase and double stranded bridges are built. Complete amplification results in several million dense clusters, each containing ~1.000 copies of the same template (Illumina Sequencing Technology, 2010). Modified sequencing chemistry, consisting of four differentially labelled fluorescent nucleotides and polymerase, only allows single-base incorporation in each cycle. Subsequent laser excitation provokes the fluorescence signal. After sequencing, the reads are aligned to a reference genome and subjected to a quality filtering. The paired-end module yields two independent reads derived from each end of the template instead a single-end read (Illumina Sequencing Technology, 2010).
3.3.6.2 Whole Exome Sequencing

Whole Exome Sequencing is a second-generation method for targeted sequencing of all protein-coding regions. Although costs of Whole Genome Sequencing are reducing, Whole Exome Sequencing is a good alternative. By exome sequencing, candidate genes for mendelian disorders can be identified within a small number of unrelated, affected individuals. (Ng. et al., 2009).

3.3.6.2.1 Exome Sequencing

Whole Exome Sequencing was performed for two members of the Egyptian family (IV-3, IV-6) by our cooperation partner (Department of Human Genetics, Helmholtz Center, Munich). Libraries for the two exomes were prepared following standard protocols using the SureSelect whole Exome Assay. Sequencing of post-enrichment libraries was carried out on an Illumina Genome Analyzer IIx as 54bp paired-end runs. For each sample two lanes of a flowcell were sequenced. Image analysis and base calling was carried out using the Genome Analyzer Pipeline version 1.5 with default parameters.

3.3.6.2.2 Read Mapping

Alignment of the reads to the hg18 reference sequence was performed with the BWA software (v.0.5.8) using mainly default parameters. Reads were trimmed of low quality bases at the end (-q) using a cutoff quality of 15. A small number (3-4%) of duplicated reads, which were indicated by identical outer coordinates of mapped mate pairs, were removed. The percentage of reads overlapping targeted regions and coverage statistics of targeted regions were calculated using Perl scripts. Mapped reads that directly overlapped the targeted regions were used for variant identification.

About 6.5-7.0 gigabases of mapable sequence data were generated per individual with 34-39% of reads mapping to the target regions. On average, >98% of the
targeted bases were covered at least once, and > 75% of bases were covered 20 fold or more.

3.3.6.2.3 Variant Calling
Initially, 29185 and 29755 variants for the two samples including SNP’s and indels using SAMtools (v. 0.1.7) were called respectively. For the variant filter part of SAMtools the default parameters with the exception of setting a maximum read depth of 9999 (parameter-D) was used.
Additional filters were applied to exclude low confidence variants: Median base quality of the variant base of at least 15, a minimum of 15% of reads showing the variant base and that the variant base is indicated by at least 5% of reads coming from different strands. For indels it was required that at least 10% of reads covering this position to indicate the indel.

3.3.6.2.4 Variant Annotation
Variant annotation was performed using custom Perl scripts. For prioritization known SNP’s from dbSNPv1.30, from eight sequenced exomes of Hap Map samples (Ng et al., 2009) and from the in-house database were excluded.
Finally, the analysis was confined to the linkage region chr1:195653469-208175909 and all variants that were shared between the two samples were selected.

3.3.7 DNA Capillary Sequencing
For identifying further mutations in the CNTN2 gene we performed directed capillary sequencing. We screened the candidate gene in three family members of the Egyptian family and in 189 TLE patients. The sequencing reaction was carried out using BigDye® Terminator Cycle Sequencing kit v.3. Primer design was achieved
using Primer3 software. For amplification of exon sequences and exon-intron boundaries the following intronic primers were selected:

Table 4: Primer sequences for capillary sequencing of 22 coding exons

<table>
<thead>
<tr>
<th>Exon</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>exon 2</td>
<td>forward CTCCCCAGGTCTTTTCTCAG</td>
</tr>
<tr>
<td></td>
<td>reverse TCCTCACCACAAATCATAGCA</td>
</tr>
<tr>
<td>exon 3-4</td>
<td>forward ACAGCACAGCCCAAGGAGG</td>
</tr>
<tr>
<td></td>
<td>reverse TCTCAGTAAATTCTCCTAGCCC</td>
</tr>
<tr>
<td>exon 5</td>
<td>forward GTAAGGATGAGTGCGGGGGAG</td>
</tr>
<tr>
<td></td>
<td>reverse CCTCTGCCAAAGCATCTGG</td>
</tr>
<tr>
<td>exon 6</td>
<td>forward GAGTGCCCTCTGTAGGCC</td>
</tr>
<tr>
<td></td>
<td>reverse AAACCTTTTTCTTAATGCCC</td>
</tr>
<tr>
<td>exon 7</td>
<td>forward AGTTGGCTCTGAAAGGTGC</td>
</tr>
<tr>
<td></td>
<td>reverse CTTGTGAGGGACACCAAAGAT</td>
</tr>
<tr>
<td>exon 8</td>
<td>forward ACTGAGGGGTAGGGAGG</td>
</tr>
<tr>
<td></td>
<td>reverse CTTGGGCAAGGGGTGAAGG</td>
</tr>
<tr>
<td>exon 9</td>
<td>forward GCTGCCCTGATTTCCTGTTC</td>
</tr>
<tr>
<td></td>
<td>reverse GGAACCAAGTGAGCAGAGGAC</td>
</tr>
<tr>
<td>exon 10</td>
<td>forward CCTCCTGTGCTCTCTG</td>
</tr>
<tr>
<td></td>
<td>reverse CCACAGGTATGCTGATGTG</td>
</tr>
<tr>
<td>exon 11-12</td>
<td>forward AAAGGGCAGCAGAAATAC</td>
</tr>
<tr>
<td></td>
<td>reverse GGGGAGAGCAGTACCTCAGG</td>
</tr>
<tr>
<td>exon 13</td>
<td>forward CCTGGGCCCATTTCCT</td>
</tr>
<tr>
<td></td>
<td>reverse ATGGCTAAAGGACATCTTG</td>
</tr>
<tr>
<td>exon 14</td>
<td>forward TGGAGTTAGGGGACTCCAAG</td>
</tr>
<tr>
<td></td>
<td>reverse CAGCTTTAGGGGAGAGG</td>
</tr>
<tr>
<td>exon 15</td>
<td>forward TGGCCTAAATGGAGACTGT</td>
</tr>
<tr>
<td></td>
<td>reverse TCCACCTCCTACACCGAGTC</td>
</tr>
<tr>
<td>exon 16</td>
<td>forward GGTGATTCCAGGCCCAGTC</td>
</tr>
<tr>
<td></td>
<td>reverse ATAAGTGCTGACCGGGGTC</td>
</tr>
<tr>
<td>exon 17</td>
<td>forward CTCTACAGGGCAAGGCTCAG</td>
</tr>
<tr>
<td></td>
<td>reverse CTGCTCAAGGCGGAGGAGG</td>
</tr>
<tr>
<td>exon 18</td>
<td>forward CTGGGCAAAGGTTGGGTG</td>
</tr>
<tr>
<td></td>
<td>reverse ATCCCTGTGGAACAGTGCC</td>
</tr>
<tr>
<td>Exon</td>
<td>Forward Primer</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>19</td>
<td>GCTCTGCAGGACACAGGG</td>
</tr>
<tr>
<td>20</td>
<td>GAGAGGAACAGAATGTGGGG</td>
</tr>
<tr>
<td>21</td>
<td>AAACATCCAGAGAGGCTG</td>
</tr>
<tr>
<td>22</td>
<td>GGGATGACTCAACGATCAGC</td>
</tr>
<tr>
<td>23</td>
<td>AAGGGTGGGGCTAGGTTAG</td>
</tr>
</tbody>
</table>

3.3.7.1 DNA Template Preparation

Cycle sequencing generates the most reproducible results for sequencing amplified templates. We performed PCR using Taq DNA polymerase kit. The PCR amplification was carried out with primers flanking the region of interest in the target DNA.

