Universitätsbibliothek Wien

Rigorous techniques for continuous constraint satisfaction problems

Domes, Ferenc (2010) Rigorous techniques for continuous constraint satisfaction problems.
Dissertation, University of Vienna. Fakultät für Mathematik
BetreuerIn: Neumaier, Arnold

[img]
Preview
PDF
Alle Rechte vorbehalten / All rights reserved

Download (1182Kb)
DOI: 10.25365/thesis.10626
URN: urn:nbn:at:at-ubw:1-29759.98758.277465-5

Link zu u:search

Abstract in English

This thesis contributes rigorous techniques for solving continuous constraint satisfaction problems, i.e., finding one or all points (called feasible points) satisfying a given family of equations and/or inequalities (called constraints). Many real word problems are continuous constraint satisfaction problems. New and old state of the art methods are presented, integrated in GloptLab, a new easy-to-use testing and development platform for solving quadratic constraint satisfaction problems. The basic solution principle is branch and prune and filtering. Filtering techniques tighten a box -- the Cartesian product of intervals defined by the bounds on the variables. In order to avoid a loss of feasible points, rigorous error estimation using interval arithmetic and directed rounding are used, to take care that all calculations are valid even though the calculations are performed in floating-point arithmetic only. Discussed are the mathematical background, algorithms and tests of constraint propagation, strictly convex enclosures, linear relaxations, finding, using and verifying approximately feasible points, optimal scaling and other auxiliary techniques. In particular: - Constraint propagation is based on a sequence of steps, each using a single constraint only. Traditional techniques are extended by special quadratic constraint propagation methods using new techniques for eliminating bilinear entries and finding optimal enclosures for separable quadratic expressions. - A quadratic inequality constraint with a positive definite Hessian defines an ellipsoid. A rounding error controlled version of the Cholesky factorization is used to transform a strictly convex quadratic constraint into a norm inequality, for which the interval hull is easy to compute analytically. - Different methods for computing linear relaxations are discussed, combined and extended. Partially improved and existing methods, as well as new approaches for rigorously enclosing the solution set of linear systems of inequalities are presented. - Numerous examples show that the above methods complement each other and how to create solution strategies that solve constraint satisfaction problems globally and efficiently.

Schlagwörter in Englisch

continuous constraint satisfaction problems / rigorous techniques / quadratic constraints / optmiziation / numerical mathematics

Abstract in German

Diese Arbeit beschäftigt sich mit rigorosen Techniken für das Lösen kontinuierlicher Zulässigkeitsprobleme. Das heißt, wir suchen nach einem oder allen Punkte, genannt zulässige Punkte, die eine Familie von Gleichungen und/oder Ungleichungen erfüllen, die wir im Weiteren Nebenbedingungen nennen werden. Zahlreiche Anwendungen führen auf kontinuierliche Zulässigkeitsprobleme. Neue und bereits existierende moderne Methoden werden präsentiert und integriert in GloptLab, eine neue, leicht bedienbare Test- und Entwicklungsplattform zum Lösen quadratischer Zulässigkeitsprobleme. Der Lösungsalgorithmus beruht auf dem Grundprinzip von Branch-and-Prune und auf Filterung. Filterungsmethoden dienen zur Verkleinerung/Reduktion einer Box, definiert als das kartesische Produkt der Intervalle, die die Schranken an die Variablen festlegen. Um den Verlust zulässiger Punkte zu vermeiden, werden alle Fehlerabschätzungen rigoros mittels Intervallarithmetik und gerichteter Rundung durchgeführt. Das stellt sicher, dass alle Rechnungen auch in Gleitkommaarithmetik gültig sind. In der Doktorarbeit werden die folgenden Themen diskutiert: der mathematische Hintergrund, Algorithmen und Tests für Constraint-Propagation, strikt konvexe Einschließungen, lineare Relaxationen, das Berechnen, korrekte Benutzen und Verifizieren approximativ zulässiger Punkte, optimale Skalierung und diverse Hilfsmethoden. Insbesondere: - Constraint-Propagation basiert auf einer Folge von Schritten, die jeweils eine einzelne Nebenbedingung verwenden. Traditionelle Techniken werden durch eine spezielle quadratische Methode erweitert, die neue Verfahren für die Eliminierung bilinearer Einträge und für das Berechnen optimaler Einschließungen für separable quadratische Ausdrücke verwendet. - Eine quadratische Ungleichungsnebenbedingung, die eine positiv definite Hesse-Matrix besitzt, definiert ein Ellipsoid. Eine spezielle rundungsfehlerkontrollierte Version der Cholesky-Zerlegung wird verwendet, um die strikt konvexe quadratische Nebenbedingungen in Norm-Ungleichungen zu transformieren. Für diese ist es dann einfach, die Intervall-Hülle analytisch zu bestimmen. - Diverse Methoden für die Erzeugung linearer Relaxationen werden diskutiert, kombiniert und erweitert. Teilweise verbesserte, existierende und neue Verfahren für das rigorose Einschließen der Lösungsmenge linearer Systeme werden präsentiert. - Eine Vielzahl von Beispielen demonstrieren, dass die präsentierten Verfahren einander ergänzen. Außerdem zeigen sie, wie man Lösungsstrategien entwickelt, die Zulässigkeitsprobleme global und effizient lösen.

Schlagwörter in Deutsch

kontinuierliche Zulässigkeitsprobleme / rigorose Methoden / quadratische Nebenbedingungen / Optimierung / numerische Mathematik

Item Type: Hochschulschrift (Dissertation)
Author: Domes, Ferenc
Title: Rigorous techniques for continuous constraint satisfaction problems
Umfangsangabe: 148 S.
Institution: University of Vienna
Faculty: Fakultät für Mathematik
Publication year: 2010
Language: eng ... Englisch
Supervisor: Neumaier, Arnold
Assessor: Schichl, Hermann
2. Assessor: Csendes, Tibor
Classification: 31 Mathematik > 31.76 Numerische Mathematik
31 Mathematik > 31.80 Angewandte Mathematik
AC Number: AC08301299
Item ID: 10626
(Das PDF-Layout ist ident mit der Druckausgabe der Hochschulschrift.)

Urheberrechtshinweis: Für Dokumente, die in elektronischer Form über Datennetze angeboten werden, gilt uneingeschränkt das österreichische Urheberrechtsgesetz; insbesondere sind gemäß § 42 UrhG Kopien und Vervielfältigungen nur zum eigenen und privaten Gebrauch gestattet. Details siehe Gesetzestext.

Edit item (Administrators only) Edit item (Administrators only)