3.3.7.2 PCR reaction optimization

To ensure successful amplification of the sequence with primer sets of interest, optimization was performed for all 20 primers. Standard PCR reaction with different annealing time as well as PCR reaction with Q-Solution was set up, respectively. Primer were synthesized with standard HPLC purification and ordered in lyophilized form at Sigma Aldrich. According to the manufacturer’s protocol, primers were dissolved with H₂O to a final concentration of 100pmol/µl. The PCR reaction was carried out with a 1:10 dilution of the primer stock.

The standard PCR reaction mix for a 10µl approach with 16ng DNA consisted of 1 µl 10xPCR buffer, 0.2µl dNTP’s (10mM each), 0.2µl primer forward (10pmol/µl), 0.2 µl primer reverse (10pmol/µl), 6.33µl dd H₂O and 0.07µl Taq polymerase (5U/µl). For the reaction mix with Q-Solution 1.2µl 5xQ-Solution was added and dd H₂O was accordingly reduced. Sequence reaction was carried out using Biorad Tetrad® 2 thermal cycler.
A simplified hot start was performed to avoid mispriming and primer-oligomerization. The PCR program was started and once the thermal cycler reached 95°C the plate was placed in the cycler. Thermal cycler conditions were set to the initial denaturation step at 95°C for 5 min, followed by 35 cycles at 94°C for 30 seconds (denaturation), 50°C-70°C for 30 seconds (annealing) and 72°C for 30 seconds (extension) completed with the final extension at 72°C for 10 minutes. Optimal primer annealing temperatures were determined empirically by a temperature gradient between 50°C and 70°C.

All PCR products were subsequently analyzed on a 2% ethidium bromide-stained agarose gel. The agarose gel, composed of 200µl 1x TBE, 4g agarose and 5µl ethidium bromide (10mg/ml), was loaded with 8µl PCR product mixed with 2 µl loading buffer. Additionally 3µl of low range FastRuler™ DNA Ladder for validating the amplified product size was applied. Gel electrophoresis was carried out at 100 volt for 45 minutes.

3.3.7.3 PCR Reaction

Once the corresponding conditions for each exon were achieved the template generation was performed. The PCR reaction mix was adjusted for 30µl with 25ng of template DNA.
Table 5: PCR condition for each exon with corresponding mastermix and primer annealing temperature

<table>
<thead>
<tr>
<th>Mastermix</th>
<th>Exon</th>
<th>Primer annealing temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard PCR reaction mix:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3µl 10xPCR buffer</td>
<td>exon 02</td>
<td>56°C</td>
</tr>
<tr>
<td>0.6µl dNTP’s (10mM each)</td>
<td>exon 03-04</td>
<td>57°C</td>
</tr>
<tr>
<td>0.6µl primer forward (10pmol/µl)</td>
<td>exon 05</td>
<td>57°C</td>
</tr>
<tr>
<td>0.6 µl primer reverse (10pmol/µl)</td>
<td>exon 06</td>
<td>56°C</td>
</tr>
<tr>
<td>20µl dd H₂O and</td>
<td>exon 07</td>
<td>62°C</td>
</tr>
<tr>
<td>0.21µl Taq polymerase (5U/µl)</td>
<td>exon 08</td>
<td>62°C</td>
</tr>
<tr>
<td></td>
<td>exon 09</td>
<td>58°C</td>
</tr>
<tr>
<td></td>
<td>exon 10</td>
<td>60°C</td>
</tr>
<tr>
<td></td>
<td>exon 11-12</td>
<td>59°C</td>
</tr>
<tr>
<td></td>
<td>exon 13</td>
<td>61°C</td>
</tr>
<tr>
<td></td>
<td>exon 14</td>
<td>59°C</td>
</tr>
<tr>
<td></td>
<td>exon 15</td>
<td>59°C</td>
</tr>
<tr>
<td></td>
<td>exon 16</td>
<td>62°C</td>
</tr>
<tr>
<td></td>
<td>exon 17</td>
<td>59°C</td>
</tr>
<tr>
<td></td>
<td>exon 18</td>
<td>58°C</td>
</tr>
<tr>
<td></td>
<td>exon 19</td>
<td>58°C</td>
</tr>
<tr>
<td></td>
<td>exon 20</td>
<td>61°C</td>
</tr>
<tr>
<td></td>
<td>exon 21</td>
<td>58°C</td>
</tr>
<tr>
<td></td>
<td>exon 22</td>
<td>59°C</td>
</tr>
<tr>
<td></td>
<td>exon 23</td>
<td>60°C</td>
</tr>
</tbody>
</table>

PCR reaction mix with Q-Solution:		
3µl 10xPCR buffer	exon 10	60°C
3.6µl Q-Solution	exon 11	58°C
0.6µl dNTP’s (10mM each)	exon 12	58°C
0.6µl primer forward (10pmol/µl)	exon 13	61°C
0.6 µl primer reverse (10pmol/µl)	exon 14	61°C
16.4µl dd H₂O and	exon 15	61°C
0.21µl Taq polymerase (5U/µl)	exon 16	61°C
	exon 17	58°C
	exon 18	58°C
	exon 19	58°C

37
Sequence reaction was carried out using Tetrad® 2 Thermal Cycler as described above. DNA quality and approximate quantity was determined by loading 8 µl of the PCR products on an agarose gel as described above. Purified DNA run as a single band on the gel.

3.3.7.4 Template Purification

Before sequencing PCR product purification is necessary for providing optimal results. Contaminations in the sequencing reaction have a negative effect on polymerase binding, amplification or extension (Applied Biosystems, 2009). To remove contaminating salts, unincorporated dNTP’s and non-specific PCR products (primer-dimer artefacts and secondary PCR product) purification with the MultiScreen® PCRµ96 plate was performed according to the manufacturer’s instructions.

The volume of the PCR reactions was adjusted to 100µl with dd H₂O and the reactions were transferred to the MultiScreen® PCRµ96 plate. The plate was placed on a vacuum manifold and applied to vacuum at 20 inches Hg until the wells were empty. DNA was washed with 50µl H₂O, mixed several times within each well and vacuum filtration repeated. Purified samples were dissolved in 25µl H₂O by shaking on a plate shaker at 1000rpm for 10 minutes. Samples were retrieved from the purification plate and transferred into a 96-well plate.

3.3.7.5 Cycle Sequencing

3.3.7.5.1 Principle and Procedure

DNA sequencing was first described by Sanger et al. in 1977. Based on the principle of DNA replication sanger dideoxy sequencing, a method where dideoxynucleotides triphosphates (ddNTP’s) function as DNA chain terminators, has undergone a process of subsequent improvements. Increased efficiency and accuracy has led to high-throughput semi-automated sequencing technology (Hunkapiller et al., 1991).
Automated cycle sequencing is a process of rounds of denaturation, annealing and extension, which results in linear amplification of extension products. (Figure 6) The reaction mix contains DNA template, a sequencing primer, DNA polymerase, nucleotides (dNTP’s), reaction buffer and dideoxynucleotides (ddNTP’s) which lack the 3’-hydroxyl group essential for the phosphodiester bond formation. Each round of primer extension is terminated by the incorporation of one of the four fluorescent dye-labelled dideoxynucleotide triphosphates.

The sequence is determined by high-resolution capillary electrophoresis using a denaturising flowable polymer. The purified buffered sequence reaction is exposed to high voltage and the negatively charged fragments move into the capillaries toward the positive electrode. The fragments are separated by size based on their total charge. Passing a laser beam each dye emits a unique wavelength and the fluorescent dye on the extension product identifies the 3’ terminal dideoxynucleotide as A, G, C, or T (Applied Biosystems, 2009).

We performed cycle sequencing in a 96-well reaction plate using BigDye® Terminator v3.1 Cycle Sequencing Kit. The volume of the 2.5xready reaction premix was reduced to 2µl and accordingly adjusted for a 20µl approach. Therefore, 3µl 5x BigDyeSequencing buffer, 0.5µl primer either forward or reverse (3.2pmol), 5µl template DNA and 9.5µl ddH₂O were added. Template quantity was adapted according to the manufacturer’s protocol.
Sequence reaction was carried out using Tetrad® 2 thermal cycler. Cycling conditions were rapid thermal ramp to 96°C and initial denaturation at 96°C for 1 minute followed by 30 cycles at 96°C for 10 seconds, 50°C for 5 seconds and 60°C for 4 minutes. Reaction was completed with a rapid thermal ramp to 4°C.

3.3.7.6 Extension Product Purification
To prevent coinjection of unlabeled and dye-labelled reaction components with the extension products, purification of the product needs to be performed. Purification was carried out with BigDye Xterminator® Purification Kit according to standard protocol. 10µl extension product from the sequencing reaction was transferred in an optical 96-well reaction plate. 10µl XTerminator Solution was mixed with 45µl SAM Solution and directly added to the sequencing reaction products. The plate was vortexed for 30 minutes at 2000rpm to capture and immobilize unwanted components. The centrifugation moved the insoluble fraction and captured reaction components to the bottom of the reaction well, whereas the purified extension products remained in the supernatant. The plate was either stored at 4°C or immediately placed in the Genetic Analyzer 3130.

3.3.7.7 Capillary Electrophoresis
Capillary electrophoresis was performed on the Genetic Analyzer 3130 using Pop-7™ run module BDx_UltraSeq36_Pop7. For shorter exons run time was reduced. EDTA buffer and LiChrosolv H₂O were used according to standard protocol.

3.3.8 Data Analysis
Primary sequencing analysis was performed with Applied Biosystems Sequencing Analysis Software v.5.2 to process raw data into DNA sequence using KB™ basecaller, which assigns a base to each peak and provides per-base quality value
(QV) predictions. Accurate analysis and alignment was achieved using Staden Package v. 1.5. Each chromatogram was visually inspected for the presence of a putative variant.

3.3.9 In Silico Analysis

Assessments of the cross-species conservation of the CNTN2 amino acid sequence were performed.
Predictions of the effects of amino acid substitution were performed with PolyPhen2.
4 Results

4.1 Clinical data

We identified a consanguineous Egyptian family where five of the seven siblings are affected suffering from autosomal recessive inherited epilepsy syndrome associated with myoclonus and tremor suggesting a phenotype of temporal lobe epilepsy. For details see Material and Methods section.

4.2 Genetic Data

4.2.1 Linkage Analysis of the Egyptian family

We performed Genome-wide linkage analysis in the five affected family members. Under an autosomal recessive model, significant linkage with a LOD score of 3.6 on chromosome 1q31.3-q32.2 between rs927510 and rs724054 was obtained. This region extends 12.5Mb and contains 136 genes (Figure 9a, b).

4.2.2 Whole Exome Sequencing

Whole Exome Sequencing was performed for two members (IV-3, IV-6) of the Egyptian family by our cooperation partner (Department of Human Genetics, Helmholtz Center, Munich, HMGU).
Initially, the screening of the two samples showed 29185 and 29755 variants, respectively including SNP’s and indels. A number of prioritization steps were applied to reduce the amount of variants. To identify a potentially pathogenic mutation we focused on nonsynonymous variants, splice site acceptor and donor site mutations and coding indels. Variants whose features did not meet quality-control standards were eliminated. We applied the following filters: (i) Removing variants which are present in either the Single Nucleotide Polymorphism Database version 130 or in the eight sequenced exomes of the HapMap samples or in different exomes sequenced at the HMGU and (ii) exclusion of all variants outlying the linkage region. After this filtering, three homozygous variants which were predicted to result in amino acid changes were left (Table 6).

(i) DEAD (Asp-Glu-Ala-Asp) box polypeptide 59, (DDX59) harboured a single nucleotide variant c.844G>C that introduces a missense mutation at position 282 resulting in an amino acid transition from glutamine acid to glutamine (E282Q). This gene is rarely expressed in the brain and may play a role in ATP binding and helicase activity.

(ii) Troponin I type 1, (TNNI1) exhibits a single nucleotide variant c.506C>A that introduces an amino acid change from serine to tyrosine at position 169 (S169Y). TNNI1 is expressed in cardiac and skeletal muscle only. The encoded protein inhibits calcium-mediated conformational changes in actin-myosin complexes and thus prevents muscle contraction.

(iii) The third variation a homozygous single nucleotide deletion c.503_503delG in Contactin 2 gene, (CNTN2) also termed TAG-1, in exon 6 at the amino acid position 168 results in a frameshift onwards of this position. CNTN2 is a glycosylphosphatidylinositol (GPI)-anchored neuronal membrane protein that functions as a cell adhesion molecule and may play a role in the formation of axon connections in the developing nervous system. The deletion is located in the Ig-like C2-type 2 domain of the protein and therefore yields to a loss of function, making this gene the most likely candidate gene.
Table 6: Exome Sequencing: Variants shared by the two individuals after prioritization.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Exon</th>
<th>Nucleotide</th>
<th>Amino acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDX59</td>
<td>3</td>
<td>c.844G>C</td>
<td>E282Q</td>
</tr>
<tr>
<td>TNNI1</td>
<td>7</td>
<td>c.506C>A</td>
<td>S169Y</td>
</tr>
<tr>
<td>CNTN2</td>
<td>6</td>
<td>c.503_503delG</td>
<td>Frameshift</td>
</tr>
</tbody>
</table>

4.2.3 Genotyping of DDX59, TNNI1 and CNTN2 variants

We genotyped all three putative pathogenic variants (i) in 8 members of the Egyptian family [5 affected children (IV-1, IV-3, IV-4, IV-6, IV-7), one healthy child (IV-2) and two healthy parents (III-1, III-2)], (ii) in 170 Austrian and 19 Italian TLE patients and (iii) in 366 Austrian and 36 Egyptian healthy controls. All three variations were confirmed to be in a homozygous state in all affected subjects of the family and in a heterozygous state in both healthy parents (Figure 7). None of these variants were present in the screened Austrian and Italian TLE patients and Austrian and Egyptian controls.

4.2.4 Capillary Sequencing of the CNTN2 gene

Based on previous published animal studies (Fukamauchi et al., 2001; Poliak, et al., 2003; Traka et el., 2003; Brew et al., 2007), expression data (focusing on expression in the brain) and the impact of the mutation (loss of function mutation), we considered the CNTN2 gene as the most likely candidate. To test whether CNTN2 is a more general contributor to TLE we screened all 22 coding exons of this gene in 189 Austrian and Italian patients and in three members (III-1, IV-1 and IV-7) of the Egyptian family using capillary sequencing.

We identified 21 coding sequence variants in our study population (Table 8). Twelve of these variants lead to nonsynonymous amino acid substitutions, of which seven were not previously reported in dbSNP 130. Nine variants were synonymous, of which three were already deposited in the SNP database 130.
Each of the seven novel missense variants was genotyped in 366 neurologically normal control samples using the Taqman allelic discrimination assay. To assess the frequency of rare variants (in the CNTN2 gene) in the general population, our cooperation partner in Munich, evaluated Whole Exome Sequencing data from 72 non-epileptic individuals.

In particular, capillary sequencing revealed seven nonsynonymous coding variants (Table 7, Figure 9e). We detected a heterozygous missense variation, c.214C>T, in exon 3 leading to an amino acid change from arginine to tryptophan on position 72 (R72W). R72W lies in an evolutionary conserved area and a clearly protein damaging effect is predicted by PolyPhen. It was not present in any of our control individuals.

We found two heterozygous missense variants in exon 8: c.862G>A resulting in a protein change from glutamine to lysine at position 288 (E288K). For this variation, found in an Italian patient, the evolutionary conservation is slightly weaker but is still predicted to be possibly damaging and not present in the control population. The second variation in exon 8, c.947C>T induces the amino acid substitution threonine to isoleucine at codon 316 (T316I). T316I lies in an evolutionary conserved region, is predicted to be a benign variation and present in five Austrian control individuals.

In two patients we detected the variation c.1405 C>A in exon 12. The amino acid alteration is a proline to threonine change on position 469 (P469T). One of the patients shows a positive family history. This variant is predicted to be benign and not found in Austrian controls but in one individual of the 72 exome controls.

The fifth variant, c.1460C>T, in exon 12 induces a substitution from the amino acid threonine to isoleucine at codon 487 (T487I). T487I also located in an evolutionary conserved area, is predicted to have a protein damaging effect and was found twice in our control population.

In exon 16 we found the variation c.2057T>C. This variation is marked by an amino acid transition from isoleucine to threonine at the position 686 (I686T). I686T is predicted to be benign and was not present in the control cohort.
In exon 18 we discovered a double nucleotide variant (c.2273-2274GG>AT) provoking a change from tryptophan to tyrosine (W758Y) in an individual with a positive family history. The deceased grandfather was reported to suffer also from a nonspecified epilepsy syndrome. W758Y shows a clear protein damaging effect, considerable evolutionary conservation and absence in both control cohorts.

Evaluation of Whole Exome Sequencing data from 72 non epilepsy patients from the Munich database revealed four rare nonsynonymous coding variants not deposited in the dbSNP130: (Table 7)

One variant, P469T, was already found in two of our patients. The second variant detected, c.505C>T in exon 6, provokes an amino acid change from leucine to phenylalanine (L169F). For this variation no protein damaging effect is predicted by PolyPhen. The third identified variation c.1294_1295insG is a single base pair insertion in exon 11. The last variation, c.2701C>T, was found in exon 20 inducing an amino acid substitution from proline to serine (P901S). PolyPhen predicts a protein damaging effect for P901S.

In total, capillary sequencing of patients and evaluation of exome data from control individuals revealed 35 distinct variations in the CNTN2 gene (Table 8).
Figure 7: Scatter plot of Taqman allelic discrimination assay of the genotyped c.503-503delG mutation in the Egyptian family. Plotting wt allele (G) versus mutated allele (delG). The vertical axis is the G allele, labelled with VIC® and the horizontal axis is the mutated allele with the deletion, labelled with FAM™. Non-template controls are plotted as black squares. Heterozygous parents (green dots), homozygous affected siblings (red dots) and homozygote wild type GG in the healthy sibling (blue dot) are genotyped accordingly.
Table 7: Rare CNTN2 variants in cases and controls

<table>
<thead>
<tr>
<th>Cases counts</th>
<th>Exome Controls n=72 counts</th>
<th>Exon</th>
<th>Genomic position</th>
<th>Nucleotide change</th>
<th>Protein change</th>
<th>PolyPhen Prediction</th>
<th>Austrian controls n=366</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>205027192</td>
<td>c.214C>T</td>
<td>R72W</td>
<td>probably d.</td>
<td>366</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>205028229</td>
<td>c. 505C>T</td>
<td>L169F</td>
<td>benign</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>205030437</td>
<td>c.862G>A</td>
<td>E288K</td>
<td>possible d.</td>
<td>366</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>205030522</td>
<td>c.947C>T</td>
<td>T316I</td>
<td>benign</td>
<td>5 361</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>205033504</td>
<td>c.1294_1295insG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/ [1]</td>
<td>12</td>
<td>205033764</td>
<td>c.1405C>A</td>
<td>P469T</td>
<td>benign</td>
<td>366</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>205033819</td>
<td>c.1460C>T</td>
<td>T487I</td>
<td>probably d.</td>
<td>2 364</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>16</td>
<td>205036310</td>
<td>c.2057T>C</td>
<td>I686T</td>
<td>benign</td>
<td>366</td>
<td></td>
</tr>
<tr>
<td>[1]</td>
<td>18</td>
<td>205039031</td>
<td>c.2273_2274GG>AT</td>
<td></td>
<td></td>
<td>366</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>205041231</td>
<td>2701C>T</td>
<td>P901S</td>
<td>possible d.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

cDNA numbering is based on the reference gene uc001hbr.1 for CNTN2 where +1 corresponds to the A of ATG start translation codon. Familial cases are given in square brackets. Possibly d.: possibly damaging; probably d.: probably damaging. The variant allele was denoted as ‘1’, the reference allele as ‘2’.
Figure 8: Schematic representation of evolutionary conserved areas in different vertebrates of the seven rare nonsynonymous coding variants detected by capillary sequencing.

<table>
<thead>
<tr>
<th>Variant</th>
<th>Homo sapiens</th>
<th>Pan troglodytes</th>
<th>Mus musculus</th>
<th>Rattus norvegicus</th>
<th>Gallus gallus</th>
<th>Danio rerio</th>
</tr>
</thead>
<tbody>
<tr>
<td>R72W</td>
<td>PFAVYR9N9N9NG</td>
<td>TTA--EFTLQIP</td>
<td>SKRGLTV99G9RI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E288K</td>
<td>PFAVYR9N9N9NG</td>
<td>TTA--EFTLQIP</td>
<td>SKRGLTV99G9RI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T316I</td>
<td>PFAVYR9N9N9NG</td>
<td>GTA--EFTLQIP</td>
<td>SKRGLTV99G9RI</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Homo sapiens (human), Pan troglodytes (chimpanzee), Mus musculus (mouse), Rattus norvegicus (rat), Gallus gallus (chicken) and Danio rerio (zebrafish). Corresponding amino acid is indicated in bold.

<table>
<thead>
<tr>
<th>Variant</th>
<th>Homo sapiens</th>
<th>Pan troglodytes</th>
<th>Mus musculus</th>
<th>Rattus norvegicus</th>
<th>Gallus gallus</th>
<th>Danio rerio</th>
</tr>
</thead>
<tbody>
<tr>
<td>P469T</td>
<td>RVTVTDP9999NL</td>
<td>DEGRYT8999AN</td>
<td>YERFV8999NL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T487I</td>
<td>RVTVTDP9999NL</td>
<td>DEGRYT8999AN</td>
<td>YERFV8999NL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I686T</td>
<td>RVTVTDP9999NL</td>
<td>DEGRYT8999AN</td>
<td>YERFV8999NL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W758Y</td>
<td>RVTVTDP9999NL</td>
<td>DEGRYT8999AN</td>
<td>YERFV8999NL</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Homo sapiens (human), Pan troglodytes (chimpanzee), Mus musculus (mouse), Rattus norvegicus (rat), Gallus gallus (chicken) and Danio rerio (zebrafish). Corresponding amino acid is indicated in bold.
Figure 9: Linkage mapping and subsequent sequencing identifies a CNTN2 mutation in an Egyptian family and heterozygous missense variations in patients with TLE.

(a, b) Genome-wide linkage analysis yields significant positive LOD score on Chr1q31.3-q32.2 defining a possible new locus between rs927510 chr1:195653470 and rs724054 chr1:208175909.

(c) Sequence traces of a control sample (WT) and of two members of the Egyptian family. Individual IV-6 carries a homozygous deletion (c.503_503delG) in exon 6 of the CNTN2 gene and the parents demonstrate the c.503_503delG mutation in a heterozygous state, respectively.

(d) Exon structure of human CNTN2 transcript and the corresponding protein domain structure consisting of 6 Ig-like and 4 Fibronectin type III domains. The CNTN2 gene extends over 1040aa and contains 22 coding exons (vertical hatches). Arrows indicate positions of detected variations relative to exons and protein domains.

(e) Sequence traces of the seven rare heterozygous CNTN2 variations detected in 189 TLE patients. Variation and predicted translational changes are indicated. None of the variations were present in controls except T316I, T487I and P469T.
Table 8: All CNTN2 variations found in 189 TLE patients and 3 Egyptian family members and 72 exome controls

<table>
<thead>
<tr>
<th>Genomic position on chromosome 1</th>
<th>Exon/Intron</th>
<th>Nucleotide</th>
<th>Aminoacid</th>
<th>Comment</th>
<th>Cases n= 192</th>
<th>Controls Exome n= 72</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exon nonsynonymous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>205027192</td>
<td>3</td>
<td>c.214C>T</td>
<td>R72W</td>
<td></td>
<td>1/182</td>
<td></td>
</tr>
<tr>
<td>205027737</td>
<td>5</td>
<td>c.433G>A</td>
<td>A145T</td>
<td>rs2275697</td>
<td>50/185</td>
<td>20/72</td>
</tr>
<tr>
<td>205028229</td>
<td>6</td>
<td>c.505C>T</td>
<td>L169F</td>
<td></td>
<td>1/72</td>
<td></td>
</tr>
<tr>
<td>205030347</td>
<td>8</td>
<td>c.862G>A</td>
<td>E288K</td>
<td></td>
<td>1/192</td>
<td></td>
</tr>
<tr>
<td>205030522</td>
<td>8</td>
<td>c.947C>T</td>
<td>T316I</td>
<td></td>
<td>1/192</td>
<td></td>
</tr>
<tr>
<td>205031116</td>
<td>9</td>
<td>c.1097C>T</td>
<td>P366L</td>
<td>rs2229866</td>
<td>99/190</td>
<td>39/72</td>
</tr>
<tr>
<td>205033504</td>
<td>11</td>
<td>c.1294_1295insG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>205033518</td>
<td>11</td>
<td>c.1309C>G</td>
<td>V437L</td>
<td>rs2275697</td>
<td>10/185</td>
<td>5/72</td>
</tr>
<tr>
<td>205033764</td>
<td>12</td>
<td>c.1405C>A</td>
<td>P469T</td>
<td></td>
<td>2/185</td>
<td>1/72</td>
</tr>
<tr>
<td>205033819</td>
<td>12</td>
<td>c.1460C>T</td>
<td>T487I</td>
<td></td>
<td>1/185</td>
<td></td>
</tr>
<tr>
<td>205035727</td>
<td>15</td>
<td>c.1974A>G</td>
<td>N659D</td>
<td>rs41264871</td>
<td>2/187</td>
<td>2/72</td>
</tr>
<tr>
<td>205036310</td>
<td>16</td>
<td>c.2057T>C</td>
<td>I686T</td>
<td></td>
<td>1/188</td>
<td></td>
</tr>
<tr>
<td>205039031</td>
<td>18</td>
<td>c.2273-2274GG>AT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>205041231</td>
<td>20</td>
<td>2701C>T</td>
<td>P901S</td>
<td></td>
<td>1/186</td>
<td>10/72</td>
</tr>
<tr>
<td>205042840</td>
<td>23</td>
<td>c.3070G>A</td>
<td>V1024I</td>
<td>rs17416074</td>
<td>12/186</td>
<td></td>
</tr>
<tr>
<td>Exon synonymous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>205027083</td>
<td>3</td>
<td>c.105C>T</td>
<td>F35F</td>
<td></td>
<td>1/182</td>
<td></td>
</tr>
<tr>
<td>205027390</td>
<td>4</td>
<td>c.297C>T</td>
<td>N99N</td>
<td>rs9787172</td>
<td>10/182</td>
<td>8/72</td>
</tr>
<tr>
<td>205027790</td>
<td>5</td>
<td>c.486A>C</td>
<td>P162P</td>
<td>rs114050151</td>
<td>11/185</td>
<td>3/72</td>
</tr>
<tr>
<td>205030397</td>
<td>8</td>
<td>c.822C>T</td>
<td>R274R</td>
<td></td>
<td>1/192</td>
<td></td>
</tr>
<tr>
<td>205030406</td>
<td>8</td>
<td>c.831C>T</td>
<td>D277D</td>
<td></td>
<td>1/192</td>
<td></td>
</tr>
<tr>
<td>205034390</td>
<td>13</td>
<td>c.1695G>A</td>
<td>V565V</td>
<td></td>
<td>1/186</td>
<td></td>
</tr>
<tr>
<td>205039277</td>
<td>19</td>
<td>c.2447C>T</td>
<td>P816P</td>
<td></td>
<td>1/188</td>
<td></td>
</tr>
<tr>
<td>205041158</td>
<td>20</td>
<td>2628C>T</td>
<td>S876S</td>
<td>rs2229868</td>
<td>77/190</td>
<td>29/72</td>
</tr>
<tr>
<td>205041179</td>
<td>20</td>
<td>c.2649G>A</td>
<td>K883K</td>
<td></td>
<td>1/190</td>
<td></td>
</tr>
<tr>
<td>Intron non-coding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>205027496</td>
<td>4</td>
<td>IVS4+12G>A</td>
<td></td>
<td>rs16855012</td>
<td></td>
<td>1/72</td>
</tr>
<tr>
<td>205028438</td>
<td>6</td>
<td>IVS6+18G>T</td>
<td></td>
<td>rs872379</td>
<td>10/178</td>
<td></td>
</tr>
<tr>
<td>205028827</td>
<td>7</td>
<td>IVS7+17insG</td>
<td></td>
<td>rs5780262</td>
<td>40/189</td>
<td></td>
</tr>
<tr>
<td>205028884</td>
<td>7</td>
<td>IVS7+74-75delAG</td>
<td></td>
<td>rs35182846</td>
<td>77/189</td>
<td></td>
</tr>
<tr>
<td>205030587</td>
<td>8</td>
<td>IVS8+39C>T</td>
<td></td>
<td>rs4130859</td>
<td>11/192</td>
<td></td>
</tr>
<tr>
<td>205031744</td>
<td>10</td>
<td>IVS10+47G>A</td>
<td></td>
<td>rs2242001</td>
<td>56/191</td>
<td></td>
</tr>
<tr>
<td>205031769</td>
<td>10</td>
<td>IVS10+72G>A</td>
<td></td>
<td>rs2242000</td>
<td>56/191</td>
<td></td>
</tr>
<tr>
<td>205033650</td>
<td>11</td>
<td>IVS11+50A>G</td>
<td></td>
<td>rs11804498</td>
<td>1/185</td>
<td></td>
</tr>
<tr>
<td>205034434</td>
<td>13</td>
<td>IVS13+44G>T</td>
<td></td>
<td>rs3901740</td>
<td>38/186</td>
<td></td>
</tr>
<tr>
<td>205034853</td>
<td>13</td>
<td>/GACCACCCGGCCCTGAC CAGTGCAGCAGGCCA</td>
<td></td>
<td>rs3217591</td>
<td>137/186</td>
<td></td>
</tr>
<tr>
<td>205038731</td>
<td>17</td>
<td>IVS17+42C>T</td>
<td></td>
<td>rs2305275</td>
<td>64/186</td>
<td></td>
</tr>
</tbody>
</table>
In the present study we investigated a consanguineous Egyptian family with an autosomal recessive inherited epilepsy syndrome. Five of seven siblings are affected and present a phenotype with temporal lobe epilepsy, myoclonus and tremor. Via linkage analysis and exome sequencing we report a one basepair deletion in exon 6 of the CNTN2 gene (c.503_503delG) in a homozygous state in all affected siblings and in a heterozygous state in the two healthy parents. The result of this deletion is a frameshift which consequently leads to an impairment or loss of enzyme function, due to change in structure of the protein and therefore may be considered to be a loss of function mutation.

CNTN2, alternatively named TAG-1 (Transient Axonal Glycoprotein-1), is a neuronal cell adhesion molecule (CAM) which belongs to the contactin family of the immunoglobulin superfamily (IgSF). CNTN2 comprises six N-terminal Immunoglobulin (Ig)-like and four Fibronectin type III domains and is attached to the cell membrane by a glycosylphosphatidylinositol anchor (Furley, et al., 1990) (Figure 10). The protein is transiently expressed in axons during development of the central and peripheral nervous system and in myelinating glia cells as an anchored form as well as a released form (Karagogeos, 2003; Poliak and Peles, 2003). It is expressed in several types of neurons inclusively in adult neurons of the dorsal root ganglia and their projections and in spinal motor neurons (Dodd et al., 1988; Traka et al., 2002 and 2003). CNTN2 interacts with a number of different binding partners and may play an important role in the initial stage of axon outgrowth and in
interaction between developing neurons. Further, CNTN2 is implicated in axon-glia interactions as it takes part in the organization of axonal subdomains at the node of Ranvier of myelinating fibers. The myelin sheath is structured in segments separated by the nodes of Ranvier, a myelin free region. The nodes are characterized by a high concentration of Na\(^+\) channels which are essential for the generation of the action potential during saltatory conduction (Waxman and Ritchie, 1993). Next to the node sits the paranodal junction formed by terminal cytoplasmic loops of the myelin onto the axolemma. The region adjacent to the paranodes is designated as the juxtaparanodes (Figure 11a). The juxtaparanode is enriched with shaker-type Kv1 channels. These channels build a complex with the Caspr2 protein which subsequently forms a complex with CNTN2. CNTN2 is required for the juxtaparanodal clustering of Caspr2 and K\(^+\) channels (Poliak et al., 2003; Traka et al., 2003). In CNTN2 deficient mice (95% homology between human and rat homologues at the amino acid sequence level) axonal Caspr2 did not accumulate at juxtaparanodes and the normal enrichment of shaker-type K\(^+\) channels in these regions was severely disrupted (Traka et al., 2003). A model for this molecular interaction at the juxtaparanodal region suggests a complex consisting of a glial CNTN2 molecule and the axonal Caspr2 forming a heterodimer through the trans binding of CNTN2 with itself. This suggests that axon-glia interactions mediated by these proteins allow myelinating glia cells to organize ion channels such as Kv1.1 and Kv1.2 in the underlying axonal membrane (Poliak et al., 2003; Traka et al., 2003) (Figure 11b). So far, the role of the juxtaparanodal K\(^+\) channels is not completely understood. It is hypothesized that K\(^+\) channels act as an active damper of re-entrant excitation (Vabenick et al., 1999) which requires a high spatial clustering of K\(^+\) channels near the node and they maintain the resting potential for the entire nerve (Chiu and Ritchie, 1984). Although the K\(^+\) channel clustering was abolished in CNTN2 and Caspr2 deficient mice, the total content of K\(^+\) channels remained constant and the myelin-concealed K\(^+\) channels maintained the internodal resting potential (Poliak et al., 2003; Traka et al., 2003). According to these two studies, no gross morphological abnormalities of the central nervous system of
CNTN2 and Caspr2 deficient mice compared with the wild type were reported and no change in the excitability of myelinated nerves occurred. Nevertheless, in a previous study, mice lacking Kv1.1 and Kv1.2 exhibited increased seizure susceptibility and hyperexcitability in axons and Kv1.2 knock-out mice additionally showed myoclonus and tremor (Brew et al., 2007). Moreover, Fukamauchi et al., reported spontaneous epileptic seizures in CNTN2 deficient mice (Fukamauchi et al., 2001). In 2006 Strauss et al. described a recessive symptomatic focal epilepsy in Older Amish People caused by a single base deletion in the CASPR2 gene. Brain samples of these patients showed an altered expression of Kv1.1 and Nav1.2 channels (Strauss et al., 2006).

Considering these findings, CNTN2 ranks highly among candidate genes for epilepsy. Thus, we subsequently performed capillary sequencing in TLE patients to investigate the contribution of the CNTN2 gene to the temporal lobe epilepsy phenotype in general. Overall, we did not find any homozygous mutation. The screening of all coding exons revealed heterozygous variants only. Assuming a recessive trait and considering the fact that the parents, heterozygous for the c.503_503delG mutation, presented no clinical symptoms of epilepsy at the time of examination, we cannot prove pathogenicity of these variants in our TLE patients. Thus, there is no indication that heterozygous variations influence the disease susceptibility.

The `gold standard` in proving the pathogenicity of a given high risk variant is segregation in the family. However, as family history is often not available, this proof cannot be applied. In silico predictions of pathogenicity, such as calculated by PolyPhen, have to be considered with caution. Past studies have frequently shown that genetically proven mutations were predicted to be benign by PolyPhen and variations, irrelevant for the disease, were predicted to be probably damaging. The predictions are based on evolutionary conservation and theoretical assumptions of the 3 dimensional structure of a protein. To find out the relevance of a candidate gene in a given disease population it has become standard to screen in a first step.
many patients for the whole gene (all exons), and in a second step, to genotype the found variants in a matched control population. Lack of occurrence of a variant in the control group is usually taken as a supportive argument for pathogenicity. The genome of any individual carries many thousands of private or very rare missense variants which do not obviously influence the phenotype of this person. It is therefore a matter of statistical chance that such variants are found in a given gene when screening hundreds of samples. Thus, a more reliable approach is to screen the whole gene in the same number of patients and control individuals. If the frequency of variants is then found to be higher in the patient group, it might be more likely to take this as a supportive argument for pathogenicity. We have evaluated the frequency of variants in the CNTN2 gene from the exome sequencing data of 72 non epileptic patients. We have found four rare nonsynonymous coding variants in 72 exome data, and seven in our 189 TLE patients. The identical frequency of rare variants in the patients and the control group indicates that CNTN2 is not likely to be a major contributor for the TLE phenotype in general.

Nevertheless, we cannot preclude compound heterozygous mutations completely (the condition of having two heterogeneous recessive alleles causing the disease) as we did not screen the intronic and regulatory regions of the CNTN2 genes. Digenic inheritance (the disease is caused by an interaction of two gene-defects) cannot be excluded too. We did not screen any other genes, which may contain a second variant contributing in combination with the heterozygous CNTN2 variation to the TLE phenotype. According to the parents’ heterozygous state, regarding the c.503_503delG mutation, we know that in this case haploinsufficiency (a single copy of the normal gene is not capable of providing sufficient protein product as to assure normal function) of the CNTN2 protein does not underlie epilepsy. However, we cannot exclude the possibility of a dominant negative effect (heterozygous mutation that results in an altered gene product that acts antagonistically to the wilde-type allele) or loss of function (mutation that results in an impaired or abolished function
of the protein) in some of the other found heterozygous variations and thus, being possibly pathogenic.

The remarkable phenotype of the Egyptian family and the limited comparability with our tested sample of TLE patients is further constricting our results. The phenotype of the Egyptian family consisting of an adolescent onset epilepsy syndrome with obvious temporal lobe features, myoclonus and tremor could most probably be arranged with a rare syndrome called familial cortical myoclonic tremor with epilepsy (FCMTE, BAFME, FAME) (van Rootselaar et al., 2005). However, these patients start with generalized tonic clonic seizures in adulthood, exhibit also myoclonus and tremor, but there are no definite references for temporal lobe epilepsy as in our case. Furthermore, contrary to our family, most of these families show an autosomal dominant trait. Three loci on chromosome 2p, 8q and 5q are described for this syndrome to date, but a causing gene has not yet been identified (Mikami et al., 1999, Guerrini et al., 2001, Laubage et al., 2002, De Falco et al., 2003, Striano et al., 2004, Depienne et al., 2010).

It cannot be ruled out that the c.503-503del G mutation, obviously disease causing in the described Egyptian family, could be unique to this family. Therefore it remains to be seen whether mutations affecting CNTN2 will be identified as causes of temporal lobe epilepsy in other populations.

Nevertheless, the crucial role of CNTN2 in neuronal excitability makes this gene a perfect candidate for epilepsy. Future studies will show the significance of this new identified gene.
Figure 10: Schematic representation of CNTN2 protein. The protein comprises 6 N-terminal Ig-like and 4 Fibronectin type III domains.

Figure 11: Localization of CNTN2 under the myelin sheath. (a) Differentiation of the axonal membrane into nodes, paranodal junction, juxtaparanode and internodal region. (b) Axonal CNTN2 (TAG-1) forms a complex with Caspr2 and undergoes a homophilic binding with a glial CNTN2 (TAG-1) molecule at the juxtaparanodal region. Caspr2 in turns interacts with voltage gated K⁺ channels embedded in the membrane. (c) In CNTN2-deficient mice (CNTN2−/−) clustering of K⁺ channels at the juxtaparanode is altered and channels dissipated into the internode.

Figure 12: Nucleotide and amino acid sequence of the CNTN2 gene uc001hbr.1. Rare nonsynonymous coding variations identified by capillary sequencing are indicated in yellow. The c.503_503delG mutation of the Egyptian family is indicated in red.

1 ATGGGGACAGCCACCAGGAGGAAGCCACACCTGCTGCTGGTAGCTGCTGTGGCCCTTGTC 60
MGTA TR RKP HLLVAAVALV

70 80 90 100 110 120

61 TCCTCTTCAGCTTGAGTTCAACGCCCAGGGATCCCACAACCCTCCGGCTGTCTTGAA

120 SSSASAALGSQTFGPVE

| exon2/exon3 |

130 140 150 160 170 180

121 GACCAGCCCCTCAGTGCTATCAGGAGTCACACGGGAGAGTGGGTTTGCTGNC

180 DQPLESPPESTTEQVLL

190 200 210 220 230 240

181 TGCCGCGCCGGGCAACCCACCTCACTACGTTGGAGATGAATGGTACCGAGATG

240 CRARASPPATYWKMNGETM

| exon3/exon4 |

250 260 270 280 290 300

241 AAGCTGGAGCCAGTTCCCGTCAACCGCTTGGGGCGCAACCTGGTCATCATGAAACC

300 KLEPGSRHQLVGGNLIIMXP

310 320 330 340 350 360

301 ACCAAGGACAGGTGGGCTTACGATTGCCTCAGCCTCAAGCAGGGACAGCTGTT

360 TKAQDAGVYQCLASNPVGTV

370 380 390 400 410 420

361 GTGAGCAGGGAGAGCCTCCGGTTCTGCGCTGAACTCCCAGGGAGGAGCAGCA

420 VSREAILRFGLQEPSEKEER

| exon4/exon5 |

430 440 450 460 470 480
CTGCGGAACGGGGAGCNTCTGGCCTCCCAGAACCGGGTGGAGGTGTTGGCTGGGGACCTG
1140
361 L R N G E X L A S Q N R V E V L A G D L 380

1150 CGGTTCCTCCAAAGCTCTACGCTCGGAGCTGGTGGGAGATGCTGGAGAATAG 1200
381 R F S K L S L E D S G M Y Q C V A E N K 400

1210 CACGTTACCACCATCAGCCAGCAGCTGCTACGTGAAGACTGCCGCCTCCCTGACTTCAGG
1260 401 H G T I Y A S A E L A V Q A L A P D F R 420

1270 CTGAGATCGGCGAGCTGCCAGCTGCGCCGAGCTACCTGGCGCCCGGGAGAGATCCTTATCCCCTGC
1320 421 L N P V R R L I P A A R G G E I L I P C 440

1330 CAGCCCCGGGCAGCTCCAAAGGCCGTGGTGCTCTGGAGCAAAGGCACGGAGATTTTGGTC
1380 441 Q P R A A P K A V V L W S K G T E I L V 460

1390 TCAGATGAAGGCAAATACACCTGCTTTGCTGAGAACTTCATGGGCAAAGCCAACAGCACT
1440 461 N S S R V T V T P D G T L I I R N I S R 480

1450 TCGAGGAGGAAAAATACACTCGTCTTTGCTGAGAATCTCAGGAGGGAGAGATCCTTATCCCCTGC
1500 481 S D E G K Y T C F A E N F M G K A N S T 500

1510 GGAATCCTATCTGTGCGAGATGCAACCAAAATCACTCTAGCCCCCTCAAGTGCCGACATC
1560 501 G I L S V R D A T K I T L A P S S A D I 520

1570 AACTTGGGTGACAACCTGACCCTACAGTGCCATGCCTCCCACGACCCCACCATGGACCTC
1620 521 N L G D N L T L Q C H A S H D P T M D L 540

1630 ACCTTCACCTGGACCCTGGACGACTTCCCCATCGACTTTGATAAGCCTGGAGGGCACTAC
1680 541 T F T W T L D D F P I D F D K P G H Y 560

1690 TGAGATCGGCGAGCTGCCAGCTGCGCCGAGCTACCTGGCGCCCGGGAGAGATCCTTATCCCCTGC
1740 561 R R T N V K E T I G D L T I L N A Q L R 580

1750
3061 CCTGGCACCNTCATTTCCACTCCGTGGCGATGCTGATCCTCATAGGCTCCCTGGAGCTC 3120
1021 P G T X I S H S V A M L I L I G S L E L 1040
7 Reference list

Commission on Classification and Terminology of the International League Against Epilepsy (1989) Proposal for Revised Classification of Epilepsies and Epileptic Syndromes. Epilepsia 30, 3399

Commission on Epidemiology and Prognosis, International League Against Epilepsy (1993) Guidelines for Epidemiologic Studies on Epilepsy. Epilepsia, 34592-596

Helbig, I., Scheffer, I.E., Mulley, J.C., Berkovic, S.F (2008) Navigating the channels and beyond: unravelling the genetics of the epilepsies. Lancet Neurol 7, 231-245

Lander, E.S. and Schork, N.J. (1994) Genetic dissection of complex traits. Science 265, 2037-2048

Ng, S. B., Turner, E.H., Robertson, P.D., Flygare, S.D., Bigham, A.W., Lee, C., Shaffer, T., Wong, M., Bhattacharjee, A., Eichler, E.E., Bamshad, M.,

72

8 Curriculum vitae

Persönliche Daten

Name Eva Maria Reinthaler
Anschrift Neustiftgasse 19/13, 1070 Wien
Email eva.reinthaler@meduniwien.ac.at

Geburtsdaten Geboren am 26. Mai 1983 in Rohrbach/OÖ
Nationalität Österreichische Staatsbürgerschaft

Ausbildung

Seit Oktober 2004 Studium der Biologie an der Universität Wien
Studienzweig Anthropologie Schwerpunkt Humangenetik

1998 – 2003 HBLA Landwiedstraße für wirtschaftliche Berufe in Linz
5-jährig, Abschluss mit Matura Juni 2003

Berufserfahrung

Seit Oktober 2010 CTA Stelle im Forschungslabor der Univ. Klinik für Neurologie der MUW

November 2009-Februar 2010 Projektmitarbeiterin in der Arbeitsgruppe Genetik (Priv.Doz.Dr. Alexander Zimprich) im Forschungslabor der Univ. Klinik für Neurologie der MUW

September 2009-Juni 2010 Ordinationsassistentin bei Dr. med Sonja Schwinger, Ärztin für Allgemeinmedizin, Ganzheitliche Diagnostik und Therapie

Jänner 2008- Tutorin im 5-wöchigen Sezierkurs für Anthropologen, Universität Wien

Besondere Erfahrungen und Kenntnisse

MOLEKULARBIOLOGISCHE UND GENETISCHE TECHNIKEN

DNA Isolierung, PCR, Real Time PCR, Genotypisierung und Expressionsanalysen mittels TaqMan, Kapillarsequenzierung mittels ABI-Genetic Analyzer 3130, Gene Chip Analyse mittels Genome-Wide-Human SNP Array 6.0 (Affymetrix)

COMPUTERPROGRAMME

Sehr gute Kenntnisse in Microsoft Office (Word, PowerPoint, Excel), Adobe Illustrator
Gute Kenntnisse in Umgang mit genetischen Datenbanken (UCSC Genome Browser, NCBI, ENSEMBL) und Sequenzanalyseprogramm (Staden Package)

SPRACHKENNTNISSE

Sehr gute Englisch-Kenntnisse in Wort und Schrift auf wissenschaftlichem Niveau
Gute Spanisch-Kenntnisse in Wort und Schrift
Französisch-Kenntnisse

AUSLANDERFAHRUNGEN

September 2008- Juli 2009 Erasmus Aufenthalt in Spanien, Barcelona im Rahmen des Studienzieges Anthropologie/Humangenetik
Teilnahme an Vorlesungen/Seminaren/Übungen der Masterstudien „Developmental Biology and Genetics“ und „Human Biology“

Oktober 2004- Juni 2005 Aufenthalt in Neuseeland & Australien

Wissenschaftliche Publikationen

3: Lack of association between the ABCC2 gene 24C>T polymorphism and treatment response in epilepsy. Eva Assem-Hilger, Eva Maria Reithaler , Elisabeth Stogmann, Christoph Hotzy, Ekaterina Pataria, Christoph Baumgartner, Alexander Zimprich and Fritz Zimprich. (in press)